Imed-Eddine Benrabah 
  
Yves Brechet 
  
Gary Purdy 
  
Christopher Hutchinson 
  
Hatem Zurob 
  
On the origin of the barrier in the bainite phase transformation

The experimental lengthening kinetics of bainitic ferrite in steels have been consistently shown in the literature to be slower than those predicted using the diffusional Zener-Hillert model. Reconciliation of the experimental and calculated kinetics has required the introduction of a 'barrier energy' which until now has not had a clear physical meaning. A modified diffusional growth model based on the Zener-Hillert model for plate-like ferrite growth is introduced here which contains a physics-based barrier energy. The model assumes diffusion controlled growth and takes into account a barrier energy arising from interfacial disconnections motion and their interaction with defects in the matrix. The model is able to successfully describe the C-curve growth rate of Widmanstätten ferrite and bainitic ferrite in a wide range of steels.

, and others arguing in favor of a diffusional process controlled by carbon

diffusion [8][9][10][11]. In both approaches, it is necessary to introduce an energy barrier, in order to reproduce the experimental results (e.g. carbon content in austenite or T0' limit) [START_REF] Bhadeshia | Bainite in Steels: Transformations, Microstructure and Properties[END_REF]10]. The goal of this contribution is to examine the origin of this barrier energy.

For the purpose of this contribution, we consider the diffusional approach for describing the growth of Widmanstätten ferrite and bainitic ferrite. The growth of plate-like ferrite proceeds through the movement of disconnections at the ferrite/austenite interface [12][13][14]. The movement of disconnection is responsible for both the structural change (fcc to bcc) and the shape change (e.g. surface relief) that take place. The transformation rate is controlled by the rate at which the disconnections move and this is ultimately controlled by the rate of carbon diffusion at the disconnections. Following Howe and Hirth [13], such a transformation can be described as a diffusional-displacive transformation. This description is not unique to the growth of plate-like ferrite/bainite. Plate-like (or acicular) morphologies are also observed in other alloys, such as Ag-Cd [15], Zr-Nb [16] and Ti-based alloys [17]. In the Ti-Cr system, it has been shown that diffusional plate-like transformations proceed by the motion of transformation disconnections/structural ledges and at the same time demonstrate tent-shaped surface relief [17][18][19][20].

Several attempts have been made to describe ferrite plate lengthening kinetics under the assumption of carbon diffusion controlled growth [10,[21][22][23]. The Hillert-Zener [9] equation was used by several authors to describe the plate lengthening rates in low alloyed steels. Hillert was the first to highlight that the experimental rates were sometimes slower than the calculated rates [24]. Kaufman et al. [25] also reported slower experimental growth rates compared to the diffusion controlled theory predictions and attributed these discrepancies to uncertainties the interfacial energy used in the Hillert-Zener equation [24,26]. Improvements were later made to the diffusional growth equation by Trivedi et al. [27] but these didn't change the general picture of slower experimental kinetics compared to the calculations. Leach et al [10]. have recently suggested modifications to the Hillert-Zener equation to reduce some of the approximations and proposed the introduction of a 'barrier energy' to reconcile the differences between the measured and the calculated growth rates. The authors suggest that the barrier energy increases with carbon content. The physical origin of this barrier energy was not discussed.

In the present contribution, a model is proposed to describe the austenite decomposition to plate-like products at temperatures above Ms. These products involve both Widmanstätten ferrite and bainitic ferrite. The model takes into account both long range diffusion of carbon and disconnection motion to describe the lengthening of plate-like ferrite in steels. A physical interpretation of the barrier energy is proposed and calculations demonstrate that this can reconcile the previously observed differences between the calculated and experimental growth rates.

The present model is based on the classic Zener-Hillert equation [9], where the plate-shaped ferrite lengthening rate is controlled by carbon diffusion in the austenite and can be expressed as:

𝑣 𝑚𝑎𝑥 = 𝐷 𝐿 𝑥 γ/α -𝑥 0 𝑥 0 -𝑥 α/γ ( 1 )
where 𝑥 0 is the carbon mole fraction in the bulk, 𝑥 γ/α is the carbon mole fraction at the austenite side of the interface and 𝑥 α/γ is the carbon mole fraction at the ferrite side of the interface. 𝐷 is the carbon diffusion coefficient in austenite and 𝐿 is the diffusion distance, assumed to be proportional to the curvature radius 𝑟 of the growing needle, 𝐿 = 𝑎𝑟. Hillert evaluated the 𝑎 parameter to 2.

