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Abstract

Mitigating the impacts of global warming on wildlife entails four practical steps. First, we

need to study how processes of interest vary with temperature. Second, we need to build

good temperature scenarios. Third, processes can be forecast accordingly. Only then can

we perform the fourth step, testing mitigating measures. While having good temperature

data is essential, this is not straightforward for stream ecologists and managers. Water tem-

perature (WT) data are often short and incomplete and future projections are currently not

routinely available. There is a need for generic models which address this data gap with

good resolution and current models are partly lacking. Here, we expand a previously pub-

lished hierarchical Bayesian model that was driven by air temperature (AT) and flow (Q) as

a second covariate. The new model can hindcast and forecast WT time series at a daily time

step. It also allows a better appraisal of real uncertainties in the warming of water tempera-

tures in rivers compared to the previous version, stemming from its hybrid structure between

time series decomposition and regression. This model decomposes all-time series using

seasonal sinusoidal periodic signals and time varying means and amplitudes. It then links

the contrasted frequency signals of WT (daily and six month) through regressions to that of

AT and optionally Q for better resolution. We apply this model to two contrasting case study

rivers. For one case study, AT only is available as a covariate. This expanded model further

improves the already good fitting and predictive capabilities of its earlier version while addi-

tionally highlighting warming uncertainties. The code is available online and can easily be

run for other temperate rivers.

Introduction

Global warming is impacting ecological communities and ecosystems worldwide [1–3].

Temperature primarily impacts the physiology of organisms [4], leading to changes in
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individual life history traits [5–7]. Populations range [8, 9], phenology [10] and dynamics

are also impacted [11], driving disturbances in food webs and overall ecosystem change

[12–14]. Managing these ongoing and future changes is a major challenge for

stakeholders.

Understanding and hence mitigating climate change impacts on biological communities

involves four steps. First, we need to quantify the interactions between the process of interest

and temperature. Second, we need to predict temperature under future greenhouse gas (GHG)

scenarios. Third, we need to forecast our process under these future climate scenarios. Then,

as the fourth step, we can work towards mitigating impacts, preferentially through an adaptive

management framework [15, 16]. Robust ecological and temperature data are essential corner-

stones of this process.

Managing freshwater species conservation in the face of climate change is particularly chal-

lenging. First, such species are highly susceptible to climate change as they are mostly ectother-

mic and thus sensitive to temperature [17–19]. Shifts in spatial distribution are also

constrained by the river network and habitat fragmentation [20]. Second, water temperature

time series are limited compared to those of air temperature. Indeed, water temperature time

series are often quite short and prone to missing data, and unlike air temperature, are not gen-

erally included as outputs of climate change models. Generic models to complete and hind-

cast/forecast water temperature based on covariates such air temperature and flow are needed

by ecologists and managers.

Different types of stream water temperature models exist but they present caveats to

the ecologist [21]. Process based models, e.g. energy budget models [22–24] are realistic

but complex. They require a lot of environmental and geological data, and are also loca-

tion specific. This makes them of limited use for long term and large-scale forecasting.

Statistical models on the other hand are less data demanding and rather simple [25].

Examples of this model type include regular time series models (AR, ARIMA), periodic

autoregressive models, K nearest neighbors methods and neural network approaches [26,

27]. These methods perform well for short term forecasting and filling short gaps. On the

contrary, they perform poorly for long term predictions [25]. The last category usually

encountered is regressions models [28–30].While they may seem adequate, they can lead

to significant biases in more long-term forecasting. Indeed, they do not disentangle long

term trends, seasonality and short-term variations. An extensive review of stream water

temperature models can be found in [31] and allows for a better appraisal of the limita-

tions exposed.

