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THE COMONOTONE FLOW OF A STOCHASTICALLY MONOTONE FELLER PROCESS
ON THE REAL LINE

JEAN BÉRARD AND BRIEUC FRÉNAIS

ABSTRACT. We show that any stochastically monotone Feller semigroup on ℝ can be extended by a con-
sistent family of order-preserving Feller semigroups on the successive powers of ℝ. We exhibit a specific
such family, which is uniquely characterized by a maximality property with respect to the super-modular
order on ℝ𝑛.

1. INTRODUCTION

We start by recalling various necessary definitions and properties in Subsections 1.1 to 1.4, then state
our main results in Subsection 1.5 and discuss them in Subsection 1.6.

1.1. Markov kernels. A Markov kernel 𝐾 on a measurable space (𝑆,𝒮 ) is a map from 𝑆 ×𝒮 to ℝ such
that

(i) for all 𝑥 ∈ 𝑆, 𝐾(𝑥, ⋅) is a probability measure on (𝑆,𝒮 );
(ii) for all 𝐵 ∈ 𝒮 , 𝐾(⋅, 𝐵) is a measurable real-valued function on 𝑆.

When there is no ambiguity regarding the choice of the 𝜎−algebra 𝒮 , we simply say that 𝐾 is a Markov
kernel on 𝑆. Given a bounded measurable real-valued function 𝑓 on 𝑆, we define a bounded measurable
real-valued function 𝐾𝑓 on 𝑆 by 𝐾𝑓 (𝑥) = ∫𝑆 𝑓 (𝑦)𝑑𝐾(𝑥, 𝑦). Denoting by 𝑏(𝑆) the vector space of
bounded real-valued measurable functions on 𝑆, equipped with the sup-norm ‖𝑓‖∞ = sup𝑥∈𝑆 |𝑓 (𝑥)|,
the map 𝑓 ↦ 𝐾𝑓 defines a linear operator from 𝑏(𝑆) into itself, and satisfies

(𝛼) ‖𝐾𝑓‖∞ ≤ ‖𝑓‖∞;
(𝛽) 𝐾𝑓 ≥ 0 when 𝑓 ≥ 0;
(𝛾) 𝐾𝟏 = 𝟏 (where 𝟏 denotes the constant fonction equal to 1).

1.2. Markov and Feller semigroups. Given two Markov kernels 𝐾,𝐿 on 𝑆, the composition of the two
kernels is yet another Markov kernel𝐾𝐿 defined by (𝐾𝐿)(𝑥, 𝐵) = ∫𝑆 𝐿(𝑦, 𝐵)𝑑𝐾(𝑥, 𝑦). The composition
is an associative (but in general non-commutative) operation on Markov kernels. Moreover, for 𝑓 ∈
𝑏(𝑆), we have that (𝐾𝐿)𝑓 = 𝐾(𝐿𝑓 ). We say that a family of Markov kernels (𝐾𝑡)𝑡∈ℝ+

on 𝑆 is a
Markov semigroup if

(I) for all 𝑥 ∈ 𝑆 and 𝐵 ∈ 𝒮 , 𝐾0(𝑥, 𝐵) = 𝛿𝑥(𝐵);
(II) the Chapman-Kolmogorov equation holds: for all 𝑠, 𝑡 ≥ 0, 𝐾𝑠+𝑡 = 𝐾𝑠𝐾𝑡.

Moreover, we say that a family (𝑋𝑡)𝑡∈ℝ+
of 𝑆−valued random variables defined on the same probability

space (Ω, ,ℙ) is a Markov process governed by the Markov semigroup (𝐾𝑡)𝑡∈ℝ+
when, for all 𝑠, 𝑡 ∈ ℝ+,

and all 𝐵 ∈ 𝒮 , one has

𝔼
(

𝟏𝐵(𝑋𝑠+𝑡)|𝜎(𝑋𝑢; 𝑢 ∈ [0, 𝑠])
) a.s.

