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First hitting time distribution and cost

assessment in a two-unit system with dependent

degradation processes and subject to imperfect

maintenance

Abstract

This paper proposes a degradation model for a two-unit series system,
where the components exhibit dependence and are subject to imperfect
maintenance. The interdependence between both components is cap-
tured using the trivariate reduction method. The system failure occurs
when the degradation level of either component exceeds a predetermined
threshold. The main motivation of this work is to develop a preventive
maintenance strategy for this system, incorporating periodic imperfect
maintenance actions in order to extend its useful lifetime. These actions
aim to reduce the accumulated degradation level of each component from
its installation in a fixed percentage, following the Arithmetic Reduction
of Degradation model of infinite order. Another goal is to derive the dis-
tribution of time to the system failure, which provides crucial insights
into the system’s reliability and performance, especially in the case of
bivariate degradation. Additionally, a cost model for this maintenance
strategy is developed and several numerical examples are presented to
illustrate the practical implications. The maintenance decision variables
are optimised in order to obtain the minimal expected cost rate within a
finite time horizon.

Notation list

FHT First Hitting Time

ARD(∞) Arithmetic Reduction of Degradation of infinite order

Xi(t) Degradation of component i in absence of preventive mainte-
nance actions

X(t) Baseline degradation process

W0(t) Degradation process shared by both components

Wi(t) Intrinsic degradation process for component i, i = 1, 2.
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Yi(t) Degradation of maintained component i, i = 1, 2.

Y(t) Degradation of the maintained system

µi Drift parameter, i = 1, 2

σi Diffusion parameter, i = 0, 1, 2

Λ(t) General time scale

θ(t) Pearson correlation coefficient between Y1(t) and Y2(t)

αi(t) Gamma process shape parameter i = 0, 1, 2.

b Gamma process scale parameter

Li Failure threshold of component i

ρ Preventive maintenance actions efficiency

T Time between preventive maintenance actions

Tf Time to the system failure

F̄Tf
Survival function of Tf

T̃f First hitting time of the unmaintained process

TR Time to a system replacement

CI(ρ) Preventive maintenance cost

Cd Downtime cost

Cc Replacement corrective cost

ri(·) Reward function of component i

pdf Probability density function
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1 Introduction

Initial research in degradation works focus on describing univariate models.
Typical mathematical tools to model the degradation evolution are the stochas-
tic processes. Many stochastic-process-based models have been introduced to
describe the degradation evolution based, for example, on Wiener processes
([25], [7]), gamma processes ([27], [3], [5]) or Inverse Gaussian processes ([9]).
Although the degradation evolution in unitary systems has been extensively
studied, the research on modeling multi-component degrading systems is more
limited. In practice, industrial systems have a complex structure with more in-
terrelated parts or components that influence the system performance. Avail-
ability and reliability measures are highly dependent on the number of the
components in the system. Besides, for multi-component systems, their com-
ponents may show dependence. For instance, in lighting systems consisting on
many LED lamps [24], the system’s performance characteristics (PCs) present a
likely dependence because of the common usage history. Another example can
be found in rubidium discharge lamps [18], whose degradation can be described
by the rubidium consumption or the decreasing intensity of the lamp.

Several works on degradation modelling of complex systems with dependent
components have been developed in the literature [6], [13], [21], [28]. They can
be roughly divided into three groups [10]:

� Multivariate-based methods. The components are dependent with a
known multivariate distribution [13].

� Copula-based methods. A copula function separates the marginal distri-
butions from the dependency structure of a given multivariate distribu-
tion [18].

� Degradation rate interaction methods. The deterioration of one compo-
nent affects the deterioration of the other components [1].

Multivariate-based methods consist in building multivariate stochastic pro-
cesses by the superposition of independent univariate stochastic processes.
Among the multivariate-based methods, the trivariate reduction method ([13])
has attracted great attention in the last years. A broad definition of the
trivariate reduction method is as follows. Given three independent stochas-
tic processes {X1(t), t ≥ 0}, {X2(t), t ≥ 0} and {X3(t), t ≥ 0}, the dependent
processes {X(t), t ≥ 0} and {Y (t), t ≥ 0} are formed as

X(t) = X1(t) +X3(t), Y (t) = X2(t) +X3(t). (1)

The use of this trivariate reduction method is not new in the degrading systems
literature. For example, in [13] and [20], the bivariate reduction method given
by Eq. (1) is used from three independent gamma processes. An early attempt
of using Eq.(1) with Wiener processes is given by [8]. Recently, in [26] and [30],
the trivariate reduction method with univariate Wiener processes is used.
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Once the behaviour of a degrading system is modelled, the time to the sys-
tem failure can be assessed and different maintenance actions can be planned
in order to enlarge the remaining useful system life. These maintenance actions
can be perfect (when the system is also restored to “as good as new” condition)
or imperfect (where the system is not restored to a new one). Although there
are a large number of papers dealing with multivariate degradation processes,
developing imperfect maintenance models for them remains an open problem
[15]. Early attempts can be found in [26], where a multivariate degradation
process with time-variant covariates and imperfect maintenance effects is ana-
lyzed. Analogously, in [30], repairs are performed in a two-component system
where the repairs rebalance the system. In consequence, developing imperfect
maintenance policies in the context of multivariate dependent degradation is
an important issue in this work [11], [14] . In practice, as the system degrades,
its performance would decrease as well which results in increasing operating
cost as it is shown in [2]. In the same way, the repair cost can increase along
with the maintenance efficiency. In this case, decision makers should take into
account these factors when making maintenance policies in order to minimize
the associated costs. Hence, a maintenance policy is developed in this paper
considering a deterioration-dependent operating cost and a repair-efficiency-
dependent cost.
For stochastic-process-based models, failure time of a degrading system can be
derived by considering the time at which the degradation path of a compo-
nent first reaches a threshold level. The work from [29] provides a systematic
literature review on dependent failure behaviour in risk and reliability. For
unitary degrading systems, the system reliability has been widely analyzed. If
a Wiener process is used to model the degradation of an unitary system, it is
well known that the first hitting time to reach a threshold follows an Inverse
Gaussian distribution. If a gamma process is used, the first hitting time distri-
bution is obtained by using the upper incomplete gamma function. However, as
[23] claims, the results for the multi-component system reliability are scarce in
the stochastic-process-based model context. In a bivariate gamma distribution
context, the first hitting time to exceed a threshold can be approximated by
using the bivariate Birnbaum–Saunders distribution [19]. In this sense, in [4]
and [23], the first hitting time of a bivariate Wiener process is developed. How-
ever, these two works do not incorporate maintenance actions when evaluating
the first hitting time.

In this paper, we focus on the derivation of the system reliability in two-
component degrading systems subject to imperfect maintenance actions. The
model developed in this paper can be inspired for example by the real-world
system considered in [13]. In that paper, the intervention scheduling of a rail-
way track is discussed based on the observation of two dependent randomly in-
creasing deterioration indicators, modelled through a bivariate gamma process.
On the other hand, the results obtained are useful from an applied engineering
point of view, since the reliability of a maintained system is developed. This re-
liability is crucial to study the RUL (Remaining Useful Lifetime) of a degrading
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system [12]. The increasing expectation and variance in the deterioration level
of the components imply the convenience of applying a maintenance policy.
Other practical aspect considered in this paper is the deterioration-dependent
operation cost. In practice, as the system degrades, its performance would
decrease as well which results in increasing operating cost (see [2]).

The challenges proposed in this article lie in various important questions:
how to model the evolution of multivariate dependent degradations of the de-
grading system, how to integrate imperfect maintenance actions, how to derive
the failure time and how to design a maintenance policy. In response to these
questions, in this paper, we focus on a two dependent component degrading sys-
tem. The degradation evolution of each component is modelled using Wiener
and Gamma processes. The dependence between components is described using
the trivariate reduction method. Furthermore, imperfect maintenance actions
are periodically performed reducing the accumulated deterioration level of each
component from its installation. Following the idea of the Arithmetic Reduc-
tion of Degradation of infinite order (ARD(∞)) model introduced in [14] and
more recently developed in [26], the maintenance actions reduce the level of
degradation of an amount which is proportional to its value. Assuming that
the system fails when the deterioration level of a component exceeds a failure
threshold, the failure time distribution of the maintained system is derived in
this paper.

