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Abstract: In turbulent systems with inverse cascades, energy will pile up at large

scales if no large-scale sink is present. We observe that in forced-dissipative three-

dimensional turbulence from which vortex-stretching is removed, such condensation

is observed, associated with an inverse cascade of helicity. The large-scale structure

of this condensate is characterized by a hyperbolic sine relation between vorticity

and velocity, analogous to the sinh relation between vorticity and stream function

observed in freely decaying 2D turbulence in periodic domains. We generalize a 2D

point-vortex statistical mechanics approach to our 3D system. It is shown that the

predictions of this approach are in agreement with observations of both the forced-

dissipative system, after appropriate averaging, and of the freely decaying system.
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I. INTRODUCTION

In two-dimensional (2D) turbulence at high Reynolds numbers, nonlinear interactions

yield a transfer of energy towards large scales1. If energy is continuously injected, and

in the absence of a large-scale dissipation mechanism, energy eventually accumulates in

low wave numbers, leading to a condensate1. This condensation phenomenon has been

observed numerically and, in 2D periodic square domains, the physical manifestation of

this condensation is the generation of a large-scale counter-rotating vortex pair2,3. Such

large-scale coherent structures in turbulent flows are at the heart of a number of geophysical

processes4–6.

Large-scale structuring in 2D and quasi-2D systems has been extensively studied us-

ing statistical mechanics7–9. Two different statistical mechanics approaches are the Lee-

Kraichnan equilibrium statistical mechanics1,10 and the Robert-Sommeria-Miller (RSM)

approach11–13, respectively. Kraichnan predicted the shape of energy spectra associated

with the absolute equilibrium state of a truncated Fourier system taking into account the

two inviscid invariants surviving Galerkin truncation: energy and enstrophy1. However, a

weakness of Kraichnan’s theory is that it cannot predict structuring and does not take into

account the higher-order moments of the vorticity. For instance, an observation that is not

captured by such an approach is the following: In freely evolving 2D turbulence in square

periodic domains, at long times, vorticity ω and stream function Ψ are locally related by a

hyperbolic sine function, corresponding to a steady solution of the 2D Euler-equations. More

precisely, observations in numerical simulations are consistent with a functional relation

ω = −c−1 sinh(bΨ), (1)

where c and b are constants (c > 0, b < 0)14. This relation was predicted by applying

statistical mechanics to a point-vortex system. Indeed, building upon the ideas of Onsager15,

Joyce and Montgomery obtained the above quantitative prediction16.

Navier-Stokes turbulence is a dissipative system, whereas the point-vortex dynamics

constitute an ideal finite-dimensional Hamiltonian system. The agreement of theory with

observations of freely evolving Navier-Stokes turbulence is, therefore, not a trivial fact.

However, point-vortex descriptions have allowed important progress in the understanding of

two-dimensional turbulence8,17,18.
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It is even less straightforward that these approaches should work when a turbulent system

is continuously stirred by a body force. In such forced-dissipative systems, inviscid invariants

are continuously modified so that the application of equilibrium statistical mechanics is not

well founded in principle. Nevertheless, on average such approaches might work. Indeed,

recently it was observed that maximum entropy theory could be applied to forced-dissipative

geostrophic turbulence19,20. Another indication that statistical mechanics might be applied

to averaged turbulent systems is the success of the application of statistical mechanics of

axisymmetric turbulence21–23 to observations of experiments of turbulent flows, which are

only axisymmetric on average24.