As a workaround, [21] proposed a Bayesian hierarchical approach which was a hybrid

between time series decomposition and regression. This approach required water tempera-

ture together with air temperature and flow time series as covariates. It separated out long

term, seasonal and short terms components of the time series and linked these components

through correlation. This method has several advantages over regression, in that it outper-

formed correlation in both fit and forecasting capabilities, and appeared to be unbiased for

long term forecasting. This hybrid approach also highlighted the true, and high uncertainty,

in future river temperature warming. However, this approach lacked fine-scale modelling

of deviations (i.e. daily) around long term and seasonal components, and required addi-

tional refinement. Specifically, short-term deviations were modeled using a first order auto-

regressive (AR1) process which limits fine hindcasting/forecasting abilities, and the model

worked on 5-day average temperature which is rather coarse. In this paper, we improve on

the previous model by i) working on daily temperature and ii) modeling daily deviations as

depending on that of air temperature (AT) and flow (Q). Lastly, we offer the possibility of

running this model without water flow data, as these are often not collected routinely.
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These new features, coupled with openly accessible code should be helpful to ecologists and

stakeholders.

In this paper, we describe the fit and forecasting performances of this extended model and

compare it to that of [21] on two rivers with contrasting bio-geographical conditions and sizes.

The Rough River is a small Irish spate river while the Scorff river is of medium size and located

in France. For the Rough river, air temperature is the only covariate. As in [21], we use a fully

hierarchical Bayesian framework. This provides a probabilistic rationale to quantify uncer-

tainty in inferences and forecasting which further ease out ecological analysis and risk manage-

ment [32].

Material and method

The new model version presented here is developed with reference to that of [21]. For this rea-

son, we refer to the model in the previous publication as M1 (for model 1). Our newest version

described thereafter is called M2.

Model M2 structure

Model M2 has a fully Bayesian hierarchical structures and produces estimates of water tem-

perature (WT) based on air temperature (AT) and discharge (Q). This is achieved using

three fully integrated modules. Module 1 desegregates WT, AT and Q time series into long

term variations, seasonal fluctuations and short-term variations. Module 2 links WT com-

ponents to that of the AT and Q (also referred to as covariates). Module 3 then provides

estimates of all unknown WT based on modules 1 and 2. Estimated WT can range any-

where from a few missing values up to several years in case of hindcasting or forecasting.

The difference between model M1 [21] and M2 lies in module 2 and also in the way daily

variation in WT are modeled. In case of model M1, daily variation was assumed to follow

an autoregressive process. Here we expand module 2 to link these to those of the

covariates.

Module 1 of the model M2 desegregates WT and covariates time series (Xt in the following

equation) as follow:

Xy;t ¼ ay þ by � sin
2p

n
t � t0ð Þ

� �

þ �t ð1Þ

αy and βy are the mean and amplitude of a time window. n is the number of time steps per

year. In this article n is equal to the number of days within a year (365 or 366) while we set the

time window y to 6 months as it offers a good tradeoff (see [21]). t0 sets the seasonal signal on

the year. For AT and Q, we modeled �t using first order autoregressive (AR1) processes cen-

tered on 0 (with autocorrelation coefficient ρ and standard deviation σ). [21] modeled WT

daily deviations the exact same way for model M1. This is where this new model differ and we

detail this as part of the second module below.

Module 2 links WT time series to that AT and Q (if available). It comprises two sub-mod-

ules (2a and 2b). Sub-module 2a corresponds to the entirety of module 2 from [21]. In this first

sub-module, we link parameter αy and βy of the WT time series to that of the covariates time

series. To do so, we first reparametrized the sine signal within the time series using maxy = αy

+ βy and miny = αy − βy. We then model WT maxima maxWT
y and minima minWT

y as depending
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upon those of the covariates. Corresponding equations are:

maxWT
y � Normal mmaxWT

y
; s2

maxWT

� �

with mmaxWT
y
¼ y0 þ y1 �maxATy þ y2 �minQ

y

minWT
y � Normal mminWT

y
; s2

minWT

� �

with mminWT
y
¼ y0 þ y

0
1 �minAT

y þ y
0
2 �maxQy

ð2Þ

We kept this parametrization from [21] because of its conceptual sense. Let’s assume that θ1

is positive, θ2 is negative and both θ’1 and θ’2 are positive. This corresponds to assuming that i)

warm AT leads to warm WT, ii) high Q means warms WT in winter and a cooling effect in

summer.

In addition, module 2b now links the short-term variations of WT to that of the covariates.