It is necessary for an ARD imperfect maintenance that preventive main-
tenance actions are performed at planned times, but these times need not to
be periodic. However, for optimizing the preventive maintenance strategy, the
periodic assumption is necessary since the periodicity is one of the criteria to
optimize. This is not contradictory at all with condition-based maintenance
(CBM). In fact, we are implementing both: condition-based maintenance if
the system requires it, that is, if it is too degraded (i.e. the failure level is ex-
ceeded) or only the imperfect maintenance policy at periodic inspection times if
the system is in a good condition. In other words, the imperfect repair is always
included through ARD at periodic times unless the system is failed; in this case,
we performed a corrective repair which consists in resetting the system degrada-
tion to 0. Furthermore, an optimal maintenance policy is analyzed considering
deterioration-dependent operation cost and a repair-efficiency-dependent cost
and assuming a finite horizon.

The remainder of this paper is organised as follows. The stochastic model
describing the system degradation evolution and the imperfect maintenance
strategy are presented in Section 2. The distribution of the first hitting time
is studied in Section 3. Section 4 develops the cost model formulation taking
into account the imperfect maintenance strategy previously defined. Numerical
examples are given in Section 5 to evaluate the performance of this maintenance
policy. Finally, Section 6 concludes and provides possible future research lines.
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2 System degradation and imperfect maintenance
modelling

The assumptions of this work are presented in Section 2.1. In Section 2.2, the
degradation modelling is developed. Section 2.3 is devoted to the development
of the imperfect preventive maintenance.

2.1 General assumptions

In this paper, we deal with a system with two dependent degrading components
under the following general assumptions.

1. This system consists of two components subject to an internal degrada-
tion. Two models are developed to describe the degradation evolution of
each component: the gamma-based model and the Wiener-based model.

2. The degradation of both components is correlated and this correlation is
modelled using the trivariate reduction technique.

3. We assume that the system fails when the degradation level of a compo-
nent first reaches a failure threshold. Let L1 and L2 be the respective
failure thresholds of both components.

4. The system failure is dormant, that is, it can only be discovered through
inspections.

5. The system is inspected each T time units. In these inspection times,
if the system is working, imperfect preventive maintenance actions are
performed. We assume that these imperfect maintenance actions (PM)
reduce the accumulated degradation of each component in a ρ% with
0 ≤ ρ < 1. On the contrary, if the system is failed in an inspection time,
the system is replaced by a new one (corrective replacement).

6. Corrective replacement implies a cost of Cc monetary units.

7. Imperfect preventive maintenance actions imply a cost of CI(ρ) monetary
units. This cost increases with the maintenance efficiency parameter ρ.

8. Since failures are only detected at inspections, a system downtime cost
of Cd monetary units per unit time is incurred.

9. A reward is obtained when the system is working. This reward depends
on the degradation level of the component and it decreases as the com-
ponent degradation increases. We denote by ri(x) the reward given by
component i when its degradation is x. This function ri(x) is decreas-
ing in x. We assume that, as long as the system is failed, no reward is
produced in the system.

7



10. The system operates for a finite time period Tmax.

11. The maintenance duration is negligible.

The development of these assumptions will be developed in this section and
the subsequent ones.

2.2 Degradation modelling of the system

Based on the above-listed assumptions, we propose a bivariate stochastic degra-
dation model with imperfect maintenance and we analyze some of its properties.

Firstly, the evolution of the degradation of the two components without
maintenance is described. For i = 1, 2, let {Xi(t), t ≥ 0} be the degradation
level of component i at time t. Starting from three independent univariate
processes {Wi(t), t ≥ 0}, for i = 0, 1, 2 and following the trivariate reduction
technique, the degradation of component i is modelled as

Xi(t) = Wi(t) +W0(t), i = 1, 2, (2)

where W0(t) stands for the common degradation part of both components.
W0(t) represents different random factors affecting the two components simul-
taneously (the influence of the environment, for instance). Wi(t) stands for the
particular degradation process for each component describing the uncertainty
within components.

The evolution of Xi(t) is analyzed considering univariate Wiener processes
and univariate gamma processes for Wi and W0 respectively in Eq.(2). We call
these models as Wiener-based model and gamma-based model respectively.

2.2.1 Wiener-based model

By using the same approach shown in [8] and [26], processes Wi(t) (i = 1, 2)
and W0(t) are given by

Wi(t) = µiΛ(t) + σiBi(Λ(t)), W0(t) = σ0B0(Λ(t)), (3)

where B0 and Bi (i=1,2) are independent standard Brownian processes, hence

X1(t) = µ1Λ(t) + σ1B1(Λ(t)) + σ0B0(Λ(t))

X2(t) = µ2Λ(t) + σ2B2(Λ(t)) + σ0B0(Λ(t)). (4)

Parameter µi is also known as the drift parameter, which indicates the rate of
degradation of Wi and σi denotes the diffusion coefficient of Wi for i = 0, 1, 2.
Λ(t) is a non decreasing function in t, with Λ(0) = 0, which captures the non-
linearity in the random variables X1(t) and X2(t). The marginal processes of
X(t) = (X1(t), X2(t)) are univariate normal with expectation and variance

E[Xi(t)] = µiΛ(t) V ar(Xi(t)) =
(
σ2
0 + σ2

i

)
Λ(t) i = 1, 2.
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When Λ(t) = t, process Xi(t) has a linear mean path µit.
The Pearson correlation coefficient between X1(t) and X2(t) is equal to

σ2
0√

σ2
0 + σ2

1

√
σ2
0 + σ2

2

.

This correlation coefficient is positive and it does not depend on t. It cannot
reach 1 unless σ2

1 = σ2
2 = 0. When the common noise is dominant (σ2

0 >> σ2
i ),

the correlation between X1(t) and X2(t) would be stronger. When the common
noise is negligible, the two Wiener processes evolve almost independently.

2.2.2 Gamma-based model

By using gamma processes to model the evolution of W0(t), W1(t) and W2(t),
the degradation of each component is given by

X1(t) = W1(t) +W0(t)

X2(t) = W2(t) +W0(t),

where Wi(t) are independent gamma processes with shape parameter αi(t)
and same scale parameter b for i = 0, 1, 2. We assume that αi(t) are right
continuous, non decreasing real valued functions. Process {Xi(t), t ≥ 0} is
univariate gamma distributed with shape parameter αi(t) + α0(t) and scale
parameter b. The expectation and variance of these processes are equal to

E[Xi(t)] = (αi(t) + α0(t))b, V ar(Xi(t)) = (αi(t) + α0(t))b
2.

The Pearson correlation coefficient between X1(t) and X2(t) in the gamma-
based model depends on t and it is equal to

α0(t)√
α1(t) + α0(t)

√
α2(t) + α0(t)

.

It means that, when α0(t) is dominant, the correlation between X1(t) and
X2(t) is stronger. When α0(t) is negligible, X1(t) and X2(t) evolve almost
independently.

Next section describes the implementation of the imperfect preventive main-
tenance policy given in Assumption 5.

2.3 Imperfect maintenance policy

In absence of corrective replacements (see Assumption 5), each T time units, an
imperfect PM action is performed and the overall degradation if the components
is reduced in a ρ% with 0 ≤ ρ ≤ 1. Let Y(t) = (Y1(t), Y2(t)) be the process
that describes the degradation of the maintained system and {Yi(t), t ≥ 0} be
the degradation level of the maintained component i, for i = 1, 2. Assuming
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independent increments for Xi(t), the piece-wise evolution of {Yi(t), t ≥ 0} is
as follows.