= 𝐾𝑡(𝑋𝑠, 𝐵).
Now assume that 𝑆 is a locally compact separable metric space (abbreviated lcsm in the sequel),

equipped with the corresponding Borel 𝜎−algebra. We denote by 0(𝑆) the vector space of continuous
real-valued functions on 𝑆 vanishing at infinity. Note that 0(𝑆) equipped with the sup-norm is a Banach
space.

We say that a Markov semigroup (𝐾𝑡)𝑡∈ℝ+
on 𝑆 enjoys the Feller property (or, more succintly, that it

is a Feller semigroup) when:
(Fa) ∀𝑡 ≥ 0, ∀𝑓 ∈ 0(𝑆), 𝐾𝑡𝑓 ∈ 0(𝑆);
(Fb) ∀𝑓 ∈ 0(𝑆), lim𝑡→0+

‖

‖

𝐾𝑡𝑓 − 𝑓‖
‖∞ = 0.
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Let us now denote by 𝑏(𝑆) the vector space of bounded continuous real-valued functions on 𝑆, and
observe that property (Fa) implies1, but is not in general equivalent2 to

(Fa’) ∀𝑡 ≥ 0, ∀𝑓 ∈ 𝑏(𝑆), 𝐾𝑡𝑓 ∈ 𝑏(𝑆).
Moreover, (Fb) may be replaced by the apparently weaker assumption of pointwise (instead of uniform)
convergence

(Fb’) ∀𝑓 ∈ 0(𝑆),∀𝑥 ∈ 𝑆, lim𝑡→0+𝐾𝑡𝑓 (𝑥) = 𝑓 (𝑥),
but it turns out3 that a Markov semigroup satisfying (Fa) and (Fb’) also satisfies (Fb).

1.3. Consistent families. For every integer 𝑛 ≥ 2, equip the product space𝑆𝑛 with the product 𝜎−algebra
𝒮⊗𝑛. Given integers 1 ≤ 𝑘 ≤ 𝑛, and 𝑖1,… , 𝑖𝑘 ∈ J1, 𝑛K, we denote by 𝜋𝑛

𝑖1,…,𝑖𝑘
the projection from 𝑆𝑛

to 𝑆𝑘 defined by 𝜋𝑛
𝑖1,…,𝑖𝑘

(𝑥1,… , 𝑥𝑛) = (𝑥𝑖1 ,… , 𝑥𝑖𝑘). We say that a family of Markov kernels (𝐾 (𝑛))𝑛≥1,
where, for each integer 𝑛, 𝐾 (𝑛) is a Markov kernel on 𝑆𝑛, is a consistent family if, for all 1 ≤ 𝑘 ≤ 𝑛, all
𝑖1,… , 𝑖𝑘 ∈ J1, 𝑛K, all 𝐱 ∈ 𝑆𝑛 and all measurable subset 𝐵 of 𝑆𝑘,

(1) 𝐾 (𝑛)
(

𝐱, (𝜋𝑛
𝑖1,…,𝑖𝑘

)−1(𝐵)
)

= 𝐾 (𝑘)
(

𝜋𝑛
𝑖1,…,𝑖𝑘

(𝐱), 𝐵
)

.

We say that a family of Markov kernels (𝐾 (𝑛))𝑛≥2 is a consistent extension of a Markov kernel 𝐾 on
𝑆, if the family (𝐾 (𝑛))𝑛≥1, with 𝐾 (1) = 𝐾 , is a consistent family. A family of Markov semigroups
(

(𝐾 (𝑛)
𝑡 )𝑡∈ℝ+

)

𝑛≥1
is said to be consistent if, for every 𝑡 ∈ ℝ+, (𝐾 (𝑛)

𝑡 )𝑛≥1 is a consistent family of Markov
kernels; a consistent extension of a Markov semigroup on 𝑆 is defined accordingly.

