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ABSTRACT

Single-pixel imaging recovers an image from a sequence of
point measurements that correspond to inner products be-
tween the image of the scene and some light patterns. This
technique is particularly suited to hyperspectral imaging
which has a wide range of biomedical applications, in par-
ticular fluorescence-guided neurosurgery where high spectral
resolution is required to improve tumor resection. How-
ever, the sequential nature of the acquisition leads to strong
artifacts when a dynamic scene is considered. This paper pro-
poses a simple yet efficient strategy for imaging such dynamic
scenes. Our method relies on a hybrid device that combines a
standard imaging arm with a hyperspectral single-pixel imag-
ing arm. By estimating the motion from the standard imaging
arm, we show how to compensate the motion perceived by
the hyperspectral arm. We demonstrate the efficiency of the
proposed strategy on simulated and experimental data.

Index Terms— Image reconstruction, motion compensa-
tion, computational optics, single-pixel imaging.

1. INTRODUCTION

Single-pixel imaging (SPI) acquires an image by measuring a
series of inner products between some light patterns and the
scene [1], where the light patterns are typically obtained using
a digital micro-mirror device (DMD) and only a single point
detector is required. The concept of SPI easily generalizes to
hyperspectral imaging by replacing the point detector with a
spectrometer, thus acquiring a hypercube with thousands of
spectral channels in approximately ten seconds [2]. Hyper-
spectral imaging is particularly relevant for biomedical appli-
cations as it provides a non-contact and non-ionizing sensing
technique for disease diagnosis and image-guided surgery.
Numerous studies have used hyperspectral imaging to detect
cancers, cardiac disease, ischemic tissue, skin burn, retinal
pathologies, diabetes, kidney disease, and more [3]. We are
particularly interested in fluorescence-guided neurosurgery
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where gliomas can be distinguished from healthy tissue by
the injection of a contrast agent (e.g. protoporphyrin-IX [4]),
provided a high spectral resolution is available.

Single-pixel acquisitions lead to an inverse problem
where the image of the scene needs to be reconstructed
from the measurements. While most reconstruction methods
assume the scene is static [5], fast-moving dynamic scenes
lead to strong blurring artifacts. A widespread strategy to
tackle this issue in medical imaging is motion compensation
(e.g., [6], [7], [8]). In SPI, [9] estimates the motion from a
low-resolution video to add an optical-flow constraint during
the reconstruction. In [10], a dynamic reconstruction method
is proposed assuming prior knowledge of a constant volume
deformation. The ideas of [9] and [10] are combined in [11].
In [12], specific patterns are inserted in the sequence to es-
timate the motion. The work presented in [13] investigates
the use of deep-learning for video reconstruction. Motion
compensation strategies, however, often come with important
restrictions: the videos reconstructed in [9] and [11] have a
smaller frame rate than the number of measurements, while
in [12], we consider a rigid object and a static background.

In this paper, we propose a simple yet efficient strategy for
imaging dynamic scenes that requires less restrictive hypothe-
ses. Our method relies on a hybrid device that combines a
standard imaging arm with a hyperspectral single-pixel imag-
ing arm. By estimating the motion from the standard arm, we
show how to compensate the motion perceived by the single-
pixel arm. In Section 2, we model dynamic SPI and static re-
construction. In Section 3, we present the proposed motion-
compensated reconstruction strategy that we evaluate using
the simulations and experimental measurements described in
Section 4. We report and discuss our results in Section 5.

2. SINGLE-PIXEL IMAGING

2.1. Forward model

We model the single-pixel camera (SPC) acquisition as a se-
ries of scalar products between the unknown scene and some
light patterns hk, 1 ≤ k ≤ K, that are sequentially loaded
on a DMD. We consider a dynamic scene f(x, t) that varies



Fig. 1. Setup used for the acquisitions (left hand-side) and acquisition process between two CMOS frames (right hand-side).
Light is emitted from the scene and projected onto the DMD. Depending on the orientation of the DMD, light rays are either
directed towards the CMOS camera for motion estimation of the scene, or are summed on the single-pixel detector thanks to a
converging lens. The single-pixel camera is then linked to a spectrometer for hyperspectral imaging.

during the acquisition. Assuming that the k-th DMD pattern
is displayed during the time interval [tk, tk+1], the k-th mea-
surement (for all spectral channels) is given by

mk =

∫
X

hk(x)fk(x) dx, (1)

where fk(x) =
∫ tk+1

tk
f(x, t) dt represents the k-th frame of

the scene and X is the SPC field of view. Our goal is to re-
construct all the frames of the dynamic scene given a set of K
measurements. This is a very challenging problem where K
functions need to be estimated from K scalar measurements.

2.2. The static case

In the case of a static scene f(x, t) = fref(x), all frames are
identical and the forward problem can be discretized as

m = Hfref , (2)

where m ∈ RK is the measurement vector, fref ∈ RN is the
discrete (unknown) image of N pixels and H ∈ RK×N is the
measurement matrix that contains the DMD patterns. In the
presence of noise and/or when K ≤ N , a good estimate of
fref can be obtained by optimization of a hand-crafted objec-
tive

min
f

η

2
∥Hf −m∥22 +R(f), (3)

where η is a penalty parameter and R is a user-defined reg-
ularizer (e.g., ∥ · ∥22 (L2) or total-variation (TV)). For high
noise level and subsampling ratios, powerful alternatives in-
clude deep learning-based reconstruction [14, 15].