In t with 0 ≤ t < T , the degradation level of the i-th component is given
by

Yi(t) = Xi(t).

At time T , the first imperfect PM action is performed and the degradation of
the two components is reduced in a ρ%. Denoting by T+ the instant of time
just after the first PM action, we get that

Yi(T
+) = (1− ρ)Xi(T ).

When T < t < 2T , the evolution of the degradation of component i is given
by

Yi(t) = Yi(T
+) +Xi(t)−Xi(T ).

At time 2T− (resp. 2T+), just before (resp. after) the second imperfect
PM action, the degradation level of the maintained component i is given by

Yi(2T
−) = Yi(T

+) +Xi(2T )−Xi(T )

Yi(2T
+) = (1− ρ)

(
Yi(T

+) +Xi(2T )−Xi(T )
)

In a general setting, just before (resp. after) the n-th imperfect PM action,
the degradation of component i is given by

Yi(nT
−) = Yi

(
(n− 1)T+

)
+Xi(nT )−Xi((n− 1)T )

Yi(nT
+) = (1− ρ)

(
Yi((n− 1)T+) +Xi(nT )−Xi((n− 1)T )

)
.

After some straightforward calculus, we get that

Yi(nT
+) =

n∑
j=1

(1− ρ)n−j+1 (Xi(jT )−Xi((j − 1)T )) . (5)

Hence, the effect of the n-th imperfect maintenance action is given by

Yi(nT
+)− Yi(nT

−) = (1− ρ)Yi(nT
−)− Yi(nT

−)

= −ρYi(nT
−)

= −ρ
(
Yi

(
(n− 1)T+

)
+Xi(nT )−Xi((n− 1)T )

)
= −ρ

n∑
j=1

(1− ρ)n−j (Xi(jT )−Xi((j − 1)T )) .

Finally, for nT ≤ t < (n+1)T , the degradation of component i at time t is
given by

Yi(t) = Yi(nT
+) + (Xi(t)−Xi(nT ))

=

n∑
j=1

(1− ρ)n−j+1 (Xi(jT )−Xi((j − 1)T ))

+ (Xi(t)−Xi(nT )) . (6)
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The distribution of the degradation level of the maintained system is next
analyzed for the two particular cases under consideration: the Wiener-based
case and the gamma-based case.

2.3.1 Wiener-based model

Using the additivity property of the normal distribution, the degradation after
the n-th PM action is normally distributed with expectation

E
[
Yi(nT

+)
]
= µi

n∑
j=1

(1− ρ)n−j+1∆Λ(jT ),

and variance

V ar
(
Yi(nT

+)
)

=
(
σ2
0 + σ2

i

) n∑
j=1

(1− ρ)2(n−j+1)∆Λ(jT ),

where ∆Λ(jT ) denotes the increment of the function Λ

∆Λ(jT ) = Λ(jT )− Λ((j − 1)T ). (7)

The degradation Yi(t) at time t for the maintained component i, with nT ≤
t < (n+ 1)T , is normally distributed with expectation and variance given by

E [Yi(t)] = E
[
Yi(nT

+)
]
+ µi(Λ(t)− Λ(nT ))

V ar (Yi(t)) = V ar
(
Yi(nT

+)
)
+
(
σ2
0 + σ2

i

)
(Λ(t)− Λ(nT )).

Remark 1. It is easy to check that E [Yi(t)] and V ar (Yi(t)) are decreasing
with respect to ρ for i = 1, 2.

Example 1. Using a Wiener-based model, realizations of the evolution of the
degradation in absence of maintenance are given in Figure 1 assuming

X1(t) = 3.5Λ(t) + 4.5B1(Λ(t)) + 4B0(Λ(t)) (8)

X2(t) = 4Λ(t) + 3.5B2(Λ(t)) + 4B0(Λ(t)), (9)

for different Λ(t). Figures 2 and 3 show the evolution of the degradation
incorporating imperfect PM actions. These imperfect PM actions are performed
each T = 5 time units with an efficiency equals to ρ = 0.5.

Remark 2. Notice that, if ρ = 1, the expected degradation at time t is given
by

E[Yi(t)] = µi (Λ(t)− Λ(nT )) , nT ≤ t < (n+ 1)T.

In the case of a corrective replacement (the replacement of a component by a
new one) performed at time nT , the expected degradation is equal to

E[Yi(t)] = µiΛ(t− nT ), nT ≤ t < (n+ 1)T.
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(a) Λ(t) = t (b) Λ(t) = 2t1.3

Figure 1: Realization of processes X1(t) (red) and X2(t) (blue).

(a) Λ(t) = t (b) Λ(t) = 2t1.3

Figure 2: Realization of the process Y1(t) (black) and corresponding X1(t)
(red).

(a) Λ(t) = t (b) Λ(t) = 2t1.3

Figure 3: Realization of the process Y2(t) (black) and corresponding X2(t)
(blue).
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It is straightforward to check that, if Λ(·) is convex and Λ(0) = 0, then

Λ(t)− Λ(nT ) ≥ Λ(t− nT ),

hence the expected degradation after a PM action with the maximum efficiency
(ρ = 1) is greater than the expected degradation after a complete replacement
of the component. The PM action resets the accumulated degradation to zero
but not the system age. This is because E[Yi(t)] ̸= E[Yi(t − nT )] when nT ≤
t < (n + 1)T and a CM action is performed at time nT , except for the linear
case Λ(t) = t.

At time t, with nT ≤ t < (n + 1)T , the covariance of Y1(t) and Y2(t) is
given by

Cov(Y1(t), Y2(t)) = σ2
0

(
n∑

i=1

(1− ρ)2(n−i+1)∆Λ(iT ) + Λ(t)− Λ(nT )

)
,

hence the Pearson correlation coefficient between Y1(t) and Y2(t) is positive
and equal to

θ =
σ2
0√

σ2
0 + σ2

1

√
σ2
0 + σ2

2

, (10)

which is constant with time, and also the same as this betweenX1(t) andX2(t).
This coefficient θ is also constant in n, which means that the maintenance
actions have not affected the correlation between both components.

Next, we shall prove some results on the monotonicity of the expectation
and variance with respect to the time. Firstly, the following definition is given.

Definition 1. We say that Λ has increasing increments if

Λ(t1 + T )− Λ(t1) ≤ Λ(t2 + T )− Λ(t2),

whenever T > 0 and t1 ≤ t2.

Remark 3. If Λ is convex, then it has increasing increments.

Lemma 1. In the Wiener-based model, for fixed T , n ≥ 1, 0 < ρ ≤ 1 and
µi ≥ 0 for i = 1, 2, if Λ has increasing increment we get that

E[Yi(nT
+)] ≤ E[Yi((n+ 1)T+)],

V ar(Yi(nT
+)) ≤ V ar(Yi((n+ 1)T+)).

Proof. We get that the difference between expectations is equal to

E[Yi((n+ 1)T+)]− E[Yi(nT
+)] =

n∑
j=1

µi(1− ρ)n−j+1(∆Λ((j + 1)T )−∆Λ(jT ))

+ µi∆Λ(T )(1− ρ)n+1.
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If Λ(·) has increasing increments, then

∆Λ((j + 1)T )−∆Λ(jT ) > 0,

hence
E[Yi((n+ 1)T+)] ≥ E[Yi(nT

+)].

For the variances, the reasoning is analogous since

V ar(Yi((n+ 1)T+))− V ar(Yi(nT
+))

(σ2
0 + σ2

i )

=

n∑
j=1

(1− ρ)2(n−j+1))(∆Λ((j + 1)T )−∆Λ(jT ))

+∆Λ(T )(1− ρ)2(n+1),

and the result holds.

Lemma 1 is true whatever the value of ρ. It means that the degradation
increases in mean and in variance despite the PM. If Λ(·) has increasing incre-
ments, the growth of the degradation is such that no maintenance will be able
to compensate it.

