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Single-pixel imaging recovers an image from a sequence of point measurements that correspond to inner products between the image of the scene and some light patterns. This technique is particularly suited to hyperspectral imaging which has a wide range of biomedical applications, in particular fluorescence-guided neurosurgery where high spectral resolution is required to improve tumor resection. However, the sequential nature of the acquisition leads to strong artifacts when a dynamic scene is considered. This paper proposes a simple yet efficient strategy for imaging such dynamic scenes. Our method relies on a hybrid device that combines a standard imaging arm with a hyperspectral single-pixel imaging arm. By estimating the motion from the standard imaging arm, we show how to compensate the motion perceived by the hyperspectral arm. We demonstrate the efficiency of the proposed strategy on simulated and experimental data.

INTRODUCTION

Single-pixel imaging (SPI) acquires an image by measuring a series of inner products between some light patterns and the scene [START_REF] Marco F Duarte | Single-pixel imaging via compressive sampling[END_REF], where the light patterns are typically obtained using a digital micro-mirror device (DMD) and only a single point detector is required. The concept of SPI easily generalizes to hyperspectral imaging by replacing the point detector with a spectrometer, thus acquiring a hypercube with thousands of spectral channels in approximately ten seconds [START_REF] Martins | OpenSpyrit: an ecosystem for open single-pixel hyperspectral imaging[END_REF]. Hyperspectral imaging is particularly relevant for biomedical applications as it provides a non-contact and non-ionizing sensing technique for disease diagnosis and image-guided surgery. Numerous studies have used hyperspectral imaging to detect cancers, cardiac disease, ischemic tissue, skin burn, retinal pathologies, diabetes, kidney disease, and more [START_REF] Lu | Medical hyperspectral imaging: a review[END_REF]. We are particularly interested in fluorescence-guided neurosurgery This work was supported by the French National Research Agency (ANR), under Grant ANR-22-CE19-0030-01 (ULHYB Project).

where gliomas can be distinguished from healthy tissue by the injection of a contrast agent (e.g. protoporphyrin-IX [START_REF] Bravo | Hyperspectral data processing improves ppix contrast during fluorescence guided surgery of human brain tumors[END_REF]), provided a high spectral resolution is available.

Single-pixel acquisitions lead to an inverse problem where the image of the scene needs to be reconstructed from the measurements. While most reconstruction methods assume the scene is static [START_REF] Matthew P Edgar | Principles and prospects for single-pixel imaging[END_REF], fast-moving dynamic scenes lead to strong blurring artifacts. A widespread strategy to tackle this issue in medical imaging is motion compensation (e.g., [START_REF] Cian | Robust non-rigid motion compensation of free-breathing myocardial perfusion mri data[END_REF], [START_REF] Rit | Comparison of analytic and algebraic methods for motioncompensated cone-beam ct reconstruction of the thorax[END_REF], [START_REF] Jiao | Direct parametric reconstruction with joint motion estimation/correction for dynamic brain pet data[END_REF]). In SPI, [START_REF] Aswin C Sankaranarayanan | Video compressive sensing for spatial multiplexing cameras using motion-flow models[END_REF] estimates the motion from a low-resolution video to add an optical-flow constraint during the reconstruction. In [START_REF] Jiao | Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[END_REF], a dynamic reconstruction method is proposed assuming prior knowledge of a constant volume deformation. The ideas of [START_REF] Aswin C Sankaranarayanan | Video compressive sensing for spatial multiplexing cameras using motion-flow models[END_REF] and [START_REF] Jiao | Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[END_REF] are combined in [START_REF] Sagi Monin | Single-pixel imaging of dynamic objects using multiframe motion estimation[END_REF]. In [START_REF] Guo | Fast localization and single-pixel imaging of the moving object using time-division multiplexing[END_REF], specific patterns are inserted in the sequence to estimate the motion. The work presented in [START_REF] Lorente Mur | Recurrent neural networks for compressive video reconstruction[END_REF] investigates the use of deep-learning for video reconstruction. Motion compensation strategies, however, often come with important restrictions: the videos reconstructed in [START_REF] Aswin C Sankaranarayanan | Video compressive sensing for spatial multiplexing cameras using motion-flow models[END_REF] and [START_REF] Sagi Monin | Single-pixel imaging of dynamic objects using multiframe motion estimation[END_REF] have a smaller frame rate than the number of measurements, while in [START_REF] Guo | Fast localization and single-pixel imaging of the moving object using time-division multiplexing[END_REF], we consider a rigid object and a static background.