We parametrized this addition to the original model M1 as follows:

�WT
y;t ¼ d� �

AT
y;t þ g� �

Q
y;t � sin

2p

n
t � t0 þ n=2ð Þ

� �

þ z
WT
t

ð3Þ

WT short term deviations thus are directly proportional to those of AT, although usually

buffered. For Q, we included a sinusoidal component. This allows the impact of discharge

deviations to change along the year. It shifts from positive in winter to negative in summer

with a smooth transition along the year. We assume it as strictly antiphasing the WT seasonal

signal, hence the inclusion of n\2.Because we use the log discharge, small changes in summer

flow have an impact more comparable to that of bigger changes in winter. We modeled the

remaining errors (z
WT
t ) using a white noise process.

Lastly, module 3 corresponds to the estimate of unknown temperatures. As our model is

fully hierarchical, this module depends upon and integrates with modules 1 and 2. Conse-

quently, the model propagates all uncertainties when estimating unknown WT based on

covariates. In Bayesian software such BUGS, JAGS, STAN or NIMBLE ([33] and references

therein), this is performed simultaneously to the fit. AT and Q time series just have to include

hindcasting and/or forecasting parts if any. Module 1 also decomposes these ‘extra’ data while

module 2 produces the WT estimates. This process is often referred to as deriving posterior

predictive distributions.

Model application

To assess the performances of the model (M2), we compared it to model (M1) on two study

sites with contrasting sizes and environmental conditions and tested both fit and forecasting

capacities.

Assessing models’ performances. We checked the consistency of both models M1 and

M2 a posteriori with the data using the χ2 discrepancy statistics (Gelman et al. 2015). In partic-

ular, this posterior check allows to assess whether replicated data are similar to the original

data. Its formula is:

w2 WT; yð Þ ¼
X

y

X

t

WTy;t � E WTy;tjy
� �� �2

Var WTy;tjy
� � ð4Þ
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where E(WTy,t|θ) and Var(WTy,t|θ) are the expected mean and variance of WT condition-

ally upon all parameters (θ). For each set of parameters drawn from the joint posterior dis-

tribution, we computed replicated and observed WT χ2 values based on the equation.

Then we computed a Bayesian p-value giving the probability that χ2(WTrep|θ) >

χ2(WTobs|θ). Bayesian p-values close to 0.5 suggest congruency between the model and the

data. Very high or very low (about 0.95 or 0.05) values provide serious inconsistency

warnings.

Secondly, we also compared the fitting performances of models M1 and M2 using the Devi-

ance Information Criterion (DIC, [34]). DIC allows the comparison of goodness of fit while

penalizing complexity in a way very similar to that of the Akaike Information Criterion. The

smaller the DIC the better. A five points reduction is usually considered as indicative of a sig-

nificant improvement.

Lastly, we checked the predictive performances of the models. For this we used cross a vali-

dation approach. Specifically, we used 2/3 of historical data as training set and forecast the last

third. We used the Root Mean Square Error (RMSE) of the estimates to compare

performances.

Bayesian computations details. We implemented models M1 and M2 in JAGS [35]

through R [36, 37]. This software approximates the parameters posterior distributions

using Monte Carlo Markov Chains (MCMC) algorithms. Specifically, we ran three MCMC

in parallel for each model fit. We kept 10000 draws for each one after both a thinning of 25

and an initial burning period of 10000 draws. All diagnostics suggested the MCMC con-

verged successfully. Priors used were all uninformative relative to the data (see S1 Table in

S1 File).

The code developed together with one of the data-sets are available on GitHub (https://

github.com/GuillaumeBal/2023.bayes.stream.temperature). Readers can change the input data

file with their own and run the model. Doing so does not require any in depth knowledge of

both R and JAGS.

Study sites. WT, AT and Q time series come from the Rough (Mayo, Ireland) and Scorff

(Brittany, France) rivers (Fig 1). Both rivers support long-term environmental monitoring and

fisheries related research [5, 43, 44]. They contrast in size, location, as well as available data

(Table 1). In particular, reliable Q time series are lacking on the Rough river. This allowed for

testing the performances of our approach with only one covariate.