This property is illustrated in Figures 4 and 5, which show respectively
the expectations and variances of Y1(t) and Y2(t) versus t. These plots have
been obtained assuming the Wiener-based model given in Eqs.(8) and (9).
PM actions are performed each T = 5 time units with maintenance efficiency
ρ = 0.5.

(a) Λ(t) = t (b) Λ(t) = 2t1.3

Figure 4: Expectation of processes Y1(t) (red) and Y2(t) (blue) versus t.

The aim of the following lemma is to give a result analogous to Lemma 1
when the degradation levels are compared inside PM intervals instead of just
after maintenance.
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(a) Λ(t) = t (b) Λ(t) = 2t1.3

Figure 5: Variance of processes Y1(t) (red) and Y2(t) (blue) versus t.

Lemma 2. Let t1 and t2 with t1 < t2. If Λ(·) has increasing increments and
t1 and t2 fulfil

t1 − ⌊t1/T ⌋T = t2 − ⌊t2/T ⌋T,
then

E[Yi(t1)] ≤ E[Yi(t2)], V ar(Yi(t1)) ≤ V ar(Yi(t2)).

Proof. If ⌊t1/T ⌋ = ⌊t2/T ⌋ = n, the result holds since t1 = t2. Then,

E[Yi(t1)] = E[Yi(t2)].

If
⌊t1/T ⌋ = n1 < ⌊t2/T ⌋ = n2,

then

E[Yi(t1)] = µi

 n1∑
j=1

(1− ρ)n1−j+1∆Λ(jT ) + (Λ(t1)− Λ(n1T ))


E[Yi(t2)] = µi

 n2∑
j=1

(1− ρ)n2−j+1∆Λ(jT ) + (Λ(t2)− Λ(n2T ))

 ,

The inequality E[Yi(t1)] ≤ E[Yi(t2)] is simply fulfilled since

µi

n1∑
j=1

(1− ρ)n1−j+1∆Λ(jT ) ≤ µi

n2∑
j=1

(1− ρ)n2−j+1∆Λ(jT ),

and thanks to the increasing increments assumption for Λ(·). Let x = t1 −
⌊t1/T ⌋T = t2 − ⌊t2/T ⌋T , then

Λ(t1)− Λ(n1T ) = Λ(x+ n1T )− Λ(n1T )

≤ Λ(x+ n2T )− Λ(n2T ) = Λ(t2)− Λ(n2T ).

15



The reasoning for the monotonicity of the variance is analogous.

2.3.2 Gamma-based model

In 0 ≤ t < T , no imperfect PM action is performed. Hence Yi(t) is a gamma
process with parameters αi(t) + α0(t) and b. At time T , the first PM action
is performed, hence at time t with T ≤ t < 2T , the degradation level of the
maintained component i is equal to

Yi(t) = (1− ρ)Xi(T ) +Xi(t)−Xi(T ).

Since (1−ρ)Xi(T ) is gamma distributed with shape parameter αi(T )+α0(T )
and scale parameter b(1 − ρ), and Xi(t) − Xi(T ) is gamma distributed with
parameters αi(t)+α0(t)−αi(T )−α0(T ) and b, then Yi(t) is no longer gamma
distributed. The evolution of the degradation level of the maintained system
{Y(t), t ≥ 0} is bivariate gamma distributed in [0, T ], but this distribution is
not kept beyond T . In a general setting, we get that

Yi(t) = Yi(nT
+) +Xi(t)−Xi(nT )

=

n∑
j=1

(1− ρ)n−j+1∆Xi(jT ) +Xi(t)−Xi(nT ), (11)

where
∆Xi(jT ) = Xi(jT )−Xi((j − 1)T ).

Variable (1− ρ)n−j+1∆Xi(jT ) is gamma distributed with shape parameter

αi(jT ) + α0(jT )− αi((j − 1)T )− α0((j − 1)T )

and scale parameter b(1− ρ)n−j+1. Hence the sum

n∑
j=1

(1− ρ)n−j+1∆Xi(jT ) +Xi(t)−Xi(nT )

is no longer gamma distributed if ρ ̸= 0.

Example 2. Figure 6 shows the realization of two non homogeneous gamma
degradation processes X1(t) and X2(t) obtained from the corresponding initial
processes W0(t), W1(t) and W2(t) with shape parameters α0(t) = t, α1(t) =
1.3t1.2 and α2(t) = 1.8t1.5, respectively, and common scale parameter b = 1.
Imperfect PM actions are performed each T = 5 time units with a maintenance
efficiency equals to ρ = 0.5. The evolution of the degradation in the maintained
system is plotted in Figure 7.

The behaviour of the expectation and variance of the deterioration in the
maintained system are next obtained.
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Figure 6: Realization of the gamma processes X1(t) (red) and X2(t) (blue).
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(a) Process Y1(t)
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(b) Process Y2(t)

Figure 7: Realization of processes Y1(t) and Y2(t) (black) with corresponding
X1(t) (red) and X2(t) (blue).
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For nT ≤ t < (n + 1)T , the expectation and the variance of Yi(t), for
i = 1, 2, are given by

E[Yi(t)] =

n∑
j=1

(1− ρ)n−j+1 (∆αi(jT ) + ∆α0(jT )) b

+ (αi(t) + α0(t)− αi(nT )− α0(nT )) b

V ar(Yi(t)) =
n∑

j=1

(1− ρ)2(n−j+1) (∆αi(jT ) + ∆α0(jT )) b
2

+ (αi(t) + α0(t)− αi(nT )− α0(nT )) b
2

where for j = 1, 2, . . . ,

∆αi(jT ) = αi(jT )− αi((j − 1)T ),

∆α0(jT ) = α0(jT )− α0((j − 1)T ).

Remark 4. As in the Wiener-based case, the expectation and the variance are
decreasing with respect to ρ.

The expectation and the variance of the gamma-based maintained processes
Y1(t) and Y2(t) versus t are shown in Figure 8. The same parameters as above
are considered.
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(b) Variance.

Figure 8: Expectation and variance of Y1(t) (red) and Y2(t) (blue) versus t.

The covariance between Y1(t) and Y2(t) is given by

Cov(Y1(t), Y2(t)) = b2

 n∑
j=1

(1− ρ)2(n−j+1)∆α0(jT ) + α0(t)− α0(nT )


hence the Pearson correlation coefficient between Y1(t) and Y2(t) varies with
time and it is given by
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θ(t) =
e0(t)√

e0(t) + e1(t)
√
e0(t) + e2(t)

, nT ≤ t < (n+ 1)T, (12)

where

e0(t) =

n∑
j=1

(1− ρ)2(n−j+1)∆α0(jT ) + α0(t)− α0(nT )

ei(t) =

n∑
j=1

(1− ρ)2(n−j+1)∆αi(jT ) + αi(t)− αi(nT ).

The Pearson correlation coefficient between two gamma-based maintained
processes Y1(t) and Y2(t) with parameters given by Example 2 is represented
in Figure 9. Notice that it differs from the Wiener case, in which the Pearson
correlation coefficient is constant (Eq.(10)).
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Figure 9: Pearson correlation coefficient between Y1(t) and Y2(t).

By analogy with the Wiener-based model, by choosing

α0(t) = µ0Λ(t), α1(t) = µ1Λ(t), α2(t) = µ2Λ(t),

we get that

θ(t) =
µ0√

µ0 + µ1
√
µ0 + µ2

,

and the correlation coefficient does not depend on t.
Lemmas 3 and 4 analyze the monotonicity of the expectation and variance

of the degradation of the maintained system in the gamma-based model.

