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1 Introduction

Ghosts are dynamical degrees of freedom (DoF), described by a Hamiltonian with negative
kinetic energies, as opposed to the kinetic energies of standard degrees of freedom. Such
ghosts generically appear in the context of theories with higher derivatives [1] (see also [2–4]
for reviews) and have been considered in a variety of physical scenarios: they have been
advocated as a way to regulate the ultraviolet behaviour of quantum field theories [5–8]; they
have been suggested as a way to address the cosmological constant problem [9–11]; they have
been used to obtain bouncing cosmologies [12]; and they have been proposed in the context
of dark energy [13] or, more recently, as a way to ameliorate the Hubble tension [14].
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In spite of these applications, ghosts are typically disregarded since they are expected to
generically lead to catastrophic instabilities, both at the classical and at the quantum level
(see e.g [15]) — for the purpose of this work, we will only be concerned with the classical case.

Whenever positive- and negative-kinetic-energy degrees of freedom do not interact, the
presence of a ghost is trivially harmless. Without coupling, no energy exchange can take
place and the respective ghostly and non-ghostly Hamiltonians can each be stable due to
suitable self-interactions.

In contrast, it is widely expected that a generic coupling between the positive- and
negative-kinetic-energy degrees of freedom, leads to an energy exchange between them that
instigates an unbounded growth of absolute values of both energies. Hence, one expects a
runaway evolution to larger and larger phase-space variables. However, in previous work [16],
coauthored by some of the authors of the current paper, a specific counterexample to such
a catastrophe was presented. Besides completing a stability proof for a class of models
introduced in [16], the key physical motivation for this work can be understood in terms of
the following simple question: is the stable model from [16] too specific or can stability be
extended to a wider class of integrable and nonintegrable systems with ghosts?

The potential for stable motion in the presence of interacting ghosts has, of course,
been previously considered. (While we will be concerned only with classical theories, we
refer to [6, 8, 17–27] for proposals at the quantum level.) At the classical level, it has been
argued that theories with ghosts can be considered “benign”, provided that the runaway is
sufficiently mild and the motion can be extended to the infinite future [25, 28–31]. At the
same time, indications have been found that classical motion in the presence of ghosts can
exhibit so-called “islands of stability” (i.e., bounded motion for a restricted set of initial
conditions) [21, 28–36]. All of these indications are numerical (and, as such, cannot be fully
conclusive, as they cannot cover the whole evolution of the system to the infinite future
along even a single trajectory, not to mention all the Hamiltonian trajectories) and/or hold
only for restricted sets of initial conditions, i.e., do not conclusively advocate for global
stability. Moreover, we still lack a physical rationale or criterion to distinguish potentially
stable ghostly interactions from unstable ones.

As mentioned before, the recent work [16] has established the first conclusive proof of
globally stable motion for a positive-energy harmonic oscillator interacting through a specific
non-polynomial potential with a ghost in the form of a negative-energy oscillator. It was
shown that, for arbitrary initial conditions, the motion remains bounded. The proof relies on
the integrable nature of the model. We stress that this kind of global stability (also referred
to as the Lagrange stability) is different from the above notions of “benign” ghosts and/or
“islands of stability”. We also stress that there is no direct connection of global stability to local
(Lyapunov) stability [37]. In this context, we would like to mention that [16] has also proven
Lyapunov stability of the equilibrium configuration of the model. It is global (Lagrange)
stability that we are mostly concerned with and we will, from here on, refer to it simply as
stability, everywhere where this would not cause confusion. One of the reasons for this concern
is that quantum mechanics effectively probes the whole configuration space. Thus, regions
beyond the, usually small, “islands of stability” can force the wave function and probability
distributions to runaway to large values of phase-space coordinates in the quantized theory.

– 2 –
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The purpose of this paper is the following: first, we extend the proof in [16] to a much
larger class of integrable models with kinetic terms quadratic in canonical momenta and with
two free functions of (particular combinations) of the coordinates canonically conjugated
to them. This class of systems encompasses, in particular, a tower of stable polynomial
interactions. Our proof also covers the subclass that has been announced in [16]. Second,
we prove that a wide subclass of these models possesses locally stable vacua. Third, we
propose physical criteria for stable motion of more generic systems with ghosts interacting
with positive energy degrees of freedom. Fourth, we investigate the above numerically, both
for integrable and nonintegrable models.

With these goals in mind, we start in section 2 by introducing a generic procedure to
relate classical mechanical systems of N degrees of freedom with and without ghosts by
means of suitable complex canonical transformations. We then consider a particular class of
integrable models in section 3, for which in section 3.1 we provide a fully analytic proof of the
boundedness of motion, identify a polynomial subclass in section 3.3, and discuss Lyapunov
stability of equilibrium points in section 3.5. In particular, we find that new Lyapunov stable
vacua can be instigated by polynomial interactions with a ghost. Incidentally, we stress
that the polynomial models introduced in section 3.3 stay polynomial and integrable when
the degrees of freedom all have positive kinetic energies and appear as such to be novel
to this work. Finally, we extend the discussion to nonintegrable models in section 4, for
which we gather numerical evidence that stable (or at least longlived) motion can persist in
absence of integrability. We close with our conclusions in section 5. We provide additional
technical material in appendices. In particular, in appendix A we list various classes of
integrable models; in appendix B we derive equations defining the models with the first
integral quadratic in canonical momenta and demonstrate that Lyapunov stable equilibrium
points are located in the saddle points of the potential; in appendix C we discuss stability
in alternatively complexified Liouville models; in appendix D and appendix E we provide
more details on integrable models with polynomial potentials.

2 Integrable interacting ghosts via complex canonical transformations

We start by considering N classical mechanical degrees of freedom (DoFs) with a Hamiltonian

H(xi, pi) =
N∑

i=1

p2
i

2mi
+ V (xi, . . . xN ) , (2.1)

where pi denotes the canonical momenta conjugate to the coordinates xi. Together, these
denote the phase-space variables ξi = (xi, pi). For now, all N DoFs have same-sign kinetic
terms and thus correspond to modes with positive kinetic energy, as the masses mi are
assumed to be positive. We notice that a rotation in the complex plane to the imaginary axis
of any of the momentum variables, i.e., pn → ±ipn, flips the sign of the respective kinetic
term, i.e., p2

n/mn → −p2
n/mn, and thus turns the n-th degree of freedom (DoF) with positive

kinetic energy into a DoF with negative kinetic energy. Hence, this transformation effectively
flips the sign of the mass mn. This rotation in the complex plane can be completed into a
complex canonical transformation by simultaneously transforming the respective xn → ∓ixn.

– 3 –
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The resulting (univalent) transformation

C±
xn :


xj → ±i xj for j = n

pj → ∓i pj for j = n

xj → xj ∀ j ̸= n

pj → pj ∀ j ̸= n

 , (2.2)

is canonical in the sense that it preserves the Poisson bracket {}PB, i.e.,

{C±
xn(xi), C±

xn(pj)}PB = −{C±
xn(pi), C±

xn(xj)}PB = δij ,

{C±
xn(xi), C±

xn(xj)}PB = 0 ,
{C±

xn(pi), C±
xn(pj)}PB = 0 . (2.3)

Given that C±
xn is a canonical transformation, it moreover preserves the Hamilton equations,

the time-independence of the Hamiltonian itself, as well as all the time-independence of any
other existing constant of motion. We note also that C±

xn ◦ C∓
xn = C∓

xn ◦ C±
xn = 1. Moreover,

any function F (ξ⃗) of the phase-space variables ξ⃗ which is even under the simultaneous change
of the sign of the variables xn and pn, i.e.,

F (xi ̸=n, xn, pi ̸=n, pn) = F (xi ̸=n,−xn, pi ̸=n,−pn) , (2.4)

is invariant under the successive application of two identical C±
xn . We will also refer to such

functions as ‘(xn,pn)-parity even’. On the other hand, we refer to a potential satisfying
V (xi ̸=n, xn) = V (xi ̸=n,−xn) as ‘xn-parity even’. Obviously, the Hamiltonian in eq. (2.1) is
(xn,pn)-parity even if and only if the potential is xn-parity even.

In general, C±
xn does not preserve real-valuedness of the Hamiltonian. (The same, and

all of what follows, also holds for other constants of motion.) However, real-valuedness is
obviously preserved if the potential is polynomial (or Taylor expandable with respect to xn)
and xn-parity even. This is the case, e.g., for the canonical Hamiltonian of N noninteracting
positive kinetic-energy modes (where here and henceforth we normalize the kinetic terms
just to be ±p2

i /2, i.e., we set the masses to one, but keep the possibility to have a different
frequency ωi for each mode)

Hcanonical =
N∑

i=1

1
2
(
p2

i + ω2
i x

2
i

)
. (2.5)

In this case, the canonical transformation C±
xn transforms a real-valued Hamiltonian with N

positive-energy modes to a dual real-valued Hamiltonian with N − 1 positive kinetic-energy
DoFs and one negative kinetic-energy DoF, i.e., a ghost. This can easily be extended by
performing several distinct such canonical transformations to introduce multiple ghost degrees
of freedom. For the general Hamiltonian in eq. (2.1), if the potential is parity-even in all of
the respective variables, then all of these Hamiltonians are real-valued as far as the original
one is. All of the above also holds if further parity-even interactions are included.

In the rest of this work, we will specify to systems with two degrees of freedom x and
y and with a Hamiltonian

H = 1
2p

2
x + σ

1
2p

2
y + V (x, y) , (2.6)

– 4 –
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where σ = ±1 decides between the case of two positive kinetic terms (σ = +1) and the
case of two opposite-sign kinetic terms (σ = −1). We refer to σ = +1 as the “PP” case,
denoting two positive kinetic-energy DoFs, and to σ = −1 as the “PG” case, where a positive
kinetic-energy DoF is coupled to a negative kinetic-energy (ghost) DoF. Starting with a
PP model, and applying a complex canonical transformation (cf. eq. (2.2)) on the variable
y, we obtain a new model of PG type with Hamiltonian 1

2p
2
x − 1

2p
2
y + V (x,±iy) which can

be real depending on the V (x, y) one starts out with.
In the following, it will be sometimes convenient to split the potential V (x, y) into three

parts as follows for a PG system with σ = −1,

VP(x) = V (x, 0) , and VG(y) = V (0, y) , while

Vint(x, y) = V (x, y)− VP(x)− VG(y) , (2.7)

such that V = VP + VG + Vint. We refer to VP(x) and VG(y) as the decoupled potentials,
to Vint(x, y) as the interaction potential, and to V (x, y) as the full potential. This makes
sense, in particular, if the structure of the potential V (x, y) is such that y = 0 is a solution of
y-equation of motion for arbitrary x(t) and analogously x = 0 is a solution of the x-equation
of motion for arbitrary y(t). If this property holds,1 one can separate self-interactions from
cross-coupling interactions.

More specifically, for what concerns the analytic part of this work, our starting point will
be integrable PP systems with a time independent Hamiltonian H of the form in eq. (2.6)
and with an extra constant of motion I(ξ) such that

dI

dt
= {I,H}PB = 0 . (2.8)

The study of such systems has been pioneered by Liouville [38, 39] who showed that if
an N dimensional Hamiltonian system possesses N functionally independent and Poisson-
commuting constants of motion, then the motion is integrable (by quadrature). In principle,
there can be more than N (i.e., up to (2N − 1)) functionally independent constants of motion.
If so, the system is referred to as superintegrable.

Some Hamiltonian systems are trivially integrable. For instance, the canonical Hamilto-
nian of N uncoupled harmonic oscillators, see eq. (2.5), possesses N conserved quantities:
the individual Hamiltonians of each oscillator. For other Hamiltonian systems, integrability
is, of course, nontrivial and takes more effort to be revealed.

One way to systematically search for constants of motion is by direct methods. Direct
methods (i) make an ansatz for I(ξ) — typically a polynomial in momenta, dressed with
undetermined functions as prefactors — and then (ii) classify solutions to the resulting (highly
overdetermined) set of partial differential equations (PDEs) implied by {I,H}PB = 0. When
restricting to two particle systems, such direct searches for constants of motion (and the
corresponding integrable potentials) have been performed at fixed polynomial order in the
momenta. Up to quadratic order, the classification has been pioneered in [40], formalized

1It may be that this property does not hold for the pair (x, y) but holds for a pair (x′, y′) that is related
to (x, y) by a Poincaré transformation. Then, one can redefine variables as (x, y) → (x′, y′). Of course, this
property may not hold at all.

– 5 –
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in [41], and subsequently completed in [42–49]. We summarize the complete set of resulting
pairs of integrable potentials V (x, y) and constants of motion in appendix A. At cubic order
in the momenta and beyond, no full classification is known, cf. [49] for a comprehensive
review of partial results and for references to related methods.

As stressed above, the on-shell constancy of some quantity I is preserved by the action of
C±

xn as a mere consequence of the algebraic nature of equation eq. (2.8) and the canonical nature
of the transformation C±

xn . Hence, acting on a PP integrable system with a transformation
C±

xn , we obtain a PG integrable one. Upon this action, the Hamiltonian can, in general,
become complex. However, an inspection of the potentials given in appendix A shows that
there exist large classes of PP integrable systems yielding real-valued PG integrable systems
upon application of the complex canonical transformation C±

y (or C±
x ). This is the case, e.g.,

for class 1 of appendix A. In the next section, we use this real-valued PP ⇔ PG pair to
analytically discuss the conditions for bounded motion in the presence of a ghost.

In passing, we also note that there can be real-valued integrable PG systems, for which
the PP side is complex-valued, and which may thus have not yet received much attention. An
integrable example of this kind is given by class 5 in appendix A. In this case, the application
of the complex canonical transformation C±

y (or C±
x ) transforms a complex V to a real one.

To avoid confusion, we stress that complex canonical transformations C±
xn preserve the

physics only when accompanied by the corresponding rotations in the complex planes of
the initial data. Otherwise, the transformed theory is physically different and equivalent to
probing the original theory with purely imaginary initial data. Therefore, the dynamical
properties of such “ghostified” theories can be completely different from those of the original
theory when all quantities considered are real, which we will assume in our PG models.