In the present work, we continue this line of research and show how point-vortex statis-

tical mechanics can be applied to forced-dissipative and freely decaying three-dimensional

(3D) turbulence scenarios, however, without vortex stretching. We have recently established

a framework for incompressible turbulence without vortex stretching25,26. In cases where no

forcing or dissipation is present, the governing dynamics can be described by:

∂ω

∂t
+ u · ∇ω = −∇Pω, (2)

where u represents the velocity with ∇ · u = 0, ω = ∇ × u denotes the vorticity, and Pω

is a pressure term ensuring the vorticity to remain solenoidal. Indeed, Eq. (2) is obtained

by removing the vortex-stretching term, ω · ∇u, from the curl of the 3D Euler equation. In

previous work27, we illustrated that the forced turbulent system without vortex stretching

exhibits an inverse helicity cascade (and also a forward enstrophy cascade) bearing similari-

ties to the behavior observed in 2D turbulence. However, different from 2D turbulence, the

no-vortex-stretching system does not conserve kinetic energy. This inverse transfer led us

to consider the following questions: In the absence of dissipation at large scales, will this

system manifest a condensation structure? Can we predict the properties of such a structure

using point-vortex theory?

In this paper, we show that, in forced-dissipative turbulence without vortex stretching,

condensation indeed occurs at the scale of the box. We will also investigate the system

when it is freely decaying from this condensation state. Moreover, we attempt to predict

the characteristics of large-scale structures in both the forced-dissipative and freely decaying

cases using the principle of point-vortex statistical mechanics.

The rest of this paper is organized as follows. In Sec. II, we predict properties of
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large-scale structures in 3D turbulence without vortex stretching by using a generalized

point-vortex model. In Sec. III, we present the numerical setup. Then, in Sec. IV we report

on the assessment of the theoretical results. Finally, Sec. V presents the conclusions.

II. ANALYTICAL CONSIDERATIONS

At large but finite Reynolds numbers, a 2D Navier-Stokes fluid will relax to a quasi-

static maximum entropy state where most of the energy is concentrated at large scales.

When this state is attained, a sinh relation between vorticity and stream function emerges

(Eq. (1)). This was observed numerically14,28 and explained analytically11,29 by a point-

vortex model. The original idea to use such a point-vortex model in this context came from

Onsager. He considered a Hamiltonian system of N parallel point-vortices representing an

incompressible and inviscid 2D fluid15. Then Joyce and Montgomery used this idea to study

the 2D electrostatic guiding center plasma16,30. The system of interacting point-vortices is

equivalent to the system which describes the interaction of long, uniformly charged rods

aligned with a uniform magnetic field. Joyce and Montgomery considered N rods of charge

+e and N more of charge −e and predicted the emergence of the hyperbolic sine relation.

We investigate whether there is a similar functional relation in our turbulent system

without vortex stretching. We generalize the point-vortex model to a 3D system. Thereto

we propose that a 3D vorticity field can be considered as a combination of 6N point-vortices,

the axes of which are each parallel to one of the three coordinate axes. We suppose that in

each direction there are N point-vortices of positive vorticity +1, and N ones of negative

vorticity −1. Without loss of generality, we use non-dimensional vorticities +1 and −1 here.

Similar to Ref.16, we imagine the total volume V = L3 subdivided into small cells of volume

∆ ≪ V . The cells are large enough, however, to contain many particles. We call N+
i,x, N

+
i,y,

N+
i,z and N−

i,x, N
−
i,y, N

−
i,z the number of positive and negative point-vortices in each direction

inside cell i. We can consider that one small cell constitutes a basic unit, which means

the resultant quantities (such as velocity, vorticity, etc.) of all point vortices in a cell can

be considered as the quantity at the center point of the cell. Furthermore, it might seem

artificial that all point vortices are aligned with the coordinate axes. However, since all

cells contain a large number of vortices, we can without loss of generality assume that three

vortices, in the three directions, represent the three components of one point vortex. This
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would reduce the total number of vortices in the description by a factor of three, which will

not make any difference in the asymptotic limit, where all N±
i,a (a indicates x, y, or z) tend

to infinity. Then the vorticity field can be written as
ωx(r) =

∑
i(N

+
i,x −N−

i,x)δ (r − ri) ,

ωy(r) =
∑

i(N
+
i,y −N−

i,y)δ (r − ri) ,

ωz(r) =
∑

i(N
+
i,z −N−

i,z)δ (r − ri) ,

(3)

where ri indicates the position of cell i. The associated velocity field can be obtained using

Biot-Savart’s law

u(x) =
1

4π

∫
R3

ω(y)× (x− y)

|x− y|3 dy. (4)