Lemma 3. In the gamma-based model, for fixed T , if αi(·) and α0(·) have
increasing increments, then

E[Yi(nT )] ≤ E[Yi((n+ 1)T )], V ar[Yi(nT )] ≤ V ar[Yi((n+ 1)T )].
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Lemma 4. Let t1 and t2 with t1 < t2. If α(·) and α0(·) have increasing
increments and t1 and t2 fulfil

t1 − ⌊t1/T ⌋T = t2 − ⌊t2/T ⌋T,

then
E[Yi(t1)] ≤ E[Yi(t2)], V ar(Yi(t1)) ≤ V ar(Yi(t2)).

Proof. Proofs of Lemmas 3 and 4 are analogous to those of Lemmas 1 and
2.

As can be seen, the same results are obtained for the bivariate gamma-based
model as in the Wiener-based case. Next section describes the time to system
failure and, subsequently, the system reliability.

3 Failure time distribution

As we explain in Section 2, a series scheme is considered in this paper. It
assumes that the system fails when the degradation level of a component first
reaches a failure threshold. Let Li be the failure thresholds for component i.
The system is inspected each T time units and, in these inspections, imperfect
PM actions are performed if the system is working. If the system is failed, the
system is correctively replaced (CM) in the inspection time.

Next, we shall obtain the time to the system failure under this maintenance
scheme considering the two models exposed above: the Wiener-based model
and the gamma-based model.

3.1 Wiener-based model

In order to analyze the failure time distribution of the system, we shall use
analytic results obtained in [23] in the case of a bivariate Wiener process. We
extend the analysis developed by [23] incorporating imperfect PM actions.

Before, a realization of the maintained system is shown in the Example .

Example 3. 3.1 A realization of the evolution of the maintained system is
represented in Figure 10. The parameters used in the Wiener-based model are
similar to Example 1. Inspections are performed each T = 5 time units. The
efficiency of the PM actions is equalto ρ = 0.5 and L1 = L2 = 20. As we
can check, PM actions are performed at times T and 2T . At time 3T , the
degradation level of one of the components exceeds the failure threshold, hence
the system failure Tf occurs in the time interval (2T, 3T ) with downtime equals
to 3T −Tf . Successive maintenance actions are performed at times 4T and 5T
in a similar way.
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Figure 10: Degradation of the maintained components for the Wiener-based
model.

Let Tf = min(T1, T2) be the time to the system failure, where

Ti = inf {t ≥ 0, Yi(t) ≥ Li} , i = 1, 2. (13)

On the other hand, T̃f is defined as the first hitting time of the unmaintained

process X(t) = (X1(t), X2(t)). That is, T̃f = min(T̃1, T̃2), with

T̃i = inf {t ≥ 0, Xi(t) > Li} , i = 1, 2. (14)

Let g(·) be the joint probability density function of the maintained process
Y(t) up to time Tf (Eq.(13)). It is given by

g(t, w1, w2) =
∂2

∂w1∂w2
P (Tf > t, Y1(t) < w1, Y2(t) < w2), (15)

for w1 < L1 and w2 < L2. To develop Eq.(15), we shall use the analytic
expression of the joint conditional pdf and the first hitting time of the bivariate
process X(t) in absence of PM actions. The conditional pdf of X(t) up to the
time T̃f is given by

fs,x1,x2(t, y1, y2) =
∂2

∂y1∂y2
P (T̃f > t,X1(t) < y1, X2(t) < y2|X(s) = (x1, x2)). (16)

These results are valid for any Λ(t) (linear or not), but Eq.(16) has an
analytical form only for the linear case, which is given by Lemma 2 in [23].
With this density, the distribution of the time to system failure is obtained as
consequence of the following lemma.

Lemma 5. Given X(0) = (0, 0), the function g(n)(t, w1, w2) given by

g(n)(t, w1, w2) =
∂2

∂w1∂w2
P (Tf > t, Y1(t) < w1, Y2(t) < w2),
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with nT < t < (n + 1)T , w1 < L1 and w2 < L2 is recursively obtained as
follows. For 0 < t < T ,

g(0)(t, w1, w2) = f(0,0,0)(t, w1, w2), w1 < L1, w2 < L2,

and for nT ≤ t < (n+ 1)T we get that

g(n)(t, w1, w2) =

∫ L1

0

∫ L2

0

g(n−1)(nT, y1, y2)fnT,(1−ρ)y1,(1−ρ)y2(t, w1, w2)dy1dy2,

where f(·) is given by Eq.(16).

Proof. At time t = 0, both components are new.

� For 0 < t ≤ T , since imperfect PM actions have not yet been performed,
we get that Tf = T̃f and

g(0)(t, w1, w2) =
∂2

∂w1∂w2
P (Tf > t, Y1(t) < w1, Y2(t) < w2)

=
∂2

∂w1∂w2
P
(
T̃f > t,X1(t) < w1, X2(t) < w2

)
= f(0,0,0)(t, w1, w2), (17)

where f(0,0,0)(t, w1, w2) is given by Eq.(16).

� For T < t ≤ 2T , the degradation of each component is reduced in a ρ%
at time T . Let g(1)(t, w1, w2) be the following probability

g(1)(t, w1, w2) =
∂2

∂w1∂w2
P (Tf > t, Y1(t) < w1, Y2(t) < w2).

Conditioning to the degradation level of each component after the first
PM action, we get that

g(1)(t, w1, w2) =
∂2

∂w1∂w2
P (Tf > t, Y1(t) < w1, Y2(t) < w2)

=

∫ L1

0

∫ L2

0

g(0)(T, y1, y2)

(
∂2

∂w1∂w2
P (Tf > t, Y1(t) < w1,

Y2(t) < w2|Y1(T ) = (1− ρ)y1, Y2(T ) = (1− ρ)y2)

)
dy1dy2,

where g(0) is given by Eq.(17). On the other hand,

∂2

∂w1∂w2
P (Tf > t,Y(t) < (w1, w2)|Y(T ) = ((1− ρ)y1, (1− ρ)y2))

=
∂2

∂w1∂w2
P
(
T̃f > t,X(t) < (w1, w2)|X(T ) = ((1− ρ)y1, (1− ρ)y2)

)
= fT,(1−ρ)y1,(1−ρ)y2

(t, w1, w2),

where f is given by Eq.(16).
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� In a general setting, for nT < t ≤ (n + 1)T , let g(n)(t, w1, w2) be the
following probability:

g(n)(t, w1, w2) =
∂2

∂w1∂w2
P (Tf > t, Y1(t) < w1, Y2(t) < w2) .

For w1 < L1 and w2 < L2, we get that

g(n)(t, w1, w2) =
∂2

∂w1∂w2
P (Tf > t, Y1(t) < w1, Y2(t) < w2)

=

∫ L1

0

∫ L2

0

g(n−1)(nT, y1, y2)

(
∂2

∂w1∂w2
P
(
T̃f > t,X1(t) < w1, X2(t) < w2|

X1((n− 1)T ) = (1− ρ)y1, X2((n− 1)T ) = (1− ρ)y2)

)
dy1dy2

=

∫ L1

0

∫ L2

0

g(n−1)(nT, y1, y2)f(nT,(1−ρ)y1,(1−ρ)y2)(t, w1, w2)dy1dy2,

for nT < t ≤ (n+ 1)T .

We can get the distribution of the system lifetime as follows.

Corollary 1. The survival function of Tf at time t with nT < t ≤ (n+1)T is
given by

F̄Tf
(t) = P (Tf > t) =

∫ L1

0

∫ L2

0

g(n)(t, w1, w2) dw1 dw2

where g(n)(·) is given by Lemma 5.

Proof. It is directly obtained by using Lemma 5.

The distribution of Tf is simpler to obtain in the gamma-based case than in
the Wiener-based case since the trajectories of the former are non-decreasing.
The results are given in the next section.