Let us illustrate this with a simple example of a theory with one real degree of freedom
x (and real p)

H = p2

2 + 1
4 cosh x . (2.9)

Clearly, for arbitrary, we stress real, initial data, the solution perpetually evolves in a finite
region of phase space bounded by the potential well cosh x and the positive kinetic energy.
This solution is a closed trajectory in the phase space (x, p), see the upper panel of figure 1.
Now let us perform the canonical transformation C−

x , so that p = ip̄ and x = −ix̄, transforming
eq. (2.9) to the new theory of real variables (x̄, p̄) and Hamiltonian, i.e.,

H̄ = − p̄
2

2 + 1
4 cos x̄ . (2.10)

We could consider the solution (x̄(t), p̄(t)) for the system in eq. (2.10), with purely imaginary
initial data (x̄0, p̄0) = (ix0,−ip0) to obtain just the real solution (x(t), p(t)) = (−ix̄(t), ip̄(t))
of eq. (2.9) with the real initial data (x0, p0). In particular, H = H̄ for all the solutions
which are related in this way. However, a solution of eq. (2.10) with real initial data (x̄0, p̄0)
corresponds to a purely imaginary solution of eq. (2.9) with initial data (−ix̄0, ip̄0). Thus,
purely real solutions of eq. (2.9) are very different from purely real solutions of eq. (2.10)
even though both systems are related by a simple canonical transformation. In particular, for
arbitrary real initial coordinates x̄0 and initial momenta p̄0 > 1 (or p̄0 < −1), the trajectory

– 6 –
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Figure 1. We show the phase space (x, p) of the original Hamiltonian in eq. (2.9) (upper panel)
as well as the phase space (x̄, p̄) of the transformed Hamiltonian in eq. (2.10) (lower panel). In the
ghostified case (lower panel), all trajectories with initial momentum |p̄0| > 1 (cf. red horizontal lines)
evolve over the potential barrier and run away to plus or minus infinity in x̄, irrespective of the
initial value of x̄0. Two such runaway trajectories are depicted in blue. In contrast, all phase space
trajectories of eq. (2.9) (upper panel) are closed curves.

of eq. (2.10) evolves over the potential barrier and is unbounded, with a runaway of x̄(t), see
the right panel of figure 1. As we mentioned earlier, there are no such real-valued trajectories
in eq. (2.9). Clearly, in the phase space (x̄, p̄) of eq. (2.10) such real-valued trajectories are
not closed, whereas all real-valued trajectories in (x, p) of eq. (2.9) are closed, thus even the
topology of the phase space trajectories is changed. In this regard it is worth mentioning
that with real (x̄, p̄) there are not only an infinite number of new stable equilibrium points,
but also new unstable equilibrium points in-between the former, see figure 1. While the
above refers to local (Lyapunov) stability, the “ghostified” real theory in eq. (2.9) is globally
(Lagrange) unstable, in contrast to the original real theory eq. (2.9). Two of the respective
runaway trajectories are marked as thick blue lines in figure 1.

3 The integrable Liouville Model & a proof of bounded motion

In the following, we consider an integrable class of theories, cf. class 1 in appendix A, for
which we can rigorously establish boundedness of motion. Specifically, we focus on

HLV = p2
x

2 + σ
p2

y

2 + VLV(x, y) (3.1)

with VLV = f(u)− g(v)
u2 − v2 , (3.2)

– 7 –
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where f and g are arbitrary functions of the coordinates (u, v). The coordinates (u, v) are
related to (x, y) via

u2 = 1
2

(
r2 + c+

√
(r2 + c)2 − 4 c x2

)
, (3.3)

v2 = 1
2

(
r2 + c−

√
(r2 + c)2 − 4 c x2

)
, (3.4)

r2 = x2 + σ y2 , (3.5)

where c is an arbitrary constant. Besides the Hamiltonian, this theory exhibits a second
constant of motion, i.e.,

ILV = −σ(pyx− σ pxy)2 − c p2
x + V (3.6)

with V = 2 u
2g(v)− v2f(u)

u2 − v2 , (3.7)

where we have (for later purpose) defined the momentum-independent part of the constant of
motion V = ILV|px,y→0. Although this model was initially studied in the PP case (i.e. with
σ = +1) the discussion of the previous section shows that it stays integrable also for σ = −1,
i.e., in the PG case. The corresponding extra integral of motion (i.e. eq. (3.6) with σ = −1)
is obtained from the PP one (i.e. eq. (3.6) with σ = +1), as explained in the previous section.

For σ = 1 and c ⩾ 0, u and v define so-called elliptic coordinates, i.e., curves of constant
u ∈ (

√
c,∞) trace out ellipses and curves of constant v ∈ (0,

√
c) trace out hyperbolas in the

(x, y) plane. For σ = −1 and c ⩽ 0, curves of constant u ∈ (0,∞) and curves of constant
−i v ∈ (

√
c,∞) both trace out hyperbolas in the (x, y) plane, cf. figure 2.

We note that, even though this class of integrable systems was derived, and is usually
presented, with an arbitrary constant c, it is only the sign of this constant which influences
the dynamics. Indeed, for c ≠ 0 one can first perform a canonical transformation

x→ |c|1/2 x , y → |c|1/2 y ,

px → |c|−1/2 px , py → |c|−1/2 px . (3.8)

Then one can complete it with a rescaling of time

t→ |c| t , H → |c|−1H . (3.9)

These transformations completely absorb |c| into the arbitrariness of f(u) and g(v), except
for the limit cases c→∞ or c→ 0. For instance, the latter limit transforms the Liouville
model to a subclass of class 2, see eq. (A.9), with f = 0.

The above integrable Hamiltonian in eq. (3.1) follows as a subclass of a system first
investigated by Liouville [50] (in the PP case). Liouville starts out from a Hamiltonian
with non-standard kinetic terms, i.e.,

HLV = 1
F (α)−G(β)

[
p2

α

2 +
p2

β

2 + (f(α)− g(β))
]
, (3.10)
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Figure 2. Left-hand panel: curves of constant u (thick) and v (thin) in the (x, y) plane for the
Liouville model without ghost (σ = +1). Right-hand panel: curves of constant u (thick) and −iv
(thin) in the (x, y) plane for the Liouville model with ghost (σ = −1).

where (α, β) are yet another set of coordinates, (pα, pβ) are the respective canonical momenta,
and f(α), F (α), g(β), G(β) are arbitrary functions. Following Liouville, we found that

ILV = p2
α + 2 f(α)− 2F (α)HLV (3.11)

Poisson-commutes with the Hamiltonian HLV and thus defines a second constant of motion.2
Hence, the model is integrable, irrespective of the choice of f(α), F (α), g(β), and G(β).

The coordinates (α, β) are related to (u, v) via

u2 = c sinhα2 ,

v2 = c sin β2 . (3.12)

In coordinates (u, v), the Liouville Hamiltonian HLV and constant of motion ILV read

HLV = 1
F −G

[
p2

u

2 (u2 − c) + p2
v

2 (c− v2) + (f − g)
]
, (3.13)

ILV = 1
F −G

[
p2

u

2 (u2 − c)G+ p2
v

2 (c− v2)F − (f G− g F )
]
. (3.14)

For the specific choice of F (u) = u2 and G(v) = v2, and with the transformation from
(u, v) to (x, y), these reduce to the Hamiltonian and constant of motion previously given in
eqs. (3.1) and (3.6) with σ = +1. For more general F (u) and G(v), the transformation to
(x, y) coordinates does not bring the Hamiltonian to a form with standard kinetic terms. In
the following, we will thus restrict to the case of F (u) = u2 and G(v) = v2.

3.1 Proof of boundedness of motion

We show here that the PG Liouville model with σ = −1 (in the form of eq. (3.1) and with
the additional constant of motion in eq. (3.6)) is such that — under certain conditions on
f(u) and g(v) detailed below — the phase-space motion is always bounded, irrespective of

2Equivalently, KLV = p2
β − 2 g(α) + 2 G(α) HLV denotes a constant of motion, but KLV = −ILV and is

therefore not independent.
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the choice of initial conditions. This applies to the model considered in [16], which is a
special class of PG Liouville models, but also extends the result of [16] to a much larger
class of ghostly oscillator interacting with a positive energy oscillator where the motion can
hence be proven analytically not to run away.

We start by defining three further helpful coordinate combinations

W ≡ u2 + v2 = x2 − y2 + c

= r2 + c , (3.15)
W̃ ≡ u2 − v2

=
√
r4 − 2c(x2 + y2) + c2 , (3.16)

w ≡ −4u2 v2 = −4 c x2 , (3.17)

with which we may re-express W̃ =
√
W 2 + w and write

u2 = 1
2
(
W +

√
W 2 + w

)
= 1

2
(
W + W̃

)
(3.18)

v2 = 1
2
(
W −

√
W 2 + w

)
= 1

2
(
W − W̃

)
(3.19)

We choose here and henceforth a negative c < 0 such that the momentum-dependent part
of the constant of motion (cf. the first two terms in eq. (3.14)) are positive. Furthermore,
a negative c < 0 implies

v2 ⩽ 0 , (3.20)

and while the above v2 (given in eq. (3.18)) is a real expression, the so defined v is purely
imaginary. In order to manipulate real and positive variables, we define the real and positive
quantities ṽ and c̃ as

ṽ = |v| (3.21)
c̃ = |c| = −c (3.22)

such that v2 = −ṽ2, and thus we have

u2 ⩾ 0 , (3.23)
ṽ2 ⩾ 0 , (3.24)
W̃ ⩾ 0 , (3.25)
c̃ > 0 , (3.26)

all these quantities being real, as well as, by choice, the functions f and g.
We now prove that phase-space motion is bounded if

(i) f(u) and g(v) are bounded below, i.e.,

f(u) ⩾ f0 , (3.27)
g(v) ⩾ g0 , (3.28)

with constants f0, g0 ∈ R; and
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(ii) at large |u| and |v|, these lower bounds sharpen to

f(u) ⩾ 4F0 |u|ζ > 0 , (3.29)
g(v) ⩾ 4G0 |v|η > 0 , (3.30)

with positive constants F0, G0 ∈ R+ as well as ζ > 2 and η > 2 (and the factor 4 is just
here for later convenience).

The first step of our proof is the introduction of a new first integral JLV defined as
(using eqs. (3.21), (3.24) and (3.26))

JLV = ILV − c̃ HLV

= (xpy + ypx)2 + c̃

2
(
p2

x + p2
y

)
+ U , (3.31)

where

U(u, v) =
(
2u2 + c̃

)
g(v) +

(
2 ṽ2 − c̃

)
f(u)

u2 + ṽ2

= γ+g(v) + γ−f(u) , (3.32)

and γ± are obtained to be (using eqs. (3.16), (3.18) and (3.19))

γ± = 1± r2

W̃
. (3.33)

Using eq. (3.16), we get −1 < r2

W̃
< 1 implying

0 < γ± < 2 . (3.34)

This, using the condition (i) above implies that

γ+g(v) ≥ −2|g0| , (3.35)
γ−f(u) ≥ −2|f0| , (3.36)

where the equality may hold if g0 = 0 or/and f0 = 0, and hence, using eq. (3.32), we get that

U ≥ −2(|g0|+ |f0|) , (3.37)

showing that U is bounded below. As JLV defined in eq. (3.31) is conserved, this implies
that |xpy + ypx|, |px| and |py| are bounded on shell. This is the first step of our proof. As it
should be clear, this first step puts forward an analogy between a conserved and bounded
from below Hamiltonian and the conserved JLV, where all the “kinetic energies” are positive
definite and the “potential energy” U(u, v) has just been shown to be bounded from below.

To proceed further, we use again this analogy, showing that conditions (ii) imply that
U(x, y) is growing without bound at large radius R =

√
x2 + y2, which excludes runaways

of the dynamical variables x and y. To do so we introduce polar coordinates (R,ϕ) such
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that x = R cosϕ and y = R sinϕ, yielding r2 = x2 − y2 = R2κ where we have defined
κ = cos 2ϕ. As a consequence, one has

γ± = 1± R2κ√
R4κ2 + 2R2c̃+ c̃2

. (3.38)

As we are interested in large R, we can assume that
√

2R≫
√
c̃ , (3.39)

implying, in particular, that the last term in the square-root in eq. (3.38) is much smaller
than the second one. We also have from eq. (3.16)

u2 + ṽ2 =
√
R4κ2 + 2R2c̃+ c̃2 >

√
R4κ2 + 2R2c̃ . (3.40)

Using this we conclude that one has either

u2 >
1
2
(√

R4κ2 + 2R2c̃
)
, (3.41)

or

ṽ2 >
1
2
(√

R4κ2 + 2R2c̃
)
. (3.42)

Distinguishing the above, and moreover between

R4κ2 < 2R2c̃ ⇔ R|κ| <
√

2c̃ , (3.43)
or R4κ2 ≥ 2R2c̃ ⇔ R|κ| ≥

√
2c̃ , (3.44)

we will now show that, in all the respective four cases, U grows at least as fast as a suitable
power of R.

