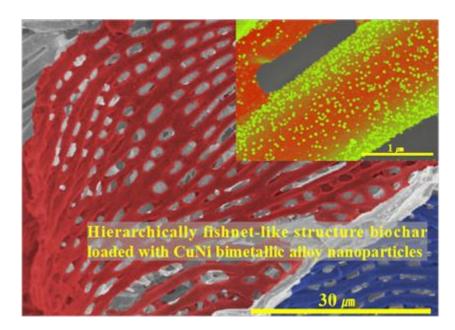


Unusual, hierarchically structured composite of sugarcane pulp bagasse biochar loaded with Cu/Ni bimetallic nanoparticles for dye removal

Mengqi Tang, Youssef Snoussi, Arvind Bhakta, Mohamed El Garah, Ahmed Khalil, Souad Ammar, Mohamed Chehimi

▶ To cite this version:

Mengqi Tang, Youssef Snoussi, Arvind Bhakta, Mohamed El Garah, Ahmed Khalil, et al.. Unusual, hierarchically structured composite of sugarcane pulp bagasse biochar loaded with Cu/Ni bimetallic nanoparticles for dye removal. Environmental Research, 2023, 232, pp.116232. 10.1016/j.envres.2023.116232. hal-04310167


HAL Id: hal-04310167 https://hal.science/hal-04310167v1

Submitted on 30 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Unusual, hierarchically structured composite of
2	sugarcane pulp bagasse biochar loaded with Cu/Ni bimetallic
3	nanoparticles for dye removal
4	Mengqi Tang ¹ , Youssef Snoussi ^{1#} , Arvind K. Bhakta ^{1#} , Mohamed El Garah ^{2,3#} ,
5	Ahmed M. Khalil ⁴ , Souad Ammar ¹ , Mohamed M. Chehimi ^{1,*}
6	
7	
8	1 Université Paris Cité, CNRS, ITODYS (UMR 7086), Paris 75013, France
9	2 LASMIS, Antenne de Nogent – 52, Pôle Technologique de Sud – Champagne,
10	52800 Nogent, France
11	3 Nogent International Center for CVD Innovation (NICCI), LRC CEA-
12	LASMIS, Pôle Technologique de Sud Champagne, 52800 Nogent, France
13	4 Photochemistry Department, National Research Centre, Dokki, Giza 12622,
14	Egypt
15	
16	*Corresponding authors: Mohamed M. Chehimi & Mengqi Tang, Université Paris
17	Cité & CNRS, mohamed.chehimi@cnrs.fr; mengqi.tang@etu.u-paris.fr
18	
19	[#] These authors have contributed to this work equally.
20	

Graphical Abstract

1 Abstract

Biochar-supported nanocatalysts emerged as unique materials for environmental 2 remediation. Herein, sugarcane pulp bagasse (SCPB) was wet-impregnated with 3 Cu(NO₃)₂3H₂O and Ni(NO₃)₂6H₂O, then pyrolyzed at 500 °C, under N₂, for 1 hour. We 4 specifically focused on sugarcane pulp instead of SCB and biochar materials. The 5 6 metal nitrate to biomass ratio was set at 0.5, 1, and 2 mmol/g, with Cu/Ni initial ratio = 1. The process provided hierarchically structured porous biochar, topped with 7 evenly dispersed 40 nm-sized CuNi alloy nanoparticles (SCPBB@CuNi). The biochar 8 exhibited an unusual fishing net-like structure induced by nickel, with slits having a 9 length in the 3-12 µm range. Such a fishing net-like porous structure was obtained 10 without any harsh acidic or basic treatment of the biomass. It was induced, during 11 12 pyrolysis, by the nanocatalysts or their precursors. The CuNi nanoparticles form true 13 alloy as proved by XRD, and are prone to agglomeration at high initial metal nitrate concentration (2 mmol/g). Stepwise metal loading was probed by XPS versus the 14 initial metal nitrate concentration. This is also reflected in the thermal gravimetric 15 analyses. The SCPBB@CuNi / H₂O₂ (catalyst dose: 0.25 g/L) system served for the 16 catalyzed removal of Malachite Green (MG), Methylene Blue (MB), and Methyl 17 18 Orange (MO) dyes (concentration=0.01 mmol/L). Both single and mixed dye solutions were treated in this advanced oxidation process (AOP). The dyes were 19 20 removed in less than 30 min for MG and 3 h for MB, respectively, but 8 h for MO, therefore showing selectivity for the degradation of MG, under optimized degradation 21 conditions. The catalysts could be collected with a magnet and reused three times, 22 without any significant loss of activity (~ 85 %). AOP conditions did not induce any 23 24 nanocatalyst leaching.

To sum up, we provide a simple wet impregnation route that permitted to design highly active Fenton-like biochar@CuNi composite catalyst for the degradation of organic pollutants, under daylight conditions.

28

29 Keywords:

Saccharum officinarum; biochar; bimetallic nanoalloy; porous materials; Fenton-like
 reaction; water treatment.

- 32
- 33
- 34

1 1. Introduction

The world is witnessing unprecedented technological and industrial expansion, 2 causing real environmental and climate issues that are terrifyingly impacting Human 3 health and well-being (Liu, Jiang et al. 2015). Meanwhile, many efforts are constantly 4 devoted to implementing eco-friendly, cost-effective, and sustainable policies in order 5 to face problems threatening planet Earth, especially those related to water (Ali, 6 Burakova et al. 2019, Ali, Kon'kova et al. 2021) and air contamination (Hamouma, 7 Kaur et al. 2019, Huang, Su et al. 2019) organic molecules and gases. Indeed, political 8 9 decisions worldwide aim to maintain the balance between ecosystem preservation, 10 economy, and social benefits (Low and Yee 2021). Convention on Climate Change 11 (COP) is one of the most important events where politicians and environmental experts meet to change rules for a safer environment. 12

Taking the sole example of agro-wastes from the agro-industry and the agricultural activities, their management, recycling, and valorization is a highly challenging field. Indeed, billions of tons are yearly produced and must be managed, *e.g.* the World production of raw sugarcane was estimated to be 1.9 billion tons which once processed generate around 513 million metric tons of lignocellulosic waste (Pan, Zabed et al. 2022).

Besides animal feeding and fertilization, several innovative solutions have been proposed and employed to convert agro-wastes into green energy with low carbon dioxide emissions, *e.g.* bioethanol, biofuel or hydrogen (Adewuyi 2020, Ramlingam, Subramanian et al. 2022, Saravanan, Kumar et al. 2022), and also into functional bio-sourced material, for example, biochar (Tripathi, Sahu et al. 2016, Gopinath, Divyapriya et al. 2021, Aoulad El Hadj Ali, Ahrouch et al. 2022).

Biochar is a green and carbon-rich material made from the pyrolysis of diverse biomass wastes, at relatively moderate (400-600 °C) to high temperatures (above 700 °C), under oxygen-free (or low oxygen) conditions. It has emerged as a unique, lowcost material for agriculture, water treatment, and life sciences, to name but these

important domains. Biochar is coined "new black gold" (Nagula and Ramanjaneyulu 1 2020), for its exceptional physicochemical properties that can be tuned, and enhanced 2 through modification (Goswami, Kushwaha et al. 2022). Such a modification of 3 biochar is beneficial for pollutant adsorption (Ali, Afshinb et al. 2020), or for 4 anchoring nanocatalysts onto the porous material for the complete mineralization of 5 organic pollutants (Lopes and Astruc 2021, Yameen, AlMohamadi et al. 2023). 6 7 Biochar with immobilized nanocatalysts constitute an emerging class of remarkably 8 efficient advanced materials in water treatment (Shi, Deng et al. 2022), among other 9 composites (Dihingia and Tiwari 2022) based on metal-organic frameworks (MOFs) 10 (Xiao, Cheng et al. 2023), zeolites (Wang, Sun et al. 2021), mesoporous silica (Snoussi, Bastide et al. 2018, Verma, Kuwahara et al. 2020), carbon nitride (Tang, 11 12 Cheng et al. 2023), to name but a few. However, biochar platforms are made from valueless biomass, therefore complying with the concept of waste-to-wealth, or trash-13 14 to-treasure.

There is a plethora of biomasses that are thermochemically converted into 15 biochar, for example, agrowastes and side-products of the food and beverage industry. 16 Particularly, sugarcane is the main product in the sugar industry; it grows rapidly and 17 18 has a high yield worldwide (Aruna, Bagotia et al. 2021). A large amount of sugarcane 19 bagasse as a by-product is discarded after processing. It follows that the conversion of 20 SCB into biochar is an appealing strategy to elaborate highly performant catalysts and adsorbents for water treatment (Lopes and Astruc 2021, Sutar, Patil et al. 2022) and 21 22 energy production (Kant Bhatia, Palai et al. 2021).

Of relevance to this contribution, the literature shows that bimetallic catalysts combine high activity and high selectivity metals (Pang, Wang et al. 2012). The addition of a second metallic component may affect the morphology and the electronic configuration of the final catalyst. The electronic effect, called also the ligand effect, results in more binding and active sites, hence a higher catalytic activity (Liao, Lo et al. 2015, Quiton, Lu et al. 2021, Chen, Liu et al. 2022). The incipient wet impregnation is most probably the simplest route to incorporate bimetallic catalysts into/onto the support matrix. The dispersing network is either coimpregnated with the bimetallic solution or successively impregnated with monometallic solutions (Quiton, Lu et al. 2021). Wet impregnation has always been considered a facile, cost-effective, and very efficient method to elaborate composite catalysts (Deraz 2018, Goswami, Kushwaha et al. 2022).

7 In our previous work, we synthesized several bimetallic biochar@catalyst materials with different structures by direct pyrolysis method and found that bimetallic 8 9 nanoparticle/biochar are more active than the corresponding pure biochar and 10 monometallic nanocomposites (Khalil, Michely et al. 2021, Omiri, Snoussi et al. 2022, Snoussi, Sifaoui et al. 2023). Transition metal nickel (Ni) is attractive due to its 11 excellent magnetic properties and high activation ability of C-H and C-C bonds (Liao, 12 13 Wang et al. 2018) but can suffer aggregation and consequently decreased catalytic efficiency (Gong, Ma et al. 2021). Copper is a less active transition metal but exhibits 14 high selectivity (Hu, Yue et al. 2014). It is worth noting that the catalytic activity of 15 CuNi is superior to those of the individual monometallic nanocatalysts, and bimetallic 16 nanocatalysts dispersed on the support can avoid agglomeration and oxidation, hence 17 18 the improved catalytic activity (Deka, Borah et al. 2019, Gong, Ma et al. 2021). 19 Recently, we found that the copper-nickel/biochar served for the degradation of 20 Methyl Orange and nickel imparted magnetic properties to the biochar (Khalil, Michely et al. 2021, Omiri, Snoussi et al. 2022). In another application, the group of 21 22 Hassan Sheibani successfully synthesized CuNi bimetallic nanoparticles and mixed 23 them with preformed pomegranate shell biochar to obtain a composite with excellent 24 catalytic activity for the A3-coupling reactions (Zarei, Saidi et al. 2022). One key 25 point is that copper precursors are low-cost, which makes CuNi bimetallic 26 nanocatalyst of interest: cost-effective, catalytically highly active, magnetic, and thus 27 easy to recover.

Despite the rich literature on CuNi bimetallic nanocatalysts, loading CuNi
bimetallic nanocatalysts in- and on the surface of biochar remains sparse (Zhu, Wang

et al. 2019). Our ongoing research work consisted of the direct slow pyrolysis of 1 biomass impregnated by copper and nickel nitrate mixtures under various conditions 2 (Khalil, Michely et al. 2021, Omiri, Snoussi et al. 2022), instead of the in situ 3 deposition of CuNi alloy onto pre-fabricated biochar (Zhu, Wang et al. 2019). Post-4 modification of biochar by nanocatalysts requires a chemical reductive process to 5 convert the metal salts into metallic nanocatalysts, whereas mixing of biochar and 6 7 CuNi bimetallic catalysts resulted in large immobilized particles (Zarei, Saidi et al. 8 2022), contrary to the wet impregnation approach before pyrolysis.