In this paper, we propose a simple yet efficient strategy for imaging dynamic scenes that requires less restrictive hypotheses. Our method relies on a hybrid device that combines a standard imaging arm with a hyperspectral single-pixel imaging arm. By estimating the motion from the standard arm, we show how to compensate the motion perceived by the singlepixel arm. In Section 2, we model dynamic SPI and static reconstruction. In Section 3, we present the proposed motioncompensated reconstruction strategy that we evaluate using the simulations and experimental measurements described in Section 4. We report and discuss our results in Section 5.

SINGLE-PIXEL IMAGING

Forward model

We model the single-pixel camera (SPC) acquisition as a series of scalar products between the unknown scene and some light patterns h k , 1 ≤ k ≤ K, that are sequentially loaded on a DMD. We consider a dynamic scene f (x, t) that varies Fig. 1. Setup used for the acquisitions (left hand-side) and acquisition process between two CMOS frames (right hand-side). Light is emitted from the scene and projected onto the DMD. Depending on the orientation of the DMD, light rays are either directed towards the CMOS camera for motion estimation of the scene, or are summed on the single-pixel detector thanks to a converging lens. The single-pixel camera is then linked to a spectrometer for hyperspectral imaging. during the acquisition. Assuming that the k-th DMD pattern is displayed during the time interval [t k , t k+1 ], the k-th measurement (for all spectral channels) is given by

m k = X h k (x)f k (x) dx, (1) 
where

f k (x) = t k+1 t k f (x, t
) dt represents the k-th frame of the scene. Our goal is to reconstruct all the frames of the dynamic scene given a set of K measurements. This is a very challenging problem where K functions need to be estimated from K scalar measurements.

The static case

In the case of a static scene f (x, t) = f ref (x), all frames are identical and the forward problem can be discretized as

m = Hf ref , (2) 
where m ∈ R K is the measurements vector, f ref ∈ R N is the discrete (unknown) image of N pixels and H ∈ R K×N is the measurement matrix that contains the DMD patterns. In the presence of noise and/or when K ≤ N , a good estimate of f ref can be obtained by optimization of a hand-crafted objective min

f η 2 ∥Hf ref -m∥ 2 2 + R(f ), (3) 
where η is a penalty parameter and R is a user-defined regularizer (e.g., ∥ • ∥ 2 2 (L2) or total-variation (TV)). For high noise level and subsampling ratios, powerful alternatives include deep learning-based reconstruction [START_REF] Lorente Mur | Single-pixel image reconstruction from experimental data using neural networks[END_REF][START_REF] Lorente Mur | Deep expectation-maximization for single-pixel image reconstruction with signal-dependent noise[END_REF].

As shown in Section 5, however, the use of the static forward model given by ( 2) results in strong artifacts in the case of dynamic scenes.

PROPOSED DYNAMIC RECONSTRUCTION

Motion compensation

We assume that the scene can be motion-compensated, i.e.

f k (v k (z)) = f ref (z), (4) 
where

f ref ∈ L 2 (Z k
) represent a reference static image and v k : Z k → X represents the deformation field of the scene between the k-th frame and the reference frame.

Remark. Given f k (v k (z)) = f ref (z)
, where v k : Z k → X is bijective, the measurement vector can be written as

m = H dyn f ref , (5) 
where H K×N dyn represents the dynamic measurement matrix and f ref ∈ R N is the discrete reference image.

Proof. By substitution of (4) in (1), followed by the change of variable x = v k (z), we obtain:

m k = X h k (x)f ref (v -1 k (x)) dx (6) = Z k h k (v k (z))f ref (z) |det J k (z)| dz (7) = Z k h dyn k (z)f ref (z) dz, (8) 
where

h dyn k (z) = h k (v k (z)) |det J k (z)
|, with J k being the Jacobian of v k . Discretization of (8) completes the proof.