The Scorff River flows into the Atlantic Ocean (Fig 1). INRA staff members measure daily

WT at the Moulin des Princes station with Tidbit data loggers (precision of 0.2˚C, [45]). Daily

AT come from the Lorient (LannBihoueé airport meteorological station operated by the

French weather services (https://meteofrance.com/), 9 km away from the water temperature

measurement station. Q records come from 8 km upstream of the Moulin des Princes station

where a flow measuring station is operated by the French hydrological services (https://hydro.

eaufrance.fr). The three time series are 13 years long (1995 to 2007) and 9.6% data are missing

on average. This river is part of a larger research observatory where diadromous fish popula-

tion are extensively monitored and studied (ORE DiaPFC).

The Rough River (also called the Srahrevagh River) is a tributary of the Srahmore River in

the Burrishoole Catchment. The Srahmore flows into Lough Feeagh which is connected to the

saline coastal lagoon Lough Furnace. The entire system discharges into Clew Bay on the Atlan-

tic Ocean (1. Data cover the period 2002–2016. Daily WT was measured using a StowAway

TidbiT temperature data logger from Onset (TB132-05+37). Air temperature data was

recorded at the Newport (Furnace) manual weather station (jointly run by Met Éireann and

the Marine Institute, station 833). Maximum and minimum temperatures are recorded using

mercury thermometers, and average daily temperature is taken as the average of these two

PLOS ONE Bayesian stream water temperature modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0291239 September 18, 2023 5 / 18

https://github.com/GuillaumeBal/2023.bayes.stream.temperature
https://github.com/GuillaumeBal/2023.bayes.stream.temperature
https://meteofrance.com/
https://hydro.eaufrance.fr
https://hydro.eaufrance.fr
https://diapfc.hub.inrae.fr/
https://doi.org/10.1371/journal.pone.0291239


readings. Data were downloaded from www.met.ie, licensed under a Creative Commons Attri-

bution 4.0 International (CC-By 4.0) License.

Some more details about the catchments are provided in Table 1. Raw time series are

shown within the supporting information file (S1 Fig in S1 File).

Forecasting under climate change. We used full joint posteriors from model M1 and M2

to project WT temperature from AT warming projections. In particular, we picked a range of

AT warming of 0 to 5˚C according to the latest IPCC estimates [46], excluding the most

extreme warming scenario. We did this for several reasons. First, [21] revealed WT warming

should be lower than that of AT and quite uncertain. We wanted to check whether this result

was robust to the updated time step and model structure. We also wanted to see whether two

rather contrasted rivers would differ in their response.

Results

The results section is composed of four parts. First, we show differences in fitted series of α
and β with both models. Then, we focus on quantitative results showing how the updated

approach of modelling the water temperature residuals as depending upon those of air temper-

ature and flow outperformed the version with a simple AR1 process, both for forecasting and

fitting. Third, we look at parameters of model M2 and highlight how those shared with the first

model evolved to better understand model differences. Lastly, we showcase forecasting and

missing value estimates from model M2.

Fig 1. Map of the application sites. Triangles correspond to water temperature and flow measurement stations while points indicate weather

monitoring stations. The map was drawn based on CC-By 4.0 compatible shapefiles [38–40] combined together using some R packages [36, 41, 42].

https://doi.org/10.1371/journal.pone.0291239.g001
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Seasonal variation in the time series

Comparing time series of fitted α and β between models M1 and M2 provides basic insights

into differences in their fit and behavior. The ranges of values are greater for model M2 than

for model M1 whatever the parameter series and river considered (Fig 2). This results in statis-

tically significant changes in the variance of median values. For instance, the variance of the

median estimates of the αWT posterior series on the Scorff river was 0.47 for model M2 versus

only 0.17 with model M2 (p.value = 0.01, Fischer test). While series ranges differed, mean val-

ues of median estimates for all series were equivalent. The same was observed for average 95

and 50% credible intervals.

In case of AT and Q, α and β time series derived using both models were quite similar (S2,

S3 Figs within the S1 File). Mean values, variances and 95 and 50% credible intervals of the

time series deviated from each other only fractionally. Only a few posteriors, such as the last

couple for the Rough river αAT, were obviously different.

Fit and predictive performances comparison

Overall, results suggest better predictive performances for model M2 on both rivers. In addi-

tion, fit statistics that indicate good predictive performances were more apparent for model

M2. χ2 discrepancies and associated p-values were better on both rivers with model M2 but p-

values obtained with model M1 did not depart enough from 0.5 to be indicative of an inconsis-

tency between this model and the data (Table 2).