9 Returning to sugarcane, most of the research works on its thermochemical 10 conversion to obtain biochar concerned the total sugarcane bagasse derived from sugarcane juice making. Instead, we were interested in removing the pulp from the 11 total sugarcane bagasse to check if there is any interest in terms of physicochemical 12 13 properties. Surprisingly, our first results indicated that sugarcane pulp bagasse loaded with copper and nickel nitrates led to unusual porous structure of the biochar with 14 even distribution of narrow dispersion bimetallic CuNi nanoparticles (Tang, Snoussi 15 et al. 2022). This has motivated us to conduct a comprehensive study on the 16 17 preparation of new biochar@CuNi materials.

In this work, we report a simple and green method to prepare porous 18 19 SCPBB@CuNi nanocomposites by slow pyrolysis, under nitrogen, of sugarcane pulp 20 bagasse mixed with copper and nickel nitrates, through wet impregnation technique. The materials were characterized by X-ray diffraction (XRD), X-Ray photoelectron 21 spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), and 22 thermogravimetric analysis (TGA). The initial metal ion/sugarcane pulp has been 23 monitored and the ratio set to 0.5, 1, and 2 mmol/g. This is an important parameter for 24 controlling the extent of copper/nickel, the size, and the distribution of the 25 26 nanoparticles on the biochar support. Moreover, biochar loaded with single metallic 27 systems (biochar@Cu and biochar@Ni) served as control composites in order to 28 understand the effect of each metal on the biochar structure. The biochar samples loaded with CuNi bimetallic nanoparticles were tested as catalysts of the degradation 29

of model dyes, namely Malachite Green (MG), Methyl Orange (MO), and Methylene
Blue (MB), in the presence of H₂O₂ (advanced oxidation process, AOP). We have
also tested the performances of the catalytic composites in the degradation of binary
dye mixtures in order to investigate any competitive effects.

5 To the very best of our knowledge, this is the first report on biochar-supported 6 CuNi bimetallic catalyst obtained by wet impregnation of sugarcane pulp bagasse and 7 its slow pyrolysis for environmental remediation, *i.e.* dye degradation in water 8 treatment applications.

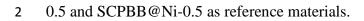
9

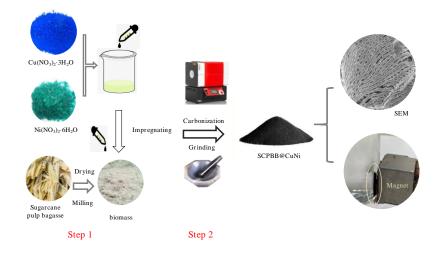
10 2. Materials and methods

11

2.1. Biomass and Chemicals

12 The used sugarcane bagasse was cultivated and provided from Egypt 13 (*Saccharum officinarum*). Sugarcane pulp bagasse (SCPB) agricultural was finely 14 ground before use. Metal nitrate salts $Cu(NO_3)_2 \cdot 3H_2O$ and $Ni(NO_3)_2 \cdot 6H_2O$ were 15 purchased from Aldrich and used as received. We used distilled water to dissolve 16 metal nitrates before pyrolysis.


17


18

2.2. Synthesis of biochar loaded with Cu/Ni bimetallic nanoparticles

19 SCPB particles were impregnated with an aqueous solution of copper and nickel 20 nitrates in the molar mass ratio of 0.5:0.5, 1:1, and 2:2, respectively (see Figure 1). 21 The powder was mixed on a glass lens and dried at 60 degrees, overnight, until the 22 powder weight was constant. Subsequently, the mixture containing metal saltimpregnated particles was transferred into a tubular furnace and pyrolyzed at 500 °C, 23 under N_2 atmosphere for 1 h, with a heating rate of 20 °C min⁻¹. Copper and nickel 24 nitrates were mixed in the deionized (DI) water. The final bimetallic nanoparticle-25 coated biochar samples are labeled SCPBB@CuNi-0.5, SCPBB@CuNi-1, and 26 SCPBB@CuNi-2, respectively. The same agrowaste SCPB, without any metallic 27

1 nitrates, was pyrolyzed in the same conditions. We have also prepared SCPBB@Cu-

Figure 1. Schematic illustration for the copper nickel nanoparticle-loaded biochar

- 7 SCPBB@CuNi by slow pyrolysis.

Table 1. Conditions for the preparation of pure and metallic nanoparticle-coated
 biochar by slow pyrolysis.

11	biochar by slow pytotysis.						
Materials	P-SCB Mass(g)	Cu(NO3)2*3H2O Mass (g)/mmol	Ni(NO3)2*6H2O Mass (g)/mmol	Distilled water (mL)	Before Pyrolyzed SCB+Metal Ion Mixture(g)	Biochar Mass (g) /Yield (%)	Experimental condition
SCPBB@CuNi-0.5	0.996	120.8/0.5	145.4/0.5	20	1.226	0.352/28.71	
SCPBB@CuNi-1	0.998	241.6/1	290.8/1	20	1.3195	0.441/33.41	Temperature : 500 °C Heating
SCPBB@CuNi-2	0.997	483.2/2	581.6/2	20	1.622	0.429/26.45	rate: 20 °C · min Residence
SCPBB@Cu-0.5	0.999	120.8/0.5	/	10	1.1089	0.282/25.42	time: 1 h Gas: N ₂ atmosphere
SCPBB@Ni-0.5	0.997	/	145.4/0.5	10	1.1324	0.297/26.24	N ₂ flow rate: $2L \cdot \min^{-1}$
SCPBB	2.143	/	/	/	/	0.504/23.51	

2.3. Materials characterization

The XRD patterns were recorded in the $20^{\circ} \le 2\theta \le 80^{\circ}$ range, using a D8 Advance Bruker diffractometer (Cu K α radiation) with X-ray generator voltage of 40 kV and the current of 40 mA. The step size and scan rate were set to 0.33 °C and 1.11 °C.s⁻¹, respectively. The data were processed using Highscore Plus software.

6 XPS spectra were recorded using a K Alpha+ apparatus (Thermo, East 7 Grinstead, UK). The machine is fitted with a mono Al K α (source energy = 1486.6 8 eV), and a flood gun for charge compensation build-up. The pass energy was set to 9 200 eV to record the survey spectra and 80 eV for the acquisition of the narrow 10 regions. Avantage software version 5.9902 was used for data acquisition and 11 processing.

Raman spectra analysis was conducted by a Horiba HR 800 instrument to determine the carbon signature at a wavelength of the He–Ne laser beam set to 633 nm. The spectra were acquired in the 800–2700 cm⁻¹ region.

We have employed a Hitachi SU 8030 Scanning Electron Microscope (SEM) for imaging the surface morphology, and ZEISS Gemini SEM 360 for the observation of the sample morphology and elemental mapping, respectively. No charge compensation was used, and the source-sample distance was set at 4.2 mm. ImageJ software was used for SEM image processing.

Thermal gravimetric analyses (TGA) were conducted using a Setaram machine Setsys Evolution model to measure the mass loss kinetics of biochar (with or without metallic nanoparticles). The experiments were performed under air atmosphere, over the temperature range RT-800 °C, and setting the heating rate to 10 °C/min.

The chemical composition of the prepared materials were analyzed using the
Panalytical MINIPAL4 X-ray fluorescence (XRF) spectrometers analysis with a
rhodium X-ray tube operating at 30 kV and 87 μA current emission.

2.4. Catalytic activity investigation

Catalytic tests were performed in a similar manner previously reported by some 2 3 of us (Omiri, Snoussi et al. 2022). Typically, in each experiment, 5 mg biochar catalyst was added to the dye solution (20 mL, concentration of 0.01 mmol/L). 4 H₂O₂ was added to initiate the Fenton-like degradation reaction of the dye. A similar 5 method has been used to study the degradation of dye mixtures. The suspension was 6 7 filtered to determine the remaining dye concentration, using **UV-Vis** spectrophotometry at specific time intervals. 8

9 The degradation ratio was calculated using the following formulae:

10 % degradation efficiency =
$$((C_0 - C_t)/C_0) \times 100,$$
 (1)

11 where C_t and C_0 are the concentrations of dye solution at time = t and t = 0, 12 respectively.

Based on the experimental data, the kinetic analysis of dye degradation are fitted according to the following zero-order equation (equation 2) and pseudo-first-order (equation 3) reaction kinetic model (equation. 2) equation:

16
$$C_t/C_0 = -K_0 t$$
 (2)

$$-\ln(C_t/C_0) = -\ln(A_t/A_0) = K_1 t,$$
(3)

- where A_t and A₀ are the absorbance of the dye at time t and time t= 0 min,
 respectively. K₀ and K₁ are the zero-order constant and first-order constant,
 respectively; *t* is the treatment time.
- 21 2.5. Recycling experiment

After the catalytic reaction was completed, the SCPBB@CuNi nanomaterials were separated from the solution by an external magnetic field without any washing, and then reused.

25

1 **3. Results and Discussion**

2 **3.1.** General aspects

In previously published reports on biochar@CuNi, the focus has been on the 3 method of preparation and catalytic activity of the designed biochar composites 4 obtained from olive stones in environmental remediation (Khalil, Michely et al. 2021, 5 Omiri, Snoussi et al. 2022) and pistachio shell or pomegranate peels for catalyzing 6 7 organic chemical reactions (Zarei, Mohammadzadeh et al. 2022, Zarei, Saidi et al. 2022). Herein, we investigate the effect of CuNi bimetallic nanoparticle loading on 8 9 the dispersion and catalytic activity of the final biochar@CuNi. Moreover, we have 10 employed sugarcane pulp bagasse as a biomass for making biochar, which is rather not explored in the literature compared to the total sugarcane bagasse. The sugarcane 11 bagasse was dried after juice making and scratched in order to obtain the dried pulp 12 bagasse. The latter was further ground, impregnated with metal ions, and pyrolyzed. 13

14

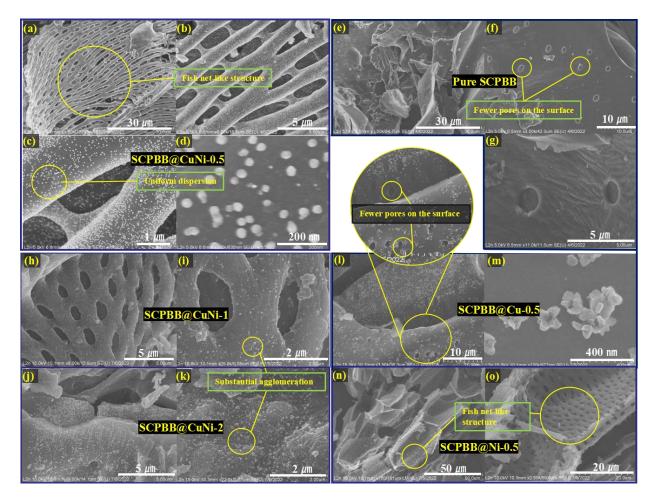
Figure 2. Digital photographs of total sugarcane bagasse, and the pulp obtainedafter scratching.