Let us first assume that eq. (3.43) holds. In this case, we have√
R4κ2 + 2R2c̃+ c̃2 >

√
2R4κ2. (3.45)

This implies a lower bound on γ± given by3

γ± ≥ 1− 1√
2
>

1
4 , (3.46)

which holds for either sign of κ (and including κ = 0). Moreover, we have from eqs. (3.41)
and (3.42) that either u2 ≥ R

√
c̃/2 or ṽ2 ≥ R

√
c̃/2. In the first subcase, we can use the

bounds eqs. (3.29), (3.35) and (3.46) to get that at large R

U ≥ −2 |g0|+ F0 (c̃/2)ζ/4Rζ/2 . (3.47)

In the second subcase, we get similarly

U ≥ −2 |f0|+G0 (c̃/2)η/4Rη/2 . (3.48)

Hence, at least one of these two bounds holds whenever eq. (3.43) does.
3Where the 1/4 has been put just for convenience in order to alleviate some later expressions.
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We then turn to the second case in eq. (3.44), where obviously κ ̸= 0, and we can
hence rewrite eq. (3.38) as

γ± = 1± κ

|κ|
1√

1 + ξ
, (3.49)

with ξ given by

ξ = 2c̃
R2κ2 + c̃2

R4κ2 . (3.50)

The inequalities in eqs. (3.39) and (3.44) (and the assumption c̃ > 0) imply in turn that4

0 < ξ ≤ 2 . (3.51)

Let us then first assume that κ > 0. In this case, we can obtain a useful lower bound on
γ− noticing that, for ξ in the range in eq. (3.51), one has

1− 1√
1 + ξ

≥
(

1− 1√
3

)
ξ

2 >
1
8ξ . (3.52)

Using this, we conclude that, for positive κ and whenever eq. (3.44) holds, we have

γ− >
c̃

4R2κ2 . (3.53)

We also note, following the same logic, that γ+ obeys exactly the same bound for negative κ
whenever eq. (3.44) holds. We can then, as previously, distinguish between the two subcases
in eqs. (3.41) and (3.42) which implies that either u2 ≥ |κ|R2/2 or ṽ2 ≥ |κ|R2/2. In the
first subcase, and for positive κ, we can use the bounds in eqs. (3.29) and (3.53) to get
that at large R

γ−f(u) > c̃F02− ζ
2
(
κR2

) ζ
2 −1

κ−1

≥ c̃F02− ζ
2
(
R
√

2c̃
)ζ/2−1

κ−1

≥ c̃F02− ζ
2
(
R
√

2c̃
)ζ/2−1

,

where to go from the first line to the second line we used once more eq. (3.44) and to go
from the second line to the third line we used the fact that 1 ≥ κ > 0. Hence, using this
last inequality as well as eq. (3.35), we get that, for positive κ and whenever eq. (3.44)
and u2 ≥ κR2/2 hold, we have

U > −2 |g0|+ c̃F02− ζ
2
(
R
√

2c̃
)ζ/2−1

. (3.54)

Let us then turn to discuss the subcase where ṽ2 > |κ|R2/2. In this subcase, still assuming
that κ > 0 we notice that γ+ ≥ 1 and hence we get simply using eqs. (3.30) and (3.36) that

U ≥ −2 |f0|+ 4G02− η
2
(
κR2

) η
2

≥ −2 |f0|+ 4G02− η
2
(
R
√

2c̃
) η

2 , (3.55)
4This upper bound can be strengthened but is enough for the present discussion.
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where to go from the first line to the second line we used again eq. (3.44). Similar bounds
can be obtained for negative κ, mutatis mutandis. Indeed, we find in this case, following
the same logic, one has either

U ≥ −2 |g0|+ 4F02− ζ
2
(
R
√

2c̃
) ζ

2 (3.56)

or

U > −2 |f0|+ c̃G02− η
2
(
R
√

2c̃
)η/2−1

. (3.57)

Hence, we conclude from the considerations of eqs. (3.47), (3.48) and (3.54) to (3.57) that
the hypotheses (i) and (ii) above are enough to conclude that ∀ U0 > 0 ,∃R0 > 0 such that
R > R0 ⇒ U > U0. This concludes our proof: in all cases, the “potential energy” U grows
without bound with R implying that |x| and |y| stay bounded on shell.

To summarize, we have shown that the phase-space motion stays bounded at all times,
irrespective of the initial conditions, for functions f and g which (i) are bounded below, and
(ii) at large values of their arguments, obey respectively eq. (3.29) (where F0 > 0 and ζ > 2)
and eq. (3.30) (where G0 > 0 and η > 2). We stress that the behaviour of the functions f
and g, entering in condition (ii), only needs to be specified at large |u| and |v|, implying, in
particular, that the lower bounds f0 and g0 can be negative.

The above proof can also be extended to the case where, starting from the Liouville PP
model, one ghostifies x by applying a canonical transformation C±

x . The obtained models
are in fact identical (up to a global sign in the Hamiltonian) to the previously considered
PG models obtained by ghostifying y from the PP model via a canonical transformation
C±

y . As a result, the two kinds of models with a ghost are stable under the same conditions
(i) and (ii). This is shown explicitly in appendix C.

3.2 A first application of the proof

As a first application of the above proof, we consider potentials VLV(x, y) generated by
functions f and g which are polynomials in u2 and v2 respectively, i.e. of the form

f(u) =
Nf∑

n=1
Cn

(
u2
)n
, (3.58)

g(v) =
Ng∑

n=1
Dn

(
v2
)n
, (3.59)

with Nf ∈ N, Ng ∈ N, Cn ∈ R and Dn ∈ R. More specifically, choosing Nf = Ng = 2, we get

f(u) = C0 + C1u
2 + C2u

4 , (3.60)
g(v) = D0 +D1v

2 +D2v
4 , (3.61)

and the potential VLV(x, y) is given by

VLV(x,y) = C1 +D1
2 + C2 +D2

2 W + C0−D0

W̃
+(C1−D1) W

2W̃
+ C2−D2

4

(
W 2

W̃
+W̃

)
, (3.62)

– 14 –



J
C
A
P
1
1
(
2
0
2
3
)
0
3
1

where W , W̃ and w are defined in the previous subsection. Note that, in the above, the first
term on the right-hand side is a mere constant and, as such, can be omitted. Moreover, the
second term proportional to W is a quadratic term for x and y (plus an irrelevant constant
proportional to c̃). Choosing

C2 > 0 , (3.63)
D2 > 0 , (3.64)
c̃ > 0 , (3.65)

the functions f and g defined by eqs. (3.60) and (3.61) fulfill conditions (i) in eqs. (3.27)
and (3.28) and (ii) in eqs. (3.29) and (3.30) of section 3.1 and as such yield models with
bounded motion. The further choice C1 = D1 = 1/2, C2 = D2 = 1/2, C0 −D0 = λ, and c̃ = 1
yields exactly the main model of reference [16] (whose Hamiltonian is given in equation (1)
of this reference). The more general choice of a strictly negative c < 0, strictly positive and
equal C2 = D2 > 0, and C1 ≥ D1 (and, moreover, setting D1 = −C1 to remove an overall
constant) gives the largest set of models introduced in [16] (i.e., in eq. (20) and (21) of this
reference). The parameters a, b, c and d of [16] can be read off from the above as

a = −C2 +D2
2 ,

b = C0 −D0 ,

c = −C1 −D1
2 ,

d = c̃ ,

where the left-hand side of the above refers to the notation of [16] (and we stress, in particular,
that c on the left-hand side of the third equality is introduced in [16] and is not the same
as the c of the present work). We see that the conditions eqs. (3.63) and (3.65) imply that
a < 0 and d > 0, and the present work provides a stability proof that was not given in [16].
Note further that the condition on c given in [16] (i.e. c ≤ 0) can, in fact, be relaxed and
still yields stable motion.

3.3 A polynomial subclass of the Liouville model: towards more general
conditions for stable motion

The Liouville model at the heart of this work, and defined in eqs. (3.2) and (3.5), possess
an interesting subclass for which the potential VLV(x, y) is polynomial in x and y. This
subclass is generated by choosing

f(u) =
N∑

n=1
Cn

(
u2
)n
, (3.66)

g(v) =
N∑

n=1
Cn

(
v2
)n
, (3.67)
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Figure 3. We show the first two non-trivial examples of polynomial Liouville potentials, corresponding
to N = 3 (left-hand panel) and N = 4 (right-hand panel) in eq. (3.68). With the notation of eq. (3.69):
the left-hand panel, corresponds to ω2

x = 1, ω2
y = −1, C4 = 0, and c̃ = 1; the right-hand panel,

corresponds to ω2
x = 1, ω2

y = 1, C4 = 1, and c̃ = 1. With regards to eq. (3.77), we also show
VP(x) + VG(y) as transparent surfaces. For clarity, we add respective contour plots of (VP + VG)− V
with contours at (VP + VG)− V = (−8,−4,−2, 0, 2, 4, 8) and with respective shading from darker to
lighter colour, where we also indicate regions in which (VP + VG)− V ≷ 0.

with N ∈ N (and still Cn ∈ R), i.e., the same polynomial form for f and g. In appendix D,
we provide a proof that the resulting potential VLV(x, y), given by

V
(N)

LV =
N∑

n=1

Cn

u2 − v2

[(
u2
)n
−
(
v2
)n]

, (3.68)

is indeed polynomial in x and y. To our knowledge, it was not noticed before that this
particular choice leads to polynomials, and hence, for both the PP and PG cases, to integrable
systems with polynomial interactions whose specific form can be found below and in the
appendix D.

The explicit form of VLV(x, y), in the PG case, and for the simplest nontrivial case of
interest here, is obtained from the expression in appendix D, where one trades the constants
C2 and C3 for quadratic terms and chooses the constant C1 to eliminate an irrelevant constant
term. One obtains, ordering the interactions by powers of x and y,

V
(4)

LV (x,y) = ω2
x

2 x2−
ω2

y

2 y2 + 1
c̃

(
ω2

x

2 −
ω2

y

2

)
(x2−y2)2 + c̃ C4(x4−y4)+C4(x2−y2)3 . (3.69)

This rewriting captures the first two non-trivial cases, i.e., N = 3 and N = 4, for which we
visualize examples of the potential in figure 3 and of the resulting phase-space motion in
figure 4 (for N = 3) and figures 5 to 7 (for N = 4).

Except for the degenerate choice of ωx = ωy (for which the N = 3 case reduces to
the N = 2 case), the N = 3 case does not lead to fully stable motion, as conditions (i) in
eqs. (3.27) and (3.28) and (ii) in eqs. (3.29) and (3.30) of section 3.1 are not fulfilled.5 Indeed,
either one chooses C3 positive and for large negative v2, g(v) diverges to −∞, or one chooses
C3 negative and for large positive u2, f(u) diverges to −∞. An example of two nearby sets
of initial conditions — one stable and one unstable — is visualized in figure 4.

5Even though our proof in section 3.1 only provides sufficient not necessary conditions for the boundedness
of motion, on physical grounds, we expect that integrals of motion unbounded from below and from above
cannot bound the motion.
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Figure 4. We show trajectories (with initial conditions tuned to the boundary of an apparent island
of stability) for N = 3, i.e., for ω2

x = 1, ω2
y = −1, C4 = 0, and c̃ = 1, in eq. (3.69). We superimpose a

contour plot of the potential (cf. left-hand panel in figure 3) where increasingly light shades indicate
increasingly large values of the potential. In the left-hand panel, we show a bounded trajectory. In the
right-hand panel, we show an adjacent unstable trajectory. To be specific, and in case the reader wants
to reproduce our results, we have chosen x(t = 0) = 1, x′(t = 0) = 1, y(t = 0) = A, and y′(t = 0) = A,
for which the difference between bounded and unbounded motions is obtained by choosing respectively
A ≈ 0.468 in the left-hand panel and A ≈ 0.469 in the right-hand panel. These values hence also
locate the boundary between the two kinds of motions considered here.

-2 -1 0 1 2
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Figure 5. We show the trajectory (for random initial conditions drawn from a Gaussian distribution
with standard deviation SD = 2) for N = 4, i.e., for ω2

x = 1, ω2
y = 1, C4 = 1, and c̃ = 1 in eq. (3.69).

In the left-hand panel, we superimpose a contour plot of the potential (cf. right-hand panel in figure 3)
where increasingly light shades indicate increasingly large (positive) values of the potential. In the
right-hand panel, we show the respective evolution of the momenta.

In contrast, the N = 4 case leads to bounded motion since, for C4 > 0, conditions (i) in
eqs. (3.27) and (3.28) and (ii) in eqs. (3.29) and (3.30) of section 3.1 are obeyed. We visualize
three different examples: in figure 5, we show an example of the motion for equal frequencies,
i.e., for ω2

x = 1, ω2
y = 1. In figure 6, we show an example of the motion for which the ghost

has a tachyonic term, i.e., for ω2
x = 5, but ω2

y = −5. Finally, in figure 7, we show an example
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Figure 6. As in figure 5 but for a case with a ghost frequency which is tachyonic around the origin,
i.e., for ω2

x = 5, ω2
y = −5, C4 = 1, and c̃ = 1 in eq. (3.69).
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Figure 7. As in figure 5 but for a case with large frequency ratio between positive-energy and
negative-energy mode, i.e., for ω2

x = 1, ω2
y = 100, C4 = 1, and c̃ = 1 in eq. (3.69).

of the motion with a significant frequency hierarchy, i.e., for ω2
x = 1 and ω2

y = 100. In all
cases, C4 = 1. The “potential” in eq. (3.32) that stabilizes the motion is bounded from below
and grows without bound at large x and y for C4 > 0. It is given here by

U (4)
LV (x, y) = c̃

2
(
ω2

xx
2 + ω2

yy
2
)

+ 1
2
(
x4 − y4

)(
ω2

x − ω2
y

)
+ C4c̃

[(
x2 + y2

)(
x2 − y2

)2
+ c̃
(
x4 + y4

)]
, (3.70)

where we rewrote eq. (D.12) using c̃ > 0. Note that both the above U (4)
LV and V

(4)
LV (x, y) are

symmetric with respect to separate reflections

x→ −x , and y → −y , (3.71)

as they depend only on x and y via their squares x2 and y2. The potential V (4)
LV (x, y) has
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up to power six self-interactions and PG cross-couplings(
ω2

y − ω2
x

)
c̃

x2y2 , and 3 C4 x
2y2

(
y2 − x2

)
, (3.72)

between the usual DoF x and the ghost y. These cross-coupling terms vanish when one of
the coordinates is zero. However, elsewhere these cross-couplings cannot be neglected in
comparison with the self-interactions. Without cross-couplings the positive energy degree
of freedom x has a self-interaction potential

VP(x) = ω2
xx

2

2 +


(
ω2

x − ω2
y

)
2c̃ + C4c̃

x4 + C4x
6 , (3.73)

while the ghost self-interaction potential is

VG(y) = −

ω2
yy

2

2 +


(
ω2

y − ω2
x

)
2c̃ + C4c̃

y4 + C4y
6

 . (3.74)

Without interactions one could flip the sign in front of the ghost’s Hamiltonian, so that
uncoupled ghost effectively experiences inverted self-interaction potential (−VG(y)). Note
that (−VG(y)) can be obtained from (VP(x)) by changing x to y everywhere, including indices.

The next non-trivial polynomial and stable PG theory is obtained for N = 6 (and positive
C6) and the corresponding potential is given in appendix D.

More generally, all polynomial theories with even N (and positive CN ) are stable according
to the above proof. This becomes apparent when looking at large u2 ≫ |Cn| (as well as
large −v2 ≫ |Cn|), for which

f(u) −→ CN

(
u2
)N

,

g(v) −→ (−1)NCN

(
−v2

)N
. (3.75)

In writing the second expression, we arrange minus signs such as to account for −v2 > 0.
For odd N , the proof conditions cannot be fulfilled since (for any choice of CN ) either

f(u) or g(v) is unbounded below. While islands of stable initial conditions are possible
(cf. left-hand panel in figure 4), we expect that there are always some initial conditions for
which divergent behaviour remains (cf. right-hand panel in figure 4).