Provided that the deformation field v k is known, the dynamic reconstruction problem simplifies to the resolution of a linear system as in the static case. In accordance with [START_REF] Rit | Comparison of analytic and algebraic methods for motioncompensated cone-beam ct reconstruction of the thorax[END_REF], we need to construct the dynamic matrix H dyn from the static matrix H by applying the deformation field in a row-by-row manner. In practise, the dynamic matrix turns out to be illconditioned. This highlights the need to adopt a similar variational approach as in (3) to reconstruct the reference image.

Hybrid estimation of the deformation field

We propose a hybrid approach whereby the deformation field is estimated from the video stream acquired by a CMOS camera that monitors the same scene as the SPC. As shown in Fig. 1, this is achieved by uploading white patterns periodically onto the DMD such that the CMOS camera visualizes the entire scene. The CMOS camera is synchronized with the DMD such that each of the video frames correspond to the display of a white pattern.

The deformation field can be determined by optical-flow methods [START_REF] Zach | A duality based approach for realtime tv-l 1 optical flow[END_REF]. As the deformation field is known only every few patterns, we use linear interpolation to acquire the deformations for all frames. The obtained deformation field, denoted v cmos k , is given in the spatial coordinates of the CMOS camera. We retrieve the deformation field in the spatial coordinate of the single-pixel camera by assuming the existence of a mapping x = G(x cmos ) that maps any point in the CMOS image to its corresponding position in the single-pixel image. For instance, we can choose G as a homography that is calibrated once in a preliminary step with a direct linear transform (DLT) [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. By definition of the CMOS deformation field, we have v cmos k (z cmos ) = x cmos k . By exploiting the camera mapping, we obtain

v cmos k (G -1 (z)) = G -1 (x k ) and, therefore, G(v cmos k (G -1 (z))) = x k .
We can finally identify the singlepixel deformation field as

v k = G • v cmos k • G -1 . (9) 
4. EXPERIMENTS

Numerical simulations

We simulate the dynamic acquisition of a brain surface subject to a periodic affine motion model

v k (x) = c + s(t k ) -1 0 0 s(t k ) (x -c), (10) 
where s(t) = a sin( 2πt T ) + 1, a is the motion amplitude and T the motion period and c is the coordinate of the center of the image. We consider the acquisition of K = 128 2 Hadamard patterns and corrupt the measurements by Poisson noise assuming the maximum image intensity is 1000 photons. The 

Experimental acquisitions

The experimental setup is composed of a 1024 × 768 DMD (ViALUX GmbH DLP V-700), a spectrometer (Avantes AvaSpec-ULS2048CL-EVO) and an IDS CMOS camera (UI-3880CP-M-GL Rev 2). The CMOS camera has a resolution of 3088 × 2076 from which a 768 × 544 field of view is extracted. We image a diaphragm using a white LED (Thorlabs LIUCWHA) resulting in a bright disk. We consider two dynamic scenarios where i) the diameter of the diaphragm is fixed to 2 mm while its center is translated across the field of view and ii) the center of the diaphragm is fixed while its diameter varies between 1 mm and 10 mm. We consider the acquisition of K = 64 2 Hadamard patterns and the reconstruction of 64 × 64 images. The two datasets, in addition to many more, are available in the SPIHIM collection [START_REF] Martins | OpenSpyrit: an ecosystem for open single-pixel hyperspectral imaging[END_REF].