17

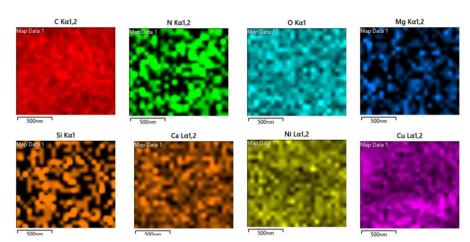
18

3.2. SEM /EDX study

The SEM micrographs of bare and NP-coated biochar are shown in Figure 3. The biochar SCPBB@CuNi-0.5 (Figure 3 a-d) is observed at various magnifications; it forms the ordered arrangement with uniform pores, similar to fishing net. The pores are elongated, almost like slits with length in the 3 to 12 μm range and ~1 μm slit


width (Figure 3a). The pores are of smaller size, which is ascribed to dehydration of 1 the cell structure. Nanoparticles are visible in Figure 3b but are very well 2 distinguished in Figure 3c, which is at a higher magnification. The NPs are densely 3 and homogenously dispersed over the surface, without any evidence of aggregation. 4 This conforms again with our previous findings on CuNi bimetallic NPs loaded on 5 olive stone powder biochar (Khalil, Michely et al. 2021). The protocol is therefore 6 7 very well reproducible and yields similar results on a different biomass (herein 8 sugarcane pulp bagasse). From Figure 3d, one could estimate the average CuNi nanoparticle size to 40 ± 3 nm, meaning that the bimetallic nanoparticles are in the 9 10 nanoscale regime (< 100 nm). Oppositely, the SCPB-derived biochar exhibits an almost featureless surface (Figures 3 e-g), with only fewer micrometer-sized pores. 11 12 The latter seem to be at the origin of the slits displayed by the composite nanomaterials. It further follows that the activation of the biomass with copper and 13 nickel nitrates favours the formation of slits and the highly porous structure, without 14 using any harsh acidic or basic media. At this stage, it is important to note that neither 15 16 olive pit (Khalil, Michely et al. 2021), nor pomegranate (Zarei, Saidi et al. 2022) biochar loaded with CuNi exhibited such a fishing net-like structure. 17

18 Figures 3 (h-k) shows the SEM images of SCPBB@CuNi biochar prepared with 19 various metal ion loading. The porous structure has been changed, showing even 20 smaller pores at higher nanoparticle loading. For SCPBB@CuNi-2, it was difficult to find any porous structure as the one noted for SCPBB@CuNi-0.5. Moreover, at high 21 22 metal ion loading during the impregnation stage, the pyrolysis process led to 23 substantial agglomeration of CuNi NPs all over the SCPBB surface. A higher content 24 of nanoparticles aggregated on the biochar substrate, leading to possible lower surface 25 area.


SCPBB@Ni-0.5 and SCPBB@Cu-0.5 surface morphologies could be compared
in Figures 3 l-o. The SEM images of SCPBB@Cu-0.5 showed just a few pores on the
featureless surface, and copper nanoparticles appear flower-shaped. In contrast,
SCPBB@Ni-0.5 nanocomposite morphology is almost identical to that obtained with

1 SCPBB@CuNi. One could then argue that the formation of the highly porous 2 structure is attributed to the addition of nickel, which is known to catalyze the 3 transformation of sp³ to sp² carbon as well as it catalyzes the formation of the porous 4 structure by consuming carbon (Li, Zhao et al. 2021). These structural characteristics 5 could hypothesize the catalytic enhancement due to the fishing net-like structure of 6 SCPBB@CuNi, which exhibits abundant adsorption sites for removing organic 7 pollutants.

Additionally, EDX mapping confirmed the presence of all the desired elements 8 of the SCPBB@CuNi sample at the surface in EDX spectra. Figure 4 shows that 9 10 SCPBB@CuNi mainly contains C, O, Cu, and Ni, which accounts for the effective loading of copper and nickel on the surface of biochar SCPBB through the simple wet 11 impregnation method. Moreover, the elements simultaneously present in the biochar 12 SCPBB correspond to the C, O, N, Ca, Mg, and Si peaks. The results of EDX analysis 13 14 were confirmed by analyzing different regions (Table 2); the ratio of Cu/Ni is almost 1:1 with an atomic ratio of 3.66 and 3.56 % copper and nickel, respectively. 15

- 3 Figure 3. SEM images of SCPBB@CuNi (a-d), SCPBB (e-g) SCPBB@CuNi-
- 4 1(h,i), SCPBB@CuNi-2 (j,k), SCPBB@Cu (l,m) and SCPBB@Ni (n,o) at various
- 5 magnifications.

Figure 4. Chemical mapping of SCPBB@CuNi-0.5 at the spots probed for the acquisition of EDX

- 9 spectra.

 Table 2. EDX-determined surface elemental analysis of SCPBB@CuNi-0.5 catalyst.

Catalyst		Elemental Atomic %								
	С	Ν	0	Mg	Si	Р	S	Ca	Ni	Cu
SCPBB@CuNi- 0.5	81.39±4.31	0.30 ± 0.4	10.14±2.19	0.14 ± 0.4	$0.36 {\pm} 0.29$	0.08 ± 0.02	0.11 ± 0.01	0.23 ± 0.05	$3.56 {\pm} 0.17$	3.66 ± 2.46
					Weig	ht %				
	Cu		Ni		0	Mg	Si	Р	S	К
	31.25±	0.25	31.91±	0.26	29.71±0.19	0.73 ± 0.07	2.50 ± 0.09	0.40 ± 0.10	0.46 ± 0.13	3.04 ± 0.34

- 2
- 3

4 **3.3. XRD**

5 The XRD analyses were conducted on bare SCPBB, and copper and nickel nitrate-impregnated biochar. As shown in Figure 4a, it is worth noting that there is no 6 corresponding diffraction peak for SCPBB after biomass calcination. The diffraction 7 peak exhibited by SCPBB@Cu at 50.7 ° corresponds to the Cu(111) reflection planes 8 of Cu⁰ species (ICSD 98-0050-3757), whereas the diffraction peak at 51.9 ° exhibited 9 by SCPBB@Ni is attributed to the Ni(111) reflective surface of the Ni⁰ species (ICSD 10 11 98-007-6667). The diffractogram corresponds to SCBPP@CuNi and reference biochar in Figure 4b. The XRD pattern does not show any single metal copper or 12 nickel, and two new diffraction peaks are displayed at 51.5 $^{\circ}$ and 59.8 $^{\circ}$ are assigned 13 to structures of copper and nickel metals (111), (002) crystallographic planes, 14 respectively (ICSD 98-062-8543). In addition to the Cu peak, Cu_2O also appears at 20 15 = 42.3°. This indicates that SCBPP@CuNi showed the presence of a crystalline 16 structure of copper-nickel alloy on biochar. 17

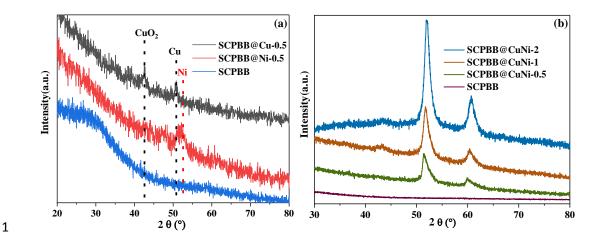


Figure 5. XRD patterns of SCPBB, SCPBB@Cu and SCPBB@Ni (a); and
SCPBB@CuNi composites at various CuNi loadings (b).

5

3.4. XPS surface chemical analysis

XPS was employed to investigate the surface chemical composition of biochar 6 7 and its nanocatalyst-decorated counterparts. Figure 6 displays the survey spectra of bare SCPBB (Figure 6a) and the SCPBB@CuNi samples (Figures 6b-d). Cu2p and 8 9 Ni2p are very clearly visible and account for the fine dispersion of the nanoparticles as imaged by SEM. Interestingly, one could note the gradual increase in the relative 10 Cu2p and Ni2p peak intensity versus the initial impregnation rate of the biomass with 11 the metal nitrates. Concerning the monometallic nanocatalyst systems, the survey 12 13 spectra are displayed in Figure 6e and Figure 6f for SCPBB@Ni and SCPBB@Cu, 14 respectively. In either the mono- or the bimetallic system, XPS testifies for the presence of these elements in the metallic states as noted in the inset of Figure 6a-d 15 (Ni2p_{3/2} at ~852.1 eV; sharp Cu2p_{3/2} peak centred at 932.1 eV). The Cu2p_{3/2} spectrum 16 has two overlapping features at 932.7 and 934.4 eV, assigned to Cu⁰ and CuO. 17 respectively (Biesinger 2017). In addition, small shake-up satellites are located in the 18 938-948 eV region, indicating the presence of Cu^{2+} species in the SCPBB@CuNi (Jha, 19 Jeong et al. 2015, Biesinger 2017). The Ni2p_{3/2} narrow region exhibits a sharp peak at 20 852.7 eV, and a broad region at 854-861 eV attributed to Ni and nickel oxides, 21 respectively. The binding energy values reported for metallic copper and nickel in the 22 fit well with reported XPS 23 alloy in those by the NIST database

(<u>https://srdata.nist.gov/xps/</u>) for pure copper and nickel, taken separately. Probably,
 this is due to the equal electronegativity of copper and nickel (~1.9). Elsewhere, no
 major shift was found for CuNi compared to pure copper or nickel (Wolfbeisser,
 Kovács et al. 2017).

Table 3 reports the apparent surface composition determined by XPS for the 5 biochar and the corresponding mono- and bimetallic systems. A few trends could be 6 noted from the data reported in Table 3: (i) there is a monotonous increase in the 7 (Cu+Ni)/C atomic ratio versus the total initial impregnation rate, defined as the total 8 9 number of metal salt millimoles per gram of sugarcane pulp bagasse (Figure 6g). 10 Interestingly, the monometallic system fits in well with the plotted data for the bimetallic system, which rules out any synergetic effect of copper and nickel on the 11 12 (Cu+Ni)/C atomic ratio. This chemical descriptor accounts for the gradual changes in 13 the surface morphology as imaged by SEM. (ii) Moreover the N/C atomic ratio increases monotonously with the initial impregnation rate. 14

N/C atomic ratio could be considered a chemical descriptor of the nitrogendoping of the carbonaceous structure. It could be due to the nickel catalytic effect resulting in the loss of carbon, which led to the biochar porous structure (see above, section 3.2). The increase in N/C could also be due to the nitrates as a nitrogen source for doping the carbonaceous biochar structure. Elsewhere, ammonium nitrate impregnation was reported to induce nitrogen doping of the biochar (Kasera, Kolar et al. 2022).

Table 3. XPS-determined surface chemical composition of biochar samples

Materials	С	0	Ν	Ni	Cu
SCPBB	84.6	14.9	0.5	-	-
SCPBB@CuNi-0.5	81.6	15.8	1.37	0.31	0.65
SCPBB@CuNi-1	82.3	13.3	2.30	0.71	1.44
SCPBB@CuNi-2	79.7	13.4	3.13	1.61	2.11
SCPBB@Ni-0.5	82.6	15.6	1.22	0.46	-
SCPBB@Cu-0.5	81.8	16.3	1.17	-	0.57

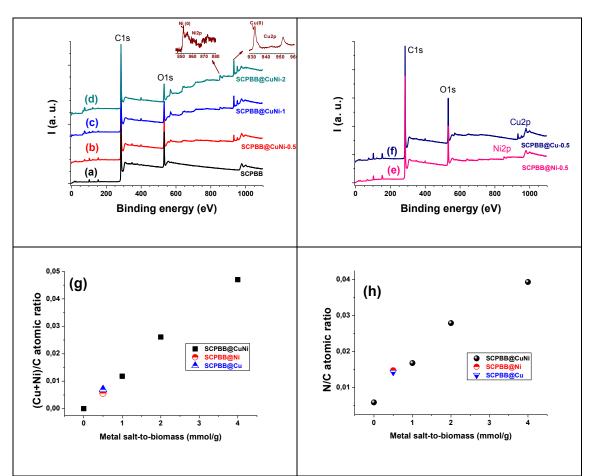


Figure 6. XPS analysis of biochar samples: survey spectra of SCPBB (a), SCPBB@CuNi-0.5 (b), SCPBB@CuNi-1 (c), SCPBB@CuNi-2 (d), SCPBB@Ni-0.5 (e), and SCPBB@Cu-0.5 (f). High resolution Cu2p and Ni2p spectra are shown in inset of Figure 6a-d. Atomic ratios are plotted versus the initial metal impregnation rate in mmol nitrate per gram of biomass: (Cu+Ni)/C (g) and N/C (h).