So, how do the proof conditions relate to the behaviour at large x2 ≫ c̃ and x2 ≫ |Cn|
(as well as large y2 ≫ c̃ and y2 ≫ |Cn|)? Taking both limits,

V
(N)

LV (x, y)→ CN

(
x2 − y2

)N−1
. (3.76)

Together with the proof conditions, i.e., even N and CN > 0, this implies:

• The decoupled potential VP(x) (see eqs. (2.7) and (3.73)) is bounded below and un-
bounded above and thus serves as a stable potential for the decoupled motion of the
x mode.
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• Similarly, VG(y) (see eqs. (2.7) and (3.74)) is bounded above and unbounded below and
thus serves as a stable potential for the decoupled motion of the y mode.

• At sufficiently large6 x2 and y2, the interaction potential V (x, y) is bounded by the
decoupled potential, i.e.,

V (x, y) ≶ VP(x) + VG(y) ∀ |x| ≷ |y| . (3.77)

• As we will see, the special case of |x| = |y|, for which the full and the decoupled potential
agree at sufficiently large x2 and y2, seems to require an additional criterion.

To elucidate the latter subtlety further, we take a look at another class of integrable polynomial
potentials.

3.4 An unstable polynomial subclass: refining more general conditions for
stable motion

To elucidate the possibility of stable motion in the Liouville class further, we can compare it
to the motion in another class of integrable two-particle Hamiltonians.

As explained in section 2 real-valued PG Hamiltonians can sometimes also be obtained
from complex-valued PP Hamiltonians. This turns out to be the case for another class of
integrable two-particle Hamiltonians, closely related to the Liouville model, cf. appendix A.
The details of this integrable model are discussed in appendix E and, following [49], we
refer to it as class 3 from here on.

In fact, just as the integrable Liouville model, the integrable class 3 contains a polynomial
subclass which is analogously obtained, cf. appendix E. Introducing frequencies, removing
a constant shift (as in eq. (3.69)), and specifying to equal frequencies (i.e., ωx = ωy = ω),
the first few terms can be written as

V
(4)

(class 3)(x, y) ωx=ωy= ω2

2
(
x2 − y2

)
+ C4

(
x2 − y2

)3
− C4 c (x+ y)(x− y)(x± y)2 . (3.78)

The general expression with unequal frequencies is given in appendix E. For C4 = 0, the
potential V (4)

(class 3) is (depending on the other parameter choices) either bounded from below
or bounded from above. More generally, just as for the Liouville polynomial subclass, each
odd N case is thus unstable because one of the decoupled potentials is necessarily unstable.

For C4 > 0, cf. also figure 8, the potential V (4)
(class 3) fulfills all the conditions stated around

eq. (3.77): both of the decoupled potentials are stable and the full potential is bounded by the
decoupled potential. Nevertheless, we find that this case exhibits runaways with polynomial
growth rate and is thus not stable. We thus conclude that the conditions stated around
eq. (3.77) are not sufficient to guarantee the absence of runaway behaviour.

We first look at the case (ω = 0), for which we observe that the runaway behaviour
occurs either along the x − y = 0 or along the x + y = 0 direction. In fact, the potential
in figure 8 exhibits sets of saddle points (marked with thick lines) extending out to infinity

6For N = 4, |x| ≷ |y| in (3.77) should be understood as |x| ≷ |y| + ω2
y−ω2

x

3c̃C4
1

|x|+|y| , which agrees with |x| ≷ |y|
either in the limit |x| + |y| → ∞ or for ω2

y = ω2
x.
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Figure 8. As in figure 3 but for the class 3 potential in eq. (3.78) with ω2
x = ω2

y = 0 and C4 = 1.
The thick lines indicate the directions along which unstable motion occurs. Note that the potential
exhibits sets of saddle points along flat directions extending to infinity, cf. right-hand panel in figure 3.

along flat directions of the potential. As a consequence of this, the local potential around
x ± y = 0 is no longer dominated by the respective decoupled potentials.

This can be seen from the Hessian matrix,7 which vanishes at x = ±y, i.e.,

Hess
(
V

(4)
(class 3)(x, y)

)
x=±y=

(
0 0
0 0

)
. (3.79)

In contrast, the Hessian matrix of the decoupled potential (at x = ±y) is non-vanishing, i.e.,

Hess
(
V

(4)
(class 3)(x, 0) + V

(4)
(class 3)(0, y)

)
x=±y= 30x4

(
1 0
0 −1

)
. (3.80)

Along the saddle surfaces, the local potential V (4)
(class 3) does, therefore, not resemble the

decoupled potential. In fact, it does not resemble any decoupled potential. Put differently,
there exist regions in which decoupled interactions no longer dominate the potential at
large phase-space variables.

For V (4)
(class 3) with non-vanishing but equal frequencies (and still for C4 > 0), the issue

of runaways is lifted along one of the two directions. Without loss of generality, picking
the ‘−’ sign in the last term in eq. (3.78), the x = −y direction is stable but the x = y

direction remains unstable. Once more, this can be understood in terms of the Hessian
matrix. For x = −y, the Hessian matrix now reads

Hess
(
V

(4)
(class 3)(x, y)

)
x=−y= (ω2 + 24 C4 y

2)
(

1 0
0 −1

)
. (3.81)

7For the case at hand, the Hessian matrix is defined by

Hess
(

V
(4)

(class 3)(x, y)
)

≡

(
∂x∂xV

(4)
(class 3) ∂x∂yV

(4)
(class 3)

∂y∂xV
(4)

(class 3) ∂y∂yV
(4)

(class 3)

)
.
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This agrees with the Hessian matrix of a free theory, to be specific, the free theory with
V (x, y) = ω2

2 (x2 − y2) + 2 C4(x4 − y4). In contrast, for x = y, we find

Hess
(
V

(4)
(class 3)(x, y)

)
x=y= ω2

(
1 0
0 −1

)
, (3.82)

for which the behaviour at large phase-space variables still has no free-theory equivalent.
In agreement with the above, we find that, with equal frequencies, polynomial runaway
behaviour no longer occurs along the x = −y but still occurs along the x = y direction.

Numerically, we observe that the runaways can be fully removed by the addition of
decoupled interactions of the form x4 − y4. (Numerics are necessary since the addition
of these terms breaks integrability.) With this addition, the Hessian matrix has the same
structure as for the Liouville potential V (4)

LV (x, y). In both cases, it does still not agree
with the Hessian matrix of the respective decoupled potential. However, one can identify
a decoupled potential for which the Hessian matrices (at sufficiently large x = ±y) agree.
We conclude that it is sufficient (at least for the specific case at hand) that the Hessian
matrix at large |x| = |y| agrees with some decoupled potential, not necessarily with the
decoupled potential of the respective model.

In passing, we mention that similar polynomial runaway behaviour also occurs in an
integrable model previously obtained (from a supersymmetric construction) by Smilga et
al. [21, 51]. Its Hamiltonian is given by

H = 1
2
(
p2

x + ω2x2
)
− 1

2
(
p2

y + ω2y2
)

+ λ

4ω (x− y)(x+ y)3 , (3.83)

where λ and ω are constants. It follows as a degenerate limit of eq. (3.78), i.e., when picking
the + sign in the last term of eq. (3.78) and taking C4 → 0 as well as c → ∞ such that
C4 c = −λ/4ω. (Alternatively, eq. (3.83) can also be obtained as a specific case8 of class 8
in appendix A.) The motion of this theory does not stay bounded (even though the ghost
there is argued to be “benign” due to the slow (polynomial) growth-rate of the runaway
solutions found numerically [21, 51]). In contrast to eq. (3.78), the potential of eq. (3.83)
also violates the condition in eq. (3.77).

We conclude that all of the discussed cases can be understood if the following criterion
is added to the list in section 3.3:

• For |x| = |y| (or more generally, for all (x, y) for which V (x, y) = VP(x) + VG(y)), the
Hessian matrix at large phase-space variables approaches the Hessian matrix of some
free theory.

Having understood these more subtle cases, we conclude: by translating the proof conditions
to conditions on the potential V (x, y), we understand that stable motion seems to be possible
because stable decoupled potentials VP(x) and VG(y) dominate all interaction terms at
sufficiently large x2 and y2.

8To be specific, the Hamiltonian in eq. (3.83) can be obtained from the integrable class 8 in eq. (A.15)
by choosing g = 0 and f ′′ = 1

2 ω2 + λ
ω

(x + iy)2. This results in the potential (for a PP theory) given
by V = (x2 + y2)( 1

2 ω2 + λ
4ω

(x + iy)2). We then obtain the theory in eq. (3.83) by applying a canonical
transformation C−

y .
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In the following section 4, we will use this insight to formulate general conditions for
stability. Before doing so, we comment on the relation to local Lyapunov stability.

3.5 Lagrange vs Lyapunov stability

In the previous subsections, we were concerned with global boundedness of motion which
corresponds to the stability in the sense of Lagrange. However, one can be also interested
in local stability in the sense of Lyapunov, see, e.g., [37]. In particular, this is crucial to
specify the nature of equilibrium points which are fixed points of the system of equations
of motion and can be considered as vacua. The two notions of stability are not equivalent.
Indeed, a Lagrange stable system may not have locally stable solutions, while a system with
Lyapunov stable equilibrium points may have other solutions with runaways invalidating
stability in the sense of Lagrange. Here we will show that the Liouville class of systems in
eq. (3.1), describing ghosts interacting with usual degrees of freedom (σ = −1), contains
plenty of theories with Lyapunov stable equilibrium points. More specifically, we focus here
first on systems in this class with functions f(u) and g(v) which are respectively analytic
functions of u2 and ṽ2 around the origin (x, y) = (0, 0). These systems contain the polynomial
case eqs. (3.66) and (3.67) as a subcase.

For such theories, the origin (x, y) = (0, 0) is always an equilibrium point. Indeed, at
the origin one has u2 = 0 and ṽ2 = c̃, while

∂xVLV = 0 , and ∂yVLV = 0 , (3.84)

because all partial derivatives

∂u2

∂x
=
[
r2 + c̃

W̃
+ 1

]
x ,

∂ṽ2

∂x
=
[
r2 + c̃

W̃
− 1

]
x , (3.85)

∂u2

∂y
=
[
r2 − c̃
W̃

− 1
]
y ,

∂ṽ2

∂y
=
[
r2 − c̃
W̃

+ 1
]
y , (3.86)

are vanishing there. Now we can linearize the equations of motion9

ẍ+ ∂VLV
∂x

= 0 , and ÿ − ∂VLV
∂y

= 0 , (3.87)

around the origin and obtain corresponding frequencies

ω̄2
x = 2

c̃2
[
c̃f ′(0)− f(0) + g(c̃)

]
, (3.88)

ω̄2
y = 2

c̃2
[
c̃g′(c̃)− g(c̃) + f(0)

]
. (3.89)

Note that ω̄x and ω̄y are just defined expanding around the origin and are hence conceptually
different from unbarred frequencies defined previously, hence the different notation. Of
course they could be the same depending on the potential. Naive stability by the linearized
approximation requires that both ω̄2

x and ω̄2
y are positive. In particular, adding the two

equations above, we see that stability requires that

g′(c̃) + f ′(0) > 0 . (3.90)
9Note that the sign difference in the y-equation of motion appears due to the negative mass of the ghost.
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Let us now confirm that the conditions ω̄2
x > 0 and ω̄2

y > 0 are sufficient for the Lyapunov
stability of the equilibrium point in the origin. Consider the first integral JLV given by
eq. (3.31). Expanding JLV around the origin and around vanishing momenta one obtains

JLV = g(c̃) + f(0) + c̃

2
(
p2

x + p2
y

)
+
ω̄2

y c̃

2 y2 + ω̄2
xc̃

2 x2 + . . . , (3.91)

where ellipsis stands for higher order terms. Clearly, for ω̄2
x > 0 and ω̄2

y > 0 the first
integral has a minimum at the equilibrium point in the origin. Thus, JLV − (g(c̃) + f(0)) is
a Lyapunov function. Indeed, it is conserved, vanishing at the equilibrium solution and is
positive definite in an open neighbourhood around it (see [37]). Thus, the origin is Lyapunov
stable. Here, the conserved quantity JLV plays the analog of usual energy for establishing
stability. Crucially, the “kinetic energies” are all positive definite in JLV. Moreover, U(x, y)

— the “potential part” of the “energy” — has an isolated minimum at the origin. Thus,
exchanging the usual potential energy with U(x, y), one meets the conditions of the classical
Lagrange theorem stating that the minimum of the potential energy corresponds to a stable
equilibrium configuration. In contrast, it is interesting to note that this stable equilibrium
point is a saddle point for the potential VLV (x, y) as

VLV = f(0)− g(c̃)
c̃

+ ω̄2
xx

2

2 −
ω̄2

yy
2

2 + . . . . (3.92)

It also appears above that ω̄2
x > 0 and ω̄2

y > 0 do guarantee Lyapunov stability for the usual
PP systems due to the Lagrange theorem. The Lyapunov stability of the origin, implies,
by continuity, the same stability for solutions in a small neighbourhood. It is important to
repeat that the conditions on f(u) and g(v) required for the Lyapunov stability of the origin
(positivity of (3.88) and (3.89)) can be easily violated in systems which are globally stable
according to Lagrange. And vice versa: a Lagrange unstable system may have a Lyapunov
stable origin. This can be well illustrated by the case of V (3)

LV PG system given by eq. (3.68),
see also eq. (D.4). As we discussed before, this system is not stable from the point of view
of Lagrange, however the origin is Lyapunov stable provided ω2

x and ω2
y chosen in eq. (D.6)

are positive. On the other hand, as we discussed before, V (4)
LV from eq. (3.69) is Lagrange

stable for C4 > 0 and c̃ > 0, but can have a Lyapunov unstable origin if one of ω2
x, ω2

y chosen
in eq. (D.6) is negative. To finish, let us here mention that the Lyapunov stability of the
origin equilibrium point for a distinct class of interacting ghosty systems has previously been
demonstrated in [28] using different methods. Moreover, in [16] the Lyapunov stability of the
origin has been proven for a particular PG system from the same Liouville class in eq. (3.1)
using methods similar to those employed in the current paper.

