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Fedor Šimkovic IV,1, 2 Riccardo Rossi,3, 4 Antoine Georges,2, 5, 1, 6 and Michel Ferrero1, 2

1CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
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3Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
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We investigate the doped two-dimensional Hubbard model at finite temperature using controlled
diagrammatic Monte Carlo calculations allowing for the computation of spectral properties in the
infinite-size limit and, crucially, with arbitrary momentum resolution. We show that three distinct
regimes are found as a function of doping and interaction strength, corresponding to a weakly
correlated metal with properties close to those of the non-interacting system, a correlated metal
with strong interaction effects including a reshaping of the Fermi surface, and a pseudogap regime
at low doping in which quasiparticle excitations are selectively destroyed near the antinodal regions
of momentum space. We study the physical mechanism leading to the pseudogap and show that it
forms both at weak coupling when the magnetic correlation length is large and at strong coupling
when it is shorter. In both cases, we show that spin-fluctuation theory can be modified in order
to account for the behavior of the non-local component of the self-energy. We discuss the fate of
the pseudogap as temperature goes to zero and show that, remarkably, this regime extrapolates
precisely to the ordered stripe phase found by ground-state methods. This handshake between
finite temperature and ground-state results significantly advances the elaboration of a comprehensive
picture of the physics of the doped Hubbard model.

The discovery of high-temperature superconductivity
in copper oxide (cuprate) compounds [1] has put into
full light the relevance and urgency of the program out-
lined by Dirac in 1929 [2], namely the need to develop
practical methods of calculating and predicting the prop-
erties of large quantum systems of interacting particles.
In this context, the Hubbard model [3, 4] quickly estab-
lished itself [5] as a fundamental and paradigmatic model.
Although not fully realistic on a microscopic level, it
captures important phenomena which are central to the
‘strong correlation’ problem in a broad range of materi-
als [6].

Especially fascinating among those phenomena is the
highly unconventional nature of the non-superconducting
‘normal’ state of the cuprate materials. At elevated tem-
perature, this metallic state displays a partial destruc-
tion of the Fermi surface associated with the formation
of a ‘pseudogap’ corresponding to a depletion of the num-
ber of excitations available to the system. At low tem-
perature, a rich diversity of phases with different kinds
of intertwined long-range order are observed, most no-
tably charge density waves. This raises a fundamental
and still widely open question. Is the pseudogap state a
fundamentally new kind of metallic state that could in
principle be stabilized down to zero temperature with-
out encountering an ordering instability, or is it a finite-
temperature intermediate state which is always unstable
to various kinds of long-range ordering?

Interrogating the Hubbard model about this funda-
mental question has proven to be a daunting challenge.
In recent years, significant progress has been made in un-
derstanding the physical properties of this model through

the development and use of controlled and accurate com-
putational methods. However, a dichotomy largely ex-
ists among those computational studies. Wave-function
based methods have addressed the nature of the ground-
state and demonstrated that it is characterized by spin
and charge ordering forming stripe patterns at low doping
levels [7–9] as proposed early on in the context of mean-
field studies [10–12]. Methods aimed at non-zero temper-
atures, on the other hand, have revealed that the Hub-
bard model hosts a pseudogap regime associated with
magnetic correlations [13–20]. Understanding the fate
of the pseudogap state as temperature is lowered and
how it connects to ground-states with long-range order
calls for a ‘handshake’ between different families of es-
tablished computational methods and the development
of new ones.

Here, we provide an answer to some of these outstand-
ing questions. Using an unbiased computational method,
we identify the crossovers between the different regimes
of the two-dimensional Hubbard model. We show that
the pseudogap originates from magnetic correlations and
by following its temperature dependence we provide evi-
dence that it eventually evolves into a ground state with
long-range spin and charge stripe order.

We study the doped repulsive two-
dimensional Hubbard model defined by Ĥ =∑

k,σ εk ĉ
†
kσ ĉkσ + U

∑
r n̂r↑ n̂r↓ − µ

∑
r,σ n̂rσ with

εk = −2t (cos kx + cos ky). We investigate the temper-
ature range 0.07t ≤ T ≤ 0.25t and coupling strengths
up to U = 8.5t. We employ diagrammatic Monte
Carlo, which is an unbiased, numerically exact technique
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formulated directly in the thermodynamic limit [21–27].
It allows us to obtain physical quantities with arbitrary
momentum resolution, which is a crucial advance
over other available methods for the purposes of this
study. We also compare our results with dynamical
mean-field theory [28] and its 16-site dynamical cluster
approximation extension [13–15, 17], see Supplementary
Information (SI). In the following, the hopping amplitude
t is used as the unit of energy and temperature.

A. Finite temperature phase diagram and
crossovers

By analyzing our data, we identify in Fig. 1 three
distinct physical regimes separated by well-defined
crossovers, as a function of interaction strength U ≤ 8
and hole-doping levels up to δ = 1 − n = 20% with n
the average electronic density per site. The five panels in
Fig. 1 display how these crossovers evolve as a function of
temperature T = {0.07, 0.1, 0.15, 0.2, 0.25}. We describe
these regimes here in qualitative terms, see SI for details.

The first regime (blue regions in Fig. 1) corresponds to
a weakly correlated metal. We identify the Fermi surface
(FS) from the maximum of the spectral function proxy
A(k) = − 1

π ImG(k, iω0), where ω0 = πT is the lowest
p = 0 Matsubara frequency ωp = (2p+ 1)πT [29]. In this
regime, the FS is electron-like and very close to that of
the non-interacting system. The spectral weight is uni-
form along the FS and relatively large, the self-energy
is rather small and quasiparticles are long-lived. This
regime is found at large doping levels or weak interac-
tions, a representative point being W in Fig. 1.

For stronger interactions and intermediate doping lev-
els, a different metallic regime (green regions) is found in
which the topology of the FS (as defined above) is hole-
like. The system undergoes an interaction-driven Lifshitz
transition when crossing into this regime from the weakly
correlated metal, as indicated by the green triangles in
Fig. 1. The self-energy has become relatively large and
the quasiparticle lifetime has decreased significantly. We
refer to this regime as a strongly correlated metal (rep-
resentative point: S).

The red regions of Fig. 1 are characterized by a pseudo-
gap (PG) at the antinode, which we detect by multiple
criteria based on the spectral function, self-energy and
uniform susceptibility, as discussed in details in the SI.
Inside the pseudogap region, the lighter red region de-
scribes a regime where the electronic self-energy under-
goes a series of momentum-selective crossovers, as dis-
cussed in more details below. We note that, in agree-
ment with earlier studies [19], a pseudogap only appears
at strong and intermediate coupling when the FS topol-
ogy is hole-like. Comparing the different panels in Fig. 1,
the PG regime is seen to become more extended as tem-
perature is lowered.