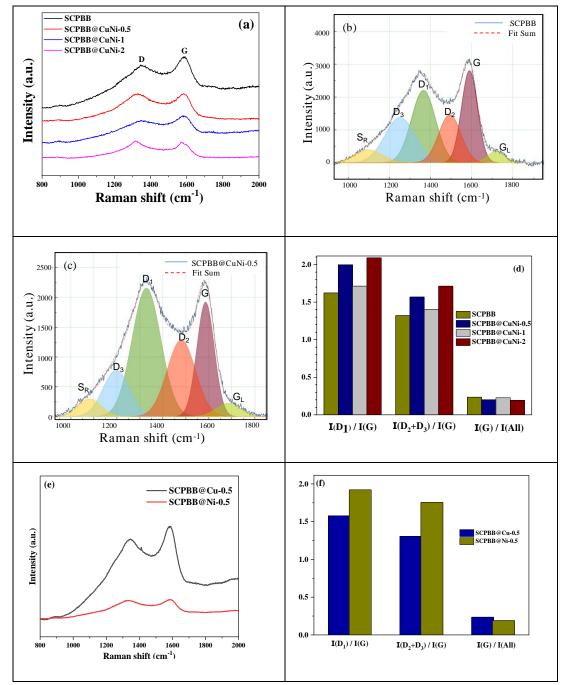
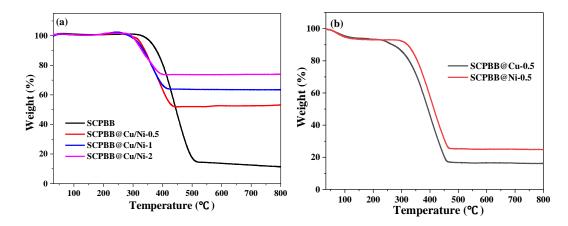


Figure 7. Raman spectra of bare SCPBB biochar and SCPBB@CuNi composites(a), curve-fitted Raman spectra of bare SCPBB biochar(b) and SCPBB@CuNi composites(c), the band area ratio of $I(D_1)/I(G)$, $I(D_2 + D_3)/I(G)$ and I(G)/I(All) obtained from the peak splitting(d), Raman spectra(e) and the band area ratio (f) of SCPBB@Cu and SCPBB@Ni.

1 To have further insights into the structural transformations of bare SCPBB and to infer the presence of graphitic characteristics (da Silva Veiga, Schultz et al. 2020, 2 Dong, Yang et al. 2021), biochar was characterized by Raman spectroscopy with a 3 633 nm laser to assess the degree of carbonation of carbonaceous materials (da Silva 4 Veiga, Cerqueira et al. 2021). The spectral curve fitting of Raman spectra from 950 to 5 1950 cm⁻¹ is shown in Figure 7. Six main Gaussian peaks are centred at 1081, 1197, 6 1328, 1480, 1585, and 1685 cm⁻¹, and assigned to S_R, D₃, D₁, D₂, G, and G_L bands, 7 respectively (Li 2007, Cao, Yuan et al. 2021). The peak of SR at 1081 cm⁻¹ is 8 attributed to the C–H on aromatic rings, and the D band centered at 1328 cm⁻¹ referred 9 to disorder and defective carbonaceous material, and aromatics with not less than 6 10 benzene rings. The G band mainly represents aromatic ring quadrant breathing with 11 graphite E_2g_2 structures. The D_2 centred at 1480 cm⁻¹ is mainly attributed to the semi-12 circle breathing of aromatic rings and amorphous carbon structures (Cao, Yuan et al. 13 2021). The SR and D₃ bands can be ascribed to the C-H on aromatic rings and the 14 aryl-alkyl ether. The broad GL band originated from the carbonyl group of biochar 15 16 catalysts.

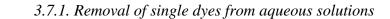
17 There is a significant change of D-G doublet with the loading of copper and 18 nickel; D/G becoming higher than 1 (NB: peak area ratio, and not peak height ratio is 19 considered), thus indicating that loading nanoparticles onto the biochar may impede 20 the formation of the graphitic structure of the biochar during pyrolysis (Cao, Yuan et al. 2021, Sun, Feng et al. 2022). The evolution of catalysts crystalline structure was 21 investigated using band area ratios $I(D_1)/I(G)$, $I(D_2 + D_3)/I(G)$, and I(G)/I(All), as 22 displayed in Figure 7d. The $I(D_1)/I(G)$ ratio and $I(D_2 + D_3)/I(G)$ ratio of 23 24 SCPBB@CuNi increased consistently compared to pure SCPBB, while the I(G)/I(All) ratio showed a contrasting trend. The results suggested that the concentration of 25 26 carbon structures (not less than 6 benzene rings) containing defects and heteroatoms increases as a result of the dehydrogenation of hydroarenes (Cao, Yuan et al. 2021). 27 As far as the monometallic systems are concerned, $I(D_1)/I(G)$, $I(D_2 + D_3)/I(G)$, and 28 I(G)/I(All) values for SCPBB@Ni-0.5 (Figure 7e,f) match those of SCPBB@CuNi-29

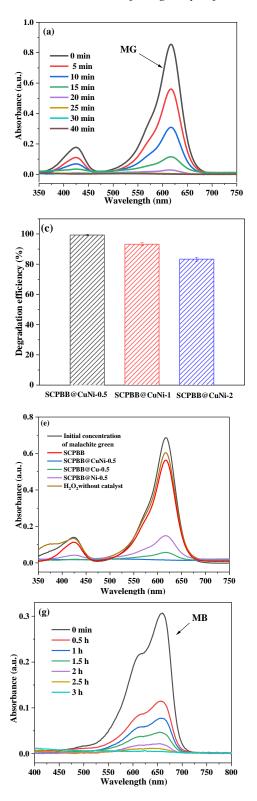

1 0.5, which indicates that nickel only has a profound effect on the carbon structure of2 the biochar.

3

4

3.6. Thermogravimetric analysis of biochar samples

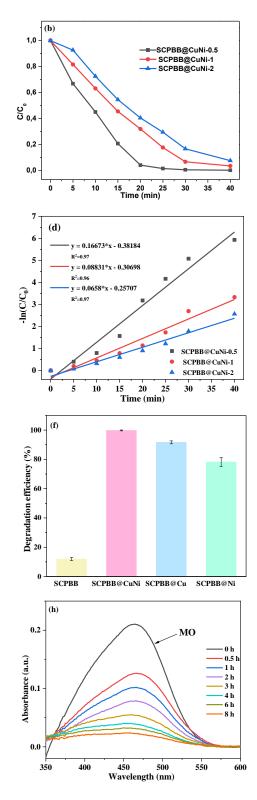

The thermogravimetric (TG) curves for the bare biochar and SCPBB@CuNi are 5 shown in Figure 8a. Thermal analysis was conducted in air to monitor the thermal 6 stability and determine the mass loading. These curves show the residual weight % of 7 CuNi-decorated biochar is higher than that of SCPBB at a high temperature; the 8 9 weight loss of SCPBB is about 90% at 800 °C. Adding copper and nickel to biochar resulted in a significantly higher residual weight %, which accounts for the initial 10 metal ion loading at the wetness impregnation step before pyrolysis. Copper and 11 nickel from the bimetallic NPs convert to metallic oxides, hence SCPBB@CuNi 12 yields slightly higher weight % due to oxygen in CuO and NiO. Similarly, the residual 13 weight % of SCPBB@Cu-0.5 and SCPBB@Ni-0.5 are higher than those of pure 14 biochar but lower than that of SCPBB@CuNi-0.5. There is clear control over the 15 preparation procedure adopted in this work for the fabrication of biochar loaded with 16 17 bimetallic nanocatalysts.

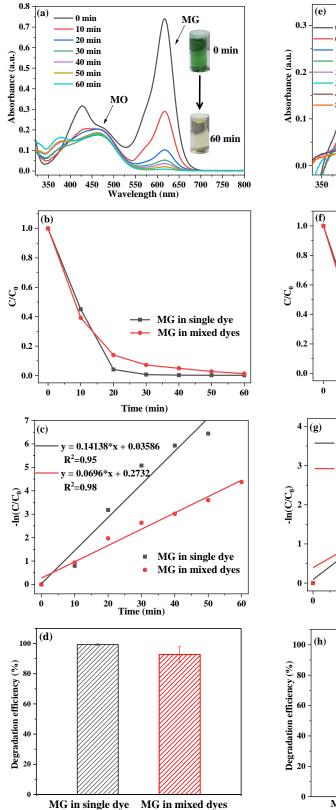


18

Figure 8. TG curves of SCPBB and SCPBB@CuNi samples (a), SCPBB@Cu-0.5 and SCPBB@Ni-0.5 (b). Analysis in air; heating rate = 10 °C min^{-1} .

3.7. Catalytic oxidation of dye solution using biochar@CuNi




Figure 9. UV-vis spectra of dye solutions during the catalysis degradation reactions of Malachite Green (a), Methylene Blue (g), and Methyl Orange (h). C/C0-vs-time plots for MG degradaed using biochar@CuNi catalysts (b) and the corresponding removal % after 30 min (c). Pseudo first order kinetic model for MG catalytic reaction with different metal mass loading samples of SCPBB@CuNi (d). UV-vis spectra of Malachite Green dye solutions in 30 min (e), the corresponding removal % after 30 min for Malachite Green dye solutions (f).

8

Figures 9 (a)–(d) show that the degradation of Malachite Green (MG) dye varied with 9 Cu and Ni loadings. The order of MG dye solution degradation is: SCPBB@CuNi-0.5 10 > SCPBB@CuNi-1 > SCPBB@CuNi-2, and the degradation efficiency of MG over 11 SCPBB@CuNi 0.5, 1, and 2 nanocomposites in 20 min, was 99.3, 93.2 and 83.3%, 12 respectively. To better understand the kinetic behaviour of different catalysts for MG 13 degradation, the pseudo-first order kinetic model of MG dye removal was applied 14 (Figure 9c). As shown in the linear relationship between time and $-\ln(C/C_0)$; all the 15 prepared samples exhibit good linear correlations, and their R^2 values were close to 1 16 for SCPBB@CuNi-0.5, 1, 2 nanocomposites. From the above, the degradation 17 activity of metal nanoparticle-doped SCPBB is best obtained for the minimum metal 18 19 loading, in the decreasing order SCPBB@CuNi-0.5 > SCPBB@CuNi-1 > SCPBB@CuNi-2. This trend accounts for the excellent dispersion of CuNi 20 nanoparticles over the biochar surface when the initial metal ion to biomass ratio is set 21 22 to 0.5 mmol/1g. It follows that the catalytic activity of the materials prepared so far 23 correlates very well with the state of dispersion of the NPs as observed by SEM.

Subsequently, we further performed the degradation of MG dye in 30 min on pure SCPBB, single metal-supported SCPBB@Cu and SCPBB@Ni, and the presence of H₂O₂ without catalyst in Figures 9(e)-(f). We found that both pure SCPBB and H₂O₂ alone could only remove a small number of dye molecules, whereas the removal efficiencies of SCPBB@Cu-0.5 and SCPBB@Ni-0.5 were 91.6 and 78.2 %, respectively, indicating that copper and nickel played important role in the dye degradation, respectively. Note, however, that SCPBB@Cu-0.5 is more efficient as Fenton-like composite catalyst than SCPBB@Ni-0.5 (Wang, Ma et al. 2018) (Radji,
 Bettahar et al. 2022).

The discoloration of single MB and MO with SCPBB@CuNi-0.5 reached 98% and 74% in 3 h, respectively. The complete discoloration of MO occurred after 8 h. The superior activity exhibited by SCPBB@CuNi-0.5 can be attributed to the activation of H_2O_2 by the metallic species loaded on the biochar to generate more hydroxyl radicals, which attack the dye molecules to generate water, dinitrogen, and carbon dioxide (Nidheesh, Gandhimathi et al. 2013, Wang, Sun et al. 2021, Rani, Nayak et al. 2022).