The only exception to the general superior performances of model M2 were DIC values

(Table 2) for the Scorff River. Indeed, differences of several hundred of points in deviance in

Table 1. Application sites and data sets description.

River Rough Scorff

Location Mayo, Ireland Brittany, France

Mouth (Latitude & Longitude) 53˚97’N, -9˚57’W 47˚28’N, 3˚23’ W

Drainage area (km2) 4.60 480

River Length (km) 12.3 75

Estuary length (km) NA 15

Source altitude (m above sea level) 370 270

Geology (predominant) Quartzite & schist Granite & schist

% agricultural NA 60

% woodland NA 30

% peat bog 3.2 NA

% forestry 32.2 NA

% natural grassland 7.9 NA

Climate Temperate oceanic Mild oceanic

Precipitations(mm) ~1560 ~1000

Water temperature period 2002–2016 1995–2007

Water temperature mean (˚C) 9.91 12.88

Water temperature missing data (%) 0.82 26.98

Air temperature period 1960–2016 1995–2007

Air temperature mean (˚C) 10.25 12.39

Air temperature missing data (%) 0.21 0.63

Water discharge period NA 1995–2007

Water discharge mean (m3. s-1) NA 4.95

Water discharge missing data (%) NA 1.05

https://doi.org/10.1371/journal.pone.0291239.t001
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Fig 2. WT α and β parameters posteriors for model fit. In case of model M2 WT residuals are linked to those of AT and Q.

https://doi.org/10.1371/journal.pone.0291239.g002

Table 2. Fitting and forecasting performances summary statistics.

River Model RMSE χ2 p-value Deviance pD DIC

Rough M2 1.34 0.50 12635 289 12925

Rough M1 2.28 0.43 15585 31.1 15616

Scorff M2 1.86 0.50 10763 46.8 10810

Scorff M1 2.87 0.40 7335 29.2 7364

Deviance: deviance posterior mean; pD: measure of the model complexity (estimated number of parameters); DIC: Deviance Information Criterion; χ2 p-value: p-value

for the posterior checking tests; RMSE: root mean square errors used to quantify the predictive performance.

https://doi.org/10.1371/journal.pone.0291239.t002
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favor of model M1 were highlighted by the analysis on that river. The same was consequently

observed for the DIC value. This better fit performance of model M1 on the Scorff river

resulted from its highest fit flexibility when a lot of data are missing that is linked to modeling

the residuals with an AR1 process. We also noted that the lack of covariate data tends to

increase pD values in case of model M2 as observed for the Rough river.

Discrepancies between 6-month averages of replicated data and observed water tempera-

ture were clearly in favor of the more complex model M2 (Fig 3). Indeed, related posterior dis-

tribution for M2 appeared both better centered on zero but also exhibited a much narrower

credible interval. For the Scorff river, the average 95% interval dropped from 1.63 to 0.48˚C.

For the Rough River, the corresponding values decreased from 0.99 to 0.29˚C. We can also see

that the distributions for the second half of years 2009 and 2010 on the Rough River are far

Fig 3. Boxplot of discrepancies between observed and fitted mean six months temperature. Model M1 features an AR1 modeling of

WT residuals. In case of model M2, WT residuals are linked to those of AT and optionally Q.

https://doi.org/10.1371/journal.pone.0291239.g003
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from being centered on zero in case of the old model M1 (Fig 3). We noticed the same problem

with the second half of years 1996 and 2006 on the Scorff river.

RMSE values clearly highlighted the better forecasting performances of model M2. Indeed,

incorporating the link between residuals when modeling water temperature allowed for a reduc-

tion in RMSE of 41 and 35% for the Rough and Scorff River respectively (Table 2). The forecast-

ing capabilities of model M2 are further highlighted on Fig 4. Here, we selected a small portion

of historical water temperature data from each river, containing both low and high daily varia-

tions. On both rivers, observed and predicted daily variations follow each other closely. High

frequency changes are well captured by model M2, as can be seen for early summer (days 75–

100) for both rivers (Fig 4). The average 50% credible interval around predictions is about

0.75˚C for both rivers, while the 95% credible interval spans slightly more than 4.5˚C (Fig 4).