Substituting Eq. (3) into Eq. (4), yields expressions for the velocity components in each

direction
ux(r) =

1
4π

∑
i

(N+
i,y−N−

i,y)(rz−ri,z)−(N+
i,z−N−

i,z)(ry−ri,y)

|r−ri|3 ,

uy(r) =
1
4π

∑
i

(N+
i,z−N−

i,z)(rx−ri,x)−(N+
i,x−N−

i,x)(rz−ri,z)

|r−ri|3 ,

uz(r) =
1
4π

∑
i

(N+
i,x−N−

i,x)(ry−ri,y)−(N+
i,y−N−

i,y)(rx−ri,x)

|r−ri|3

(5)

with ri,x, ri,y, ri,z the x-, y-, and z-component of ri and rx, ry, rz the x-, y-, and z-component

of r.

This point-vortex model allows us to define an entropy using Boltzmann’s formula. The

entropy of this 3D point-vortex system can be written as

S = lnW (6)

with

W =
(6N)!∏

i

{
N+

i,x!N
−
i,x!N

+
i,y!N

−
i,y!N

+
i,z!N

−
i,z!

} . (7)

The quantity W indicates the number of microstates associated with the macrostate where

there are N+
i,x, N

+
i,y, N

+
i,z positive and N−

i,x, N
−
i,y, N

−
i,z negative point-vortices inside cell i. We

assume N+
i,x, N

+
i,y, N

+
i,z, N

−
i,x, N

−
i,y, N

−
i,z to be large enough for Stirling’s formula to be valid.

We then obtain

S ≈ 6N ln(6N)− 6N +
∑

i(−N+
i,xlnN

+
i,x +N+

i,x −N−
i,xlnN

−
i,x +N−

i,x −N+
i,ylnN

+
i,y +N+

i,y

−N−
i,ylnN

−
i,y +N−

i,y −N+
i,zlnN

+
i,z +N+

i,z −N−
i,zlnN

−
i,z +N−

i,z)
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(8)

Similar to a 2D system, we assume the final state of 3D turbulence without vortex stretch-

ing to be close to the maximum entropy state. We will therefore attempt to determine this

state by maximizing the entropy under the constraints imposed by the dynamical equation.

Indeed, our system (2) conserves enstrophy and helicity26. To proceed, we need therefore to

consider formulas of these two invariants expressed as a function of the variables governing

the 3D point-vortex system. The total helicity of the system is given by

H = 1
2

∫
u · ωdr = 1

8π

∑
i,j

1
|rj−ri|3

((N+
j,x −N−

j,x)
(
(N+

i,y −N−
i,y)(rj,z − ri,z)− (N+

i,z −N−
i,z)(rj,y − ri,y)

)
+

(N+
j,y −N−

j,y)
(
(N+

i,z −N−
i,z)(rj,x − ri,x)− (N+

i,x −N−
i,x)(rj,z − ri,z)

)
+

(N+
j,z −N−

j,z)
(
(N+

i,x −N−
i,x)(rj,y − ri,y)− (N+

i,y −N−
i,y)(rj,x − ri,x)

)
).

(9)

And enstrophy of this 3D point-vortex system can be written as

W =
∑
i

(1)2N+
i,x+

∑
i

(−1)2N−
i,x+

∑
i

(1)2N+
i,y+

∑
i

(−1)2N−
i,y+

∑
i

(1)2N+
i,z+

∑
i

(−1)2N−
i,z.

(10)

The maximum entropy state is now obtained by solving the variational problem,

δS − γδH − αδW = 0 (11)

with γ, α Lagrange multipliers. Similar to what was assumed for 2D systems, we suppose

the numbers of positive or negative point-vortices to be independent of each other. Thus,

the partial derivative of helicity with respect to N+
j,x is

∂H

∂N+
j,x

=
1

8π

∑
i

(N+
i,y −N−

i,y)(rj,z − ri,z)− (N+
i,z −N−

i,z)(rj,y − ri,y)

|rj − ri|3
=

ux(rj)

2
. (12)

Other derivatives have similar forms. Then, substituting Eq. (8), (9) and (10) into Eq. (11)

and deriving the integrand with respect to N+
i,x and N−

i,x yields the expressions

lnN+
i,x + α + γ

2
ux(ri) = 0,

lnN−
i,x + α− γ

2
ux(ri) = 0.