As shown in Section 5, however, the use of the static for-
ward model given by (2) results in strong artifacts in the case
of dynamic scenes.

3. PROPOSED DYNAMIC RECONSTRUCTION

3.1. Motion compensation

We assume that the scene can be motion-compensated, i.e.

fk(vk(z)) = fref(z), (4)

where fref ∈ L2(Zk) represent a reference static image and
vk : Zk → X represents the deformation field of the scene
between the k-th frame and the reference frame.

Proposition. Given fk(vk(z)) = fref(z), where vk: Zk → X
is bijective and supp(fref) = X , the measurement vector can
be written as

m = Hdynfref , (5)

where HK×N
dyn represents the dynamic measurement matrix

and fref ∈ RN is the discrete reference image.

Proof. By substitution of (4) in (1), followed by the change
of variable x = vk(z), we obtain:

mk =

∫
X

hk(x)fref(v
−1
k (x)) dx (6)

=

∫
Zk

hk(vk(z))fref(z) |det Jk(z)| dz (7)

=

∫
X

hdyn
k (z)fref(z) dz, (8)



where hdyn
k (z) = hk(vk(z)) |det Jk(z)|, with Jk being the

Jacobian of vk. Discretization of (8) completes the proof.

Provided that the deformation field vk is known, the dy-
namic reconstruction problem simplifies to the resolution of
a linear system as in the static case. In accordance with (7),
we need to construct the dynamic matrix Hdyn from the static
matrix H by applying the deformation field in a row-by-row
manner. In practice, the dynamic matrix turns out to be ill-
conditioned. This highlights the need to adopt a similar vari-
ational approach as in (3) to reconstruct the reference image.

3.2. Hybrid estimation of the deformation field

We propose a hybrid approach whereby the deformation field
is estimated from the video stream acquired by a CMOS cam-
era monitoring the same scene as the SPC. As shown in Fig. 1,
this is achieved by uploading white patterns periodically onto
the DMD such that the CMOS camera captures the entire
scene. The CMOS camera and the DMD are synchronized so
that each frame corresponds to the display of a white pattern.

The deformation field can be determined by optical-flow
methods [16]. As the deformation field is known only every
few patterns, we use linear interpolation to acquire the defor-
mations for all frames. The obtained deformation field, de-
noted vcmos

k , is given in the spatial coordinates of the CMOS
camera. We retrieve the deformation field in the spatial coor-
dinate of the single-pixel camera by assuming the existence
of a mapping x = G(xcmos) that maps any point in the CMOS
image to its corresponding position in the single-pixel image.
For instance, we can choose G as a homography that is cali-
brated once in a preliminary step with a direct linear transform
(DLT) [17]. By definition of the CMOS deformation field, we
have vcmos

k (zcmos) = xcmos
k . By exploiting the camera map-

ping, we obtain vcmos
k (G−1(z)) = G−1(xk) and, therefore,

G(vcmos
k (G−1(z))) = xk. We can finally identify the single-

pixel deformation field as

vk = G ◦ vcmos
k ◦ G−1. (9)

4. EXPERIMENTS

4.1. Numerical simulations

We simulate the dynamic acquisition of a brain surface sub-
ject to a periodic affine motion model

vk(x) = c+

(
s(tk)

−1 0
0 s(tk)

)
(x− c), (10)

where s(t) = a sin( 2πtT ) + 1, a is the motion amplitude, T
the motion period and c is the coordinate of the center of the
image. We consider the acquisition of K = 1282 Hadamard
patterns and corrupt the measurements by Poisson noise as-
suming the maximum image intensity is 1000 photons. The
penalty term is empirically set to η = 10−3 and η = 8 · 10−3

(a) (b) (c)

Fig. 2. Simulation results: reconstruction of a static brain
surface. From left to right: the reference image, the static re-
construction (no regularization), the static TV reconstruction
with η = 8 · 10−3.

for L2 and TV regularization. We consider the reconstruction
of 128× 128 images.

4.2. Experimental acquisitions

The experimental setup is composed of a 1024 × 768 DMD
(ViALUX GmbH DLP V-700), a spectrometer (Avantes
AvaSpec-ULS2048CL-EVO) and an IDS CMOS camera
(UI-3880CP-M-GL Rev 2). The CMOS camera has a res-
olution of 3088 × 2076 from which a 768 × 544 field of
view is extracted. We image a diaphragm using a white LED
(Thorlabs LIUCWHA) resulting in a bright disk. We con-
sider two dynamic scenarios where i) the diameter of the
diaphragm is fixed to 2 mm while its center is translated
across the field of view and ii) the center of the diaphragm is
fixed while its diameter varies between 1 mm and 10 mm. We
consider the acquisition of K = 642 Hadamard patterns and
the reconstruction of 64 × 64 images. The illumination time
∆t = tk+1− tk is set to 1.4 ms. The two datasets, in addition
to many more, are available in the SPIHIM collection [2].