Note that equal indices are allowed in (1), which implies in particular that, for all 𝑥 ∈ 𝑆, we have

(2) 𝐾 (2) ((𝑥, 𝑥), {(𝑦, 𝑦); 𝑦 ∈ 𝑆}) = 1.

1.4. Stochastic orders. Now assume that 𝑆 = ℝ, and denote by ↗
𝑏 (ℝ) the set of bounded non-

decreasing real-valued functions on ℝ. The usual stochastic order 𝜇 ≤𝐬𝐭 𝜈 between (Borel) probabil-
ity measures on ℝ (see [21]) is defined by the fact that, for all 𝑓 ∈ ↗

𝑏 (ℝ), one has ∫ℝ 𝑓 (𝑥)𝑑𝜇(𝑥) ≤
∫ℝ 𝑓 (𝑥)𝑑𝜈(𝑥). We say that a Markov semigroup (𝐾𝑡)𝑡∈ℝ+

on ℝ is stochastically monotone when:

(M) ∀𝑡 ≥ 0, ∀𝑓 ∈ ↗
𝑏 (ℝ), 𝐾𝑡𝑓 ∈ ↗

𝑏 (ℝ).
An immediately equivalent formulation of (M) in terms of ≤𝐬𝐭 is that
(3) ∀𝑥, 𝑦 ∈ ℝ, 𝑥 ≤ 𝑦 ⇒ 𝐾𝑡(𝑥, ⋅) ≤𝐬𝐭 𝐾𝑡(𝑦, ⋅).

Given 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 and 𝐲 = (𝑦1,… , 𝑦𝑛) ∈ ℝ𝑛, we say that 𝐲 is order-compatible with 𝐱 if,
for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑥𝑖 ≤ 𝑥𝑗 ⇒ 𝑦𝑖 ≤ 𝑦𝑗 . We then denote

ℝ𝑛
𝐱 = {𝐲 ∈ ℝ𝑛 such that 𝐲 is order-compatible with 𝐱},

and we say that a Markov kernel 𝐾 (𝑛) on ℝ𝑛 is order-preserving when, for all 𝐱 ∈ ℝ𝑛, we have that
𝐾 (𝑛) (𝐱,ℝ𝑛

𝐱
)

= 1.
Denote by𝑏(ℝ𝑛) the set of real-valued bounded Borel super-modular functions onℝ𝑛, i.e. bounded

Borel functions 𝑓 ∶ ℝ𝑛 → ℝ such that, for all 𝐱, 𝐲 ∈ ℝ𝑛, 𝑓 (𝐱) + 𝑓 (𝐲) ≤ 𝑓 (𝐱 ∨ 𝐲) + 𝑓 (𝐱 ∧ 𝐲),
where, for 𝐱 = (𝑥1,… , 𝑥𝑛) and 𝐲 = (𝑦1,… , 𝑦𝑛), we set 𝐱 ∨ 𝐲 = (max(𝑥1, 𝑦1),… ,max(𝑥𝑛, 𝑦𝑛)) and
𝐱 ∧ 𝐲 = (min(𝑥1, 𝑦1),… ,min(𝑥𝑛, 𝑦𝑛)).

Given 𝑛 ≥ 2 and two (Borel) probability measures 𝜇, 𝜈 on ℝ𝑛, we say that 𝜇 ≤𝐬𝐦 𝜈 (see e.g. [21])
when

(4) ∀𝑓 ∈ 𝑏(ℝ𝑛), ∫ℝ𝑛
𝑓 (𝐱)𝑑𝜇(𝐱) ≤ ∫ℝ𝑛

𝑓 (𝐱)𝑑𝜈(𝐱).

Note that ≤𝐬𝐦 defines a partial order on the set of probability measures on ℝ𝑛, and that two probability
measures that are comparable with respect to ≤𝐬𝐦 must have the same marginal distributions.