(13)

Results in the other two directions are similar. Hence, the number of point-vortices in cell

i with vorticity vectors along the x-direction are

N+
i,x = exp(−(α +

γ

2
ux(ri))),

N−
i,x = exp(−(α− γ

2
ux(ri))),

(14)
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at the maximum entropy state. Using Eq. (3), we find

ωx =exp(−α)(exp(−γ

2
ux)− exp(

γ

2
ux))

=2 exp(−α) sinh(−γ

2
ux).

(15)

After applying similar derivations in the other two directions, the vorticity components in

the y- and z-directions are

ωy = 2 exp(−α) sinh(−γ
2
uy),

ωz = 2 exp(−α) sinh(−γ
2
uz).

(16)

This sinh relation between vorticity and velocity, Eqs. (15) and (16) are the principal

theoretical results of the present investigation.

III. NUMERICAL METHOD AND SETUP

Direct numerical simulations (DNSs) are performed using a standard pseudo-spectral

solver with a third-order Adams-Bashforth time integration scheme31, which was modified

to remove vortex stretching26. Our computational domain is a cubic periodic box of size

L = 2π. Aliasing errors are removed using the 2/3 rule. DNSs are executed on grids of size

2563.

The Biot-Savart operator is applied in Fourier space to the vorticity equation in order

to obtain an equation for the velocity field. Then the equation for Fourier coefficients of

velocity û, which is solved in our code, is

∂û

∂t
+

i

k2
k ×F [(u · ∇)ω] = f̂ − νk2ηû (17)

with k the wave vector, k = |k| the wave number, F [•] the Fourier transform, f̂ a forcing

term, ν the (hyper)viscosity, and η the hyperviscosity parameter. The physical space equiv-

alent of (17) (Eq. (2)) contains a pressure term which allows to impose incompressibility.

Equivalently, in Fourier-space, the incompressibility (∇ · u = 0) is contained in i
k2
k × F [•]

which projects the nonlinearity of the evolution-equation onto a plane perpendicular to the

wave-vector.

We consider two cases. The first one is a forced-dissipative system. For the second case,

we eliminate the force and allow the system to decay freely. Since we are concentrating

on the condensation state without focusing too much on the dissipation range, we reduce
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the size of the latter by using hyperviscosity and we use therefore the value η = 4 (normal

viscous dissipation corresponds to η = 1). The parameter ν represents the hyperviscosity

rate which is set to 10−13 in our simulations. We choose an injection mechanism which

keeps the energy constant in a narrow wavenumber range32,33 29.5 < k < 31.5 around the

forcing wavenumber kf = 30.5 at a level E (k) = 10−3. A convenient property of this type

of forcing, with respect to the present investigation, is that it does not only inject energy in

the system, but also helicity27.

The initial energy spectrum is chosen as E(k) = 5×10−7. The initial value of the energy

is small enough to allow a clear observation of the energy condensation process. Complex

phases of û are set randomly at the initial moment.

IV. NUMERICAL RESULTS

We first show the energy condensation process in the forced system in Sec. IVA. Subse-

quently, in Sec. IVB, we eliminate the force and allow the system to decay freely from the

condensation state. In both cases, we verify our predictions from the point-vortex model by

illustrating the emergence of a hyperbolic sine relation between velocity and vorticity.