One of the uncertain parameters is the carbon diffusion coefficient in austenite. Trivedi et al. [27] suggested using an effective diffusion coefficient calculated as an average over the diffusion profile:

𝐷 𝑒𝑓𝑓 = 1 𝑥 γ/α -𝑥 0 ∫ 𝐷(𝑥) 𝑥 γ/α 𝑥 0 ( 2 )
We adopt the suggestion of Trivedi et al. and consider an effective diffusion coefficient calculated, over an effective distance of diffusion 𝐿, as shown by Eq. ( 3) :

𝐷 𝑒𝑓𝑓 = 1 𝑥 γ/α -𝑥 𝐿 ∫ 𝐷(𝑥) 𝑥 γ/α 𝑥 𝐿 ( 3 ) 
where 𝑥 𝐿 is the carbon mole fraction at the diffusion distance L from the γ/α interface.

To solve Eq. ( 1) and calculate the interface velocity, one must define the interface conditions that govern the transformation. A local energy balance at the interface (γ/α) is used, Eq. ( 4) :

𝛥𝐺 𝑚 𝑐ℎ𝑒𝑚 = 𝛥𝐺 𝑚 𝑆𝐷 + 𝛥𝐺 𝑚 𝑓𝑟𝑖𝑐 + 𝛥𝐺 𝑚 𝐺𝑇 + 𝛥𝐺 𝑚 𝑚𝑒𝑐 4 ( 4 ) 
Δ𝐺 𝑚 𝑐ℎ𝑒𝑚 is the chemical driving force acting over the interface, Δ𝐺 𝑚 𝑆𝐷 is the dissipated energy due to solute drag, Δ𝐺 𝑚 𝑓𝑟𝑖𝑐 is the energy dissipated due to the fcc-bcc structural rearrangement, Δ𝐺 𝑚 𝐺𝑇 is the curvature energy and Δ𝐺 𝑚 𝑚𝑒𝑐 is a mechanical 'barrier' energy to be discussed below.

We assume the interface mobility is large enough for the dissipated energy due to interface friction to be negligible. The experimental interface velocities are slow enough that this dissipation calculated using any of the estimates for the intrinsic mobility lead to a negligible dissipation due to friction. The solute drag energy is also considered small enough to be neglected. It should be noted that this assumption is only valid in low alloyed steels. In its present form, the model can not be used to explain the bay observed in the TTT diagrams for steels containing Cr and Mo. The chemical driving force is calculated using the proposed expression by Hutchinson et al. [28]:

Δ𝐺 𝑚 𝑐ℎ𝑒𝑚 = ∑ { (𝑢 𝑋 α + 𝑢 𝑋 γ ) 2 (μ 𝑋 γ,𝑖 -μ 𝑋 α,𝑖 )} 𝑋 + (𝑢 𝐹𝑒 α + 𝑢 𝐹𝑒 γ ) 2 (μ 𝐹𝑒 γ,𝑖 -μ 𝐹𝑒 α,𝑖 ) ( 5 ) 
Where 𝑢 𝐹𝑒 = 𝑥 𝐹𝑒

1-𝑥 𝐶

and 𝑢 𝑋 = 𝑥 𝑋

1-𝑥 𝐶

are the molar fractions of Fe and X elements at the austenite and ferrite interface sides, respectively. In principle, complete carbon partitioning does not necessarily take place during the transformation. For simplicity, this initial treatment will assume that carbon is in equilibrium across the interface (i.e. μ 𝐶 γ = μ 𝐶 α ) and the U fractions of iron and the substitutional elements are assumed unchanged across the interface. The present model takes into account the effect of the substitutional elements on the plate-like growth kinetics through their effects in Eq. ( 5). The thermodynamic parameters are evaluated using the TCFE9 database of Thermo-Calc software [29].

The capillarity effect is expressed using the Gibbs Thomson energy (Δ𝐺 𝑚 𝐺𝑇 ) using Eq. ( 6) :

Δ𝐺 𝑚 𝐺𝑇 = 𝑉 𝑚 σ γ/α r ( 6 )
where 𝑉 𝑚 is the molar volume of ferrite and σ γ/α is the interfacial energy.