1See Proposition 1 below.
2See e.g. [3].
3See e.g. [12] Theorem 19.6, or [22] Chapter III, Proposition (2.4).
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1.5. Statement of the main results.
Theorem 1. If (𝑃𝑡)𝑡∈ℝ+

is a stochastically monotone Feller semigroup on ℝ, there exists a consistent

extension of (𝑃𝑡)𝑡≥0 by a family
(

(𝑃 (𝑛)
𝑡 )𝑡∈ℝ+

)

𝑛≥1
of order-preserving Feller semigroups.

For 𝑛 ≥ 2, denote by 𝔐𝑛 the set of Feller semigroups (𝑀 (𝑛)
𝑡 )𝑡∈ℝ+

on ℝ𝑛 such that, for every 𝑡 ≥ 0,
every 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛, and every 1 ≤ 𝑖 ≤ 𝑛, 𝑀𝑛

𝑡 (𝐱, (𝜋
𝑛
𝑖 )

−1(𝐵)) = 𝑃𝑡(𝑥𝑖, 𝐵).
Theorem 2. Let (𝑃𝑡)𝑡∈ℝ+

be a stochastically monotone Feller semigroup on ℝ, and, for 𝑛 ≥ 2, denote by
(𝑃 (𝑛)

𝑡 )𝑡∈ℝ+
the4 Markov semigroup constructed in the proof of Theorem 1. Then, for every (𝑀 (𝑛)

𝑡 )𝑡∈ℝ+
∈

𝔐𝑛, 𝑠 ∈ ℝ+ and 𝐱 ∈ ℝ𝑛, one has that 𝑀 (𝑛)
𝑠 (x, ⋅) ≤𝐬𝐦 𝑃 (𝑛)

𝑠 (x, ⋅). Since by construction (𝑃 (𝑛)
𝑡 )𝑡∈ℝ+

∈ 𝔐𝑛,
and since ≤𝐬𝐦 is a partial order, this shows that (𝑃 (𝑛)

𝑡 )𝑡∈ℝ+
is uniquely characterized as the solution of

the following maximization problem with respect to ≤𝐬𝐦:

𝑃 (𝑛)
𝑠 (x, ⋅) = max

(𝑀 (𝑛)
𝑡 )𝑡∈ℝ+∈𝔐𝑛

𝑀 (𝑛)
𝑠 (x, ⋅).

1.6. Discussion. Broadly speaking, Theorem 1 is a monotonicity equivalence result in the sense of [11]:
starting from a monotonicity property within a family of probability measures, one deduces the existence
of a monotone coupling, i.e. a family of random variables providing an effective realization of the mono-
tonicity property. The archetype for such results is Strassen’s theorem5: if 𝜇 ≤𝐬𝐭 𝜈, there exists a pair of
random variables (𝑋, 𝑌 ) such that Law(𝑋) = 𝜇, Law(𝑌 ) = 𝜈, and almost surely 𝑋 ≤ 𝑌 . In our context,
the existence of the Feller semigroup (𝑃 (𝑛)

𝑡 )𝑡∈ℝ+
shows that6, given 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛, one can define

a family of real-valued random variables (𝑋𝑥1
𝑡 ,… , 𝑋𝑥𝑛

𝑡 )𝑡∈ℝ+
on the same probability space, such that:

∙ for 1 ≤ 𝑖 ≤ 𝑛, 𝑋𝑥𝑖
𝑡 is a real-valued Markov process with càdlàg paths, starting at 𝑥𝑖, and governed

by (𝑃𝑡)𝑡∈ℝ+
,

∙ for all 𝑡 ∈ ℝ+, (𝑋𝑥1
𝑡 ,… , 𝑋𝑥𝑛

𝑡 ) is order-compatible with (𝑥1,… , 𝑥𝑛).
The fact that (𝑋𝑥1

𝑡 ,… , 𝑋𝑥𝑛
𝑡 )𝑡∈ℝ+

is itself a Markov process on ℝ𝑛 governed by a Feller Markov semi-
group comes as an important additional property (see [5], which was indeed our original motivation for
investigating the present question).