In order to address the important question of the inter-
play between the spatial range of magnetic correlations

and the formation of the PG, we depict in Fig. 1 con-
tour lines of equal spin correlation length ξ (dashed black
lines). It is seen that at weak interactions the PG is asso-
ciated with fairly long-ranged spin correlations [31, 32].
In contrast, at stronger coupling, a PG is already found
at a high temperature when the correlation length is only
a couple of lattice sites. This is a key qualitative dif-
ference between the nature of the PG regime at weaker
(representative point P1) and stronger coupling (P2, P3).
Other differences between these two regimes of the PG
are further described below.

The nature of spin correlations actually undergoes a
qualitative change from commensurate (q = (π, π)) at
low doping and higher temperature, to incommensurate
(q = (q, π)) at higher doping and lower temperature,
in agreement with the finding of previous studies [33–
35]. For T = 0.2 the crossover happens around 10%
doping, while at T = 0.1 roughly 7.5% is sufficient (and
very weakly dependent on U). At these intermediate
temperatures, the onset of the pseudogap is not directly
sensitive to the commensurate or incommensurate nature
of magnetic correlations.

B. Fingerprints of crossovers between regimes

In Fig. 2 we present momentum-resolved spectral prop-
erties over a quarter of the Brillouin zone (BZ) at T =
0.2, for selected points in the phase diagram of Fig. 1
corresponding to the different physical regimes. In the
left column we display the low-energy spectral function
proxy A(k). The middle column represents the imag-
inary part of the self-energy at the lowest Matsubara
frequency Im Σ(k, iω0) and the right column shows the
slope of the imaginary part of the self-energy obtained
from the first two Matsubara frequencies: ∆ Im Σ(k) ≡
Im Σ(k, iω0) − Im Σ(k, iω1). In a conventional metallic
phase, this quantity is positive. We have chosen a mo-
mentum resolution of 64× 64 for all quantities.

The top row (W ) of Fig. 2 corresponds to the weakly
correlated metal (U = 4, n = 0.866). The Fermi surface
obtained from the maximum of A(k) in the BZ (green
line) essentially coincides with that of the non-interacting
system (white line in the middle column). It is also very
close to the zero-energy quasiparticle line obtained from
εk−µ+ReΣ(k, iω0) = 0 (black line), which indicates the
expected FS if lifetime effects coming from the imaginary
part of the self-energy were neglected. The fact that it is
close to the interacting FS is consistent with the rather
small and mostly uniform self-energy in this regime. The
spectral weight along the whole FS is large and essentially
uniform in this regime.

The second row (S) corresponds to a strongly cor-
related metal at intermediate doping (U = 7.5 and
n = 0.868). The momentum dependence of Re Σ(k, iω0)
induces a reshaping of the zero-energy quasiparticle line
that becomes hole-like. The FS is also hole-like, in
strong contrast to that of the non-interacting system,
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FIG. 1. Distinct regimes of the doped two-dimensional Hubbard model and their evolution as a function of temperature. The
blue and green regions correspond to a weakly and strongly correlated metal, respectively (see text). The red regions correspond
to the regime where a pseudogap is present at the antinode. Dashed lines indicate contours of constant spin correlation length.
The plain gray line, reproduced from Ref. [30], indicates the region where the ground state displays long-range spin/charge
stripe ordering.
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FIG. 2. Fingerprints of different regimes. The momentum-
resolved spectral function A(k), the imaginary part of the self-
energy Im Σ(k, iω0), and the difference between the imaginary
part of the self-energy at the two lowest Matsubara frequen-
cies, ∆ Im Σ(k) = Im Σ(k, iω0) − Im Σ(k, iω1), are shown for
selected points W,S, P1, P2 in the phase diagram of Fig. 2,
at a temperature T = 0.2. The white lines indicate the non-
interacting Fermi surface. The green lines show the maximum
of the spectral function. The zero-energy quasiparticle lines
are shown in black (see text).

but its location does not quite coincide with that of
the zero-energy quasiparticle line because the imaginary
part of the self-energy has prominent features close to
(π, π/2). Lifetime effects suppress the antinodal spec-
tral weight by about 9% with respect to the node. The
change of FS topology from electron-like to hole-like can

be interpreted as a correlation-induced Lifschitz transi-
tion and is shown with green dots in Fig. 2. For both
regimes S and W , ∆ImΣ(k) is positive over the whole
BZ, compatible with a metallic behaviour.

The third row (P1) is characteristic of a weak-coupling
pseudogap (U = 4 and n = 0.977). Similarly to the case
above, the real part of the self-energy shifts the zero-
energy quasiparticle line to a hole-like shape. However,
as the maxima in the imaginary part have moved closer
to (π, 0), the interacting FS actually remains electron-like
and the antinodal spectral weight is further reduced by
roughly 13% as compared to the node. As temperature
is decreased, the antinodal spectral weight is reduced,
confirming the presence of a pseudogap.

The last row (P2) displays a pseudogap with more pro-
nounced features and located deeper inside the strong-
coupling regime (U = 7 and n = 0.977). Quasiparti-
cles are short-lived, with a Fermi arc forming around the
nodal region, while the antinode spectral intensity is re-
duced by about 14%. As in the weak-coupling pseudo-
gap, the zero-energy quasiparticle line is strongly mod-
ified and is hole-like. Lifetime effects strongly suppress
the spectral weight above the antiferromagnetic Brillouin
zone and the maxima of the spectral function define an
electron-like FS. For both P1 and P2, the slope of the
self-energy is negative in a region just above the antifer-
romagnetic BZ. As shown in more detail in the SI, this
quantity is a good indicator of the onset of the pseu-
dogap region, which commences when the slope changes
sign close to the antinode (full red circles in Fig. 2). As
the doping is decreased, the area of the Brillouin zone
where the slope changes sign extends out of the antin-
odal region into the nodal region (indicated by open red
circles in Fig. 2, see SI for a detailed discussion).

It is interesting to note that, as temperature is de-
creased in the pseudogap region, the imaginary part of
the self-energy increases, although the momentum space
region where it is large remains outside the antiferro-
magnetic BZ (see SI). As a result, the lifetime effects get
stronger with decreasing temperature at the antinode,
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FIG. 3. Comparison to modified spin-fluctuation theory. Mo-
mentum resolved non-local components of the real (bottom
rows) and imaginary parts (top rows) of the self-energy are
shown for selected points within the pseudogap regime at
T = 0.2. The numerically exact results (first and third rows)
are compared to a spin-fluctuation theory fitting procedure
(second and fourth rows), as described in the main text. Black
lines indicate the zero-energy quasiparticle lines. White lines
indicate the FS associated with the bare Green’s function
G0(k, iω0 = iπT, µ̄) used in the fits.

while they have a much weaker effect at the node where
quasiparticles remain quite coherent. This dichotomy
between antinodal and nodal quasiparticles is also ob-
served in cluster extensions of dynamical mean-field the-
ory [14, 17, 36–38].