As suggested in the introduction, the diffusional-displacive plate-like growth proceeds by the motion of transformation disconnections [13,14]. During interface migration, these disconnections interact with the defects (e.g. dislocations) in the matrix, causing an opposing force to interface migration. The opposing force depends on the dislocation density present in the matrix as well as the different obstacles that can hinder disconnections movement. To account for these processes, a mechanical 'barrier' energy is expressed as a function of the internal back stress caused by the interaction between the moving disconnections and the surrounding obstacles (Figure 1). The back stress, σ ̂, describes the minimum stress which is required to activate disconnection motion at the interface. The available driving force for transformation should be sufficient to overcome the opposing energy due to the back stress. The back stress σ ̂ exerts a force per unit length of 𝑚 𝑠 σ ̂𝑏𝑠 on each disconnection, where ms is the Schmid factor and bs is the magnitude of the Burgers vector of the disconnection. The disconnection density per unit surface length is 1/Λ , where Λ is the spacing between disconnections. This results in an opposing force per unit area of 𝑚 𝑠 σ ̂ 𝑏 Λ , which amounts to an energy per unit volume to be subtracted from the driving force available for the transformation. This mechanical barrier energy is expressed using Eq. ( 7) :

Δ𝐺 𝑚 𝑚𝑒𝑐 = 𝑉 𝑚 σ ̂ 𝑏 𝑠 Λ 𝑚 𝑠 ( 7 )
where 𝜎 ̂ is the internal back stress due to disconnection-defect interaction, 𝑚 𝑠 is the Schmid factor, 𝑏 𝑠 is the magnitude of the Burgers vector of the disconnection, and Λ is the average spacing mobile disconnections. [30].

Figure 1 : Schematic representation of the austenite (γ) -ferrite (α) interface during plate-like ferrite lengthening, showing the interaction between the interface disconnections and the surrounding obstacles in the austenite matrix

The internal back stress 𝜎 ̂ is assumed to originate from both disconnection-dislocation interactions as well as disconnection-solute interactions. No distinction is made between mobile and immobile dislocations, and the back stress is estimated using the Taylor equation [START_REF] Krausz | Unified Constitutive Laws of Plastic Deformation[END_REF][START_REF] Taylor | [END_REF] :

σ ̂= α𝑀μ𝑏√ρ + σ 𝑆𝑆 ( 8 ) 
Where 𝑀 is the Taylor factor (𝑀= 3 for austenite), 𝜇 is the shear modulus estimated as a function of temperature from [33], 𝛼 is a constant of the order of 0.15 for austenite and 𝜎 𝑆𝑆 is the solid solution hardening expressed as [34] : 

𝜎 𝑆𝑆 = (1 -0.
Where 𝑇 𝐶 is the transformation temperature and 𝑤 𝑋 is the weight fraction of element X at the austenite/ferrite interface.

The model introduced above is now used to predict Widmanstätten and bainitic ferrite growth kinetics as a function of temperature, using the physically-based barrier described by Eq.( 7). The values of the parameters used in the model are summarized in Table 1. The mechanical 'barrier' energy (Eq.( 7) represents an opposing energy for the plate-like ferrite transformation. The magnitude of this energy increases with decreasing temperature due to the increase of the solid solution strengthening term (𝜎 𝑆𝑆 ) (Eq. ( 9). In the proposed approach, the barrier energy has a clear physical meaning -it originates from the interaction between the moving disconnections at the interface with the obstacles in the matrix (dislocations and solute elements).

Figure 2 compares the experimental lengthening rates of plate-shaped ferrite as a function of temperature for different binary Fe-C (2-a to 2-d) and low alloyed steels (2-e and 2-f), with the model predictions using the classic Zener-Hillert approach (i.e. model without barrier) as well as our proposed approach (i.e. model with barrier) described above that includes a physically-based barrier energy (Eq.( 7)). Figure 2 demonstrates that the classic Zener-Hillert approach overestimates the experimental growth kinetics, and this is consistent with previous reports [9,10,36]. The addition of a barrier energy represented here by the mechanical energy (Eq.( 7) provides a much better description of the measured growth kinetics as a function of temperature for the different alloy compositions. [36,37], b) Fe-0.7C [36], c) Fe-0.91C [38], d) Fe-1.43C [38], e) Fe-0.59C-0.56Mn-0.25Si [38] and f) Fe-0.81C-0.23Mn-0.26Si (wt.%) [37].