Results of this kind have been established in a variety of contexts, including7 discrete-time Markov
chains on partially ordered Polish spaces ([13]), continuous-time Markov chains on countable partially
ordered spaces ([20]), jump processes on partially ordered Polish spaces ([26]), interacting particle sys-
tems on {0, 1}ℤ𝑑 ([18]).

In the setting of continuous-time Markov processes on the real line, let us mention two important
special cases for which the conclusion of Theorem 1 can be established relatively easily:

∙ Lévy processes (see e.g. [2]): using the parallel coupling, obtained by setting, for all 𝑥 ∈ ℝ and
𝑡 ≥ 0, 𝑋𝑥

𝑡 = 𝑥 +𝑋0
𝑡 , where (𝑋0

𝑡 )𝑡≥0 is a version of the Lévy process starting at 0, see Figure 1a;
∙ Feller processes with continuous paths: one defines 𝑃 (𝑛)

𝑡 as the distribution at time 𝑡 of a family8

of 𝑛 trajectories that evolve independently until they meet, and stick together thereafter (this is

4A priori, this may not be unique, but it turns out that it is in view of the present statement.
5Strassen’s theorem is valid in the general context of probability measures on Polish spaces. See [23] for Strassen’s original

paper, and [19] for useful additional elements.
6From classical results (see e.g. [22] or [12]), we have the existence of an ℝ𝑛-valued Markov process (𝑋𝑥1

𝑡 ,… , 𝑋𝑥𝑛
𝑡 )𝑡∈ℝ+

with càdlàg paths, governed by (𝑃 (𝑛)
𝑡 )𝑡∈ℝ+

and starting at 𝐱. Then, by the order-preserving property of 𝑃 (𝑛)
𝑡 , almost surely, for

all 𝑡 ∈ ℚ+, (𝑋𝑥1
𝑡 ,… , 𝑋𝑥𝑛

𝑡 ) ∈ ℝ𝑛
𝐱. Then, using right-continuity of paths and the fact that ℝ𝑛

𝐱 is a closed subet of ℝ𝑛, we have
that, almost surely, for all 𝑡 ∈ ℝ+, (𝑋𝑥1

𝑡 ,… , 𝑋𝑥𝑛
𝑡 ) ∈ ℝ𝑛

𝐱.
7For the sake of brevity, we limit ourselves to a small sample of references, and point the interested reader to the works

quoted by, or quoting, these references for a more exhaustive view of this subject.
8A construction for general Feller processes (not necessarily with continous paths) leading to a strong Markov process is

given in [9] Section 2.1. Continuity of paths easily shows that 𝑃 (𝑛)
𝑡 is order-preserving. The Feller property of (𝑃 (𝑛)

𝑡 )𝑡≥0 can
then be established using the fact that we have a consistent extension of a Feller semigroup on the real line by order-preserving
semigroups, exactly as in the Proof of Theorem 1.
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(A) Parallel coupling (B) Doeblin coupling

FIGURE 1. Special cases of Theorem 1 with easier constructions

often called the Doeblin coupling), see Figure 1b; the construction with 𝑛 = 2 is a nice way of
proving the not-so-obvious fact that any Feller process on the real line with continuous paths is
stochastically monotone.

In the case of jump processes ([6]), and more generally, of Lévy-type processes ([25, 15]), necessary and
sufficient explicit conditions for stochastic monotonicity, expressed in terms of the infinitesimal generator
of the process, have been obtained. One nice feature of Theorem 1 is that it holds in a completely
general setting, regardless of the specific structure of the underlying process, as soon as it is stochastically
monotone and enjoys the Feller property, which are also necessary conditions for the conclusion of the
theorem to hold.