C. Insights from a modified spin-fluctuation theory

In this section, we ask whether the PG regime can be
described by some form of spin-fluctuation theory. It is
known from past work [31, 32, 39] that this is indeed the
case at weak coupling. The question is whether such a
description is also possible at strong coupling, despite the
rather short correlation length which invalidates the con-
ditions for a conventional application of spin-fluctuation
theory. We note that previous work based on a ‘fluctu-
ation diagnostics’ [40] in the framework of both cluster
extensions of DMFT [18] and diagrammatic MC [24] has
shown that the spin channel is indeed where the action
takes place in relation to the formation of the PG. This
point is further reinforced by a direct evaluation of the
spin and charge susceptibilities in both the weak- and
the strong-coupling PG region. These quantities are dis-

played in Fig. 4 (see also Ref. [33]) and indicate that
the physics is dominated by spin fluctuations in the tem-
perature regime that we investigate while the charge re-
sponse is, in contrast, very weak. This clearly points at
the pseudogap being of magnetic origin rather than due
to the fluctuations of a low-T charge order, which is also
consistent with the conclusions from cluster extensions of
DMFT. These considerations provide a strong incentive
for attempting a spin-fluctuation-inspired description of
the PG.

To this end, we divide the self-energy into a local
(uniform in momentum space) and non-local part: Σ =
Σloc + Σnl. The local part is quite large, especially in the
strong-coupling regime, and is not adequately approxi-
mated by spin-fluctuation theory. In the SI we assess
the accuracy of dynamical mean-field theory (DMFT)
in computing the local component. For the non-local
component, we draw inspiration from Hedin’s equation
Σ = −G ? W ? Γ involving convolutional products over
momenta and frequencies, with W = U − U2χsp. Here
Γ is the vertex function and χsp is the dynamical spin
susceptibility. We approximate this exact expression by
considering the following ansatz for the non-local part of
the self-energy:

Σsp
nl (k, iω0) = γ̄ U2 T

1

N

∑
q

G0(k + q, iω0, µ̄)

(π − q)2 + ξ̄−2
. (1)

Here, we have replaced the vertex Γ by a constant γ̄ and
the effective spin interaction W by an Ornstein-Zernike
form of the commensurate spin susceptibility χsp cen-
tered around π = (π, π) and with correlation length ξ̄.
In Eq. 1, we use a non-interacting form of the Green’s
function G0 which, importantly, involves an adjustable
chemical potential µ̄. Furthermore, we have limited the
frequency convolution to the zero bosonic Matsubara fre-
quency only, an approximation which is known to become
more accurate at low-T when a pseudogap opens [31, 39].
We use a fitting procedure on our numerically exact data
in order to determine the three parameters γ̄, µ̄, ξ̄, and
consider only the imaginary part of the self-energy in
the optimization process. In Fig. 3 we present the real
and imaginary parts of the non-local self-energy for three
different points within the pseudogap regime, compar-
ing our numerically exact results to the optimized spin-
fluctuation expression.

The first column of Fig. 3 shows an example of the
weak-coupling pseudogap regime (P1: U = 4 and n =
0.977). Here we find remarkable agreement between the
self-energy fit and the original data, both for the real
and the imaginary part. The momentum dependence as
well as overall magnitude of the fit is close to perfect.
The parameter µ̄ = −0.26 is somewhat lower than the
non-interacting chemical potential corresponding to the
density (µ0 = −0.10). The parameter ξ̄ = 5.0 is close
to the actual (commensurate) value of ξ = 4.3 obtained
numerically. Finally, γ̄ = 0.5, which hints to the fact that
the Γ vertex is relatively uniform and not very large.
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The middle column corresponds to a point in the
strong-coupling pseudogap regime (P2: U = 7, n =
0.958). Our spin-fluctuation ansatz still produces a qual-
itatively correct picture, but differences are apparent at
the quantitative level. The extrema in the imaginary part
are in the correct location, although somewhat broader
than in the data. Let us emphasize that adjusting µ̄ is
essential to correctly place the extrema of ImΣ (see the
white lines in Fig. 3). Using such a freedom for the non-
interacting starting point is indeed often used to improve
perturbative expansions [24, 33, 41–44]. The fitting pro-
cedure yields µ̄ = −0.89, ξ̄ = 1.60 (we expect the exact
value to be ξ . 2) and γ̄ = 4.90, which points to the fact
that the Γ vertex becomes large in this regime. Remark-
ably, the real part has the correct momentum structure,
but since our fitting procedure for γ̄ only takes into ac-
count the imaginary part, the overall magnitude of the
real part is roughly four times too large. The fact that
a single consistent value of γ̄ cannot be found to fit both
the imaginary and real parts of the self-energy points to
a strong momentum dependence of the Γ vertex. The
right column of Fig. 3 has the same density and an even
larger coupling strength (P3: U = 8.5, n = 0.956). From
fitting the self-energy we observe a continuation of the
trend found at lower U , where µ̄ = −1.03, ξ̄ = 1.25 and
γ̄ = 4.84.
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FIG. 4. Spin and charge correlations. The zero-frequency
spin and charge susceptibilities at their maximum value in
momentum space are displayed as a function of temperature,
for representative examples of the weak-coupling (left panel)
and strong-coupling (right panel) pseudogap regimes.

We conclude that a properly modified spin-fluctuation
theory provides an excellent theoretical description of
the non-local part of the self-energy in the weak-coupling
pseudogap regime and still does qualitatively well in its
strongly-coupling counterpart. In the latter regime, how-
ever, a quantitative fit of the imaginary and real parts
cannot be simultaneously achieved. Amending our ansatz
by the possibility of an incommensurate χsp with maxima
at q = (π± δ̄, π) does not improve the fitting procedure.
The authors of Ref. [20] made the interesting observation
that the vertex becomes complex at strong coupling and
proposed that this may be a key to understanding the
PG at strong coupling in a spin fluctuation framework.
However, we found that allowing for a complex phase
γ̄ = γ̄0e

iκ̄ with the idea of mixing contributions from the

real and imaginary self-energies does not actually lead
to a better fit. These observations point to the impor-
tance of the momentum and frequency dependence of the
vertex function in the strong coupling regime. We also
note that using the interacting Green’s function G within
our ansatz (in the spirit of self-consistent, or bold pertur-
bation theory) instead of a non-interacting G0 (with an
adjustable µ) yields much poorer fits [31, 39].

D. The fate of the pseudogap at low temperature:
handshake with ground state methods

    0.0  0.05 0.1 0.15  0.2    0

2

4

6

8

U

T = 0.20
T = 0.10
T = 0.07
T 0

FIG. 5. Fate of the pseudogap at low temperature. By ex-
trapolating to T = 0 the pseudogap crossover at different
temperatures (dotted, dash-dotted and dashed red lines), we
estimate the boundary (plain red line) separating the low-
doping regime with a pseudogap to the higher doping one
without. This boundary is found to coincide within error bars
to the phase transition line reported in Ref. [30] (black line)
which separates ground-states with (pink) and without (light
blue) spin/charge stripe ordering. The green line indicates
the low-T extrapolation of the Lifschitz transition line.