3.2 Gamma-based model

In order to obtain the distribution of Tf , it is necessary to identify clearly the
dependency between Y1(t) and Y2(t) as follows. By using the gamma-based
model, Yi(t) is expressed as

Yi(t) = W̃i(t) + W̃0(t), nT ≤ t < (n+ 1)T,

where

W̃i(t) =

n∑
j=1

(1− ρ)n−j+1∆Wi(jT ) + (Wi(t)−Wi(nT ))

W̃0(t) =

n∑
j=1

(1− ρ)n−j+1∆W0(jT ) + (W0(t)−W0(nT ))
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are given by Eq.(11).
The distribution of W̃i(t) and W̃0(t) corresponds to the sum of n+ 1 inde-

pendent gamma variables with different scale parameters. They can be seen as
a linear combination of increments Zj,i(t),

W̃i(t) =

n+1∑
j=1

zjZj,i(t), t ≥ 0,

with

Zj,i(t) = ∆Wi(jT ) = Wi(jT )−Wi((j − 1)T ), j = 1, 2, . . . , n

Zn+1,i(t) = Wi(t)−Wi(nT ),

and weights
zj = (1− ρ)n−j+1

for j = 0, 1, . . . , n and zn+1 = 1.
The distribution of a sum of independent gamma variables with different

scale parameters was obtained by Moschopoulos in [16]. According to it (see
[27] for more details), the density of W̃i(t) is given by

fW̃i(t)
(y) = Di(t)

∞∑
k=0

ξk,i(t)β̃
−si(t)−k

γ(si(t) + k)
ysi(t)+k−1e−y/β̃ , y ≥ 0, (18)

where
β̃ = min

1≤j≤n
((1− ρ)n−j+1b, b) = (1− ρ)nb,

being 0 ≤ ρ < 1. Functions Di(t) and si(t) are given by

Di(t) =

n∏
k=1

(
β̃

(1− ρ)n−k+1b

)αi(kT )−αi((k−1)T )(
β̃

b

)αi(t)−αi(nT )

,

=

n∏
k=1

(
(1− ρ)k−1

)αi(kT )−αi((k−1)T )
((1− ρ)n)

αi(t)−αi(nT )

and

si(t) =

n∑
k=1

αi(kT )− αi((k − 1)T ) + (αi(t)− αi(nT )) = αi(t), t ≥ 0,

respectively, and ξk+1,i(t) is obtained in a recursive way as

ξk+1,i(t) =
1

k + 1

k+1∑
j=1

jνj,i(t)ξk+1−j,i(t),
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with ξ0,i(t) = 1 and νk,i(t) is given by

νk,i(t) =

n∑
j=1

αi(jT )− αi((j − 1)T )

k

(
1− (1− ρ)j−1

)k
+

αi(t)− αi(nT )

k
(1− (1− ρ)n)

k
.

Let F̄W̃1(t)
, F̄W̃2(t)

and F̄W̃0(t)
be the survival distributions of W̃1(t), W̃2(t) and

W̃0(t) respectively. Using Eq.(18), the following result is obtained.

Lemma 6. By using the gamma-based model, the survival distribution of the
FHT is given by

F̄Tf
(t) =

∫ min(L1,L2)

0

fW̃0(t)
(y)FW̃1(t)

(L1 − y)FW̃2(t)
(L2 − y) dy, (19)

where FW̃1(t)
, FW̃2(t)

are obtained from their corresponding p.d.f. and fW̃0(t)
is

given directly by Eq.(18).

Proof. In the gamma-based model, the processes Y1(t) and Y2(t) are strictly
increasing. We get that

P (Tf ≤ t) = P (Y1(t) ≤ L1, Y2(t) ≤ L2),

hence

P (Tf ≥ t) = P (Y1(t) ≤ L1, Y2(t) ≤ L2)

= P (W̃1(t) + W̃0(t) ≤ L1, W̃2(t) + W̃0(t) ≤ L2)

=

∫ min(L1,L2)

0

fW̃0(t)
(y)FW̃1(t)

(L1 − y)FW̃2(t)
(L2 − y) dy,

and the result holds.

Example 4. Similarly to the Wiener-based model, a realization of the processes
Y1(t) and Y2(t) is represented in Figure 11. Imperfect PM actions are performed
each T = 5 time units considering ρ = 0.5.

Next section describes the maintenance strategy for this system. Given
the complexity of the analytical expressions obtained for F̄Tf

(t), which involve
multiple integrals and derivatives, they have not been evaluated numerically
directly. Instead of, Monte Carlos simulation have been performed to obtain
the results presented in Section 4.
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Figure 11: Degradation of the maintained components for the gamma-based
model.

4 Cost model and optimization

Maintenance optimization approaches based on the average cost rate are widely
studied in reliability. The aim is to optimise decision variables and parame-
ters influencing the model in order to execute an appropriate decision-making
for the given maintenance strategy. The search for this optimal maintenance
strategy has been traditionally based on an asymptotic approach, considering
an infinite life cycle in which the system can be maintained an infinite number
of times. However, this situation rarely occurs in practice and infinite-horizon
assumption may provide a suboptimal solution [20]. For this reason, the op-
timization problem in this paper is formulated in the finite horizon setting
assuming in this paper that the system is working up to a time Tmax.

As we explained in the model assumptions in Section 2, the system is in-
spected each T time units. If the system is not failed in an inspection time, an
imperfect PM action ARD(∞) is performed and the accumulated degradation
of each component is reduced in a ρ% (0 < ρ < 1). If the system is failed in
an inspection time, the system is replaced by a new one. CI(ρ) and Cc denote
the cost associated to the preventive (corrective) maintenance cost. Further-
more, ri(x) is the reward obtained by component i when it is working and the
degradation level of this component is x.

Let C(t1, t2) be the maintenance cost in the interval (t1, t2] and C(t) the
total maintenance cost of the system up to time t. The objective cost function
in the finite time horizon is equal to

CTmax(T, ρ) =
E[C(Tmax)]

Tmax
. (20)

The decision variables considered for the optimization of this maintenance pol-
icy are the time between inspections T and the maintenance efficiency ρ. Hence,
the optimal policy (Topt, ρopt) is the one that minimize CTmax(T, ρ) and its cost
is given by

CTmax
(Topt, ρopt) = inf {CTmax

(T, ρ), 0 < T < Tmax, 0 ≤ ρ ≤ 1} . (21)
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4.1 Expected cost per time unit

By replacement cycle we mean the time between successive replacements of the
system. Let R be the replacement time of the system, with R = (⌊Tf/T ⌋+1)T
and where Tf is the time to the system failure. Hence, the expected cost in a
replacement cycle is given by

CI(ρ)E(⌊Tf/T ⌋)−
2∑

i=1

E

(∫ Tf

0

ri(Yi(t))dt

)
+ CdE(R− Tf ) + Cc, (22)

where CI(ρ)E (⌊Tf/T ⌋) represents the cost due to imperfect PM actions, Cc

stands for the replacement cost, CdE (R− Tf ) corresponds to the downtime
cost and finally the expected reward in a replacement cycle is given by

2∑
i=1

E

(∫ Tf

0

ri(Yi(t))dt

)
.

This reward function is inspired by utility functions of insurance literature [22]
and has been used by several authors in degradation models, such as [17] or
[14].

We focus on the expectation E [C(t)]. The following result is obtained.

Lemma 7. For t ≥ T , the expected cost at time t fulfils the following renewal
equation

E [C(t)] = h(t) +

∫ t

0

fTf
(u)E[C(t− (⌊u/T ⌋+ 1)T )]du,

given the initial condition E [C(0)] = 0 with n = ⌊t/T ⌋ where

h(t) = nCI(ρ)F̄Tf
(nT ) + Cd

∫ t

nT

fTf
(u)(t− u)du

− E

[
1{nT<Tf}

2∑
i=1

∫ min(Tf ,t)

0

ri(Yi(s))ds

]

+

∫ nT

0

fTf
(u) (CI(ρ)⌊u/T ⌋+ Cd((⌊u/T ⌋+ 1)T − u) + Cc)

− E

(
1{(⌊Tf/T+1⌋)T≤t}

2∑
i=1

∫ Tf

0

ri(Yi(s))ds

)
.