Theorem 2 shows that, for all 𝑛 ≥ 2, 𝑠 ∈ ℝ+ and 𝐱 = (𝑥1,… , 𝑥𝑛), 𝑃
(𝑛)
𝑠 (𝐱, ⋅) produces an 𝑛−dimensional

coupling of the distributions 𝑃𝑠(𝑥1, ⋅),… , 𝑃𝑠(𝑥𝑛, ⋅), enjoying a maximality property with respect to the
super-modular order. Without the constraint that this coupling has to be the distribution at time 𝑠 of a
Feller process on ℝ𝑛 whose marginals evolve according to (𝑃𝑡)𝑡∈ℝ+

, the maximum would be achieved
by the classical comonotone coupling of 𝑃𝑠(𝑥1, ⋅),… , 𝑃𝑠(𝑥𝑛, ⋅) (see [21]). Loosely speaking, 𝑃 (𝑛) is ob-
tained (as a well-defined limit) by composing infinitely many such comonotone couplings associated with
an infinitesimal time interval 𝑠, so we choose to call the resulting object the comonotone flow associated
with (𝑃𝑡)𝑡≥0. Strictly speaking, we have not defined a flow but only a consistent family

(

(𝑃 (𝑛)
𝑡 )𝑡∈ℝ+

)

𝑛≥1
of Feller Markov semigroups. However, it is shown9 in [17] that such a family of semigroups corresponds
to a stochastic flow, in a precise sense. We do not push this question further here, and postpone the study
of the various properties enjoyed by this stochastic flow to future work.

1.7. Organization of the paper. In Section 2, we collect various results related to the Feller property
of Markov semigroups, on general (locally compact separable metric, or compact metric) spaces, then
on ℝ. Section 3 is devoted to the proof of Theorem 1, and Section 4 to the proof of Theorem 2. Section 5
is an appendix where we explain why we think an element is missing in the proof of some results in [13]
which are related to the conclusion of Theorem 1 in the present paper. Section 7 shows some numerical
illustrations.

2. FELLER-RELATED RESULTS

This section is devoted to results related to the Feller property of Markov semigroups. In Subsection
2.1, we provide alternative formulations of the Feller property that turn out to be more suitable for the
arguments developed in Section 3, namely, transferring the assumed regularity properties of the family

9See also the correction [16] and the fully corrected version arXiv:math/0203221v6. Condition (1) and its consequence (2)
precisely match the definition in [17] of a compatible family of Feller semigroups satisfying 𝑃 (2)

𝑡 𝑓⊗2(𝑥, 𝑥) = 𝑃𝑡𝑓 2(𝑥) for all
𝑥 ∈ 𝑆 and 𝑓 ∈ 0(𝑆).
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of kernels (𝑃𝑡)𝑡∈ℝ+
on ℝ, to families of kernels on ℝ𝑛 that extend 𝑃𝑡. In Subsection 2.2, we show that

the combination of stochastic monotonicity with the Feller property allows one to extend (𝑃𝑡)𝑡∈ℝ+
to a

Feller semigroup (𝑃𝑡)𝑡∈ℝ+
on the extended real line ℝ, whose advantage (in our context) over the usual

one-point compactification ℝ ∪ {∞} is its compatibility with the underlying order on ℝ.

2.1. General properties. Given a lcsm space, we denote by(𝑆) the set of (Borel) probability measures
on 𝑆, equipped with the topology of weak convergence, which is metrizable (see below). To a Markov
kernel 𝐾 on 𝑆, we associate the map 𝐾 from 𝑆 to (𝑆), defined as 𝑥 ↦ 𝐾(𝑥, ⋅). Conversely, to a map
𝐊 from 𝑆 to (𝑆), we associate the map �̂� from 𝑆 ×𝒮 to ℝ defined as (𝑥, 𝐵) ↦ [𝐊(𝑥)] (𝐵), which may
or may not be a Markov kernel, depending on whether the map �̂�(⋅, 𝐵) is measurable for every 𝐵.