All vacua and their Lyapunov stability for the polynomial subclass of the Liouville
model. The PG interacting system with polynomial potential in eqs. (3.69) and (D.7)
belongs to the class discussed above and deserves to be analyzed in more detail. In figure 5,
figure 6 and figure 7 we have already presented numerical solutions of this system for various
parameters. In this subsubsection, we find all equilibrium points, or fixed points of the
evolution (xe, ye), i.e.,

∂xV
(4)

LV (xe, ye) = ∂yV
(4)

LV (xe, ye) = 0 . (3.93)
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We then determine whether these vacua are Lyapunov stable. Assuming non vanishing C4
and c̃, the above two equations are equivalent to the vanishing of

xe

x2
e +

(
x2

e − y2
e

)
2c̃


(
ω2

x − ω2
y

)
C4c̃

+ 3
(
x2

e − y2
e

)+ ω2
x

4C4c̃

 ,
ye

y2
e +

(
x2

e − y2
e

)
2c̃


(
ω2

x − ω2
y

)
C4c̃

+ 3
(
x2

e − y2
e

)+
ω2

y

4C4c̃

 ,
whose solutions will be discussed below. We then shall demonstrate how PG interactions which
are supposed to destabilize the system, instead introduce new stable vacua. Interestingly, the
appearance of these new vacua leads to spontaneous breaking of the reflection symmetry in
eq. (3.71). To establish Lyapunov stability, we will use the result of appendix B: the extrema
of V (4)

LV are also extrema of U (4)
LV , see eq. (B.4). Then, similarly to the discussion above on the

stability of the origin, the minimum of U (4)
LV implies the Lyapunov stability of the vacuum,

as JLV from eq. (3.31) can be taken again as a Lyapunov function.
The first equilibrium point is the origin (xe, ye) = (0, 0), which was discussed at the

beginning of this section, and the Lyapunov stability just requires that ω2
x > 0 and ω2

y > 0
which we shall also assume to hold below. Note that this vacuum respects the reflection
symmetry in eq. (3.71) for both coordinates and is such that (see eq. (3.70))

U (4)
LV (xe, ye) = 0 . (3.94)

One can find a second type of equilibrium point where only one of the coordinates
vanishes but not the other one. Indeed, xe = 0, or ye = 0, is obviously a solution to eq. (3.93)
(see the two above equations). When either xe = 0, or ye = 0, the stability along the
direction where the equilibrium coordinate does not vanish can be analyzed by looking at
the potential in eq. (3.74) or eq. (3.73). It is seen there that, for sufficiently small C4, either
the coefficient in front of x4 in VP (x) or in front of y4 in (−VG(y)) can become negative,
indicating that the origin is not the only minimum of VP(x) or of (−VG(y)). In that case,
the vacuum spontaneously breaks the reflection symmetry in eq. (3.71) with respect to this
coordinate. Let us assume for concreteness that ωx < ωy, so that we take ye = 0 as then
implied by the positivity of the coefficient in front of y4 in eq. (3.74). The opposite case is
obtained from all formulas with the replacement x↔ y. Looking for non-vanishing solutions
of ∂xVP(x) = 0, yields the following quartic equation

ω2
x + 2

[
ω2

x − ω2
y

c̃
+ 2C4c̃

]
x2 + 6C4 x

4 = 0 , (3.95)

which has real non-vanishing solutions x2 for[
ω2

x − ω2
y

c̃
+ 2C4c̃

]2

> 6C4ω
2
x . (3.96)

The last condition is easy to fulfill for a sufficiently small C4, i.e., for (see also footnote 11)

4c̃2C4 < ω2
x + 2ω2

y − ωx

√
3
(
4ω2

y − ω2
x

)
. (3.97)
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The solution of eq. (3.95) is

x2
b(±)
c̃

=
Ω2

y − Ω2
x − 1

3 ±

√√√√(Ω2
y − Ω2

x − 1
3

)2

− Ω2
x

3 , (3.98)

where we denoted10

Ω2
x = ω2

x

2C4c̃2 , and Ω2
y =

ω2
y

2C4c̃2 . (3.99)

To obtain a real xb(±), one has to require that the first term in the right-hand side of eq. (3.98)
is positive11 which translates to

2C4c̃
2 < ω2

y − ω2
x . (3.100)

Note that this inequality in eq. (3.100) is weaker than eq. (3.97), so that, when the latter holds,
both extrema x2

b(±) are real and in total there are four solutions. Clearly, x2
b(−) corresponds

to a local maximum of VP(x) while x2
b(+) corresponds to a local minimum and hence a stable

direction along the x ̸= 0 direction.
Now we can investigate when such points

(
±xb(+), 0

)
are minima of U (4)

LV given by
eq. (3.70). First one notices, that at these points ∂x∂yU (4)

LV

(
±xb(+), 0

)
= 0, while the other

second derivatives are

∂2
xU

(4)
LV = 8

3C4c̃
3 − 4

3 c̃
(
ω2

x + 2ω2
y

)
+

2
(
ω2

x − ω2
y

)2

3C4c̃
− 2

3R
[
2c̃+

ω2
x − ω2

y

C4c̃

]
,

and

∂2
yU

(4)
LV = 1

2 c̃

2ω2
y −

(
R− 2C4c̃

2 − ω2
x + ω2

y

)
2

9C4c̃2

 ,
where we denoted

R =
√

4C2
4 c̃

4 +
(
ω2

x − ω2
y

)2
− 2C4

(
ω2

x + 2ω2
y

)
c̃2 .

One can deduce that both second derivatives are positive provided(
ω2

x − ω2
y

)2

2ω2
y

< 4C4c̃
2 < ω2

x + 2ω2
y − ωx

√
3
(
4ω2

y − ω2
x

)
. (3.101)

Note that for the assumed ωy > ωx the lower bound above is always smaller than the upper
bound. Thus there is always a space for C4 between them.12 Moreover, the upper bound is

10This form reveals the essence of rescalings in eq. (3.8).
11Note that this inequality forbids 4c̃2C4 > ω2

x + 2ω2
y + ωx

√
3(4ω2

y − ω2
x) which would be another way to

satisfy eq. (3.96).
12Note that one can reinterpret this inequality as

(
Ω2

x − Ω2
y

)2
/
(
2Ω2

y

)
< 2 < Ω2

x + 2Ω2
y − Ωx

√
3(4Ω2

y − Ω2
x)

for rescaled frequencies in eq. (3.99), see figure 9.
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x2 y2 conditions

origin 0 0 Ω2
x/y > 0,

decoupled-x c̃
3

[(
Ω2

y−Ω2
x−1

)
+
√(

Ω2
y−Ω2

x−1
)2
−3Ω2

x

]
0 (3.101)

decoupled-y 0 c̃
3

[(
Ω2

x−Ω2
y−1

)
+
√(

Ω2
x−Ω2

y−1
)2
−3Ω2

y

]
(3.101) x←→ y

coupled c̃
8

[(
Ω2

x−Ω2
y

)2
−4Ω2

x

]
c̃
8

[(
Ω2

x−Ω2
y

)2
−4Ω2

y

]
(3.104)

Table 1. We list all possible minima of U (4)
LV (x,y), from eq. (3.70) where we assumed that c̃ > 0, C4 > 0

and Ω2
x/y > 0. In the last column, we list conditions for the existence of such minima. These minima

are Lyapunov stable equilibrium configurations or stable vacua of the theory. The origin respects
the reflection symmetry in eq. (3.71). The “decoupled-x” minima are given by eq. (3.98) and break
the reflection symmetry x→−x. The “decoupled-y” minima are given by eq. (3.98), with exchange
x←→ y, and break the reflection symmetry y→−y. The “coupled” minima are given by eqs. (3.102)
and (3.103) and break both of the reflection symmetries in eq. (3.71).

just what is required for the very existence of the equilibrium point, see eq. (3.97). Hence,
we have just shown that, for C4 satisfying the bound above, the stable points

(
±xb(+), 0

)
correspond to local minima of U (4)

LV (see figure 11) and these vacua are Lyapunov stable, as
they actually also are turning off interactions with the ghost y. For the opposite hierarchy
between frequencies, analogous equilibrium points are

(
0,±yb(+)

)
and the whole analysis

and formulas are applicable after exchange of x←→ y. Interestingly, for C4 smaller than the
lower bound in eq. (3.101), the equilibrium points

(
±xb(+), 0

)
are not local minima of U (4)

LV so
that one cannot warrant stability. This is a strong hint that these equilibrium configurations
then become unstable. On the other hand, one can check that

(
±xb(−), 0

)
never become

minima of U (4)
LV showing that these equilibrium configurations remain always unstable. Of

course the same logic is applicable after exchange of x ←→ y.
Finally, the last category of equilibrium points appears for such small coupling constant C4

that the PG-interactions in eq. (3.72) introduce new nontrivial equilibrium points. These vacua
spontaneously break both reflections in eq. (3.71) and are solutions of the system in eq. (3.93)

x2 +

(
ω2

x − ω2
y

)(
x2 − y2)

2C4c̃2 + 3
(
x2 − y2)2

2c̃ + ω2
x

4C4c̃
= 0 ,

y2 +

(
ω2

x − ω2
y

)(
x2 − y2)

2C4c̃2 + 3
(
x2 − y2)2

2c̃ +
ω2

y

4C4c̃
= 0 .

By subtracting these equations from each other one obtains

4C4c̃
(
y2 − x2

)
= ω2

x − ω2
y ,

so that now one can substitute y2 − x2 back into both equations to obtain, using the same
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Figure 9. In the left-hand panel, using the rescaled frequencies in eq. (3.99), we visualize the
conditions for the existence of different stable vacua listed in table 1. In the white region, the
origin is the only Lyapunov-stable vacuum. In the yellow stripe above (below), the stable origin is
supplemented by the two Lyapunov-stable “decoupled-x” (“decoupled-y”) vacua. Further up and/or
to the right, in the orange region, the stable origin is supplemented by the four Lyapunov-stable
coupled vacua. In the other three panels, we specify to C4 = 1 as well as c̃ = 1 and show the three
indicated examples for the respective possible cases. We super-impose the latter on contour plots of
log(|U (4)

LV (x, y)|. (The contours are spaced by half-integers with the thick-dashed contour indicating
log(|U (4)

LV (x, y)| = 3.) We omit further configurations which arise from exchanging (x ↔ y). From
left to right, we show (Ω2

x,Ω2
y) = (0.5, 7.5) (i.e., the point labeled “I” in the orange region of the

left-hand panel), (Ω2
x,Ω2

y) = (0.5, 3.75) (i.e., the point labeled “II” in the yellow region of the left-hand
panel) and (Ω2

x,Ω2
y) = (0.5, 0.5) (i.e., the point labeled “III” in the white region of the left-hand

panel). Larger (smaller) dots indicate minima (other real-valued extrema) of U (4)
LV (x, y) and the colours

white, yellow, and orange indicate origin, decoupled extrema, and coupled extrema, respectively. Even
though, for illustrative purposes, we have not chosen the parameters to preserve the ratio of Ω’s but
rather to fit the minima at the same region of (x, y) space, it is clear that, for fixed values of c̃ and ωy,
ωx, the vacuum configurations will change from left to right with increasing strength of C4.

  

Figure 10. For values of C4 satisfying eq. (3.104), we show a logarithmic plot of the “uplifted”
effective “potential” U (4)

LV (x, y), i.e., the plot of log
(

1 + U (4)
LV (x, y)− U (4)

LV (xI , yI)
)

, such that we take
the logarithm of a strictly positive quantity. The red points indicate the four global vacua (xI , yI)
given by eqs. (3.102) and (3.103) with all combinations of signs for the square roots. The black point
indicates the vacuum at the origin which, however, is only a local minimum of U (4)

LV . The parameters
are chosen as c̃ = 1, ωx = 1, and ωy = 1.7, while C4 is 1.5 times smaller than the lower bound in
eq. (3.104) so that C4 ≈ 0.103. This case has different numerical values of constants, but its structure
of vacua corresponds to case I in figure 9.
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x
y

x

y

Figure 11. On the left, we show the effective “potential” U (4)
LV (x, y) around vacua, for C4 located

in the interval (3.101), while on the right, we plot, in the logarithmic scales, the same “uplifted”
effective “potential”: log

(
1 + U (4)

LV (x, y)− U (4)
LV
(
xb(+), 0

))
, on larger scales. The red points indicate

the two global vacua
(
±xb(+), 0

)
from eq. (3.98). The black point indicates the trivial vacuum at

the origin, which however is only a local minimum of U (4)
LV . The parameters are set to c̃ = 1, ωx = 1,

and ωy = 1.7, as in figure 10, while C4 is higher than that of figure 10 and is in the middle of the
interval (3.101): C4 ≈ 0.221. This case has different numerical values of constants, but its structure of
vacua corresponds to case II in figure 9.

definitions as in eq. (3.99),

x2
I

c̃
=

(
Ω2

x − Ω2
y

)2
− 4Ω2

x

8 , (3.102)

and similarly

y2
I

c̃
=

(
Ω2

x − Ω2
y

)2
− 4Ω2

y

8 . (3.103)

The right-hand side of both equations are strictly positive provided that13 (as easily seen
using eq. (3.99))

C4 < min


(
ω2

x − ω2
y

)2

8ω2
xc̃

2 ,

(
ω2

x − ω2
y

)2

8ω2
y c̃

2

 , (3.104)

which guarantees that these nontrivial equilibrium points exist. Further, this inequality
also implies that ∂2

xU
(4)
LV > 0 along with the determinant of the Hessian Hess(U (4)

LV ) > 0, see
eq. (B.13). Thus, all the four equilibrium points14 (xI , yI), (−xI , yI), (xI ,−yI), (−xI ,−yI)

13These inequalities trivially transform to inequalities on rescaled frequencies, e.g.,
(
Ω2

x − Ω2
y

)2
> 4Ω2

y, see
figure 9.

14Here we assumed that the square root is taken as a principal square root returning non-negative numbers.
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are Lyapunov stable, as the “potential” U (4)
LV has local minima there. One can check that

12C3
4 c̃

4 U (4)
LV (xI , yI) = −

[
32C2

4

(
ω4

x + ω4
y

)
c̃4+

−8C4
(
ω2

x − ω2
y

)2(
ω2

x + ω2
y

)
c̃2 +

(
ω2

x − ω2
y

)4
]
< 0 .