A major open issue in relation to the doped Hub-
bard model is the connection between the physical na-
ture of the ground state and that of finite tempera-
ture crossovers. Distinct sets of computational methods
have been successfully used in investigating separately
these questions [3, 4], but a handshake between these ap-
proaches is still mostly lacking. In the present context, an
outstanding question is what happens to the pseudogap
regime upon cooling towards T = 0. Does charge and/or
spin ordering take place? Do the Fermi arcs observed
at high-T eventually evolve into a reconstruction of the
Fermi surface at low-T? These questions have also been
the subject of intense debate and experimental investi-
gations in the context of cuprates [45]. Here, we make
progress towards such a handshake by performing an ex-
trapolation towards T = 0 of the crossovers found above
and comparing to a recent ground-state study [30].
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In Fig. 5 we show the results of an extrapolation down
to T = 0 of our numerically exact finite-T results for
the position of the various crossovers (details are pro-
vided in SM). The plain red line on Fig. 5 indicates
the extrapolated T = 0 boundary between the (pink)
region with a PG and that without a PG (light blue).
The T = 0 extrapolation of the FS topology (Lifschitz)
crossover coincides with the PG boundary up to a dop-
ing level of around 13.5%, and deviates from it at higher
doping. The full black line on Fig. 5 is adapted from
Ref. [30]. It represents the ground state phase transition
between a phase with long-range spin and charge stripe
order [7, 8, 11, 12, 46] and a phase at higher doping lev-
els with only short-range spin and/or charge correlations.
This boundary was computed by auxiliary field quan-
tum Monte Carlo (AFQMC), and the results are in good
agreement with a variational Monte Carlo study [47].
Remarkably, our result for the extrapolated pseudogap
boundary is in near-perfect agreement with this phase
transition line. This provides striking evidence that the
pseudogap regime eventually becomes stripe-ordered at
zero T . This is one of the major conclusions of our work,
which answers the long-standing question of the fate of
the pseudogap regime as temperature is lowered towards
the ground state.

E. Piecing together a unifying picture

We conclude this work by attempting to provide a uni-
fying qualitative picture of the physical regimes of the
doped two-dimensional Hubbard model, also emphasiz-
ing the questions that are still open.

In Fig. 6 we present a sketch of the proposed strong-
coupling phase diagram as a function of temperature and
doping level. The pseudogap and Lifschitz crossovers
from Fig. 5 are indicated by T ∗ and TL. Additionally,
we display the commensurate to incommensurate spin
fluctuation crossover TIC, and the crossover from a short
to a long spin correlation length Tξ which were identi-
fied in Ref. [33]. As established in previous work [9, 33]
and also shown above, charge correlations only pick up
at much lower temperatures. This implies that the for-
mation of the pseudogap is driven by spin correlations,
consistently with the conclusions from cluster extensions
of DMFT [14, 17, 36–38]. Charge correlations are, how-
ever, a necessary ingredient for the stripe ordering which
was established to exist in the ground state [30, 47, 48].
We postulate that charge correlations develop only once
incommensurate spin correlations have grown to be suf-
ficiently long-ranged (as seen in Fig. 5). Very recently,
strong indications that charge long-range (or quasi long-
range) order indeed takes place through a phase transi-
tion at a low non-zero temperature were obtained [49].
From our data we identify the ideal region of parameters
to further investigate this question to be n ∼ 0.9 and
U ∼ 4. Incidentally, this is where we experience most
difficulties with the resummation of perturbative series

0

T

? ? ?

TLT*TICT

PG SCM WCM

stripe d-wave

FIG. 6. Proposed unifying picture at strong coupling.
This schematic strong coupling phase diagram as a func-
tion of temperature and doping indicates the pseudogap
(red), strongly correlated (green) and weakly correlated (blue)
metallic regimes discussed in the text. The dashed gray and
yellow lines refer to spin physics: below the former (Tξ)
the magnetic correlation length exceeds a specified value,
while below the latter (TIC) the magnetic correlations be-
come incommensurate. The ground-state is a spin/charge
ordered stripe state at low doping (purple region) and a su-
perconductor at higher doping (blue region). These two zero-
temperature phases are likely to extend to finite temperature
in a manner which is not yet fully understood, as represented
by arrows and question marks.

from diagrammatic Monte Carlo.

As doping is further increased, the stripe order eventu-
ally ceases to exist in the ground state. In the weak-to-
intermediate coupling regime and in the absence of other
instabilities, the Hubbard model will eventually turn su-
perconducting because of the Kohn-Luttinger effect [50],
albeit at possibly very low temperatures. For U . 4, it
has been established that this instability is of the dx2−y2
type up to 40% doping [51, 52]. At stronger coupling, it
has been shown that stripe ordering wins over supercon-
ductivity over a significant range of parameter space in
the absence of next-nearest neighbor hopping [48]. The
situation at doping levels just above the critical value
where stripe order disappears is still under investigation
but recent results seem to suggest that strong coupling
superconductivity exists over some range of doping [47].
Finite-temperature studies using approximate methods
have also found d-wave superconductivity to exist in the
vicinity of the pseudogap crossover [53, 54]. However,
more work is needed to provide conclusive results about
the critical temperature and doping extension of this
phase. Further, it would be insightful to study changes in
entropy within this phase diagram as it could indicate the
vicinity to phase separation or favor high-temperature
superconductivity [55].

In conclusion, we have investigated the two-
dimensional Hubbard model using a numerically exact di-
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agrammatic Monte Carlo algorithm. We have established
the finite temperature crossover diagram with a partic-
ular focus on the pseudogap regime. We have shown
that the latter originates in antiferromagnetic spin cor-
relations which are longer ranged at weak coupling and
shorter ranged at strong coupling. A suitably modified
spin-fluctuation theory was found to successfully repro-
duce some of the salient qualitative features of the pseu-
dogap regime. A central result of our work is that the
pseudogap regime eventually turns into a stripe-ordered
phase at zero-temperature. Extending the present study
to lower temperatures and to a non-zero next nearest-
neighbor hopping is, without doubt, highly desirable and

will require overcoming further computational challenges.
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Appendix A: Model

In this work we study thermal-equibrium properties of the Fermi-Hubbard model [3, 4, 56–58] on the square lattice,
defined by the hamiltonian:

Ĥ =
∑
k,σ

εk ĉ
†
kσ ĉkσ + U

∑
r

n̂r↑ n̂r↓, (A1)

where k ∈ [−π, π]2 is the reciprocal lattice momentum, σ ∈ {↑, ↓} is the fermionic spin, ĉ†kσ and ĉkσ denote the
fermionic creation and annihilation operators, r ∈ {0, 1, . . . , L− 1}2 labels lattice sites and L is the linear system size
(in this work we use L = 64), U is the onsite repulsion strength, µ the chemical potential, the square lattice dispersion
relation is given by εk = −2 t (cos kx + cos ky), where t is the nearest-neighbor hopping amplitude (we set t = 1 in our
units), and n̂rσ counts the number of particles with spin σ at site r.