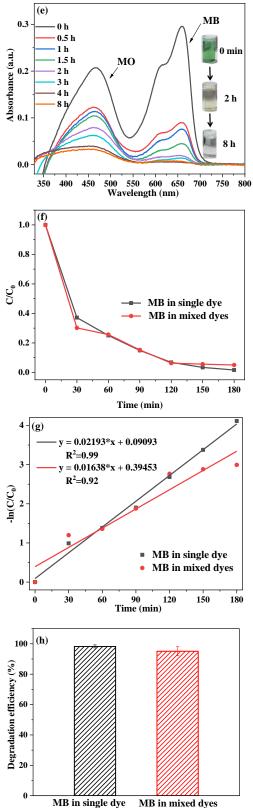


Figure 10. (a) UV-vis spectra, (b) degradation, (c) Pseudo first order kinetic model 1 and (d) degradation efficiency for simultaneous degradation of binary mixture of dyes 2 MO and MG, (I) MG change of individual dye, (II) MG change of multiple dyes. (e) 3 UV-vis spectra, (f) degradation, (g) Pseudo first order kinetic model and (h) 4 degradation efficiency for the binary mixture of dyes MO and MB, (III) MB change of 5 6 individual dye, (IV)MB change of multiple dyes. Operation condition: MG initial concentration=0.02 mmol/L, MB initial concentration=0.02 mmol/L, MO initial 7 concentration= 0.02 mmol/L, biochar dosage = 0.25 g/L. 8

Preliminary tests showed that SCPBB@CuNi-0.5 could optimally degrade 9 individual dye solutions under natural light in the presence of H_2O_2 , which 10 prompted us to study its catalytic performance for mixed dyes. Recently, some of us 11 12 have tried to study brewer's spent grain Biochar@Ag-Cu for Methyl Orange and Methylene Blue mixed dye solution, and the degradation rates were excellent after 13 6 hours (Boubkr, Bhakta et al. 2022). For this study, two different types of 14 equimolar dye mixtures (MG+MO and MB+MO mixtures) were prepared to 15 understand how the SCPBB@CuNi catalyst would still maintain the significant 16 degradation rate of single organic dye pollutant in complex binary dye solutions. 17

After the selective degradation spectra of the two mixtures were established 18 using the same conditions, the catalytic degradation reaction of the three dyes MG, 19 20 MB, and MO (equimolar mixture) with the catalyst was investigated, and then compared with the degradation performance in the corresponding single dye 21 systems. As shown in Figure 10a, MG dye in the MG+MO mixture showed an 22 23 obvious sharp decrease to completely disappear at 616 nm, the absorbance drop of MO at 464 nm was very slight; the mixture's color gradually changed from green to 24 25 yellow after 60 min. It took longer for MO to completely degrade.

In the MB+MO system, we have also noted faster degradation of MO, thus leading to a change of color from green (MB+MO mixture) to light yellow due to complete degradation of MB while there were persistent MO molecules in the solution. Complete discoloration of the MB+MO system was reached after 8 h. The degradation rates of MB and MO were 95% (after 3 h) and 84% (after 8 h),
 respectively.

In addition, the degradation rate and first-order reaction kinetics of 3 SCPBB@CuNi in the single dye solution and dye mixture system are also explored. 4 5 The C/C_0 -vs-time plots for MG and MB dye degradation in mixed dyes using SCPBB@CuNi catalyst are shown in Figure 10(b,f): faster degradation of the dye 6 solution occurs during the first 30 minutes (Rani, Nayak et al. 2022). We found that 7 the degradation rate of an individual dye in the mixed solution was slightly reduced 8 9 within 5% and the kinetics versus reaction time plot clearly showed that all MG degradation processes followed a pseudo-first-order kinetic model (linearization 10 coefficient $R^2 > 0.90$). The SCPBB@CuNi catalyst retains its performance in the 11 degradation of the dyes, and the dye mixtures do not seem to significantly alter its 12 13 efficiency.

14 **3.7.3**. *Mechanism*

The plausible dyes degradation mechanism by the catalytic oxidation of 15 16 SCPBB@CuNi/H₂O₂ system follow adsorption and Fenton-like reactions (Liu, Liu et al. 2022). Its characterizations confirmed the particular pore structure, graphitic 17 carbon, and metallic states of copper and nickel loaded on the underlying biochar. 18 Heterogeneous Fenton-like reactions played a dominant role in the catalytic 19 degradation process, and adsorption played a minor role in dye removal. The 20 21 bimetallic species loaded on the biochar in SCPBB@CuNi provided active sites for activating H₂O₂ to generate hydroxyl radicals (Liu, Liu et al. 2022). SCPBB created 22 an excellent support for metallic species. In order to further understand whether metal 23 24 leaching from catalyst into the solution causes secondary pollution, the loss of metal 25 copper/nickel was detected by XRF technology. Firstly, the XRF analysis of the carbonaceous catalyst SCPBB@CuNi-0.5 showed that the alloy represents \approx 13.7 % 26 from the total mass. Also, it revealed that Cu alone represents \approx 93% from the total 27 mass of the alloy. For catalytic performance testing, we used 5 mg of catalyst 28

containing 685 ng CuNi, 637 ng Cu, and 48 ng Ni. After completing the catalyzed 1 reaction under natural light, no copper and/or nickel leaching into the solution were 2 observed by XRF technique, meaning their absence from the solution, or their 3 quantity is below the detection limit of the apparatus. This is strong supporting 4 evidence that either metal lixiviation was negligible or did not occur at all from the 5 6 catalyst. One could thus conclude that heterogeneous Fenton-like catalysis reaction 7 dominates the whole process. For this reason, the catalyst surface does not undergo 8 significant surface chemical composition, retains its active sites, therefore ensuring 9 high catalytic performances (Soon and Hameed 2011, Liu, Jiang et al. 2022). Robust anchoring of the CuNi nanoparticles is essential, and this point will be tackled below 10 (see section 3.9). Meanwhile, organic pollutants can be completely mineralized into 11 12 carbon dioxide and water, simultaneously, elucidating that dye degradation mainly ascribe to surface catalysis of heterogeneous Fenton-like reactions rather than 13 homogeneous Fenton-like reactions in solution (Xavier, Gandhimathi et al. 2015). 14 Under H₂O₂ conditions, pH effect was reported to be crucial for the control of the 15 catalytic activity(Bokare and Choi 2014). Particularly, both copper/H2O2 (Radji, 16 Bettahar et al. 2022) and nickel/H₂O₂ (Akram, Ikhlaq et al. 2021) systems are active 17 over a broad pH range. 18

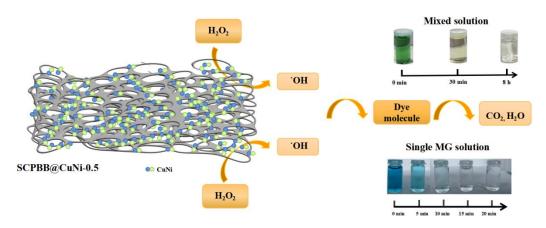


Fig. 11. Proposed possible reaction mechanism for dye degradation in
 SCPBB@CuNi/H₂O₂ system.

22

19

Therefore, based on these results, SCPBB@CuNi can effectively degrade
 individual dye solutions and mixtures with H₂O₂ may be attributed to the following
 28

aspects: (1) The special fishnet-like porous structure of substrate SCPBB material is
easy to adsorb, resulting in dye molecules being concentrated around the metal
nanoparticles to increase their degradation. (2) More hydroxyl radicals and metal ions
are produced to attack the dye molecules, which are mineralized into carbon dioxide
and water to achieve discoloration.

6 In summary, the whole process of Fenton-like degradation could occur through7 the following pathways.

8 Dye molecule + SCPBB@CuNi
$$\rightarrow$$
 D-SCPBB@CuNi (4)

9 Biochar and metal ions in the catalyst accelerate the generation of hydroxyl
10 radicals, as shown in the following formula (Wang, Liu et al. 2021)

11
$$\operatorname{Cu}^{+} + \operatorname{H}_2\operatorname{O}_2 \to \operatorname{Cu}^{2+} + \operatorname{OH} + \operatorname{OH}^-$$
 (5)

12
$$Cu^{2+} + H_2O_2 \rightarrow Cu^+ + HO_2^{+\bullet} + H^+$$
 (6)

Degradation of dye solution via the attack of the hydroxyl radicals plays thedominant role in dye solution discoloration.

15 D-SCPBB@CuNi+
$$OH \rightarrow$$
 colorless degradation products (7)

Similarly, nickel could participate in the Fenton-like degradation of the dyes. As
suggested, by Bhaumic *et al.* (Bhaumik, Maity et al. 2022):

18
$$Ni^0 + 2H_2O \rightarrow Ni^{2+} + H_2 + 2OH^-$$
 (8)

19
$$Ni^{2+} + H_2O_2 \rightarrow Ni^{3+} + OH^- + OH^-$$

20
$$OH^{\bullet} + dyes \rightarrow colorless degradation products$$
 (10)

If the role of copper is restricted to catalysis only, nickel has dual properties: catalysisand magnetic properties that permits collection of the biochar with a magnet, after use.

23

24

25

(9)

3.8. Comparison with other biochar-based catalytic systems

2 Table 4 compares the catalytic performance of SCPBB@CuNi to other3 biochar-based systems.

Catalyst	Experimental conditions	Contact Time(min)	Degradation (%)	Recovery	References
				(cycle times, degradation)	
]	Malachite Green			
Mn/SRBC (KMnO4/ biochar)	Catalyst 2 g/L, H_2O_2 5 m mol/L, MG 8000 mg/L, pH 3, temperature 30°C	90	100	3rd cycles, 62%	(Zhu and Zou 2022)
PBC@ð-MnO ₂	Catalyst 0.2 g/L, PDS 1 mmol/L, pH 5, MG 200 mg/L, temperature 30 °C	120	92.6	4th cycles	(Xia, Li et al. 2023)
	~			75%	
BMFH/Fe ₃ O ₄	Catalyst 1.0 g/L, MG 50 mg/L, H_2O_2 50 mmol/L, pH 6, temperature 30 °C	60	99	10 cycles	(Chen, Lin et al. 2022)
				81%	
Fe@BCFAK	Catalyst 0.2 g/L, MG 20 mg/L, H_2O_2 2 mmol/L, pH 3, temperature 30 °C	30	98	/	(Xia, Shen et al. 2022)
Fe NPs/tea extract	Catalyst 50 mg/L, MG 50 mg/L, H ₂ O ₂ 7.4 mmol/L, pH 4, temperature 35°C	60	78.2	/	(Wu, Zeng et al. 2015)
ZnO@BC	Catalyst 0.4 g/L, MG 400 mg/L, 300 W xenon lamp (no mention)	60	98.4	1	(Jing, Ji et al. 2021)
Algal biochar@La/Cu/Z	Catalyst 0.4 g/L, MG 2×10^{-6} mmol/L, solar light	240	90	4 cycles	(Sharma, Bhogal et al. 2019)
	6			71%	,
CuFe ₂ O ₄ @biochar	Catalyst 0.2 g/L, PS 2.5 mmol/L, MG 100 mg/L, pH 8, temperature 55°C	90	98.5	5 cycles	(Huang, Chen et al. 2021)
				90%	
SCPBB@CuNi	Catalyst 0.25 g/L, H_2O_2 48 mmol/L, MG 9.3 mg/L, room temperature	30	>99	4 cycles	This work
	С , т г			87±3%	

Table 4. Comparison of the catalytic performances of SCPBB@CuNi to other biochar-base materials.