Fig 4. Observed versus forecasted temperatures coming from the cross validation. Yellow lines correspond to observed WT

temperatures. Blue lines are the median value of predictive posteriors. Grey areas indicate 95% and 50% intervals of the forecasts.

https://doi.org/10.1371/journal.pone.0291239.g004
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Posteriors of parameters linking water temperature to the covariates

Modeling the link between the residuals of the different time series resulted in significant dif-

ferences in θ posterior distributions (Fig 5). Indeed, three main types of changes were notice-

able. First, posteriors of θ parameters tightened. This was particularly significant on the Scorff

River with, for instance, reduction of about 50% in the 95% credible of parameters y
1
0 , θ2 and

y
2
0 . Second, posteriors of θ1 and y

1
0 shifted toward stronger positive values. With model M2,

the credible intervals of parameters linked to LFL were well centered on 0 compared to that of

model M1. Meanwhile, the uncertainty around the regression appears greater with model M2

than with model M1 (see σ posteriors, Fig 5).

Fig 5. Comparison of the posteriors of θ parameters from equation set (2) updated with both model M1 and M2. The left-hand side of the

figure are for parameters linking maxWT
y to maxATy and optionaly minQ

y . The left-hand side of the figure are for parameters linking minWT
y to

minAT
y and optionaly maxQy .

https://doi.org/10.1371/journal.pone.0291239.g005
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Parameters δ and γ linking daily variations in water temperature to that of the covariates

were estimated as positive together with tight posterior distributions on both rivers (Fig 6). All

posteriors were centered on values between 0.5 and 0.7 suggesting changes in water tempera-

ture to be buffered when compared to those of covariates. The posterior of parameter γ
appeared about 10 times wider than that of δ for the Scorff river (0.28 vs 0.03 95% credible

interval), suggesting less precision into the impact of flow.

Forecast warming

Model M2 predicted higher warming of WT than model M1 on both rivers (Fig 7). These dif-

ferences are directly attributable to the differences in θ posteriors detailed above (Fig 5). Con-

sequently, the difference between models was greater on the Scorff river. The WT median

warming predicted by model M2 for the Scorff closely followed that of AT to peak at 4.59˚C

Fig 6. Posteriors of model M2 parameters linked to daily variations around the seasonal component. Details can be found in

equation set (3).

https://doi.org/10.1371/journal.pone.0291239.g006
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for an AT warming of 5˚C (median value), indicating that AT warming is still likely to be a bit

faster than WT warming there. Meanwhile, model M1 median warming prediction was only

1.33 and its 95% credible interval barely overlapped that of model M2. For the Rough river, the

WT warming predictions overlapped more between models but model M2 suggested it could

likely be faster there too. Lastly, WT warming predictions coming from model M2 were more

uncertain than with model M1. The average 95% credible of predicted WT warming were of

1.88 and 2.01˚C on the Scorff river with model M1 and model M2 respectively for a 5˚C AT

warming. On the Rough river, corresponding values were of 1.23 and 1.61˚C.

Discussion

Expanding the time series decomposition-based approach of [21] to better model daily varia-

tion in WT in addition to seasonal variations lead to greatly improved WT predictive abilities.

Fig 7. Warming of stream water temperature predicted across a range of air temperature warming. The dotted blue line is the

1:1 line.

https://doi.org/10.1371/journal.pone.0291239.g007
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In doing so, RMSE decreased by about 41% on the Rough river and about 35% on the Scorff

River. Discrepancies between 6-month averages of replicated data and observed water temper-

ature were also lower with the new M2 model than with the previous M1 model. This is indica-

tive of a better fit as replicated data generated under model M2 are more similar to observed

data. It also means forecast or hindcast 6-month means should be more reliable. The use of an

AR1 structure to model WT residuals as in model M1 is very flexible and allows for capturing

variability in fit. However, this can be considered as an over-fit when considering our goals.

Indeed, model M1 was less successful than M2 at producing long term hindcasts or

predictions.