We consider thermal-equilibrium properties at temperature T in the grand-canonical ensemble with chemical po-
tential µ, and we denote by 〈Ô〉 the thermal average of an operator Ô:

〈Ô〉 ≡ Tr Ô e−Ĥ
′/T

Tr e−Ĥ′/T
, (A2)

where Ĥ ′ = Ĥ − µ
∑

r,σ n̂rσ is the grand-canonical hamiltonian. To compute dynamical quantities, we use the

Matsubara formalism and the imaginary-time Heisenberg representation Ô(τ) ≡ eτĤ′
Ô e−τĤ

′
of an operator Ô.

The one-particle Green’s function G in the Matsubara representation is

G(k, iωn) ≡ −
∫ 1/T

0

dτ eiωnτ
〈
ĉk↑(τ) ĉ†k↑

〉
, (A3)

where ωn = (2n + 1)π T is a fermionic Matsubara frequency. It is possible to express G in terms of the spectral
function A(k, ω) by

G(k, iωn) =

∫ ∞
−∞

dω
A(k, ω)

iωn − ω
(A4)

We define the zero-energy spectral function proxy A(k) as

A(k) ≡ − 1

π
Im G(k, iπT ), (A5)

which is a valid approximation of A(k, ω = 0) at low-enough temperature as

A(k) ≈ − 1

π
Im G(k, i0+) = A(k, ω = 0). (A6)

The self-energy Σ can be introduced from the Dyson’s equation

Σ(k, iωn) ≡ [G0(k, iωn)]
−1 − [G(k, iωn)]

−1
. (A7)

where G0 is the non-interacting Green’s function. We also define

∆Im Σ(k) ≡ Im Σ(k, iω0)− Im Σ(k, iω1), (A8)

whose sign, in combination with the value of Im Σ(k, iω0), is used to distinguish between metallic and insulating
behavior of the self-energy as Im Σ(k, i0+) = 0 for momentum k belonging to the Fermi surface in a Fermi liquid at
zero temperature.

The static real-space spin and charge susceptibilities are defined as

χsp(r) =

∫ 1/T

0

dτ 〈Ŝz(r, τ) Ŝz(r, 0)〉, (A9)

χch(r) =

∫ 1/T

0

dτ 〈δn̂(r, τ) δn̂(r, 0)〉, (A10)

where Ŝz(r) ≡ 1
2 (n̂r↑ − n̂r↓), δn̂(r) ≡

∑
σ (n̂rσ − 〈n̂rσ〉).
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Appendix B: Methods

We perform a numerical study of the Hubbard model by means of a version of Connected Determinant Diagram-
matic Monte Carlo (CDet) algorithm [25], which allows to calculate high-order diagrammatic contributions to any
(imaginary-time) physical quantity for arbitrary system sizes. This gives access to numerically controlled results and
fine momentum-space resolution.

We compute bare (corresponding to Feynman diagrams containing non-interacting Green’s functions) double
interaction-chemical-potential expansions in terms of the interaction strength U and a chemical-potential shift αU , as
introduced in Ref. [33], which we summarize below. We write any quantity of interest, O, as an explicit function of the
chemical potential µ and the interaction strength O(µ,U). From O(µ,U), we introduce two auxiliary mathematical
quantities: the “Hartree” expansion

OHartree(µ0, U) ≡ O(µ0 + U n0/2, U) =

∞∑
k=0

Uk OHartree;k(µ0), (B1)

where n0 is the number of particle per site at U = 0, and the “double” expansion:

ODouble(µ0, α, U) ≡ O(µ0 + αU,U) =

∞∑
k=0

k∑
j=0

Uk αj ODouble;k,j(µ0). (B2)

Diagrammatically, with respect to the bare series, the Hartree series does not contain any tadpole insertions, while
the double series contains arbitrary chemical potential insertions. The calculation of OHartree;k is performed using
the algorithm of Ref. [25], while for obtaining ODouble;k,j we use the method of Ref. [33]. For the self-energy, we
make use of a slightly modified algorithm compared to previous realisations [59–61], which we detail for completeness
in Sec. B 1. We use a fast principal minor algorithm for the simultaneous evaluation of an exponential number of
determinants [62] and the Many Configuration Markov Chain Monte Carlo for numerical integration [63].

We choose the chemical potential shift α(U) that fixes the average particle number to a constant as a function of
U . Jointly using these expansions provides us a way to double-check the final result.

It is well known [64] that for fermions on a lattice at finite temperature the perturbative series has a nonzero radius
of convergence. When outside the radius of convergence, we resum the series by means of Padé approximants [60].

The correlation length ξ is obtained from fitting the spin susceptibility with a double-Lorentzian Ornstein-Zernike
form (with constant offset):

χsp(q) ≈ A
(

1

|q− (Qx, Qy)|2 + ξ2
+

1

|q− (Qy, Qx)|2 + ξ2

)
. (B3)

1. Algorithm for the self-energy

For a set of spacetime vertices {X1, . . . , Xn} representating the Hubbard on-site interactions of an order-n Feynman
diagram, we define the n× n matrix

[Gσ]jk = G0;σ(Xj , Xk)(1− δj,k)− αδj,k, (B4)

where G0;σ is the bare one-particle propagator. For a subset S ⊆ {X1, . . . , Xn}, we define

Z(S) := det
S

G↑ det
S

G↓, (B5)

where detS means that only the subset of indices S is retained when computing the determinant. Z(S) is the sum of
all diagrams built on the set of vertices S contributing to the partition function. Z(S) is a polynomial in α of degree
2 |S|. For S ⊆ {X1, . . . , Xn}, and for Xj , Xk ∈ S, we define the |S| × |S| matrix Z(S) by

Zjk(S) =
∂

∂G0;↑(Xk, Xj)
Z(S) =

[
G−1
↑

]
jk
Z(S). (B6)

Let Ξjk be the connected part of Zjk, recursively defined from

Ξjk(S) = Zjk(S)−
∑
S′(S

Ξjl(S
′) Z(S \ S′), (B7)
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with Ξjk(∅) = 0. We introduce the matrix ρ by

ρjk(S) =
∑
l

[G↑]jl Ξlk(S). (B8)

We can finally compute the contribution to the self-energy ΣXj ,Xk
(S) =: Σjk(S) coming from the S vertices, for all

pairs of vertices Xj , Xk, as

Σjk(S) = Ξjk(S)−
∑
S′(S

∑
l

Σjl(S
′) ρlk(S \ S′)−

∑
S′(S

Ξjj(S
′) ρjk(S \ S′). (B9)

The diagrammatic interpretation of this algebraic procedure is the elimination of one-particle-reducible diagrams
(second term in the r.h.s. of Eq. (B9)) and bold tadpole contributions (third term in the r.h.s. of Eq. (B9)) from the
sum of all connected diagrams. These equations are solved in the field of truncated polynomials of degree n in α with
an overhead of O(n2) for multiplication and division. In order to directly obtain quantities at momentum-frequency
K, the Fourier transform of Σ is used as Monte Carlo weight at each step

ΣK =

〈
1

n(n− 1)

∑
j,k

eiK·(Xj−Xk) Σj,k

〉
. (B10)

Appendix C: Criteria to identify the pseudogap region
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FIG. 7. The frequency dependence of the imaginary part of the self-energy is shown for the weak-coupling pseudogap (P1, left)
and the strong-coupling pseudogap (P2, right). The displayed momenta correspond to the center (C) and the edge (E) as well
as (π, 0) and (π/2, π/2).