A. Self-organization in the forced system

We start by forcing the system from a random initial condition, dissipating mainly the

small scales. In Fig. 1, we show the time evolution of the helicity flux normalized by its

dissipation rate ϵH , defined as ϵH =
∫
2νk2ηH(k)dk, during the condensate phase from t = 5

to t = 160. In turbulence governed by the reduced Navier-Stokes equation Eq. (17), the flux

of helicity is defined as ΠH(k) = −
∫
Σk

Re
[
N̂ (k) · û∗(k)

]
dk with N̂ (k) = F [−(u ·∇)ω] the

non-linear term in the vorticity equation. Re[·] represents the real part of the quantity in

brackets. Asterisk (·∗) denotes the complex conjugate. Σk is the spherical domain in Fourier

space consisting of all wave vectors with ∥k∥ ⩽ k. The normalized flux is negative at scales

smaller than the forcing wavenumber kf = 30.5, implying the helicity cascades from small

towards large scales during this phase.

In Fig. 2 (a) and (b), we show the time evolution of energy and helicity spectra, respec-

tively. A peak in the energy and helicity spectra appears at large scales after t = 60. Indeed,
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Fig. 1. Flux of helicity normalized by the dissipation rate of helicity during the force-dissipative

phase at t = 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 130, 160. The coloring of the curves evolves in

time from dark to light.
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(b)

Fig. 2. Time evolution of wavenumber spectra of the kinetic energy (a) and helicity (b) during the

force-dissipative phase. The time-instants are the same as indicated in Fig. 1.

since helicity is conserved by the nonlinearity and there is only very weak damping present

at scales k < kf , the physical process leading to the build-up at the large scales of the sys-

tem is associated with the helicity which is transferred to large scales. After arriving at the

largest scales of the system, no dissipation mechanism is able to absorb the helicity injected

by the forcing. The helicity and its associated energy piles then up, leading to large spectral
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Fig. 3. Time evolution of integral quantities in three directions during the forced phase. ⟨•⟩

indicates the volume average. (a) Energy. (b) Helicity. (c) Enstrophy.

peaks at the small wavenumbers. The spectra of kinetic energy and helicity for intermediate

wavenumbers during the inverse cascade of helicity are theoretically proportional to k−7/3

and k−4/3, as expected for the present system27. In unmodified 3D turbulence, the helicity

is transferred in the opposite direction (to small scales). However, dimensional arguments

lead in that case also to the possibility of a −7/3 scaling34, but this is only observed if the

forcing scheme is tuned such that the flow becomes extremely helical35. Due to the limi-

tation of computing resources, the inertial range is not sufficiently large to clearly display

these theoretical scalings.
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(a) (b)

Fig. 4. Visualizations of condensate-like structure at t = 160. (a) Energy. (b) Helicity.

Fig. 5. Scatter plot of y-components velocities and vorticities at the condensation state at t = 160.

In Fig. 3, we show the time evolution of kinetic energy, helicity, and enstrophy in the

three directions, respectively. After t ≈ 60, kinetic energy, helicity, and enstrophy in the

y direction become larger than in the other two directions. At this time the condensa-

tion process starts. The associated condensate-like structure is visualized in Fig. 4. This

structure is constituted of highly anisotropic columnar structures in the y direction. A par-

allel can here be drawn with 2D turbulence where the condensate-like structure is a pair of

counter-rotating vortices.

After reaching this condensate state, we assess the relation between velocities and vor-
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(a) (b)

(c)

Fig. 6. Velocity components in three directions at the condensation state at t = 160. (a) ux. (b)

uy. (c) uz.

ticities as predicted by the point-vortex model in Sec. II. Fig. 5 shows the scatter plot of

uy against ωy for the condensation state at t = 160. A tendency of a sinh-relation can be

observed, but a considerable noise hinders us from identifying a clear functional relation-

ship. In order to reduce the noise, instead of investigating the relation between velocity and

12



vorticity components directly, we focus on their averaged values

⟨uy⟩y (x, z) =
1

My

∑
y

uy(x, y, z),

⟨ωy⟩y (x, z) =
1

My

∑
y

ωy(x, y, z),
(18)

where uy and ωy indicate velocity and vorticity in the y-direction, ⟨·⟩y indicates a space

average in the y-direction and My is the number of grid points in the y-direction (My = 256

in our simulations). Similar definitions can be defined in the other directions. As sinh

is not a linear function, theoretically, we can not derive ⟨ωy⟩y = 2 exp(−α) sinh(−γ
2
⟨uy⟩y)

from Eq. (15) and (16). But if uy is nearly constant along the y-direction, we can get an

approximation
〈
sinh(−γ

2
uy)