For t < T , we get that the expected cost is equal to

E[C(t)] = Cd

∫ t

0

(t− u)fTf
(u) du− E

(
2∑

i=1

∫ min(Tf ,t)

0

ri(Yi(s)) ds

)
.
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Proof. � For t < T , two cases are distinguished. If t < T and t < Tf ,
the only cost is given by the reward. On the other hand, for t < T and
t ≥ Tf , the cost is the reward between 0 and Tf and the downtime cost
between Tf and t. Then, the expected cost at time t is given by

E[C(t)] = E
[
C(t)1{Tf>t}

]
+ E

[
C(t)1{Tf≤t}

]
.

Furthermore,

E
[
C(t)1{Tf>t}

]
= −E

(
1{Tf>t}

2∑
i=1

∫ t

0

ri(Yi(s))ds

)

E
[
C(t)1{Tf≤t}

]
= −E

(
1{Tf≤t}

2∑
i=1

∫ Tf

0

ri(Yi(s))ds

)
+ E

[
Cd(t− Tf )1{Tf≤t}

]
= −E

(
1{Tf≤t}

2∑
i=1

∫ Tf

0

ri(Yi(s))ds

)

+ Cd

∫ t

0

(t− u)fTf
(u)du.

Hence, for t < T , the expected cost at time t is given by

E[C(t)] = Cd

∫ t

0

FTf
(u) du− E

(
2∑

i=1

∫ min(Tf ,t)

0

ri(Yi(s)) ds

)
.

� For t ≥ T , denoting n = ⌊t/T ⌋, the expected cost is conditioned to the
time of the first replacement.

E[C(t)] = E
[
C(t)1{R≤t}

]
+ E

[
C(t)1{R≥t}

]
(23)

= E
[
(C(0, R) + C(R, t))1{R≤t}

]
+ E

[
C(t)1{R≥t}

]
= E

[
C(t)1{R≥t}

]
+ E

[
C(0, R)1{R≤t}

]
+ E

[
C(R, t)1{R≤t}

]
.

Next, the development of the three terms in Eq.(23) is shown. If Tf > t,
then the total cost is given by the cost due to PM minus the reward. If Tf < t,
the downtime cost is added in addition to the above. For the first summation,
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we get that

E
[
C(t)1{R≥t}

]
= E

[
C(t)1{Tf≥t} + C(t)1{nT<Tf<t<(n+1)T}

]
= E

[
1{Tf≥t}

(
nCI(ρ)−

2∑
i=1

∫ t

0

ri(Yi(s))ds

)]

+ E

[
1{nT≤Tf<t<(n+1)T}

(
nCI(ρ)−

2∑
i=1

∫ Tf

0

ri(Yi(s))ds

)]
+ E

[
1{nT≤Tf<t<(n+1)T}Cd(t− Tf )

]
= nCI(ρ)F̄Tf

(nT ) + Cd

∫ t

nT

fTf
(u)(t− u)du

− E

[
1{nT≤Tf}

2∑
i=1

∫ min(t,Tf )

0

ri(Yi(s))ds

]
. (24)

The second summation corresponds to the expected cost in a replacement cycle
given by Eq.(22) if R ≤ t. In the case nT ≤ Tf < (n+1)T , then the replacement
time R = (n+ 1)T . Hence,

E[C(0, R)1{R≤t}] = E
[
1{R≤t}(CI(ρ)⌊Tf/T ⌋+ Cd(R− Tf ) + Cc)

]
− E

[
1{R≤t}

2∑
i=1

∫ Tf

0

ri(Yi(s))ds

]

=

∫ nT

0

fTf
(u) (⌊u/T ⌋CI(ρ) + Cd((⌊u/T ⌋+ 1)T − u) + Cc) du

− E

[
1{R≤t}

2∑
i=1

∫ Tf

0

ri(Yi(s))ds

]
. (25)

Then, as E[C(R, t)1{R≤t}] = E[C(t−R)1{R≤t}], we get that

E
[
C(R, t)1{R≤t}

]
=

∫ t

0

fTf
(u)C(t− (⌊u/T ⌋+ 1)T )du. (26)

Finally, given Eqs.(24), (25) and (26), the result holds.

Next section shows some numerical examples to illustrate the results ob-
tained.

5 Numerical examples

Firstly, numerical examples are shown to describe the first hitting time distri-
bution developed in the previous section. Secondly, numerical examples of the
maintenance strategy are developed.
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5.1 First hitting time

Figure 12 shows the estimation of the failure time density versus time t with
ρ = 0.25 (green), ρ = 0.5 (red), ρ = 0.75 (blue) and ρ = 1 (purple). This plot
has been performed considering the following underlying degrading processes
from Eqs.(8) and (9) and Λ(t) = t, that is,

X1(t) = 3.5t+ 4.5B1(t) + 4B0(t)

X2(t) = 4t+ 3.5B2(t) + 4B0(t)

and assuming that the maintenance has been performed each T = 5 time units
with failure thresholds L1 = L2 = 20. The exact expression of the density could
theoretically be obtained by deriving the cdf given in Corollary 1. But this
computation is very complex, so Figure 12 has been obtained by simulations
for a Wiener process-based model.

Figure 12: Estimation of the failure time density for a Wiener process-based
model obtained by simulations.

Considering the processes and parameters used in Example 1, Figure 13
shows the density estimation of the failure time for a Wiener process-based
model in absence of maintenance actions for the same failure threshold value
as in Figure 12. Notice that, in this case, the failure usually occurs earlier than
in the case with maintenance actions. Both densities described in Figures 12
and 13 have been obtained performing simulations and using non parametric
estimation of the respective kernels.

In Figure 14, the expected failure time is represented for the degradation
Wiener-based processes given by Eqs.(8) and (9) considering different values for
the time between imperfect maintenance actions and the efficiency parameter ρ.
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Figure 13: Estimation of the failure time density for a Wiener process-based
model in absence of maintenance (ρ = 0).

Figure 14: Expected failure time for different values of ρ and varying the time
between imperfect maintenance.
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When the time between maintenance actions decreases (around 10 time units),
greatest disparities are found in the expected failure times for different values
of rho. But, as the time between maintenance actions increases, the behaviour
of the expected failure time is similar for different values of parameter ρ. This
will of course largely depend on the parameters chosen for the model.

Similarly to the Wiener-based case, Figures 15 and 16 represent the den-
sity estimation of the failure time versus time for a gamma process-based for
different values of ρ and in absence of maintenance, respectively. The gamma
processes used to obtain these plots are the following:

X1(t) = W0(t) +W1(t)

X2(t) = W0(t) +W2(t),

where W0(t),W1(t) and W2(t) are gamma processes with shape parameters
α0(t) = t, α1(t) = 1.3t1.2 and α2(t) = 1.8t1.5, respectively, and scale parameter
b = 1. Maintenance actions are performed each T = 5 time units and the
failure thresholds are L1 = L2 = 20.

Figure 15: Estimation of the failure time density for a gamma process-based
model obtained by simulations.

Finally, in the next numerical example, the expected cost per time unit
versus time is compared in the Wiener and gamma cases.

Example 5. The expected cost per time unit E[C(t)]/t versus t is shown in
Figure 17 for the Wiener and gamma-based models. The values µ1 = µ2 = 3,
σ0 = 0.5, σ1 = 0.3 and σ2 = 0.25. The failure thresholds are L1 = L2 = 20.
Function Λ(t) = t is considered for the Wiener-based model and α0(t) = 1.5t1.5,
α1(t) = 3t1.5, α2(t) = 2.5t1.5 for the gamma-based model. PM actions are
performed each T = 5 time units with an efficiency equals to ρ = 0.5. The
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Figure 16: Estimation of the failure time density for a gamma process-based
model in absence of maintenance (ρ = 0).

sequence of cost is equal to CI(ρ) = 100ρ m.u., Cc = 120 m.u. and Cd =
60 m.u. per t.u. No reward is considered for this numerical example, that
is ri(Yi(t)) = 0 for i = 1, 2 and t ≥ 0. The plot is drawn from numerical
simulations. Notice that, with this parameter values, which were chosen in
order that both models give close trajectories for new systems, the expected cost
rate of both models is very similar at the beginning of system lifes (but they
may differ before the first periodic inspection has taken place).