Interestingly, the new model suggested that daily variation in flow may be more important

to WT than seasonal variation. Indeed, in case of our new model, the θ parameters linking the

seasonal component of WT to that of flow on the Scorff river appeared centered on 0, meaning

that they may not be statistically significant. This appeared surprising as AT and Q six months

minima and maxima time series were almost identical between models (see S1 File). In addi-

tion, the correlations between Q and AT time series entering the set of Eq (2) remained rather

weak, suggesting that the signals were contrasted between covariates. Correlation were even

slightly decreasing when going from model M1 to M2, changing from 0.48 to 0.4 for minAT and

maxQ, and from -0.39 to -0.31 for maxAT and minQ. It would be interesting to see if this behav-

ior is also observed on other rivers. Still, the impact of daily flow variations on WT has practi-

cal consequences. It indicates that daily management of flow to avoid extremely low and high

flow might be useful in the context of climate change adaptation [47]. In particular, ensuring

adequate flow in summer will serve to alleviate thermal stress, as flow can mitigate warming.

The main issue is that both rainfall predictions by climate models and the subsequent rainfall-

runoff models may lack enough precision [48].

The results from model M2 also indicated that WT warming should track that of AT closer

than predicted with model M1. In case of the Scorff river, WT potential warming appeared to

be at the same scale as that of the AT warming scenario. On the Rough River, the WT forecast

appeared less likely to reach 5˚C and results suggested that it might be overall slower than on

the Scorff river. The more pronounced changes in predictions observed on the Scorff River

with our updated model is likely linked to two key points. First it appears that modeling the

residuals as done with model M2 allows for a more precise estimate of the long-term compo-

nent of WT time series than when using model M1. The AR1 structure used in M1 probably

absorbed a part of the signal in 6-month values. The Scorff river WT time series were also rela-

tively short and prone to a lot of missing values. Those two things together probably led to an

even greater parameter confusion while fitting the signal decomposition. Thus, we observed

even more uncertainty in the 6 months min and max estimates from model M1 on the Scorff

river compared to those derived from model M2. Lastly, a probable more important WT

warming on the Scorff river is also congruent with the energy budget theory [31]. The Scorff

river is much longer than the Rough river (75 and 12.3 km respectively). As such, thermal

exchanges between air and water are more important and some homogenization is to be

expected. Headwaters may thus be way less impacted by climate change as observed on the

Rough river and in the USA [49] and their role in mitigating the global warming impact could

be important. We note, however, that the opposite observation about the response of headwa-

ters to warming has also been made [50] and warming predictions still overlap significantly in

our cases. Further analyses on a range of rivers is necessary to better understand the role of dif-

ferent types of rivers in mitigating climate change.

The overall uncertainty associated with WT warming is high. This will have to be accounted

for in decision making. Indeed, whatever the model, the 95% credible interval in WT warming

was about 2˚C around a given temperature. IPCC scenarios highlight uncertainties in AT
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warming in 2100 close to 3.5˚C [46]. The combined uncertainty is very high even over the

medium term. Integrating it in a probabilistic framework is important for future ecological

studies and decisions making [32]. The approach we developed makes this possible.

Further extensions of our model are possible. For now, the model is limited to one station

per river, but may be extended to several. This has already been done for instance with models

based on linear [50] and nonlinear regressions [51]. The application could also encompass sev-

eral rivers as done for instance with regression or neural network [52]. Such an approach

could include a hierarchical structure to test for an increased link between AT and WT as the

stations are further downstream. The number and length of the time series would have to be

chosen carefully as Bayesian fit can be slow when dealing with a large amount of data. Other

covariates may also be included in further research. Shading by riparian vegetation can signifi-

cantly alter WT and vegetation may change due to climate or land use management decisions

[24, 53]. The shading factor could be included within the modelling of residuals as reducing

extreme values through an additional exponential multiplier.

We offer stream ecologists and stakeholders a generic, parsimonious and effective way to

complete, hindcast and predict WT time series in a temperate context. Using only AT and

optionally Q time series, it predicts daily WT. The Bayesian framework allows for a full propa-

gation of uncertainties while doing so. A probabilistic rational can then be used for manage-

ment decision. The code is available on https://github.com/GuillaumeBal/2023.bayes.stream.

temperature so readers can perform their own fits. Providing correctly formatted data (locally

observed WT, AT and optionally Q data) and the specification a few model options is all that

is required to run both models M1 and M2.

Supporting information

S1 File. Additional details about models’ priors, application time series and models’ fits.

(DOCX)
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A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K.

Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou
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