Thus, comparing the above to eq. (3.94), we see that the equilibrium points above are in
a sense true vacua as U (4)

LV (xI , yI) < U (4)
LV (xe, ye), see also figure 10.

We would like to stress that we found all possible equilibrium points, i.e. solutions to
eq. (3.93). Moreover, comparing, eq. (3.101) with eq. (3.104) one infers that the existence of
stable equilibrium points (±xI ,±yI) and

(
±xb(+), 0

)
(or

(
0,±yb(+)

)
) is mutually exclusive.

Hence, PG-interactions in eq. (3.72) can actually introduce new Lyapunov-stable equilibrium
points which would be impossible if the ghost y had not interacted with the positive-energy
DoF x. Thus, at least for discrete dynamical degrees of freedom, interactions with ghost
can create new stable vacua. Finally, we would like to mention that it is the strength of
the coupling constant C4 which controls the symmetry breaking pattern for fixed c̃ and ωx/y.
The larger the constant, the more symmetry is there, see figure 9.

4 Numerical investigation of nonintegrable models

We now relax the technical assumption of integrability. In sections 3.3 and 3.4, we have
rephrased the conditions for stability of the proof of section 3.1 (which are stated in terms
of free functions, specific to the integrable model) to conditions in terms of the shape of
the potential V (x, y).

This motivates us to investigate whether similar conditions lead more generally to stable
motion and, in particular, when there is no integrability.

We find numerically that: (ℵ), a sufficient condition for the stable motion of a Hamiltonian
point-particle system with coupled positive- and negative-sign kinetic terms for the respective
coordinates x and y is that its full potential V (x, y), at large coordinates x and y, is sufficiently
dominated everywhere by a potential of the form ṼP (x) + ṼG(y) where both ṼP and −ṼG

are yielding by themselves stable motions along x and y. I.e. we need the interactions to
be sufficiently suppressed with respect to a stable “decoupled” part at large values of the
dynamical variables.

Note that these conditions are reminiscent of the Kolmogorov-Arnold-Moser (KAM)
theorem (for a pedagogical discussion see [39, appendix 8]), as the theory with the Hamiltonian
just given by ṼP (x) + ṼG(y), which dominates at large distance, would be integrable (as it
has two separately conserved quantities: the respective energies of x and y), our statement is
just that, it is enough for the interactions between x and y to be sufficiently subdominant
at large x and y to ensure stability. The conditions stated in sections 3.3 and 3.4 are an
explicit expression of the above statement for the specific integrable polynomial subclasses
at hand. Beyond integrability, we still find that, whenever the above statement (ℵ) holds,
all (at least, all numerically investigated) initial conditions avoid runaways (at least, up
to the finite numerical evolution time).

– 30 –



J
C
A
P
1
1
(
2
0
2
3
)
0
3
1

Naturally, the lack of integrability also means that the analytical proof strategy in
section 3 will no longer apply. Hence, we need to resort to numerical evidence. The latter
comes with the difficulty that — in the absence of rigorous analytical proof — runaways
may only be encountered at very late evolution times and/or only for a small subset of the
initial conditions. In section 4.1, we introduce a specific numerical setup to alleviate these
issues, at least to some degree. In section 4.2, we demonstrate that the numerics are able
to confidently distinguish between stable and unstable potentials in the presented subclass
of integrable and polynomial Liouville models. With this benchmark at hand, we apply the
same numerical analysis to several nonintegrable models in section 4.3, i.e., to two classes
of non-polynomial and to one class of polynomial potentials. This provides evidence that
the above statement (ℵ) holds true, even in the absence of integrability.

We emphasize that all of our results suggest that the statement (ℵ) only needs to hold
outside of a finite region in phase space. As a special case, it thus encompasses all interaction
potentials which are localised in a finite phase-space region and supplemented by standard
quadratic terms VP = 1

2 ω
2
xx

2 and VG = −1
2 ω

2
yy

2 with ωx, ωy ∈ R+. Two explicit examples of
this are presented in section 4.3. Note that this contrasts with the usual conditions used in the
KAM theorem which uses perturbations of an integrable system which are everywhere small
with respect to the integrable part, and not only at large values of the dynamical variables.

We also highlight that, if the above holds also for nonintegrable systems, it would imply
that the addition of sufficiently strong self-interactions can stabilize any PG system. Indeed,
all of our numerics support this conclusion: an explicit example is discussed in section 4.3.

At the same time, we caution that there is a — potentially crucial — distinction between
integrable and nonintegrable models. Integrability ensures that whenever the motion returns
to the initial position (x0, y0), also the momenta must return to their initial values. For
nonintegrable systems, this need not be the case. Nonintegrable systems may therefore be
distinct in that they can potentially extract a pair of positive and negative kinetic energy from
the finite region in phase space in which the above conditions are violated. This may lead to
a slow growth of the explored phase-space region. While we do not observe any evidence for
such slow growth in our simulations, we cannot exclude it. In order to avoid such a growth,
one could for example require that the Hamiltonian in the finite region be sufficiently close
to integrable so that when the system returns to the initial position (x0, y0), the momenta
return to values sufficiently close to their initial values. Intriguingly, this does not a priori
forbid arbitrarily strong interactions between a ghost and a positive energy degree of freedom
in the finite region. Whether it is possible to make this kind of statement more quantitative
and precise is an interesting question which could be investigated in the future.

4.1 Numerical setup

For our numerical experiments, we draw random initial conditions x(ti), y(ti), x′(ti), y′(ti) at
ti = 0 from a normal distribution with standard deviation SD. We then evolve the respective
initial value problem with the Runge-Kutta method15 up to either tf = tmax or until the

15We use the native NDSolve routine in Mathematica, specifying to an embedded Runge-Kutta 5(4) pair [52]
following [53]. Further, we specify MaxSteps → ∞ such that the integration is terminated either at t = tmax

or if NDSolve detects stiffness.
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numerical routine detects a runaway (see conditions below), in which case tf < tmax. We make
sure that tmax is sufficiently large such as to differentiate between cases with and without
runaways. We then repeat the experiment Nevol times and determine the mean evolution time
tmean = 1

Nevol

∑Nevol
j=1 t

(j)
f . Assuming that the criteria below confidently detect a runaway, a

value of tmean = tmax signals the absence of any runaway solutions in the numerical experiment.
In the above numerical experiment, we distinguish between two criteria to detect runaways:

(A) We use stiffness detection of our numerical evolution scheme as a proxy for catastrophic
(i.e., faster than exponential) runaways. Stiff numerical evolution typically occurs
whenever very different scales enter the evolution. In practice, given that we evolve
with a Runge-Kutta method, stiffness is detected by the dominant eigenvalue of the
Jacobian, see [53, 54] and references therein.

(B) We find that polynomial growth is harder to detect since the eigenvalues of the Jacobian
can remain bounded throughout the runaway. In particular, this also includes asymp-
totically flat potentials in which trajectories can escape to infinity once they escape the
potential in a confined phase-space region. To detect such cases, we perform the same
type of experiment but we add an additional abort criterion that detects if x(t) > C or
y(t) > C outgrow a specified bound C. This criterion thereby detects whenever the
evolution escapes a specified phase-space region. When we pick C ≫ SD, we expect
that only rare cases of stable motion are falsely detected as unstable.

We will highlight below in which of the cases it makes a difference whether criterion (B)
is applied in addition to criterion (A).

4.2 Benchmark: the Liouville model revisited

Here, we use the previously discussed integrable Liouville model, cf. section 3, to demonstrate
that the numerical experiment meaningfully distinguishes between the presence and the
absence of runaways.

We first focus on the polynomial subclass, cf. eqs. (3.68) and (3.75), for which the
resulting potential V (x, y) reduces to a polynomial of degree N . As discussed in section 3.3,
the proof conditions imply stability at even degree N (assuming also that CN > 0) and,
moreover, align with conditions stated in terms of the potential.

For each polynomial degree 2 ⩽ N ⩽ 9, we perform our numerical experiment Nevol = 102

times. We choose a maximal evolution time tmax = 102 and draw random initial conditions
from a normal distribution with standard deviation SD = 1.

The result is shown in figure 12 and confirms stability (instability) at even (odd) degree
N . It turns out to be irrelevant whether or not we apply criterion (B). We take this as an
indication that the runaways occur with faster than exponential growth.

Going beyond the polynomial subclass, we also perform a numerical experiment with

f(u) = |u|ζ , g(v) = |v|η . (4.1)

It turns out that, for either η ⩽ 2 (irrespective of ζ) or ζ ⩽ 2 (irrespective of η), the potential
exhibits flat directions. This seems to allow for non-catastrophic runaway behaviour, the

– 32 –



J
C
A
P
1
1
(
2
0
2
3
)
0
3
1

2 3 4 5 6 7 8 9

0.1

0.2

0.5

stable

polynomial degree N

Figure 12. We plot the ratio of the average stable evolution time tmean and the maximal chosen
evolution time of tmax = 102 as a function of the polynomial degree N in the polynomial subclass
of integrable Liouville models, cf. eq. (3.68). For the coefficients, we choose CN = 1 and Cn<N = 0
such that all even cases are stable according to section 3.3. Each point in the plot represents an
average of the evolution of Nevol = 100 random initial conditions drawn from a normal distribution
with standard deviation SD = 1.
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Figure 13. We plot the ratio of the average stable evolution time tmean and the maximal chosen
evolution time of tmax = 103 as a function of (i) the exponent η (at fixed ζ = 2) in the left-hand
panel, and for (ii) the exponent ζ (at fixed η = 2) in the right-hand panel, cf. eq. (4.1). Each point
in the plot represents an average of the evolution of Nevol = 100 random initial conditions drawn
from a normal distribution with standard deviation SD = 1. The numerical evolution is terminated if
stiffness is detected or if x(t) > C or y(t) > C, with C = 103.

detection of which requires criterion (B). Without criterion (B), we do not detect any runaway
behaviour for η ⩽ 2 or ζ ⩽ 2 which indicates that the runaways occur with polynomial
growth rate. We vary η at fixed ζ = 2 and vice versa: the results are shown in figure 13
and reproduce the conditions required in the proof of section 3.1. We note that close to the
critical case, the potential becomes almost flat and the runaways are, therefore, increasingly
hard to confidently detect numerically.
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4.3 Numerical evidence in the absence of integrability

Going beyond integrability, we specify the following two classes of interaction potentials, i.e.,

ṼI,δ =
(
1 + x2 + y2

)1−δ
, (4.2)

ṼII,δ =
(
1 + x2y2

) 1
2 −δ

, (4.3)

both supplemented with standard quadratic terms such that

VI,δ = ṼI,δ + 1
2 x

2 − 1
2 y

2 , (4.4)

VII,δ = ṼII,δ + 1
2 x

2 − 1
2 y

2 . (4.5)

(For simplicity, we only consider equal frequencies for x and y.) In both cases, the exponent δ is
chosen such that, as expected from the statement (ℵ), δ ≶ 0 determines the presence/absence
of runaways. This is also what we find numerically (see below).

The above two example potentials involve non-polynomial interactions (except for special
choices of δ). Our third choice of example potential starts with a strictly polynomial
interaction, i.e.,

Vint(x, y) ≡ ṼIII,δ = x2 y2 . (4.6)

Supplemented only with standard kinetic terms, this interaction is unstable. However, we
can generalize the decoupled potentials to

VP =
(
x2
)2+δ

, VG = −
(
y2
)2+δ

, (4.7)

in which case, we find that for the full potential, i.e.,

VIII,δ = ṼIII,δ +
(
x2
)2+δ

−
(
y2
)2+δ

, (4.8)

the exponent δ ≶ 0, once more, seems to determine the presence/absence of runaways (at
least within our finite evolution time).

We show the result of the respective numerical experiments in figure 14 for V = VI,δ

(upper panel), for V = VII,δ (middle panel), and for V = VIII,δ (lower panel). In all of these
cases, the inclusion of criterion (B) does not affect the results. The latter suggests that, for
δ < 0, the runaways are catastrophic, i.e., occur with exponentially fast growth rate.

Model III demonstrates in what sense added self-interactions can apparently stabilize
the motion of nonintegrable systems or, at least, dramatically increase the longevity of stable
motion. In the following, we give further detail on the apparent absence of runaways and
the respective characterization of the motion as longlived.

We start by noting that the numerical experiment summarized in the lower panel
of figure 14 shows that for δ < 0, a significant fraction of initial conditions leads to a
catastrophic runaway before tmax = 100.

This is in stark contrast to all cases with δ > 0, for which we observe no sign of instabilities
at all. The specific case of δ = 1 is further exemplified in figure 15 where we evolve two
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Figure 14. We plot the ratio of the average stable evolution time tmean and the maximal chosen
evolution time of tmax = 100 as a function of the power-law exponent δ for the three classes of
potentials VI,δ (upper panel, cf. eq. (4.4)), VII,δ (middle panel, cf. eq. (4.5)), and VIII,δ (lower panel,
cf. eq. (4.8)). Each point in the plot represents an average of the evolution of Nevol = 100 random
initial conditions drawn from a normal distribution with standard deviation SD = 1.
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Figure 15. We show the evolution of two exemplary cases of random initial conditions (drawn
from a Gaussian distribution with SD = 1 but selected with regards to the discussion in the main
text) for model III with δ = 1. In the upper panels, the motion remains in the local region in which
non-integrable interactions dominate: hence the motion is apparently chaotic on all timescales. In
the lower panels, the motion transitions to larger phase-space variables for which the decoupled

— and thus approximately integrable — potential dominates: hence the motion exhibits seemingly
non-chaotic phases (cf. lower left-hand panel). At very long timescales, both initial conditions lead to
chaotic motion.

distinct and random initial conditions up to tmax = 4 × 104. We generically observe two
different types of evolution, depending on the specified initial conditions.

On the one hand, initial conditions which are sufficiently small, lead to motion which
remains within the central region, throughout the entire evolution. In these cases, the nonin-
tegrable character is always apparent. An example is shown in the upper panels of figure 15.

On the other hand, initial conditions which are sufficiently large, lead to motion which
is dominated by the decoupled — and thus approximately integrable — self-interactions.
In these cases, the motion is close to integrable. In general we find that, the larger the
initial conditions, the harder it is to reveal the nonintegrable character of the motion. We
refrain from explicitly showing one of the cases for which we cannot resolve the nonintegrable
character up to tmax = 4 × 104.