〉
y
≈ sinh(−γ

2
⟨uy⟩y). An instantaneous visualization of three

velocity components for the condensation state at t = 160 is shown in Fig. 6. We observe

that ux, uy and uz depend only weakly on the x, y and z directions respectively. Thus, the

averaged values are appropriate for investigating the hyperbolic sine relation. Furthermore,

the structure of uy is similar to a dipole, while structures of ux and uz are closer to a

unidirectional flow. Note that dipoles and unidirectional flows are two condensation states

of 2D turbulence caused by bifurcations of the stochastic Navier-Stokes equations6.

The values of the two Lagrange multipliers α and γ can be determined a priori. Firstly,

we introduce the averaged quantities associated with helicity and enstrophy, as

Have =
1

2

∑
y,z

⟨ux⟩x (y, z) ⟨wx⟩x (y, z) +
1

2

∑
x,z

⟨uy⟩y (x, z) ⟨wy⟩y (x, z)+

1

2

∑
x,y

⟨uz⟩z (x, y) ⟨wz⟩z (x, y),

Wave =
1

2

∑
y,z

⟨wx⟩2x (y, z) +
1

2

∑
x,z

⟨wy⟩2y (x, z) +
1

2

∑
x,y

⟨wz⟩2z (x, y)

(19)

respectively. We substitute the relation ⟨ωm⟩m = 2 exp(−α) sinh(−(γ
2
⟨um⟩m)) into Eq. (19)

where m indicates x, y and z, so that Have and Wave can be written as functions of averaged

velocities ⟨um⟩m. At each moment, exact values of ⟨um⟩m, Have, and Wave can be obtained

from the simulation data. Then the two unknowns α and γ can be calculated from these

two equations of Have and Wave. At t = 160, the analytically predicted curve is ⟨ωm⟩m =

1.5207 sinh(0.3779 ⟨um⟩m) in our simulation.

In Fig. 7, we show scatter plots of averaged components of velocities and vorticities

in three directions for the condensation state at t = 160. A hyperbolic sine relation is
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(a) (b)

(c)

Fig. 7. Scatter plots of averaged components of velocities and vorticities in three directions at

the condensation state at t = 160. The yellow lines present the analytically predicted curve

⟨ωm⟩m = 1.5207 sinh(0.3779 ⟨um⟩m). (a) X-components. (b) Y -components. (c) Z-components.

observed between y-components ⟨uy⟩y and ⟨ωy⟩y. The yellow lines in Fig. 7 indicate the

analytically predicted curve, which overlaps the data points in the direction where most

energy is contained. This collapse verifies our analytical prediction of the sinh relation in

the y-direction. However, for other directions, we observe a linear instead of a sinh relation

between velocities and vorticities, as shown in Fig. 7(a) and (c). The Taylor expansion of

sinh(cx) for small x yields cx with c a constant number, which indicates that the form of

sinh(cx) resembles a straight line when x varies in a small range around 0. We insist that
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these functional relations are not direct fits of the sinh relation to the data but obtained

evaluating the averaged quantities ⟨um⟩m, Have and Wave only.

Moreover, we note that the y direction is not necessarily the direction which contains

most energy. Further details can be found in Appendix A, where we present results from

additional simulations.

B. Freely decaying state

At the condensation state at t = 160, the external force is removed from the system, and

we indicate in this section the moment when the removal of force commences as time t = 0.

In Fig. 8, we show the time evolution of kinetic energy, helicity, and enstrophy in the

three directions, respectively. During the free-decay phase, most of kinetic energy, helicity,

and enstrophy remain concentrated in the y direction. As shown in Fig. 8(a), energy displays

an increasing trend during the dissipation phase, especially in the y direction, which is not

violating any conservation laws because energy is not conserved in turbulence without vortex

stretching26. From Fig. 8(b), we can see that the value of helicity exhibits very little change

over time since most of the helicity cascades towards small wavenumbers and is only weakly

dissipated by the hyperviscosity. Fig. 8(c) shows the decrease of enstrophy.