In this section we discuss multiple distinct numerical criteria for the identification of the pseudogap regime.
We have seen in Fig. 2 of the main text, that one pseudogap criterion is the change of slope of the imaginary part

of the self-energy, ∆ Im Σ ≡ Im Σ(k, iω0) − Im Σ(k, iω1). As we have access to the full momentum resolution of the
self-energy, we can pinpoint the first k-point at which the slope changes sign as well as study the evolution of this
criterion as a function of temperature. To this end, we introduce two momenta called center (C) and edge (E) defined
as the points in reciprocal space where the imaginary part of the self-energy reaches its maximum along the lines
(q,q) and (q, π), respectively.

We found in all examined parameter regimes that the slope first changes at the edge point and then this (red) region
of negative slope quickly develops towards the center point. We note that, when the system is doped, both of these
momenta move away from the (π/2, π/2) and (π, 0) points, which we will denote by nodal (N) and antinodal (AN)
momenta in the following. In Fig. 7, the frequency dependence of Im Σ is compared for the center and the edge as well
as the nodal (π, 0) and antinodal (π/2, π/2) momenta. We see that while in the weak-coupling pseudogap regime (P1)
there is barely any noticeable difference between E (C) and AN (N). In the strong-coupling pseudogap regime (P2)
we see significant differences between these momenta. In particular, the slope for both E and C is more negative than
their antinodal and nodal counterparts. Throughout this paper we identify the pseudogap crossover with the change
of the slope at the first, edge momentum, which is very well defined. Note that this possibly yields slightly higher
crossover temperatures as compared to other criteria in literature and might be considered as a precursor. However,
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FIG. 8. The momentum-resolved zero-frequency spectral function proxy A(k), the imaginary part of the self-energy and
the difference between the imaginary part of the self-energy at the two lowest Matsubara frequencies are shown for various
temperatures for examples of a weak-coupling pseudogap (left, δ = 0.043, U = 3.5) and a strong-coupling pseudogap (right,
δ = 0.087, U = 6.0).
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FIG. 9. The temperature dependence of the self-energy at the node (N) as well as center (C) momenta is shown across examples
of a weakly-coupling (left) and strong-coupling (right) pseudogap crossovers.

we find that this difference is not very significant and this crossover clearly signals the onset of severe deformations
of the self-energy and spectral function due to antiferromagnetic fluctuations.

In Fig. 8 we show the temperature evolution of the spectral function, the imaginary part of the self-energy, as well
as its slope ∆ Im Σ. In the left panel the weak-coupling pseudogap regime is investigated (δ = 0.043 and U = 3.5).
We observe that the slope first changes in the vicinity of the momentum (0, π) and then this region gradually grows
towards momentum (π/2, π/2). This case is strongly reminiscent of what is observed at half-filling. In contrast, in the
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right panel we display the strong-coupling pseudogap regime (δ = 0.087 and U = 6.0). Here the slope first changes at
roughly (π/4, π) and grows inwards towards roughly (5π/8, 5π/8), closely following the regions where the imaginary
part of the self-energy is largest. We would like to stress that this is the first time a numerically unbiased method has
been able to observe such behaviour of the self-energy in the doped Hubbard model.

U=
3.

5,
 

=0
.0

26

A(k, T = 0.20)

0.00
0.05
0.10
0.15
0.20
0.25
0.30

A(k, T = 0.15)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

A(k)

0.04

0.02

0.00

0.02

0.04

U=
3.

9,
 

=0
.0

25

0.00
0.05
0.10
0.15
0.20
0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.10

0.05

0.00

0.05

0.10
U=

5.
5,

 
=0

.1
10

0.00

0.05

0.10

0.15

0.20

0.00
0.05
0.10
0.15
0.20
0.25

0.04
0.02

0.00
0.02
0.04

0 /4 /2 3 /4

U=
6.

4,
 

=0
.0

73

0.00

0.05

0.10

0.15

0 /4 /2 3 /4 0.00

0.05

0.10

0.15

0 /4 /2 3 /4

0.05

0.00

0.05

FIG. 10. The momentum resolved spectral function A(k) is shown for two temperatures (T = {0.2, 0.15}) as well as their
relative difference ∆A(k) = A(k, T = 0.2)−A(k, T = 0.15)

We further study the temperature dependence of the imaginary self-energy at the node (N) as well as center (C)
momenta for examples of the weak- and strong-coupling pseudogap regimes in Fig. 9. At high temperatures, above
the pseudogap regimes, the behaviour is similar in both cases, the imaginary self-energy increases as temperature
is lowered. Below the crossover temperature in the weakly-correlated regime we see both a sharp decrease for both
momenta. In contrast, for the strongly-correlated case, the self energy actually increases at the node momentum,
whilst staying constant within error bars at the center momentum. This represents a stark qualitative difference
between the two pseudogap regimes and could in principle be used to identify the boundary between them.

In Fig. 10 we show the momentum-resolved spectral function A(k) for two temperatures T = {0.15, 0.20} as
well as their relative difference ∆A(k) ≡ A(k, T = 0.20) − A(k, T = 0.15). The first row is representative of the
weakly correlated metallic regime and we see that the spectral weight grows everywhere along the Fermi surface
as temperature is decreased. Momenta away from the Fermi surface show the opposite behaviour, but since their
spectral weight is extremely low they are of little relevance. The second row shows a weak-coupling pseudogap regime
and, in contrast to the previous case, the spectral weight has decreased for essentially all momenta. The third row
corresponds to a strongly correlated metal and the situation is similar to the weakly correlated metal. The final row
is a strong-coupling pseudogap regime. Here we observe a momentum-dependent change from the strongly correlated
metal to the strong-coupling pseudogap.