We also observe that, for some intermediate cases of initial conditions, the motion can
transition between both types of behaviour. An example of this is shown in the lower panels
of figure 15. At apparently random evolution times, the motion transitions back and forth
between the nonintegrable character in the central region and the approximately integrable
character at larger phase-space values.
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We emphasize once more that, in all of these cases, the motion remains bounded in a
finite phase-space region, at least up to the investigated evolution time.

5 Discussion

Two point particles with opposite-sign kinetic energies can interact and yet exhibit stable
motion. We prove this statement for a large class of integrable models, for which we show
boundedness of motion, irrespective of the initial conditions (Lagrange stability). We gather
substantial numerical evidence that nonintegrable models can be stable as well or at least
longlived: within the necessarily finite numerical evolution time, we detect bounded motion
and no indication of growth modes. We observe that our integrable and nonintegrable results
seem to be connected by physical conditions on the interaction potential, which can be
summarized as follows (as expressed in (ℵ) of section 4): suppose a coupled Hamiltonian
point-particle system with opposite-sign kinetic terms can be decoupled, in such a way that
uncoupled ghosts and positive energy degrees of freedom are both separately stable due to
their own self-interactions. Then, the coupled system avoids runaways, or at least exhibits
very long-lived motion, if the full potential at sufficiently large coordinates is sufficiently
dominated everywhere by its decoupled counterpart.

Our analytical results are contained in sections 2 and 3 and concern integrable two-
particle Hamiltonians with an additional first integral which is quadratic in the momenta.
(All the corresponding known cases with positive energies are collected in appendix A.) The
analytical results are organized as follows.

First, we show how one can relate ghostly and non-ghostly theories by way of complex
(univalent) canonical transformations and use this to build an integrable ghostly theory from
a one with no ghost, i.e. to “ghostify” a positive kinetic energy theory while maintaining its
integrability. We note that such ghostifications are not a mere recasting of variables as we
do not complexify the initial conditions accordingly. Rather, real initial conditions on one
side of the pair of theories correspond to purely complex initial conditions on the other side,
and vice versa, while we work only with real variables when considering a given theory in
isolation. Nevertheless, the ghostification procedure preserves integrability and thus serves as
a generic construction principle for integrable models with ghostly interactions. Depending
on the specific case, the Hamiltonian on either side of the pair of ghostly and non-ghostly
theories can be complex-valued (and thus of little physical interest) while the other side may
or may not be real-valued. With regards to the systematic construction of integrable ghostly
Hamiltonians, two cases are of particular interest: first, the case in which both sides of the pair
are real-valued. Second, the case in which a real-valued ghostly Hamiltonian can be obtained
from a complex-valued non-ghostly Hamiltonian. We discuss examples of both these cases.

Second, we specify to a class of models with two free functions of (specific combinations)
of the position variables, first obtained by Liouville. We delineate conditions on the free
functions of the Liouville class and — assuming that said conditions hold — provide a rigorous
proof that the resulting motion is bounded in a finite region in phase space, irrespective of
the initial conditions. As in [16], the key to the proof is the additional integral of motion
which, in combination with the Hamiltonian, can be used to bound the absolute value of all
phase-space variables. This integral of motion is constructed from a positive definite quadratic
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form of the canonical momenta, similar to the usual kinetic energy, and a “potential” part
which is bounded from below and is unbounded from above. The conditions enunciated on
the free functions ensure a sufficiently fast growth rate of the “potential” at large phase-space
variables. These properties are in direct analogy with the usual positive definite conserved
energy usually employed to establish stability. Note that for this question it is irrelevant which
of the two conserved quantities drives the evolution. We thus expect that other integrable
models can be analysed in a similar manner.

Third, we systematically identify an exhaustive polynomial subclass of the Liouville
model. This polynomial subclass is real-valued both for the ghostly and the non-ghostly case.
To the best of our knowledge, it has not been previously identified in the literature. As for
stable motion with ghostly interactions, this polynomial subclass contains, in particular, a
tower of polynomial potentials for which the proof conditions hold and for which we have thus
established boundedness of motion in the presence of a ghost. The lowest non-trivial order
features a sextic interaction term and quadratic terms which can be chosen at will. This
provides a strikingly simple model of ghostly interactions which is polynomial, integrable,
and globally stable. Moreover, this system exhibits spontaneous symmetry breaking entirely
due to the interactions with the ghost. Remarkably, the very same interactions which are
often thought to catastrophically destabilize the system, instead introduce novel (Lyapunov)
stable vacua.

We highlight that all the above three parts of our analytical work are systematically
presented and can, presumably, be extended to other integrable systems. Our analysis is
therefore far from exhaustive: even among the known set of all integrable two-particle systems
with a constant of motion, which is quadratic in the momenta (see appendix A), it is thus
possible that further stable ghostly systems can be obtained in the same way.

Our numerical results are contained in section 4 and concern the extension to nonintegrable
models. The analytical proof for boundedness of motion in the integrable Liouville class is
quite striking. It is, however, equally striking that we find no indication that integrability is
necessary. All of the investigated nonintegrable models seem to behave like the integrable ones.
If the interactions at large phase-space variables do not obey the observed conditions (ℵ), we
quickly detect runaway solutions which either lead to a breakdown of the evolution in finite
time or to a less severe runaway. In contrast, whenever the interactions at large phase-space
variables obey the observed conditions (ℵ), we find no indication for the onset of runaways.

The present work calls for various extensions in obvious directions. First, it is clear that
our results should allow for an extension to the multiparticle case, i.e., to one or several ghost
DoFs interacting with several positive-kinetic-energy DoFs. Second, an obvious question is
that of quantization. A similar issue has been studied for some specific analogous PG system
where stability could only be studied numerically and/or where the ghost still caused an
instability, albeit an arguably “benign”, i.e., a slowly-growing one (see e.g. [29]). In this
context the simple sextic polynomial potential which we have established to be integrable
and stable presents a starting point to investigate whether stability persists, as we actually
expect, at the quantum level. Last, we are planning to extend our work to field theories.
In particular, one can construct a theory of two interacting scalar fields ϕ and ψ, one with
positive and one with negative kinetic energy, for which the interaction potential is equivalent
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to the one investigated here. Once more, the simple sextic polynomial potential found here,
appears to be especially amenable for such a study. Finally, an extension of our analysis to
gravitational interactions remains an important question for future work.
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A Integrable two-particle Hamiltonians with polynomial constants of
motion up to quadratic order in the momenta

Here, we collect all the known pairs of a potential V (x, y) and the respective constant of motion
I(x, y, px, py) which correspond to integrable Hamiltonian two-particle systems (cf. eq. (2.6))
and for which I is either linear or quadratic in the momenta. A systematic search for these
integrable models has been pioneered [40], formalized in [41], and subsequently completed
in [42–49]. All results stated here can also be found throughout [49]. For the convenience
of the reader (and correcting some typos), we collect them here in compact form. In order
to match with the literature, we provide the integrable classes for the PP case. Using the
“ghostification” procedure outlined in section 2, one can obtain the corresponding PG classes.

At linear order, only one class of integrable systems is found, i.e.,

class 0: V = f

(
a

2(x2 + y2) + c x− b y
)
, (A.1)

I = a (y px − x py)− b px − c py ,

with a, b, c ∈ C and f an arbitrary function.
At quadratic order, we follow [49] and introduce shorthand variables (repeating some

of the definitions given in the main text)

r2 = x2 + y2 , (A.2)

z± = x± iy , (A.3)

u2 = 1
2

(
r2 + c+

√
(r2 + c)2 − 4 c x2

)
, (A.4)
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v2 = 1
2

(
r2 + c−

√
(r2 + c)2 − 4 c x2

)
, (A.5)

û2 = 1
2

(
r2 +

√
r4 − 2 c z2

±

)
, (A.6)

v̂2 = 1
2

(
r2 −

√
r4 − 2 c z2

±

)
. (A.7)

With these definitions the eight distinct classes of integrable systems can be written as

class 1: V = f(u)− g(v)
u2 − v2 , (A.8)

I = −(xpy − ypx)2 − c p2
x + 2 u

2g(v)− v2f(u)
u2 − v2 ,

class 2: V = g(r) + f(x/y)
r2 , (A.9)

I = (xpy − ypx)2 + 2 f(x/y) ,

class 3: V = f(û)− g(v̂)
û2 − v̂2 , (A.10)

I = −(xpy − ypx)2 − c

2 (px ± i py)2 + 2 û
2g(v̂)− v̂2f(û)

û2 − v̂2 ,

class 4: V = f(r + y) + g(r − y)
r

, (A.11)

I = (ypx − xpy)px + (r + y)g(r − y)− (r − y)f(r + y)
r

,

class 5: V =
f(z+ +√z−) + g(z+ −

√
z−)

√
z−

, (A.12)

I = (ypx − xpy)(px + i py) + i
(px − i py)2

8

− i
(
z+ −

√
z−√

z−

)
f(z+ +√z−)− i

(
z+ +√z−√

z−

)
g(z+ −

√
z−) ,

class 6: V = f(z±)
r

+ g′(z±) , (A.13)

I = (ypx − xpy)(px ± i py)± ig(z±)∓ i z±

(
f(z±)
r

+ g′(z±)
)
,

class 7: V = f(x) + g(y) , (A.14)
I = p2

x + 2 f(x) ,
class 8: V = r2f ′′(z±) + g(z±) , (A.15)

I = px(px ± ipy) + r2f ′′(z±) + g(z±) + 2(z±)f ′(z±)− 2f(z±) ,

where c ∈ C and f and g denote arbitrary functions. A prime denotes a first derivative and a
double prime denotes a second derivative with respect to the argument. In comparison to [49],
we have corrected a typo in the integral of motion I of class 3 (given here in eq. (A.10))
which differs from [49, eq. (3.2.13)] but agrees with [55, eq. (41)] (given there in terms of
A = c/2, F1 = 2f , and F2 = 2g). Invariants which include linear and quadratic terms in
the momenta are prohibited by time reflection symmetry, cf. [49].
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The above functional classes are known to contain several polynomial subclasses, cf. [49]
for a collection of those. In appendices D and E, we identify the polynomial subclasses for
class 1 (in the main text also referred to as Liouville class) and class 3. To the best of our
knowledge these polynomial subclasses have not been previously identified.

B Integrability and vacua

For self-completeness of the paper, as well as to obtain some intermediate results useful for
the discussion of section 3.5, let us briefly review when a system with Hamiltonian

H = 1
2p

2
x + σ

2 p
2
y + V (x, y) , (B.1)

possess a first integral that is quadratic in momenta

I = Kik(x, y)pipk + U(x, y) , (B.2)

where i, k run over {x, y} and σ = ±1. The vanishing of the Poisson bracket {H, I}PB
implies that

px[∂xU − 2(Kxx∂xV +Kxy∂yV )]+ (B.3)
+ py[σ∂yU − 2(Kyx∂xV +Kyy∂yV )]+

+ pipk

(
px∂xK

ik + σpy∂yK
ik
)

= 0 .

This equation can only be satisfied for arbitrary px and py provided the following condi-
tions hold

∂xU = 2(Kxx ∂xV +Kxy ∂yV ) , (B.4)
∂yU = 2σ(Kyx ∂xV +Kyy ∂yV ) ,

pipk

(
px∂xK

ik + σpy∂yK
ik
)

= 0 .

As we assume that Kik(x, y) is a smooth function of x and y, the first two equations of this
system in eq. (B.4) imply that extrema of V (x, y) are also extrema of U(x, y). In particular,
this means that equilibrium points of the system in eq. (B.1) are always located at the
extrema of U . The last equality of the system in eq. (B.4) can be written as

p3
x ∂xK

xx +p2
xpy (σ∂yK

xx +2∂xK
xy)+p2

ypx (∂xK
yy +2σ∂yK

xy)+σp3
y ∂yK

yy = 0 . (B.5)

Again, this equation should hold for arbitrary px and py, which results in the following
conditions

∂xK
xx = ∂yK

yy = 0 , (B.6)
∂yK

xx = −2σ∂xK
xy , and ∂xK

yy = −2σ∂yK
xy , (B.7)

where we used that σ2 = 1 to go from eq. (B.5) to eq. (B.7). Differentiating the first of the
conditions in eq. (B.7) with x and second with y and using eq. (B.6) we obtain

∂2
xK

xy = ∂2
yK

xy = 0 , (B.8)
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which yields

Kxy = κ0 + κx x+ κy y + κxy xy , (B.9)

where κ0, κx,κy and κxy are constants. Substituting this expression into the conditions
in eq. (B.7) provides

∂yK
xx = −2σ(κx + κxyy) ,

and consequently (using also eq. (B.6)).

Kxx = κxx − 2σ
(
κxy + 1

2κxyy
2
)
, (B.10)

and analogously

Kyy = κyy − 2σ
(
κyx+ 1

2κxyx
2
)
, (B.11)

where κxx and κyy are constants. Hence, the kinetic part can be also written as

Kik pkpi = 2[κ0 +κxx+κyy]pxpy +[κxx−2σκxy]p2
x +[κyy−2σκyx]p2

y−σκxy[ypx−σxpy]2 .
(B.12)

The integral of motion I is useful to establish stability when the kinetic part of I is positive
definite. This can be achieved when the terms linear in coordinates are absent i.e. when
κx = κy = 0. Let us compare the expression in eq. (B.12) with the class 1 integral of motion
JLV from eq. (3.31) with σ = −1 where

Kik
LV pkpi = (xpy + ypx)2 + c̃

2
(
p2

x + p2
y

)
,

we have κ0 = κx = κy = 0 and the non-vanishing coefficients are

κxx = κyy = c̃

2 , and κxy = 1 .

After the form of Kik is fixed, one can solve the system of first-order PDEs in eq. (B.4) to
find V (x, y) and U(x, y). This task is beyond the scope of the paper. The corresponding
solutions of this system are reviewed in e.g [49] see also appendix A.

The main point of this appendix was to demonstrate that equilibrium configurations
(∂xV = ∂yV = 0) of integrable systems as in eq. (B.1) are all located at extrema of U(x, y).
However, the opposite is not true in general. Indeed, as the structure of Kik in eq. (B.12)
clearly shows, the matrix of the system of the first two equations in eq. (B.4) may not be
invertible. In particular, one can choose κxy = κy = κyy so that Kyy = 0 and one cannot
invert eq. (B.4) to uniquely express ∂iV through ∂kU . This happens, e.g., for the models
in eqs. (A.11) and (A.15).