		Methylene Blue			
BGT-NPs	Catalyst 0.25 g/L, H_2O_2 16 mmol/L, MB 10 mg/L, UV-light, wide pH range	120	96–99%	4 cycles 96%	(Ashraf, Rasool et al. 2021)
P-GBC (H ₃ PO ₄ activation)	Catalyst 0.1 g/L, H2O2 0.2 mmol/L, PMS 4 mmol/L MB 100 mg/L, temperature 298.15 K	360	94.9%	3 cycles 79%	(Ding, Tong et al. 2023)
MnO ₂ @SBC	Catalyst 0.3 g/L, pH 7 PMS 0.5 mmol/L MB 35 mg/L, temperature 25 °C	180	100%	5 cycles 0.02084 min ₋₁ (degradation rate)	(Li, Liu et al. 2022)
SCPBB@CuNi	Catalyst 0.25 g/L, H_2O_2 4.8 mol/L, MB 3.2 mg/L, room temperature	180	>98%	/	This work
		Methyl Orange			
H ₂ SO ₄ biochar	Catalyst 1 g/L, H ₂ O ₂ 25 mmol/L, MO 50 mg/L, 1000 W Xe arc light temperature 50 °C;	60	92%	5 cycles >80%	(Rangarajan and Farnood 2022)
Biochar@Cu ₂ O	Catalyst 0.1 g/L, MO 20 mg/L, UV light, pH 4, temperature 50 °C;	140	94.5 %	/	(zhang, Li et al. 2023)
SCPBB@CuNi	Catalyst 0.25 g/L, H_2O_2 4.8 mol/L, MO 3.2 mg/L, room temperature	480	>90%	/	This work

BCFAK acid-precipitated black liquor of poplar <u>kraft pulp</u>; BMFH magnetic biochar fungal hyphae *(Trichoderma reesei)*; PBC the phosphoric acid modified millet husk biochar; P-GBC P-GBC was prepared by H_3PO_4 assisted pyrolysis over camellia shell powder; PMS: peroxymonosulfate PMS; SRBC spirulina residue biochar.

Concerning the degradation of MG, the biochar composites catalysed the removal of MG with 1 efficiency in the 78–99 wt.% range, within 30 to 240 min. It is worth noting that, under natural 2 pH conditions, the degradation of dyes remains difficult. The degradation efficiency of 3 Fe@BCFAK (Xia, Shen et al. 2022) and Mn/SRBC (Zhu and Zou 2022) is over 98% within 60 4 minutes, which is very similar to SCPBB@CuNi, but under acidic pH. The ZnO@BC catalysed 5 6 the removal of MG within 60 min under xenon lamp irradiation (Jing, Ji et al. 2021). The actual 7 SCPBB@CuNi/H₂O₂ system catalyzed the removal of MG cationic dyes to an extent of 99% within 30 min only, under natural light and neutral pH. In addition, no acidic or alkali treatment 8 9 was applied to obtain highly porous biochar.

Magnetic biochar (BMFH/Fe₃O₄) (Chen, Lin et al. 2022) was synthesized by the bio-assembly
property of fungal hypha; the removal rate of MG remained above 80% after 10 cycles, but the
catalyst was washed and carbonized before the next cycle.

The degradation performance of CuFe₂O₄@biochar is always maintained at 90% after five reactions (Huang, Chen et al. 2021). The catalyst/PS system also possesses promising prospects for treating wastewater. Even if four-time reactions, compared with the PBC@ δ -MnO₂ (Xia, Li et al. 2023) and Algal biochar@La/Cu/Zr (Sharma, Bhogal et al. 2019) catalysts, the degradation performance of SCPBB@CuNi was found to be as high as 87% after four cycle tests, no washing and drying steps were done and the catalyst was directly re-used for a new catalysed degradation. This is of practical application importance.

20

Concerning the Fenton-like process, the literature reported large amounts of H₂O₂, or extra 21 22 oxidants or light irradiation could significantly improve the effect of the catalytic system, which contrasts with our much simpler conditions consisting in using low H₂O₂ amounts, under daylight 23 exposure. Ashraf et al. (Ashraf, Rasool et al. 2021) on the one hand, and Rangarajan et al. 24 25 (Rangarajan and Farnood 2022), on the other hand, used UV light source to the catalyst/H₂O₂ system to increase the degradation rate of the dye. P-GBC (Ding, Tong et al. 2023) and 26 MnO₂@SBC (Li, Liu et al. 2022) catalytic systems were combined with peroxymonosulfate 27 (PMS), as an alternative to H_2O_2 to produce active species. To further know whether H_2O_2 28 29 suffices to remove the dyes and plays a major role in their degradation, reactions were conducted in the absence of catalyst, but the degradation efficiency was only about 30%, with only H_2O_2 30

1 and under the same condition. It can thus be confirmed that the degradation rate of MB and MO 2 can reach 98% and 90% only when the catalyst and H_2O_2 coexist.

These dye degradation experiments suggest that SCPBB@CuNi not only has advantages in
degrading MG but also has catalytic performance in degrading MB and MO under the synergistic
effect of H₂O₂, under daylight.

6

This comparative study shows that SCPBB@CuNi is a very competitive catalytic composite
compared to other biochar-based catalyst systems employed to remove MG, MB, and MO dyes,
as well as their mixtures.

10

11 3.9. Stability and recovery of the catalyst

Due to the presence of Ni species in the catalyst, after each catalytic reaction, the catalyst was easily
 separated by an external magnet, and then used for the next catalytic testing, without any washing
 treatment.

15

We recollected SCPBB@CuNi-0.5 material by an external magnet to evaluate reusability 16 17 and stability, without any cleaning treatment, then the catalyst was reused under the same conditions for the MG degradation. Figure 12(a) shows that discoloration occurred at 87±3% and 18 19 can still be maintained within 20 mins after four times. It is worth noting that the catalyst can be reused without any secondary washing, and retains high catalytic efficiency. This simple 20 21 recycling method, without any washing step, shows that SCPBB@CuNi is a green and costeffective catalyst. The crystalline structure of the catalyst after many times of usage was analyzed 22 by XRD (Fig. 12b). Comparing the XRD patterns of the original and the used SCPBB@CuNi 23 catalyst hardly show any significant change, hence the stability of the immobilized bimetallic 24 CuNi NPs. 25

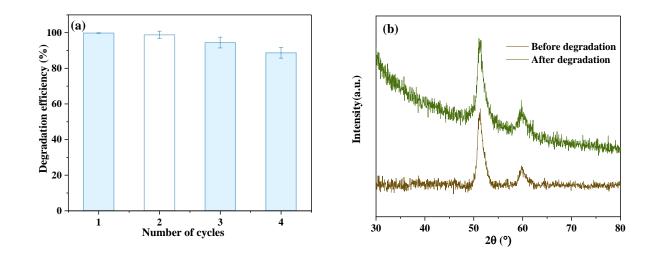


Figure 12. (a) The degradation efficiency of MG dye solution after 4 times with
SCPBB@CuNi, (b) XRD patterns of reused and fresh SCPBB@CuNi.

5

4. Conclusion

In this contribution, sugarcane pulp bagasse biochar samples, loaded with bimetallic copper-6 7 nickel alloy nanoparticles, were prepared by pyrolysis at 500 °C, during 1 hour, under dinitrogen stream. SEM images reveal the unusual hierarchical micro/nanostructure resembling to a fishing 8 9 net, with evenly dispersed and immobilized ~40 nm-sized nanoparticles. The fishnet-like structure of the underlying biochar is shown to be induced by nickel, which also endows the 10 11 biochar with magnetic properties. Copper and nickel are mostly present in the metallic state but 12 undergo surface oxidation as probed by XPS. Their loading on the biochar gradually increased with initial metal ion impregnation. The unique textural properties and evenly dispersed 13 bimetallic nanoparticles over the optimized biochar SCPBB@CuNi contribute to the superior 14 catalytic activity for removing organic contaminants. The biochar/H₂O₂ system was tested for the 15 16 degradation of model dyes and their mixtures at RT and under daylight conditions. The SCPBB@CuNi-0.5 catalyzed the total degradation of MG and MB dyes within 30 min and 3 h, 17 respectively, and could be recycled without a significant decrease in its catalytic performance. 18 Even in complex dye mixtures, the catalyst maintained a high ability to remove organic pollutants. 19 20 For higher initial loading of 1 and 2 mmol metal ions per gram of biomass, the catalytic 21 efficiency decreased due to significant agglomeration of the CuNi nanoparticles.

From the above, this work obviously opens avenues for its application to the treatment of
 complex wastewaters containing organic pollutant mixtures, therefore contributing to address
 UNs 6th SDG related to Clean Water & Sanitation.

4

5 Acknowledgements.

S. Lau-Truong, P. Decorse, Sophie Novak and Alexandre Chevillot-Biraud (experimental
officers at ITODYS lab) are acknowledged for their assistance with Raman, XPS, XRF, and TGA
measurements, respectively.

9 Funding

We thank the China Scholarship Council for the provision of PhD scholarship to Mengqi Tang (No 202008310221). Wallonie Bruxelles International (WBI) is acknowledged for the provision of a grant "Bourse WBI Excellence World" (No Imputation 101386, Article Budgétaire 33.01.00.07). A.M.K. and M.M.C. would like to thank the French government for funding A.M.K.'s contribution through a fellowship granted by the French Embassy in Egypt (Institut Français d'Egypte).