Similar to the self-energy, the temperature dependence of the spectral function first changes around the edge point
and away from the Fermi surface. This change then propagates towards the Fermi Surface in particular around
the antinodal region. This crossover is less natural to evaluate within diagrammatic Monte Carlo than the self-
energy crossover as one needs to ideally compute many temperatures. We identify the crossover as the moment when
the spectral function for the edge momentum (defined from the maximum of the spectral function along the line
(0, 0) → (0, π) → (π, π)) changes temperature dependence. We show a comparison between the two criteria for two
temperatures (T = {0.1, 0.2}) in Fig. 11. Note that we used temperatures T = {0.2, 0.15} to establish the behaviour
of ∆A(k) around T = 0.2 and temperatures T = {0.125, 0.1} around T = 0.1. We observe that the pseudogap regions
are of similar shape between the two criteria, but our self-energy crossover preempts the spectral function crossover.
This is in line with our previous statements about the self-energy crossover being an immediate precursor of the
pseudogap regime.
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FIG. 11. The location of the pseudogap crossover at temperatures T = {0.1, 0.2} as established from different criteria. Results
from the criterion of the difference between the imaginary part of the self-energy at the two lowest Matsubara frequencies for
the edge (E) momentum is shown in red. The same for momentum (π, 0) is shown in blue. Results from the temperature
difference of the spectral function criterion are shown in green. We used temperatures T = {0.2, 0.15} to establish the slope
around T = 0.2 and temperatures T = {0.125, 0.1} for the slope around T = 0.1.
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FIG. 12. The uniform spin susceptibility as a function of temperature. Dashed lines are second order polynomial fits from high
temperatures, for an example from the weak-coupling (red) and weakly-coupled pseudogap (blue) regions.
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FIG. 13. The momentum resolved self-energy is shown for the four lowest frequencies for the P1 point of Fig.1 in the main text
(U = 4, T = 0.2 and δ = 0.023).

In our self-energy criterion for the pseudogap crossover we look for the first momentum point on the Fermi surface,
as defined by the spectral function, to manifest a change of slope. Since the spectral function maximum is relatively
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spread, especially around the antinode, this first momentum to change slope does not necessarily have to be k = (π, 0).
To elucidate this effect we compare in the right panel of Fig. 11 our criterion with a modified version, which only
takes into account the slope at the k = (π, 0) momentum. We see that whilst the two curves are practically identical
for small-to-intermediate interactions U . 4, they start to deviate thereafter. This does not come as a surprise, since
the Fermi surface itself shifts away from the Fermi surface of the half-filled model and the k = (π, 0) momentum point
is no longer on it. This justifies our choice of looking for any one momentum point to change slope as long as it has
enough spectral weight.

Finally, another criterion is the drop of uniform spin susceptibility χuni
sp at low temperature. In Fig. 12 we show

χuni
sp for the weakly correlated metal (U = 3.5, δ = 0.028) and weak-coupling pseudogap regime (U = 4.2, δ = 0.019).

While we observe a steady increase in the uniform spin susceptibility with decreasing temperature in the first case, we
can clearly see a decrease around T = 0.2 in the second case, clearly marking the onset of the pseudogap regime. In
the strong-coupling pseudogap regime the error bars on our results do not allow us to clearly identify this downturn
in the uniform spin susceptibility and we thus leave this task to future studies.
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FIG. 14. The momentum resolved self-energy is shown for the eight lowest frequencies for the P2 point of Fig. 1 in the main
text (U = 7, T = 0.2 and δ = 0.042).

Appendix D: Frequency dependence of the self-energy

In Fig. 13 and Fig. 14 we study the momentum-resolved frequency dependence of the real and imaginary parts of
the self-energy. In Fig. 13, we investigate the weak-coupling pseudogap regime (P1). We observe that the structure in
momentum space rapidly becomes more uniform as the imaginary frequency increases. This is especially true for the
imaginary part and is an indication that the self-energy is more local at higher frequencies. The picture is qualitatively
the same in the strong-coupling pseudogap regime (P2, Fig. 14), but the self-energy becomes local at slightly larger
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frequencies.
In Fig. 15, 16 and 17 we provide a comparison between numerically exact data and the spin-fluctuation theory

fitting procedure, as described in the main text. In should be noted that, as in the main text, the fitting has only
been done on the imaginary part of the self-energy for the lowest Matsubara frequency (iω0).

In the case of the weak-coupling pseudogap regime (P1) we observe in 15 a near-perfect match at all shown
frequencies when it comes to momentum-dependency, with only slightly lower absolute self-energy values in the fitted
data.

From Fig. 16 and 17 we also observe a very good correspondence between the exact data and the theoretical fit
for the strong-coupling pseudogap regime (P2), albeit slightly worse than in the case of P1, especially when it comes
to the imaginary part of the self-energy. All in all, we find that our theoretical fit is performing remarkably well for
higher frequencies in both pseudogap regimes studied here.
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FIG. 15. The momentum resolved non-local components of the self-energy for the four lowest frequencies at the P1 point of
Fig. 1 in the main text (U = 4, T = 0.2 and δ = 0.023). Numerically exact results (first and third rows) are compared to a
spin-fluctuation theory fitting procedure (second and fourth rows), as described in the main text.

Appendix E: Extrapolations to the ground-state

The zero-temperature curves for the pseudogap region in Fig. 5 were obtained from an extrapolation of our finite-
temperature data. To this end, we have split our data into two sectors in which the extrapolation was performed
with respect to different variables. For U . 4 and δ . 0.1 we extrapolated at constant doping δ and with respect to
the interaction U . For U & 4 and δ & .1 we set U constant and extrapolated with respect to δ. Both extrapolated
curves remarkably coincide within error bars at their boundary. For the Lifshitz crossover we only extrapolated at
with respect to δ and at constant U .

In Fig. 18 we show the temperature dependence of the pseudogap crossover and Lifshitz crossover for two fixed
interaction values U = {5, 6} (left) and fixed doping values δ = {0.025, 0.05} (right). Circles correspond to our
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FIG. 16. The momentum resolved non-local component of the real self-energy for the eight lowest frequencies at the P2 point
of Fig.1 in the main text (U = 7, T = 0.2 and δ = 0.042). Numerically exact results (first and third rows) are compared to a
spin-fluctuation theory fitting procedure (second and fourth rows), as described in the main text.

best estimates for the location of the crossover into the pseudogap region (without error bars). AFQMC ground-
state results from Ref. [30] are shown as black squares and dashed lines correspond to linear extrapolations from the
two lowest available temperature data points, with relative uncertainties of ∆U = 0.05 and ∆δ = 0.002. For the
pseudogap, we see that the extrapolated zero-temperature values match the AFQMC ground-state results extremely
well for both the constant doping and interaction examples. Our data for the Lifshitz crossover extrapolates to the
AFQMC data point for U = 5, but starts to deviate at U = 6 (this effect becomes even more amplified as U is
increased), thus indicating a separation of the two crossovers beyond a certain critical value of interaction, as shown
in Fig. 18.

Appendix F: Additional insights from the self-energy and spectral function

In this section, we study the self-energy (in Fig. 19) and spectral function (in Fig. 20) at constant temperature
T = 0.2 and across the U -δ crossover phase diagram.