RESULTS AND DISCUSSION

Simulation study

Reconstruction results for a static scene are presented in Fig. 2, that demonstrate that reconstruction with noise can be effectively handled with TV regularization. Reconstruction results when the brain surface image is subject to the affine motion described in [START_REF] Jiao | Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[END_REF] are given in Fig. 3 for two motion amplitudes a. The first two rows are obtained loading the patterns in the natural order [START_REF] William K Pratt | Hadamard transform image coding[END_REF] while the third row used the order proposed in [START_REF] Higham | Deep learning for realtime single-pixel video[END_REF] that was found to improve the reconstruction quality for sub-sampled acquisitions. As expected, we observe stronger motion artifacts when reconstructing the brain surface using the static model (see first column of Fig. 3). These artifacts cannot be corrected simply using TV regularization (see second column of Fig. 3). However, one can see that our motion compensation method effectively allows the reconstruction of the reference image with the help of a L2 regularization to cope with the ill-posed nature of the problem (see third column of Fig. 3). Small residual motion artifacts are still visible in Fig. 3g and 3k when motion is too strong. This can be explained by the interpolation of the deformation field which leads to systematic errors. We can attenuate these artifacts using the motioncompensated method with TV regularization (see fourth column of Fig. 3). We note that even though TV regularization is efficient for noise removal, it can erase small blood vessels in the reconstructed brain. Concerning the order for loading the patterns, blur artifacts were reduced for the static reconstructions using the optimized order, as can be seen in Fig. 3i and3j. Dynamic reconstruction of the scene is still achieved in Fig. 3k and 3l even though the residual artifacts are different. Table 1 reports quantitative metrics -peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) -for the different reconstruction methods. These metrics confirm the visual evaluation. The combination of the proposed motion compensation method and TV regularization outperforms all other methods for dynamic scenes. The smaller the motion amplitude, the closer the scores approach those of the static brain surface. The advantage of TV over L2-regularization is illustrated by a systematic enhancement of both PSNR and SSIM. Concerning the order for loading the patterns, improved PSNR scores were obtained for the static and dynamic-TV reconstructions using the optimized order thus supporting its use for the experimental acquisitions.
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Experimental validation

Reconstructions from experimental data are displayed in Fig. 4. The superposed contour of the conventional reference im- The deformation was estimated with a CMOS camera using an optical-flow algorithm. A handmade contour of the CMOS reference frame is superposed in red. We present, column-wise, the static, the static-TV, the dynamic-L2 and the dynamic-TV reconstructions.

age shows the importance of dynamic reconstructions over static reconstructions. Strong artifacts are present when the motion is not taken into account (first column), which cannot be removed with regularization (second column). On the contrary, the proposed motion compensation strategy allows the blur artifacts to be removed and a clean disk to be recovered as expected (last two columns of Fig. 4).

CONCLUSION

We demonstrate, using numerical simulations and experimental acquisitions, an effective framework for dynamic singlepixel imaging based on a hybrid approach which exploits the images of the scene provided by a conventional camera. The proposed method can be applied to all channels of the hyperspectral arm. A limitation of this work is that the use of TV regularization tends to erase small details, in particular when used on low spatial resolution images. In the future, we will use the high-resolution images from the standard camera to increase the spatial resolution of the SPC using pansharpening techniques.

Fig. 2 .

 2 Fig. 2. Simulation results: reconstruction of a static brain surface. From left to right: the reference image, the static reconstruction, the static TV reconstruction with η = 8•10 -3 .

Fig. 3 .

 3 Fig. 3. Simulation results: brain surface subjected to the motion given in (10) and Poisson noise. Column-wise, the figure represents the static, the static-TV, the dynamic-L2 and the dynamic-TV reconstructions. (a)-(d) consider a motion amplitude a = 0.05, for (e)-(l) a = 0.2. The measurements for (a)-(h) were acquired by loading the patterns in the natural order while (i)-(l) used the optimized order. The penalty term is set to 10 -3 and 8 • 10 -3 for L2 and TV regularization.

Fig. 4 .

 4 Fig. 4. Experimental results: white spot subjected to a rigid motion (first row) and a zooming motion (second row).The deformation was estimated with a CMOS camera using an optical-flow algorithm. A handmade contour of the CMOS reference frame is superposed in red. We present, column-wise, the static, the static-TV, the dynamic-L2 and the dynamic-TV reconstructions.

  

Table 1 .

 1 Simulation results: PSNR (dB) and SSIM scores of different reconstruction methods for several motion amplitudes and different pattern ordering.

			Static	Static TV	Dynamic L2	Dynamic TV
	a = 0	PSNR	32.57	34.68		
	(nat. order [18])	SSIM	0.94	0.96		
	a = 0.05	PSNR	20.16	20.39	27.77	30.69
	(nat. order [18])	SSIM	0.54	0.57	0.87	0.91
	a = 0.1	PSNR	18.05	18.20	26.27	28.43
	(nat. order [18])	SSIM	0.39	0.41	0.84	0.89
	a = 0.2	PSNR	16.12	16.20	24.39	25.32
	(nat. order [18])	SSIM	0.27	0.28	0.81	0.86
	a = 0.2	PSNR	17.92	18.09	22.40	26.45
	(opt. order [19])	SSIM	0.30	0.32	0.74	0.83
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