5.2 Maintenance cost

The objective function for the maintenance strategy (the expected cost rate) is
assessed by using Monte-Carlo simulation. Afterwards, the optimization of the
objective cost function with respect to maintenance decision variables ρ and T
as in Eq.(21) under the proposed policy is explored.

5.2.1 Wiener-based model

We assume that the cost of a corrective replacement is equal to Cc = 120
monetary units (m.u.). When the system is down, it incurs a cost equal to
Cd = 60 monetary units per time unit. We also assume that the preventive
maintenance cost depends on the efficiency degree and it is equal to CI(ρ) =
100ρ monetary units.
Furthermore, when the components are working, a reward is obtained. We
assume that the reward function is equal to

ri(x) = ki − aie
bix, x > 0, i = 1, 2, (27)
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Figure 17: Expected cost per time unit in the Wiener-based (blue) and gamma-
based (red) models obtained by simulations.

where x denotes the degradation level of the corresponding component. In
particular, the following functions are considered for each component:

r1(x) = 8− 0.2e0.1x, r2(x) = 15− 0.5e0.1x. (28)

The realization of a Wiener-based degradation model given by Eqs.(8) with T =
5 t.u. and its corresponding reward functions given by Eq.(28) are represented
in Figure 18. The more degraded the component is, the smaller the reward is.
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Figure 18: Reward with respect to time for a Wiener-based realization.

The Wiener-based process is simulated up to the finite horizon Tmax = 100
with parameters σ0 = 0.5, σ1 = 0.3, σ2 = 0.25, µ1 = µ2 = 3 and Λ(t) = t. The
failure thresholds are L1 = L2 = 20. For the optimization process, a grid in
(T, ρ) is used, with 11 points (0, 1) for ρ and 10 points in (0, 10) for T . All the
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results are obtained by Monte-Carlo simulation method with 10000 simulations
in each pair. As we can see in Figure 19, the expected cost per time unit in a
finite horizon E[C(Tmax, ρ)]/Tmax is a convex function. The optimal values for
the objective cost function are obtained for Topt = 3.33 t.u. and ρ = 0.7, with
an expected cost per time unit equals to 16.26 m.u. per t.u.

(a) Expected cost rate
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(b) Contour plot

Figure 19: Expected cost per time unit and contour plot for a Wiener-based
model considering a reward.

Next, the expected cost per time unit is analyzed when bi = ki = ai =
0, for i = 1, 2 in Eq.(28). That is, the system reward is null. Figures 20,
21 and 22 show the cost function per unit time in the finite horizon. It is
deduced that there are several local minima. The straight line formed by them
shows the relationship between the time between imperfect PM actions, T ,
and the maintenance efficiency ρ. If the maintenance actions are close one
to each other, the system has not enough time to deteriorate, so a not very
efficient maintenance is enough to maintain the system in a stable state. If
the maintenance actions become more spaced, then a more efficient imperfect
maintenance action is required to reach the same level of overall efficiency for
the maintenance policy. The location of these minima is largely influenced
by the drift parameters µ1 and µ2 (see Figures 20, 21 and 22) since they
represent the expected degradation rate of each marginal Wiener process X1(t)
and X2(t), respectively. The set of parameters is the same for these figures,
the only difference is the values of the drift parameters µi, for i = 1, 2.

5.2.2 Gamma-based model

The proposed maintenance policy is then evaluated for a gamma-based degra-
dation model. The values α1(t) = 3t1.5, α2(t) = 2.5t1.5, α0(t) = 1.5t1.5 for the
shape parameters and b = 1 for the scale parameter are used. A component
fails when its degradation level exceeds the thresholds L1 = L2 = 20. The finite
horizon is equal to Tmax = 100. Considering the sequence of costs Cc = 120
m.u., CI = 100ρ m.u., Cd = 60 m.u. per t.u. and the reward functions given
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Figure 20: Optimization for µ1 = µ2 = 2 and no reward. The absolute mini-
mum is 11.2 m.u. per t.u., obtained at T = 1 and ρ = 0.1.
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Figure 21: Optimization for µ1 = µ2 = 3 and no reward. The absolute mini-
mum is 16.7 m.u. per t.u., obtained at T = 3 and ρ = 0.5.
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Figure 22: Optimization for µ1 = µ2 = 4 and no reward. The absolute mini-
mum is 20.9 m.u. per t.u., obtained at T = 1 and ρ = 0.2.

by Eq.(28), the expected cost per time unit in the finite horizon is shown in
Figure 23. The optimal expected cost rate is equal to 25.78 m.u. per t.u., with
optimal maintenance efficiency ρopt = 0.6 and optimal time between inspec-
tions Topt = 2.22 time units. Model parameters have been chosen so that the
average degradation is as close as possible of that obtained in the Wiener-based
case. This is why the optimization results are similar with both models.
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Figure 23: Expected cost per time unit and contour plot for a gamma-based
model considering a reward.

With respect to the analysis of the gamma-based model in the case with no
reward, that is, considering bi = ki = ai = 0, for i = 1, 2 in the reward function
given by Eq.(27), the expected cost rate represented in Figure 24 is obtained.
The optimal value for the PM efficiency is equal to ρopt = 0.5. The optimal
time between inspections is equal to Topt = 2.22 t.u. The optimal expected
cost rate is equal to 25.81 m.u. per t.u., which is slightly higher than in the
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Figure 24: Expected cost per time unit and contour plot in a gamma-based
model with no reward.

case with reward.

6 Conclusions and future work

In this paper, a degrading system with two dependent components is analysed.
The model used to describe the correlation is the trivariate reduction method.
This method is used in this paper considering Wiener processes and gamma
processes. This system is periodically maintained and imperfect PM actions
are performed. Under the imperfect PM scheme, if Wiener processes are used
to describe the degradation of the components, the evolution of the maintained
system can be described as a bivariate Wiener process. By contrast, if gamma
processes are used to describe the components degradation, the evolution of
the maintained system is no longer bivariate gamma distributed.

This paper focuses on the analysis of the first hitting time distribution,
that is, the distribution of the time until the system reaches its failure thresh-
old. Theoretical results have been obtained in relation to the first hitting time
distribution for two models: a Wiener-based and a gamma-based model. It
is complicated to deal with this FHT distribution analytically or numerically
because of its complexity, but it is easy to obtain numerical results using sim-
ulation. Furthermore, the expected cost in the finite time horizon fulfils a
renewal-type equation. Finally, an ARD(∞) model is used to describe the im-
perfect PM actions. The reduction of the degradation is more realistic than the
age reduction ARA(∞) where the component age is reduced. On the contrary,
from a mathematical point of view, the use of ARA models allows to keep the
gamma distribution after successive imperfect PM actions.

Notwithstanding wide use of Wiener process and gamma process, as fu-
ture works, it is possible to consider other stochastic processes to describe the
degradation of the components in the trivariate reduction method. An Inverse
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Gaussian process is an appropriate candidate to model the degradation of the
components when this degradation is monotone. As in the Wiener and gamma
cases studied, random effects can be flexibly incorporated when Inverse Gaus-
sian processes are used. The estimation of the parameters of the model is a very
important issue indeed. By considering only the univariate case, the develop-
ment of the parameter’s estimation is shown in [11], where statistical inference
for a Wiener-based degradation model with imperfect maintenance actions is
analysed. In our model, the estimation procedure is more complicated than
the univariate case since it involves, not only the dependence between jumps
along time, but also the dependence of the components deterioration. This will
be addressed as future work.
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