In Fig. 9(a) and (b), we show the time evolution of energy and helicity spectra, respec-

tively. We observe that the energy and helicity at small scales decay during the dissipation.

The insets in Fig. 9 provide a detailed view around the first modes, revealing that energy

and helicity at large scales increase for a duration t ≤ 16 after the external force is removed.

The large-scale structures persist after eliminating the force, as shown in Fig. 10.

In Fig. 11(a), we show scatter plots of y-components of velocities and vorticities, along

with the analytically predicted black curves. Here, no-averaged values up, H, and W are

used to calculate Lagrange multipliers α and γ. During the dissipation phase, noise at small

scales decreases, and we observe a clear hyperbolic sine relation between uy and ωy. Thus,

we can infer that the noise originates from the small-scale motions, and the sinh relation is

characteristic of the large-scale coherent structures. Our analytical prediction of the sinh

relation in the y direction is confirmed by the overlapping of the predicted curve and data

points. For other directions, similar to the forced phase, we observe a linear instead of a

sinh relation between velocities and vorticities, as shown in Fig. 11(b).
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Fig. 8. Time evolution of integral quantities contained in three directions during the freely decaying

phase. (a) Energy. (b) Helicity. (c) Enstrophy.

V. CONCLUSIONS

In this paper, we have illustrated a large-scale condensation of energy in 3D turbulence

without vortex stretching. As we presented in previous work, helicity cascades from small

to large scales27. During the cascade, energy is carried by helicity towards the smallest

wavenumbers. In the absence of friction at large scales, energy accumulates and forms a

large-scale structure. And this large-scale structure persists when the force is removed.

This condensate of 3D turbulence without vortex stretching behaves like that of 2D

turbulence. We showed analytically a generalized 3D point-vortex model to predict a hy-
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Fig. 9. Time evolution of wavenumber spectra of kinetic energy (a) and helicity (b) during the

freely decaying phase at t = 0, 1, 2, 4, 8, 16. The insets in (a) and (b) provide a detailed view

around the fist modes.

perbolic sine relation between vorticity and velocity in the direction which contains most

energy. In a forced system, after the condensate occurs, the predicted hyperbolic sine rela-

tion is observed between averaged vorticity and velocity, which suggests that the statistical

mechanics approach can be applied to averaged systems, as also observed in experiments24.

At the freely decaying phase, the relation between vorticity and velocity very clearly relaxes

to the predicted hyperbolic sine function, similar to the sinh relation between vorticity and

stream function in freely decaying 2D turbulence.
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(a) (b)

(c) (d)

(e)

Fig. 10. Visualization of energy during the freely decaying phase. (a) t = 1. (b) t = 2. (c) t = 4.

(d) t = 8 (e) t = 16.
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(a) (b)

Fig. 11. Scatter plots of the components of velocities and vorticities during the freely decaying

phase. (a) uy versus ωy at time instants t = 0, 1, 2, 4, 8, 16 from dark to light. (b) x- and z-

components of velocities and vorticities at t = 16. Black lines in (a) and (b) are the analytically

predicted curves at t = 16, given by ωy = 1.511 sinh(0.3718uy).

Appendix A: Supplemental simulations

To assess the robustness of the results presented above, we also executed eight supple-

mental DNS-runs using the same initial energy spectrum but different initial complex phases

of û. We find that the y direction is not necessarily the direction which contains most en-

ergy. Furthermore, in one of the eight simulations, energy in two of the three directions

is comparable and larger than that in the third direction. In this case the sinh relation is

found in the two directions containing larger energy, presented in Fig. 12(b-d).

In all our nine simulations we have thus observed the same type of symmetry breaking

where two components of the kinetic energy take the same value, the other being either

larger or smaller. No observations are reported where all three components tend to the

same value.
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