The mechanical 'barrier' energy described using Eq. ( 7), ( 8) and ( 9) is independent of the bulk carbon composition. This is because the solid solution term (Eq. 9) is calculated using the compositions at the austenite interface, which is independent of the bulk carbon composition when assuming that carbon is at equilibrium across the interface. However, the 'barrier' energy does depend on temperature. Figure 3 shows an example of the barrier energy evolution as a function of temperature for three alloys: Fe-0.5C, Fe-0.7C and Fe-0.59C-0.56Mn-0.25Si (wt.%). For the three cases, the barrier energy decreases with increasing temperature and it is similar for the three cases. The effect of the substitutional elements is negligible here due to the low content in the studied alloys (Fe-0.59C-0.5Mn-0.2Si wt.%). At higher solute content, the carbon interface contents can be affected, and thus the 'barrier' energy will be different. 
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 2 Figure 2 : Comparison between measured lengthening rates of plate-like ferrite in different steels and the calculated ones using the classical Zener-Hillert model (solid lines) as well as the present model (dashed lines). a) Fe-0.5C[36,37], b) Fe-0.7C[36], c) Fe-0.91C[38], d) Fe-1.43C[38], e) Fe-0.59C-
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 3 Figure 3 : The barrier energy evolution as a function of temperature for three steels, Fe-0.5C, Fe-0.7C and Fe-0.59C-0.56Mn-0.2Si (wt.%).

  

  

Table 1 :

 1 Summary of the different parameters used in the present calculations. 𝒎 𝒔 𝛔 𝛄/𝛂 (𝑱. 𝒎 𝟐 ) 𝑽 𝒎 (𝐦 𝟑 . 𝐦𝐨𝐥 -𝟏 )

	Variable	𝛒 (𝒎 -𝟐 )	𝚲 (𝐦)	𝒃 𝒔 (m)	
	Value	10 13 [35] 1.5 × 10 -9 [13] 2.0 × 10 -9 [13]	0.5	0.23 [10]	7.09 × 10 -6
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𝑊𝐵𝑠 (°𝐶) = 850 -206𝐶 -78𝑀𝑛 -33𝑁𝑖 -70𝐶𝑟 -75𝑀𝑜 -61𝑆𝑖 ( 11 ) The carbon effect on the WBs temperature is well captured by the present calculations. On the other hand, except for nickel, the effect of the other solutes (Mn, Mo, Cr and Si) on the WBs temperature is underestimated by the present calculations. One possible explanation may be related to the solute drag effect which was neglected in the present study. This effect is mainly operative at high temperatures, where solute diffusion becomes comparable to the interface velocity.

In summary, the kinetics of plate-like ferrite growth in steels is examined in the context of carbon diffusion being the rate-controlling process. The classic Zener-Hillert model is used with interfacial conditions governed by an energy balance between the chemical free energy acting over the interface, the Gibbs-Thomson energy to account for the curvature effect and a new physically-based 'mechanical barrier energy' to describe the effect of defects in the matrix on interface motion.

The mechanical barrier energy introduced here provides a physical basis for the barrier introduced by Leach et al. [36] in the Zener-Hillert model to explain the discrepancies between the measured and calculated growth rates using the diffusion based theory. The barrier comes from the interaction between the moving disconnections at the interface with the existing defects in the matrix such as dislocations and solute elements. Since the interaction is located at the interface disconnections, the relevant pinning force is computed using the local chemical composition.

Appendix : Parametric sensitivity of the 'barrier' energy (Supplementary materials)

There is some uncertainty in the values of the parameters used to calculate the barrier energy in Eq.( 7) (such as the dislocation density in austenite and the disconnections spacing Λ). For this reason, a sensitivity analysis of the calculated ferrite lengthening as a function of these parameters was undertaken as shown in Figure A1. The alloy Fe-0.5wt%. was chosen for illustration. Increasing the dislocation density by an order of magnitude has limited effect in the present case. The disconnection spacing was varied between 1 nm and 2 nm and the results show a considerable effect of this parameter on the calculate growth kinetics at low temperatures. It is clear that a detailed investigation of this parameter (as well as the Burgers vector of the disconnections) will aid in the refinement of the model.