16 **Conflict of Interest**

17 The authors declare no conflict of interest

References

3	Adewuyi, A. (2020). "Challenges and prospects of renewable energy in Nigeria: A case of bioethanol and
4	biodiesel production." <u>Energy Reports</u> 6: 77-88.
5	Akram, A., A. Ikhlaq, F. Javed, M. Kazmi and F. Qi (2021). "UV-irradiated fly ash-catalyzed Fenton-type
6	process for the removal of paracetamol in wastewater: nickel, copper, and manganese as active sites."
7	Desalination And Water Treatment 215: 160-166.
8	Ali, I., S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari, A. Feizizadeh, A. Hamzezadeh and M. Fazlzadeh
9	(2020). "Green preparation of activated carbon from pomegranate peel coated with zero-valent iron
10	nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water." Environmental
11	Science and Pollution Research 27(29): 36732-36743.
12	Ali, I., I. Burakova, E. Galunin, A. Burakov, E. Mkrtchyan, A. Melezhik, D. Kurnosov, A. Tkachev and V.
13	Grachev (2019). "High-Speed and High-Capacity Removal of Methyl Orange and Malachite Green in
14	Water Using Newly Developed Mesoporous Carbon: Kinetic and Isotherm Studies." ACS Omega 4(21):
15	19293-19306.
16	Ali, I., T. Kon'kova, V. Kasianov, A. Rysev, S. Panglisch, X. Y. Mbianda, M. A. Habila and N. AlMasoud
17	(2021). "Preparation and characterization of nano-structured modified montmorillonite for dioxidine
18	antibacterial drug removal in water." <u>Journal of Molecular Liquids</u> 331 : 115770.
19	Aoulad El Hadj Ali, Y., M. Ahrouch, A. Ait Lahcen, Y. Abdellaoui and M. Stitou (2022). "Recent Advances
20	and Prospects of Biochar-based Adsorbents for Malachite Green Removal: A Comprehensive Review."
21	<u>Chemistry Africa</u> .
22	Aruna, N. Bagotia, A. K. Sharma and S. Kumar (2021). "A review on modified sugarcane bagasse
23	biosorbent for removal of dyes." <u>Chemosphere</u> 268 : 129309.
24	Ashraf, G. A., R. T. Rasool, M. Hassan, L. Zhang and H. Guo (2021). "Heterogeneous catalytic activation of
25	BaCu-based M-hexaferrite nanoparticles for methylene blue degradation under photo-Fenton-like
26	system." <u>Molecular Catalysis</u> 505: 111501.
27	Bhaumik, M., A. Maity and H. G. Brink (2022). "Metallic nickel nanoparticles supported polyaniline
28	
	nanotubes as heterogeneous Fenton-like catalyst for the degradation of brilliant green dye in aqueous
29	solution." Journal of Colloid and Interface Science 611: 408-420.
30	solution." <u>Journal of Colloid and Interface Science</u> 611 : 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." <u>Surface and</u>
30 31	solution." <u>Journal of Colloid and Interface Science</u> 611 : 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." <u>Surface and Interface Analysis</u> 49 (13): 1325-1334.
30 31 32	solution." <u>Journal of Colloid and Interface Science</u> 611 : 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." <u>Surface and Interface Analysis</u> 49 (13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in
30 31 32 33	solution." <u>Journal of Colloid and Interface Science</u> 611 : 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." <u>Surface and Interface Analysis</u> 49 (13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." <u>Journal Of Hazardous Materials</u> 275 : 121-135.
30 31 32 33 34	solution." Journal of Colloid and Interface Science 611 : 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." <u>Surface and Interface Analysis</u> 49 (13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275 : 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M.
30 31 32 33 34 35	solution." Journal of Colloid and Interface Science 611 : 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." <u>Surface and Interface Analysis</u> 49 (13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275 : 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M. Chehimi (2022) "Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer's Spent Grain Biochar
30 31 32 33 34 35 36	solution." Journal of Colloid and Interface Science 611 : 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." <u>Surface and Interface Analysis</u> 49 (13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275 : 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M. Chehimi (2022) "Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture." <u>Catalysts</u> 12 DOI:
30 31 32 33 34 35 36 37	 solution." Journal of Colloid and Interface Science 611: 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." Surface and Interface Analysis 49(13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275: 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M. Chehimi (2022) "Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture." Catalysts 12 DOI: 10.3390/catal12111475.
 30 31 32 33 34 35 36 37 38 	 solution." Journal of Colloid and Interface Science 611: 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." Surface and Interface Analysis 49(13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275: 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M. Chehimi (2022) "Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture." Catalysts 12 DOI: 10.3390/catal12111475. Cao, B., J. Yuan, D. Jiang, S. Wang, B. Barati, Y. Hu, C. Yuan, X. Gong and Q. Wang (2021). "Seaweed-
 30 31 32 33 34 35 36 37 38 39 	 solution." Journal of Colloid and Interface Science 611: 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." Surface and Interface Analysis 49(13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275: 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M. Chehimi (2022) "Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture." Catalysts 12 DOI: 10.3390/catal12111475. Cao, B., J. Yuan, D. Jiang, S. Wang, B. Barati, Y. Hu, C. Yuan, X. Gong and Q. Wang (2021). "Seaweed- derived biochar with multiple active sites as a heterogeneous catalyst for converting macroalgae into
 30 31 32 33 34 35 36 37 38 39 40 	 solution." Journal of Colloid and Interface Science 611: 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." Surface and Interface Analysis 49(13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275: 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M. Chehimi (2022) "Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture." Catalysts 12 DOI: 10.3390/catal12111475. Cao, B., J. Yuan, D. Jiang, S. Wang, B. Barati, Y. Hu, C. Yuan, X. Gong and Q. Wang (2021). "Seaweed-derived biochar with multiple active sites as a heterogeneous catalyst for converting macroalgae into acid-free biooil containing abundant ester and sugar substances." Fuel 285: 119164.
 30 31 32 33 34 35 36 37 38 39 40 41 	 solution." Journal of Colloid and Interface Science 611: 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." Surface and Interface Analysis 49(13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275: 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M. Chehimi (2022) "Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture." Catalysts 12 DOI: 10.3390/catal12111475. Cao, B., J. Yuan, D. Jiang, S. Wang, B. Barati, Y. Hu, C. Yuan, X. Gong and Q. Wang (2021). "Seaweed- derived biochar with multiple active sites as a heterogeneous catalyst for converting macroalgae into acid-free biooil containing abundant ester and sugar substances." Fuel 285: 119164. Chen, X., J. Lin, Y. Su and S. Tang (2022) "One-Step Carbonization Synthesis of Magnetic Biochar with 3D
 30 31 32 33 34 35 36 37 38 39 40 	 solution." Journal of Colloid and Interface Science 611: 408-420. Biesinger, M. C. (2017). "Advanced analysis of copper X-ray photoelectron spectra." Surface and Interface Analysis 49(13): 1325-1334. Bokare, A. D. and W. Choi (2014). "Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes." Journal Of Hazardous Materials 275: 121-135. Boubkr, L., A. K. Bhakta, Y. Snoussi, C. Moreira Da Silva, L. Michely, M. Jouini, S. Ammar and M. M. Chehimi (2022) "Highly Active Ag-Cu Nanocrystal Catalyst-Coated Brewer’s Spent Grain Biochar for the Mineralization of Methyl Orange and Methylene Blue Dye Mixture." Catalysts 12 DOI: 10.3390/catal12111475. Cao, B., J. Yuan, D. Jiang, S. Wang, B. Barati, Y. Hu, C. Yuan, X. Gong and Q. Wang (2021). "Seaweed-derived biochar with multiple active sites as a heterogeneous catalyst for converting macroalgae into acid-free biooil containing abundant ester and sugar substances." Fuel 285: 119164.

Chen, X., W. Liu, J. Luo, H. Niu, R. Li and C. Liang (2022). "Structure Evolution of Ni–Cu Bimetallic Catalysts 1 2 Derived from Layered Double Hydroxides for Selective Hydrogenation of Furfural to Tetrahydrofurfuryl 3 Alcohol." Industrial & Engineering Chemistry Research 61(35): 12953-12965. 4 da Silva Veiga, P. A., M. H. Cerqueira, M. G. Goncalves, T. T. da Silva Matos, G. Pantano, J. Schultz, J. B. de 5 Andrade and A. S. Mangrich (2021). "Upgrading from batch to continuous flow process for the pyrolysis 6 of sugarcane bagasse: Structural characterization of the biochars produced." Journal Of Environmental 7 Management 285. 8 da Silva Veiga, P. A., J. Schultz, T. T. da Silva Matos, M. R. Fornari, T. G. Costa, L. Meurer and A. S. 9 Mangrich (2020). "Production of high-performance biochar using a simple and low-cost method: 10 Optimization of pyrolysis parameters and evaluation for water treatment." Journal Of Analytical And Applied Pyrolysis **148**. 11 12 Deka, P., B. J. Borah, H. Saikia and P. Bharali (2019). "Cu-Based Nanoparticles as Emerging Environmental 13 Catalysts." The Chemical Record 19(2-3): 462-473. Deraz, N. (2018). "The comparative jurisprudence of catalysts preparation methods: I. Precipitation and 14 15 impregnation methods." J. Ind. Environ. Chem 2(1): 19-21. 16 Dihingia, H. and D. Tiwari (2022). "Impact and implications of nanocatalyst in the Fenton-like processes 17 for remediation of aquatic environment contaminated with micro-pollutants: A critical review." Journal 18 of Water Process Engineering 45: 102500. 19 Ding, H., G. Tong, J. Sun, J. Ouyang, F. Zhu, Z. Zhou, N. Zhou and M. e. Zhong (2023). "Regeneration of methylene blue-saturated biochar by synergistic effect of H2O2 desorption and peroxymonosulfate 20 21 degradation." Chemosphere 316: 137766. 22 Dong, Q., D. Yang, L. Luo, Q. He, F. Cai, S. Cheng and Y. Chen (2021). "Engineering porous biochar for 23 capacitive fluorine removal." Separation And Purification Technology 257. 24 Gong, Z., T. Ma and F. Liang (2021). "Syntheses of magnetic blackberry-like Ni@Cu@Pd nanoparticles for 25 efficient catalytic reduction of organic pollutants." Journal of Alloys and Compounds 873: 159802. 26 Gopinath, A., G. Divyapriya, V. Srivastava, A. R. Laiju, P. V. Nidheesh and M. S. Kumar (2021). "Conversion 27 of sewage sludge into biochar: A potential resource in water and wastewater treatment." Environmental 28 Research 194: 110656. 29 Goswami, L., A. Kushwaha, S. R. Kafle and B.-S. Kim (2022). "Surface modification of biochar for dye 30 removal from wastewater." Catalysts 12(8): 817. 31 Hamouma, O., N. Kaur, D. Oukil, A. Mahajan and M. M. Chehimi (2019). "Paper strips coated with 32 polypyrrole-wrapped carbon nanotube composites for chemi-resistive gas sensing." Synthetic Metals 33 **258**: 116223. 34 Hu, L. Y., B. Yue, X. Y. Chen and H. Y. He (2014). "Direct hydroxylation of benzene to phenol on Cu-V bimetal modified HMS catalysts." <u>Catalysis Communications</u> **43**: 179-183. 35 36 Huang, Q., C. Chen, X. Zhao, X. Bu, X. Liao, H. Fan, W. Gao, H. Hu, Y. Zhang and Z. Huang (2021). 37 "Malachite green degradation by persulfate activation with CuFe2O4@biochar composite: Efficiency, 38 stability and mechanism." Journal of Environmental Chemical Engineering 9(4): 105800. 39 Huang, Y., W. Su, R. Wang and T. Zhao (2019). "Removal of typical industrial gaseous pollutants: From 40 carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents." Aerosol and Air 41 Quality Research 19(9): 2130-2150. 42 Jha, A., D.-W. Jeong, J.-O. Shim, W.-J. Jang, Y.-L. Lee, C. V. Rode and H.-S. Roh (2015). "Hydrogen 43 production by the water-gas shift reaction using CuNi/Fe2O3 catalyst." Catalysis Science & Technology 44 **5**(5): 2752-2760. 45 Jing, H., L. Ji, Z. Wang, J. Guo, S. Lu, J. Sun, L. Cai and Y. Wang (2021). "Synthesis of ZnO nanoparticles 46 loaded on biochar derived from spartina alterniflora with superior photocatalytic degradation 47 performance." Nanomaterials 11(10): 2479.