From the first panel (from the left) of Fig. 19 we deduce that the imaginary part of the self-energy is small
(< 1) throughout the weakly correlated metal region. The magnitude of the self-energy then grows with increasing
interaction and decreasing doping. As it reaches values of about ∼ 1 we observe a crossover into either the strongly
correlated metal as well as the weak-coupling pseudogap and continues to increase slowly thereafter. Only after we
reach the strongly correlated pseudogap does the magnitude start to grow rapidly and reaches very large values of
∼ 4. In the second panel we show the ratio between the self-energy at the center and edge momenta. In the weakly
correlated metal the two are comparable and the magnitude of the edge is only slightly higher. In contrast, for the
other three regions the difference is already significant and the ratio approaches zero deep inside the strong-coupling
pseudogap. The positions of the maxima for the center (along the momentum line (0, 0)→ (π, π)) and edge (along the
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FIG. 17. The momentum resolved non-local component of the imaginary self-energy for the eight lowest frequencies at the P2

point of Fig. 1 in the main text (U = 7, T = 0.2 and δ = 0.042). Numerically exact results (first and third rows) are compared
to a spin-fluctuation theory fitting procedure (second and fourth rows), as described in the main text.
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FIG. 18. The temperature dependence of the pseudogap crossover (red circles) and Lifshitz transition (green circles) are shown
for either fixed interaction U (left) or fixed doping δ (right). AFQMC ground-state results from Ref. [30] are shown as black
squares. Dashed lines correspond to linear extrapolations from the two lowest available temperatures.

line (0, 0)→ (0, π)→ (π, π)) points also changes significantly by moving away from the Fermi surface of the half-filled
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model upon doping and upon an increase in interaction strength (two rightmost panels). Neither of the two, however,
seems to follow the crossover lines.

In Fig. 20 we concentrate on the properties of the spectral function as a function of interaction and doping. In
the first two panels we show the Luttinger volume nL (the area defined by the Fermi surface) and its difference to
the density n. In the weakly correlated metal and weak-coupling pseudogap the Luttinger volume roughly follows
the density. For both quantities we observe a maximum in the strongly correlated metal regime, which is also the
only regime where nL > 1. In contrast, in the strong-coupling pseudogap the Luttinger volume sharply decreases and
eventually becomes lower than the density. In the third panel we investigate the maximum of the spectral function
over the Brillouin zone, which decreases steadily when either interaction is increased or the doping decreased. Finally,
in the last panel we show the ratio between the spectral weight at the antinode and at the nodal momenta. In
the weakly correlated metal and weak-coupling pseudogap they are essentially equal, with a ratio of AA/AN ∼ 1.
As one approaches the strong-coupling pseudogap, however, the ratio slowly decreases to about ∼ 0.8. All of the
above observations can be used as additional criteria in distinguishing between the weakly correlated metal and
weak-coupling pseudogap and their respective strong-coupling counterparts.
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FIG. 19. Crossover phase diagrams at T = 0.2. Left to right: The maximum value of the imaginary self-energy in the
Brillouin zone; The ratio between the values of imaginary self-energy at the center(C) and edge(E) momenta; The position of
the maximum in the imaginary self-energy along the momentum line (0, 0)→ (π, π) corresponding to the center point (C). The
maximum along the line (0, 0) → (0, π) → (π, π) corresponding to the edge point (E). Each circle is a data point. Different
shading corresponds to the distinct regions in Fig.1
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Appendix G: Comparison with dynamical mean-field theory

In this section, we compare the approximate result for the local self-energy obtained from the dynamical mean-field
theory (DMFT), ΣDMFT

loc , with the controlled result from diagrammatic Monte Carlo (CDet), Σloc. Our findings are
summarized in the first three columns of Fig. 21, where results for the real part of the local self-energy in top row
and the imaginary part in the bottom row. We find that in the weakly correlated metal and pseudogap regimes
both local self-energies are essentially identical. In the strongly correlated metal this is still true for the imaginary
part, however, the real parts start to differ. More specifically, DMFT underestimates its (negative) magnitude. This
effect is further amplified in the strong-coupling pseudogap, where some differences also start to occur between the
imaginary parts of the local self-energies. In the last column of Fig. 21, we compare the local DMFT self-energy
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with the momentum resolved CDet self-energy at the center (C) and edge (E). Surprisingly we find that, of the two
momenta, the local DMFT self-energy coincides almost perfectly with the CDet self-energy at the center momentum
over the full parameter range that has been analysed.
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FIG. 21. Comparison between DMFT and CDet in terms of the real and imaginary parts of the local self-energy for T = 0.2.
Each circle is a data point. Different shading corresponds to the distinct regions in Fig. 1.

Appendix H: Cross-benchmarking with the dynamical cluster approximation

Finally, we cross-benchmark our CDet results for the thermodynamic limit with 16-site dynamical cluster approx-
imation (DCA) calculations, which is a cluster extension of DMFT. Ideally we would like to be able to compare the
full momentum dependence of the two methods, however DCA only gives us access to six distinct momentum points.
For this reason we use a cubic interpolation of the available points, as shown for the real and imaginary parts of the
self-energy in Fig. 22.
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FIG. 22. The self-energy at T = 0.2, U = 7 and n = 0.975 as obtained from 16-site DCA, with and without a momentum-space
interpolation. Black squares signify actually computed momentum points.

We proceed to compare our interpolated DCA to results for the self-energy and spectral function against their CDet
counterparts from Fig. 23, which includes all four finite-temperature regimes identified in the main text. The real
part of the self-energies match rather very well for all regimes, both in terms of absolute magnitudes and momentum
distribution. However, slight differences can be observed, in particular, the minima are found along the (q, q) line
for DCA and along the (π, q) line for CDet. This is likely an artefact of the cubic interpolation which was used for
DCA. For the imaginary self-energy we find that the location of the minima match between the two methods, however
DCA underestimates their magnitude by up to a factor two in both pseudogap regimes. Given the lacking momentum
resolution, DCA is also not able to distinguish fine features, which appear in the CDet data. We observe the most
striking differences between the two methods in the spectral function. The only regime producing a good match is the
weakly correlated metal. In the weak-coupling pseudogap regime, DCA overestimates the maximum spectral weight
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by about 20% and fails to capture the suppression in the antinode region. This shortcoming gets even worse in the
strongly correlated metal and pseudogap regimes and is mainly due to the smaller values of the imaginary self-energy
produced by DCA. In both strong-coupling regimes this ultimately leads to stark differences in the Fermi surfaces
identified by the two methods.
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FIG. 23. A comparison of real and imaginary parts of the self-energy as well as the spectral function as computed by CDet
(left) and interpolated 16-site DCA (right). Points were chosen to roughly correspond to Fig. 2 of the main text.

We can further compare the positions of the pseudogap crossover lines obtained by the two methods from the
spectral function criterion, see the left panel of Fig. 11. It is evident that 16-site DCA underestimates the extent
of the pseudogap region, although it finds qualitatively correctly the shape of the crossover region. We expect this
discrepancy with respect to CDet to become smaller when the cluster size is further increased, as has been shown in
the case of the half-filled Hubbard model [27].
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