Finally, let us discuss a useful relation between the Hessian determinant of the potential U ,

HessU = ∂2
xU ∂

2
yU − ∂x∂yU ∂y∂xU , (B.13)
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and that of the potential V at an equilibrium point. The vanishing of the derivatives of V at
such points implies, using eq. (B.4), that the derivatives of Kik will make no contribution
to second derivatives of U there. Using then the first equation in (B.4) to compute ∂y∂xU

and the second equation in (B.4) to compute ∂x∂yU , which facilitates the computation at
equilibrium points, one finds after some algebra, that one has there

HessU = 4σ (detK)HessV . (B.14)

If the first integral is useful to establish stability, then Kik is positive definite and not
degenerate, so that detK > 0. In that case, for PP case σ = 1 so that the minimum of U
corresponds to the minimum of V . However, for PG case σ = −1 and HessU > 0 corresponds
to HessV < 0. Hence the minimum of U can only be achieved at saddle points of V . Thus,
stable equilibrium points in systems where a ghost y interacts with a usual DoF x are located
in saddle points of the potential V .

C Stable motion with a ghostly x

The proof of section 3.1 can easily be used to show that stable motions also exist in another
class of PG Liouville models: the one obtained from the PP where one now ghostifies x by
a complex canonical transformation C±

x . I.e. starting from the PP Liouville model eq. (3.1)
with σ = +1, we change x to ix and px to −ipx. This yields a model, dubbed here a GP
model, with a Hamiltonian and an extra constant of motion respectively given by

HLV,GP = −p
2
x

2 +
p2

y

2 + VLV(x, y) (C.1)

ILV,GP = (pyx+ pxy)2 + c p2
x + V (C.2)

where VLV, V, u and v are defined respectively as in eqs. (3.2) to (3.4) and (3.7), and
where r2 now reads

r2 = −x2 + y2 . (C.3)

Note in particular, that the above ILV is just identical to eq. (C.2) upon the replacement of
the positive c̃ by a positive c. The analog of the constant of motion eq. (3.31) is now given
by the linear combination ILV,GP + cHLV,GP. In fact, one can show the mere equivalence
between the PG models (i.e. the one obtained from the Liouville PP model by applying C±

y )
and the GP models (i.e. the one obtained from the Liouville PP model by applying C±

x ).
Indeed, considering the expressions for u and v with σ = +1 given in eqs. (3.3) and (3.4)
and reminded below

u2 = 1
2

(
r2 + c+

√
(r2 + c)2 − 4 c x2

)
, (C.4)

v2 = 1
2

(
r2 + c−

√
(r2 + c)2 − 4 c x2

)
, (C.5)

r2 = x2 + y2 , (C.6)
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we see that the application of C±
y to these expressions just changes r2 = x2 +y2 to r2 = x2−y2

and hence transforms u2 and v2 to

u2 = 1
2

(
x2 − y2 + c+

√
(x2 − y2 + c)2 − 4 c x2

)
,

≡ u2
PG(c) , (C.7)

v2 = 1
2

(
x2 − y2 + c−

√
(x2 − y2 + c)2 − 4 c x2

)
,

≡ v2
PG(c) . (C.8)

Conversely, the application of C±
x to eqs. (C.4) and (C.5) leads to

u2 = 1
2

(
−x2 + y2 + c+

√
(−x2 + y2 + c)2 + 4 c x2

)
,

≡ u2
GP(c) = −v2

PG(−c) , (C.9)

v2 = 1
2

(
−x2 + y2 + c−

√
(−x2 + y2 + c)2 + 4 c x2

)
,

≡ v2
GP(c) = −u2

PG(−c) . (C.10)

This implies that, starting from a given PP Hamiltonian of the form

HLV,PP = p2
x

2 +
p2

y

2 + Φ(u2)−Ψ(v2)
u2 − v2 , (C.11)

where for simplicity, we have assumed the functions f and g of eq. (3.2) to be respectively
function Φ and Ψ of u2 and v2, i.e. f(u) = Φ(u2) and g(v) = Ψ(v2), we get by applying
C±

y the PG theory of Hamiltonian

HLV,PG = p2
x

2 −
p2

y

2 + Φ(u2
PG(c))−Ψ(v2

PG(c))
u2

PG(c)− v2
PG(c) .

≡ HLV,PG(c,Φ,Ψ) (C.12)

where HLV,PG is a function of c but a functional of Φ : u2 7→ Φ(u2) and Ψ : u2 7→ Ψ(u2). On
the other hand, the application of C±

x on the same PP theory yields an Hamiltonian

HLV,GP = −p
2
x

2 +
p2

y

2 + Φ(u2
GP(c))−Ψ(v2

GP(c))
u2

GP(c)− v2
GP(c) ,

≡ HLV,GP(c,Φ,Ψ) , (C.13)

= −p
2
x

2 +
p2

y

2 + −Ψ(−u2
PG(−c)) + Φ(−v2

PG(−c))
u2

PG(−c)− v2
PG(−c) ,

where, as above, HLV,GP is a function of c but a functional of Φ : u2 7→ Φ(u2) and Ψ :
u2 7→ Ψ(u2). So we have that

HLV,GP(c,Φ,Ψ) = −HLV,PG(−c, u2 7→ Ψ(u2), v2 7→ Φ(v2)) (C.14)

showing that the PG and GP theories just differ by a global sign in the Hamiltonian, a
proper redefinition of the function Φ and Ψ (or f and g), and a change of sign of c; hence
these theories are equivalent. In particular, the conditions enunciated in (i) and (ii) on the
functions f an g of the proof of section 3.1 yield a stable theory PG eq. (C.12) for c < 0
and a stable theory GP eq. (C.12) for c > 0.
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D Polynomial Liouville potentials

We have systematically constructed all potentials which are polynomials in x and y of degree
2N (with N ∈ N) and belong to the class of integrable Liouville potentials. (In the following,
we present them for the PG case, which is of relevance for this paper. With reference to
section 2, these can straightforwardly be transformed to the PP case.)

At fixed degree 2N , the polynomial potential can be found by (i) making an ansatz with
arbitrary coefficients, (ii) transforming from (x, y) to (u, v) coordinates, (iii) multiplying by
u2 − v2, and (iv) demanding that all mixed coefficients vanish, i.e., that the potential is of
the integrable form in eq. (3.2). We solve this procedure up to order N = 8 and infer that
the general form of these potentials corresponds to choosing

f(u) =
N∑

n=1
Cn

(
u2
)n
, (D.1)

g(v) =
N∑

n=1
Cn

(
v2
)n
. (D.2)

Proof that this leads to polynomial V (x, y) is given as follows. We first note that u2 = 1
2(r2 +

c+ W̃ ) while v2 = 1
2(r2 + c− W̃ ) where W̃ is defined in eq. (3.16) With this definition, we

may rewrite the potential in eq. (3.68) as follows

V
(N)

LV =
N∑

n=1

Cn

W̃

[(
u2
)n
−
(
v2
)n]

(D.3)

=
N∑

n=1

Cn

2n W̃

[(
(r2 + c) + W̃

)n
−
(
(r2 + c)− W̃

)n]

=
N∑

n=1

n∑
k=1

Cn

2n

[(
n

k

)
(r2 + c)n−k W̃ k−1

(
1− (−1)k

)]
,

where we have expanded and collected the binomial coefficients in the last step. Each
summand with even k vanishes due to the last factor. Each summand with odd k gives
a contribution in which W̃ is raised to an even power. Hence, all of the summands are
indeed polynomials in x and y.

Given that all summands with even k vanish, we may also shift the sum: in terms of
the variables (x, y) the polynomial potential thus reads

V
(N)

LV (x, y) =
N∑

n=1

⌈ n
2 ⌉−1∑
k=1

[
Cn

2n−1

(
n

2k + 1

)(
r(x, y)2 + c

)n−(2k+1)(
W̃ (x, y)2

)k
]
, (D.4)

where the ⌈ ⌉ designate the ceiling function which returns the lowest integer larger or equal
to its argument. The explicit first few terms of the potential read

V
(N)

LV (x, y) = + C1 + C2
(
x2 − y2 + c

)
+ C3

[(
x2 − y2 + c

)2
− c x2

]
+ C4

[(
x2 − y2 + c

)3
− 2 c x2

(
x2 − y2 + c

)]
+ . . . , (D.5)
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from which we can see that the n = 1 term corresponds to a constant shift of the potential,
the n = 2 term reproduces equal (but opposite-sign) quadratic terms for the x and the y
mode, and higher-order n ⩾ 3 terms correspond to specific polynomials.

Generally, the nth-order polynomial also includes (some of) the terms appearing at lower
order. In particular, all Cn contribute to the quadratic term for the x mode. At fixed
order, the quadratic terms can thus be adjusted freely. For instance, at order n = 4, we
may trade C2 and C3 for the frequencies ω2

x and ω2
y , as well as C1 to remove the constant

shift. More specifically, we define

C1 = −c ω
2
x

2 ,

C2 = ω2
x −

ω2
y

2 + c2 C4 ,

C3 = −
ω2

x − ω2
y

2c − 2 c C4 . (D.6)

The 4th-order potential V4(x, y) can then be rewritten as

V
(4)

LV (x, y) = ω2
x

2

[
x2 − (x2 − y2)2

c

]
−
ω2

y

2

[
y2 − (x2 − y2)2

c

]
+ C4

[
(x2 − y2)3 − c(x4 − y4)

]
,

(D.7)

which can be rewritten as in eq. (3.69).
For N = 6 we find (reabsorbing an additional constant shift into a redefinition of C1)

V
(6)

LV (x, y) = V4(x, y) + C5(x2 − y2)4 + c C5(x2 − y2)2(x2 − 4y2) + c2C5(3y4 − 2x4)
+ C6(x2 − y2)5 + c C6(x2 − y2)3(x2 − 5y2) + c2C6(x2 − y2)(x4 − 8x2y2 + 10y4)
+ c3C6(6y4 − 3x4) (D.8)

We note that the finite-order construction from which we started out suggests that
eq. (D.4) is exhaustive and captures all possible polynomial potentials in the integrable
Liouville model.

Finally, it is also instructive to note that, with the choice in eqs. (D.1) and (D.2) (leading
to the polynomial potentials eq. (D.4) with some fixed N), the quantity V defined in eq. (3.7)
and entering into the constant of motion ILV is also polynomial and reads

V(N) = −2u2v2
N−1∑
n=1

Cn+1

W̃

[(
u2
)n
−
(
v2
)n]

(D.9)

where, considering e.g. eq. (D.3), the second term on the right-hand side above is just the
same as −2u2v2 × V (N−1)

LV where the Cn are replaced by Cn+1. For example, for N = 4, we
get, using eq. (3.17) as well as eq. (D.5),

V(4) = −2 c x2
[
C2 + C3

(
x2 − y2 + c

)
+ C4

((
x2 − y2 + c

)2
− c x2

)]
, (D.10)

– 46 –



J
C
A
P
1
1
(
2
0
2
3
)
0
3
1

where the coefficients C1, C2, C3 can be replaced as in eq. (D.6) to yield the expression
corresponding to the form in eq. (D.7), i.e.,

V(4) = −2 c x2
[
ω2

x

2 −
ω2

x − ω2
y

2c
(
x2 − y2

)
+ C4

((
x2 − y2

)2
− c x2

)]
. (D.11)

Clearly, this also implies that the alternative constant of motion JLV used in the proof and
defined in eq. (3.31) is polynomial since JLV = ILV + cHLV = (xpy + ypx)2 − c

2

(
p2

x + p2
y

)
+

V + c VLV, or equivalently U = V + c VLV. For completeness, we state the resulting explicit
fourth-order form, i.e.,

U (4) =
ω2

x − ω2
y

2
(
x4 − y4

)
− c
[
ω2

x

2 x2 +
ω2

y

2 y2
]
− c C4

[(
x2 − y2

)2(
x2 + y2

)
− c
(
x4 + y4

)]
,

(D.12)

written again in terms of the frequencies and C4.

E Polynomial class-3 potentials

Class 3 in the previous appendix A provides an example for an integrable two-particle
Hamiltonian which is complex-valued in the PP case but when the y-mode is ghostified
(via the complex transformation C±

y , cf. section 2, i.e. taking y → ±iy and py → ∓ipy) the
resulting PG theory is real-valued. In fact, the complexification is real-valued for both signs
in z± (as part of the model definition in eq. (A.3)) and thus, in fact, generates two complex
classes. These are distinguished with the occurrence of “±” below.

The same choice for the functions f(û) and g(v̂) as in appendix D, eqs. (D.1) and (D.2),
also leads to a polynomial subclass. (Note, however, that û and v̂ for class 3 differ from
u and v for the Liouville class / class 1.)

The polynomial form in terms of (x, y) can be derived in complete analogy to eq. (D.4)
and reads

V
(N)

(class 3)(x, y) =
N∑

n=1

⌈ n
2 ⌉−1∑
k=1

[
Cn

2n−1

(
n

2k + 1

)
r2(n−(2k+1))Ŵ 2k

]
, (E.1)

where ⌈ ⌉ denotes the ceiling function, r =
√
x2 − y2, and Ŵ =

√
r4 − 2 c(x± y)2 as in the

definition of class 3 in appendix A (after complexification).
The explicit first few terms of this potential read

V
(N)

(class 3)(x, y) = + C1 + C2
(
x2 − y2

)
+ C3

[(
x2 − y2

)2
− 1

2c(x± y)2
]

+ C4

[(
x2 − y2

)3
− c
(
x2 − y2

)
(x± y)2

]
+ . . . . (E.2)
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Introducing the frequencies and removing a constant shift, i.e., fixing C1 = 0, C2 = ω2
x+ω2

y

4 ,
and C3 = −ω2

x−ω2
y

2c , the N = 4 case can be written as

V
(4)

(class 3)(x, y) = ω2
x

2 x2 −
ω2

y

2 y2 −
ω2

x − ω2
y

4 c
[
2
(
x2 − y2

)2
+ c
(
x2 + y2

)
− c(x± y)2

]
− C4 c

(
x2 − y2

)
(x± y)2 + C4

(
x2 − y2

)3
. (E.3)

In the main text, we specify to N = 4 and to equal quadratic terms, i.e., to ωx = ωy ≡ ω.
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