1	Kant Bhatia, S., A. K. Palai, A. Kumar, R. Kant Bhatia, A. Kumar Patel, V. Kumar Thakur and YH. Yang
2	(2021). "Trends in renewable energy production employing biomass-based biochar." <u>Bioresource</u>
3	<u>Technology</u> 340 : 125644.
4	Kasera, N., P. Kolar and S. G. Hall (2022). "Nitrogen-doped biochars as adsorbents for mitigation of heavy
5	metals and organics from water: a review." <u>Biochar</u> 4 (1): 17.
6	Khalil, A. M., L. Michely, R. Pires, S. Bastide, K. Jlassi, S. Ammar, M. Jaziri and M. Chehimi (2021).
7	"Copper/nickel-decorated olive pit biochar: One pot solid state synthesis for environmental
8	remediation." <u>Applied Sciences</u> 11 (18).
9	Li, CZ. (2007). "Some recent advances in the understanding of the pyrolysis and gasification behaviour
10	of Victorian brown coal." <u>Fuel</u> 86 (12): 1664-1683.
11	Li, D., L. Zhao, X. Cao, Z. Xiao, H. Nan and H. Qiu (2021). "Nickel-catalyzed formation of mesoporous
12	carbon structure promoted capacitive performance of exhausted biochar." Chemical Engineering Journal
13	406 : 126856.
14	Li, Y., Y. Liu, Y. Liu, Y. Chen, L. Chen, H. Yan, Y. Chen, F. Xu, M. Li and L. Li (2022). "Modification of sludge
15	biochar by MnO2 to degrade methylene blue: Synergistic catalysis and degradation mechanisms."
16	Journal of Water Process Engineering 48: 102864.
17	Liao, F., T. W. B. Lo and S. C. E. Tsang (2015). "Recent Developments in Palladium-Based Bimetallic
18	Catalysts." <u>ChemCatChem</u> 7(14): 1998-2014.
19	Liao, M. Z., C. Wang, E. Q. Bu, Y. Chen, Z. D. Cheng, X. L. Luo, R. Y. Shu and J. H. Wu (2018). <u>Efficient</u>
20	hydrogen production from partial oxidation of propane over SiC doped Ni/Al2O3 catalyst. 10th
21	International Conference on Applied Energy (ICAE), Hong Kong, HONG KONG.
22	Liu, H., Y. Liu, X. Li, X. Zheng, X. Feng and A. Yu (2022) "Adsorption and Fenton-like Degradation of
23	Ciprofloxacin Using Corncob Biochar-Based Magnetic Iron–Copper Bimetallic Nanomaterial in
24	Aqueous Solutions." <u>Nanomaterials</u> 12 DOI: 10.3390/nano12040579.
25	Liu, WJ., H. Jiang and HQ. Yu (2015). "Development of Biochar-Based Functional Materials: Toward a
26	Sustainable Platform Carbon Material." <u>Chemical Reviews</u> 115 (22): 12251-12285.
27	Liu, Y., Z. Jiang, J. Fu, W. Ao, A. Ali Siyal, C. Zhou, C. Liu, J. Dai, M. Yu, Y. Zhang, Y. Jin, Y. Yuan and C. Zhang
28	(2022). "Iron-biochar production from oily sludge pyrolysis and its application for organic dyes removal."
29	<u>Chemosphere</u> 301 : 134803.
30	Lopes, R. P. and D. Astruc (2021). "Biochar as a support for nanocatalysts and other reagents: Recent
31	advances and applications." <u>Coordination Chemistry Reviews</u> 426 : 213585.
32	Low, Y. W. and K. F. Yee (2021). "A review on lignocellulosic biomass waste into biochar-derived catalyst:
33 34	Current conversion techniques, sustainable applications and challenges." <u>Biomass and Bioenergy</u> 154 : 106245.
	Nagula, S. and A. Ramanjaneyulu (2020). "Biochar-The New Black Gold." <u>Biotica Research Today 2(6)</u> :
35 36	425-427.
30 37	Nidheesh, P. V., R. Gandhimathi and S. T. Ramesh (2013). "Degradation of dyes from aqueous solution by
38	Fenton processes: a review." <u>Environmental Science and Pollution Research</u> 20 (4): 2099-2132.
39	Omiri, J., Y. Snoussi, A. K. Bhakta, S. Truong, S. Ammar, A. M. Khalil, M. Jouini and M. M. Chehimi (2022).
40	"Citric-Acid-Assisted Preparation of Biochar Loaded with Copper/Nickel Bimetallic Nanoparticles for Dye
40 41	Degradation." <u>Colloids and Interfaces 6(2)</u> .
42	Pan, S., H. M. Zabed, Y. Wei and X. Qi (2022). "Technoeconomic and environmental perspectives of
43	biofuel production from sugarcane bagasse: Current status, challenges and future outlook." Industrial
43 44	<u>Crops and Products</u> 115684 .
45	Pang, J., A. Wang, M. Zheng, Y. Zhang, Y. Huang, X. Chen and T. Zhang (2012). "Catalytic conversion of
46	cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts." <u>Green Chemistry</u>
40 47	14 (3): 614-617.
.,	1 (5). 014 017.

1	Quiton, K. G. N., MC. Lu and YH. Huang (2021). "Synthesis and catalytic utilization of bimetallic
2	systems for wastewater remediation: A review." <u>Chemosphere</u> 262: 128371.
3	Radji, G., N. Bettahar, A. Bahmani, I. Boukhetache and S. Contreras (2022). "Heterogeneous Fenton-like
4	degradation of organic pollutants in petroleum refinery wastewater by copper-type layered double
5	hydroxides." Journal Of Water Process Engineering 50.
6	Ramlingam, S., S. Subramanian and P. Ganesan (2022). Conversion of Agro Wastes to Solid and Gaseous
7	Biofuels through Thermal Cracking Technique. Production Technologies for Gaseous and Solid Biofuels:
8	263-289.
9	Rangarajan, G. and R. Farnood (2022). "Role of persistent free radicals and lewis acid sites in visible-light-
10	driven wet peroxide activation by solid acid biochar catalysts – A mechanistic study." Journal of
11	Hazardous Materials 438: 129514.
12	Rani, B., A. K. Nayak and N. K. Sahu (2022). "Degradation of mixed cationic dye pollutant by metal free
13	melem derivatives and graphitic carbon nitride." <u>Chemosphere</u> 298 : 134249.
14	Saravanan, A., P. S. Kumar, N. S. Mat Aron, S. Jeevanantham, S. Karishma, P. R. Yaashikaa, K. W. Chew
15	and P. L. Show (2022). "A review on bioconversion processes for hydrogen production from agro-
16	industrial residues." International Journal of Hydrogen Energy 47(88): 37302-37320.
17	Sharma, G., S. Bhogal, V. K. Gupta, S. Agarwal, A. Kumar, D. Pathania, G. T. Mola and F. J. Stadler (2019).
18	"Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of
19	malachite green from aqueous medium." <u>Journal of Molecular Liquids</u> 275 : 499-509.
20	Shi, Q., S. Deng, Y. Zheng, Y. Du, L. Li, S. Yang, G. Zhang, L. Du, G. Wang and M. Cheng (2022). "The
21	application of transition metal-modified biochar in sulfate radical based advanced oxidation processes."
22	Environmental Research 212: 113340.
23	Snoussi, Y., S. Bastide, M. Abderrabba and M. M. Chehimi (2018). "Sonochemical synthesis of
24	Fe3O4@NH2-mesoporous silica@Polypyrrole/Pd: A core/double shell nanocomposite for catalytic
25	applications." <u>Ultrasonics Sonochemistry</u> 41: 551-561.
26	Snoussi, Y., I. Sifaoui, M. El Garah, A. M. Khalil, J. E. Piñero, M. Jouini, S. Ammar, J. Lorenzo-Morales and
27	M. M. Chehimi (2023). "Green, zero-waste pathway to fabricate supported nanocatalysts and anti-
28	kinetoplastid agents from sugarcane bagasse." <u>Waste Management</u> 155 : 179-191.
29	Soon, A. N. and B. H. Hameed (2011). "Heterogeneous catalytic treatment of synthetic dyes in aqueous
30	media using Fenton and photo-assisted Fenton process." <u>Desalination</u> 269 (1): 1-16.
31	Sun, H., D. Feng, Y. Zhang, S. Sun, Y. Zhao and F. Zhang (2022). "Roles of AAEMs in catalytic reforming of
32	biomass pyrolysis tar and coke accumulation characteristics over biochar surface for H2 production."
33	International Journal of Hydrogen Energy 47 (68): 29207-29218.
34	Sutar, S., P. Patil and J. Jadhav (2022). "Recent advances in biochar technology for textile dyes
35	wastewater remediation: A review." Environmental Research: 112841.
36	Tang, C., M. Cheng, C. Lai, L. Li, X. Yang, L. Du, G. Zhang, G. Wang and L. Yang (2023). "Recent progress in
37	the applications of non-metal modified graphitic carbon nitride in photocatalysis." <u>Coordination</u>
38	<u>Chemistry Reviews</u> 474 : 214846.
39	Tang, M., Y. Snoussi, A. Bhakta, M. El Garah, A. Khalil, S. Ammar and M. Chehimi (2022). "Unusual,
40	hierarchically structured composite of sugarcane pulp bagasse biochar loaded with Cu/Ni bimetallic
41	nanoparticles."
42	Tripathi, M., J. N. Sahu and P. Ganesan (2016). "Effect of process parameters on production of biochar
43	from biomass waste through pyrolysis: A review." <u>Renewable and Sustainable Energy Reviews</u> 55: 467-
44	481.
45	Verma, P., Y. Kuwahara, K. Mori, R. Raja and H. Yamashita (2020). "Functionalized mesoporous SBA-15
46	silica: recent trends and catalytic applications." <u>Nanoscale</u> 12 (21): 11333-11363.
47	Wang, C., R. Sun and R. Huang (2021). "Highly dispersed iron-doped biochar derived from sawdust for
48	Fenton-like degradation of toxic dyes." Journal of Cleaner Production 297: 126681.

Wang, L., Y. Liu, Y. Lin, Y. Yu, X. Zhang, R. Zhang and Y. Zhai (2021). "One-step synthesis of novel Ni-doped 1 2 Cu2(OH)3F Fenton-like catalyst driven by visible light: Single activity and synergistic effect enhanced by 3 bimetallic cooperation." Journal of Alloys and Compounds 887: 161424. 4 Wang, N., Q. Sun, T. Zhang, A. Mayoral, L. Li, X. Zhou, J. Xu, P. Zhang and J. Yu (2021). "Impregnating 5 subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets." Journal of the American 6 Chemical Society 143(18): 6905-6914. 7 Wang, Q., Y. Ma and S. T. Xing (2018). "Comparative study of Cu-based bimetallic oxides for Fenton-like 8 degradation of organic pollutants." Chemosphere 203: 450-456. 9 Wolfbeisser, A., G. Kovács, S. M. Kozlov, K. Föttinger, J. Bernardi, B. Klötzer, K. M. Neyman and G. 10 Rupprechter (2017). "Surface composition changes of CuNi-ZrO2 during methane decomposition: An 11 operando NAP-XPS and density functional study." Catalysis Today 283: 134-143. 12 Wu, Y., S. Zeng, F. Wang, M. Megharaj, R. Naidu and Z. Chen (2015). "Heterogeneous Fenton-like 13 oxidation of malachite green by iron-based nanoparticles synthesized by tea extract as a catalyst." 14 Separation and Purification Technology 154: 161-167. Xavier, S., R. Gandhimathi, P. V. Nidheesh and S. T. Ramesh (2015). "Comparison of homogeneous and 15 16 heterogeneous Fenton processes for the removal of reactive dye Magenta MB from aqueous solution." 17 Desalination And Water Treatment 53(1): 109-118. 18 Xia, J., Y. Shen, H. Zhang, X. Hu, M. M. Mian and W.-H. Zhang (2022). "Synthesis of magnetic 19 nZVI@biochar catalyst from acid precipitated black liquor and Fenton sludge and its application for Fenton-like removal of rhodamine B dye." Industrial Crops and Products 187: 115449. 20 21 Xia, Z., M. Li, H. Hao, Q. Zhang, M. Zhong, Y. Qiu, X. Wei and Z. Fan (2023). "The role of nonradicals in 22 simultaneous degradation and detoxification of Malachite Green via biochar decorated with δ-MnO2." 23 Environmental Technology & Innovation 29: 102992. 24 Xiao, W., M. Cheng, Y. Liu, J. Wang, G. Zhang, Z. Wei, L. Li, L. Du, G. Wang and H. Liu (2023). "Functional 25 Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, 26 Performances, and Mechanisms." ACS Catalysis 13: 1759-1790. 27 Yameen, M. Z., H. AlMohamadi, S. R. Nagvi, T. Noor, W.-H. Chen and N. A. S. Amin (2023). "Advances in 28 production & activation of marine macroalgae-derived biochar catalyst for sustainable biodiesel 29 production." Fuel 337: 127215. 30 Zarei, M., I. Mohammadzadeh, K. Saidi and H. Sheibani (2022). "Fabrication of biochar@Cu-Ni nanocatalyst for reduction of aryl aldehyde and nitroarene compounds." Biomass Conversion and 31 32 Biorefinery. Zarei, M., K. Saidi and H. Sheibani (2022). "Preparation and investigation of catalytic activities of Cu-Ni 33 34 nanoparticles supported on the biochar derived from pomegranate shells in the A3-coupling reactions." 35 **Biomass Conversion and Biorefinery.** 36 zhang, Y., X. Li, J. Chen, Y. Wang, Z. Cheng, X. Chen, X. Gao and M. Guo (2023). "Porous spherical Cu2O supported by wood-based biochar skeleton for the adsorption-photocatalytic degradation of methyl 37 38 orange." Applied Surface Science 611: 155744. Zhu, C., H. Wang, H. Li, B. Cai, W. Lv, C. Cai, C. Wang, L. Yan, Q. Liu and L. Ma (2019). "Selective 39 Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Alloyed Cu–Ni Encapsulated 40 41 in Biochar Catalysts." ACS Sustainable Chemistry & Engineering 7(24): 19556-19569. Zhu, H. and H. Zou (2022). "Ultra-efficient catalytic degradation of malachite green dye wastewater by 42 43 KMnO4-modified biochar (Mn/SRBC)." <u>RSC Advances</u> 12(41): 27002-27011.

44