5. RESULTS AND DISCUSSION

5.1. Simulation study

Figure 2 depicts the reconstruction for a static scene, show-
casing the effective handling of noise through TV regular-
ization. Reconstruction results when the brain surface image
is subject to the affine motion described in (10) are given in
Fig. 3 for two motion amplitudes a. The first two rows are
obtained loading the patterns in the natural order [18] while
the third row used the order proposed in [19] that was found
to improve the reconstruction quality for sub-sampled acqui-
sitions. As expected, we observe stronger motion artifacts
when reconstructing the brain surface using the static model
(first column of Fig. 3). These artifacts cannot be corrected
simply using TV regularization (second column of Fig. 3).
However, one can see that our motion compensation method
effectively allows the reconstruction of the reference image
with the help of a L2 regularization to cope with the ill-posed
nature of the problem (third column of Fig. 3). Small residual
motion artifacts are still visible in Fig. 3g and 3k when motion
is too strong. This can be explained by the interpolation of the
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Fig. 3. Simulation results: brain surface subjected to the
motion given in (10) and Poisson noise. Column-wise, the
figure represents the static (no regularization), the static-TV,
the dynamic-L2 and the dynamic-TV reconstructions. (a)-(d)
consider a motion amplitude a = 0.05, for (e)-(l) a = 0.2.
The measurements for (a)-(h) were acquired by loading the
patterns in the natural order while (i)-(l) used the optimized
order. The penalty term is set to 10−3 and 8 · 10−3 for L2 and
TV regularization.

deformation field which leads to systematic errors. We can at-
tenuate these artifacts using the motion-compensated method
with TV regularization (fourth column of Fig. 3). We note
that even though TV regularization is efficient for noise re-
moval, it can erase small blood vessels in the reconstructed
brain. Concerning the order for loading the patterns, blur ar-
tifacts were reduced for the static reconstructions using the
optimized order, as can be seen in Fig. 3i and 3j. Dynamic
reconstruction of the scene is still achieved in Fig. 3k and 3l
even though the residual artifacts are different.

Table 1 reports quantitative metrics - peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) - for the differ-
ent reconstruction methods. These metrics confirm the visual
evaluation. The combination of the proposed motion com-
pensation method and TV regularization outperforms all other
methods for dynamic scenes. The smaller the motion ampli-
tude, the closer the scores approach those of the static brain
surface. The advantage of TV over L2-regularization is illus-
trated by a systematic enhancement of both PSNR and SSIM.
Concerning the pattern loading order, the optimized order en-
hanced PSNR scores for static and dynamic-TV reconstruc-
tions, supporting its use for experimental acquisitions.

5.2. Experimental validation

Reconstructions from experimental data are displayed in Fig.
4. The superposed contour of the conventional reference im-

Static Static TV Dynamic L2 Dynamic TV

a = 0 PSNR 32.57 34.68
(nat. order [18]) SSIM 0.94 0.96
a = 0.05 PSNR 20.16 20.39 27.77 30.69
(nat. order [18]) SSIM 0.54 0.57 0.87 0.91
a = 0.1 PSNR 18.05 18.20 26.27 28.43
(nat. order [18]) SSIM 0.39 0.41 0.84 0.89
a = 0.2 PSNR 16.12 16.20 24.39 25.32
(nat. order [18]) SSIM 0.27 0.28 0.81 0.86
a = 0.2 PSNR 17.92 18.09 22.40 26.45
(opt. order [19]) SSIM 0.30 0.32 0.74 0.83

Table 1. Simulation results: PSNR (dB) and SSIM scores
of different reconstruction methods for several motion ampli-
tudes and different pattern ordering.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Experimental results: white spot subjected to a rigid
motion (first row) and a zooming motion (second row). The
deformation was estimated with a CMOS camera using an
optical-flow algorithm. A handmade contour of the CMOS
reference frame is superposed in red to the static (no regular-
ization), the static-TV, the dynamic-L2 and the dynamic-TV
reconstructions.

age shows the importance of dynamic reconstructions over
static reconstructions. Strong artifacts are present when the
motion is not taken into account (first column), which cannot
be removed with regularization (second column). On the con-
trary, the proposed motion compensation strategy allows the
blur artifacts to be removed and a clean disk to be recovered
as expected (last two columns of Fig. 4).

6. CONCLUSION

We demonstrate, using numerical simulations and experimen-
tal acquisitions, an effective framework for dynamic single-
pixel imaging based on a hybrid approach which exploits the
images of the scene provided by a conventional camera. The
proposed method can be applied to all channels of the hyper-
spectral arm. A limitation of this work is that the use of TV
regularization tends to erase small details, in particular when
used on low spatial resolution images. In the future, we will
use the high-resolution images from the standard camera to
increase the spatial resolution of the SPC using pansharpen-
ing techniques.
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