Lemma 1. Given a lcsm space 𝑆, and a continuous map 𝐊 ∶ 𝑆 → (𝑆), �̂� is a Markov kernel.
Proof. Arguing as in the proof of Proposition 1 below, we have that, for all 𝑓 ∈ 𝑏(𝑆), the map 𝑥 ↦

�̂�𝑓 (𝑥) = ∫𝑆 𝑓 (𝑦)𝑑 [𝐊(𝑥)] (𝑦) is itself an element of 𝑏(𝑆), and in particular is a Borel map.
We now apply Theorem 0.2.2 in [22], which is a functional version of the monotone class theorem:

the set ℋ of functions 𝑓 ∈ 𝑏(𝑆) such that 𝑥 ↦ �̂�𝑓 (𝑥) is Borel contains 𝑏(𝑆) – which plays the role
of 𝒞 in [22] – and the assumptions of the theorem are met10, so that ℋ contains all 𝜎(𝑏(𝑆))-measurable
functions, and thus all bounded real-valued Borel functions on 𝑆. In particular �̂�𝟏𝐵 is a Borel function
for any Borel set 𝐵 in 𝑆, so �̂� is indeed a Markov kernel on 𝑆. □

Proposition 1. Given a Markov kernel 𝐾 on a lcsm space 𝑆, the following three properties are equiva-
lent:
(𝐢) 𝐾 is a continuous map;
(𝐢𝐢) ∀𝑓 ∈ 𝑏(𝑆), 𝐾𝑓 ∈ 𝑏(𝑆);
(𝐢𝐢𝐢) ∀𝑓 ∈ 0(𝑆), 𝐾𝑓 ∈ 𝑏(𝑆).
Proof. Remember that, for a Markov kernel 𝐾 and 𝑓 ∈ 𝑏(𝑆), one always has 𝐾𝑓 ∈ 𝑏(𝑆), so that
the only stake in (𝐢𝐢) and (𝐢𝐢𝐢) is the continuity of 𝐾𝑓 . Now, by definition, continuity of the map 𝑥 ↦
𝐾(𝑥, ⋅) means that, for any sequence (𝑥𝑘)𝑘≥1 such that lim𝑘→+∞ 𝑥𝑘 = 𝑥, we have the weak convergence
𝐾(𝑥𝑘, ⋅)

𝐰
←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝐾(𝑥, ⋅). In turn, weak convergence means that, for every 𝑓 ∈ 𝑏(𝑆), lim𝑘→+∞𝐾𝑓 (𝑥𝑘) =
𝐾𝑓 (𝑥), which reads as the continuity of 𝑃𝑓 at 𝑥. As a consequence, (𝐢) and (𝐢𝐢) are equivalent. The
equivalence of (𝐢) and (𝐢𝐢𝐢) stems from the fact that, since 𝑆 is a lcsm space, the weak convergence
𝐾(𝑥𝑘, ⋅)

𝐰
←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝐾(𝑥, ⋅) is equivalent to the fact that lim𝑘→+∞𝐾𝑓 (𝑥𝑘) = 𝐾𝑓 (𝑥) for every 𝑓 ∈ 0(𝑆).
□

Proposition 2. A Markov kernel 𝐾 on a lcsm space 𝑆 satisfies
(5) ∀𝑓 ∈ 0(𝑆), 𝐾𝑓 ∈ 0(𝑆),
if and only if the following two conditions are satisfied:

(𝐢) 𝐾 is a continuous map;
(𝐢𝐢) for every compact subset 𝐶 of 𝑆, lim𝑥→∞𝐾(𝑥, 𝐶) = 0.

Proof. We start with the "if" part, assuming that (𝐢) and (𝐢𝐢) are satisfied. Consider 𝑓 ∈ 0(𝑆). Since
0(𝑆) ⊂ 𝑏(𝑆), Proposition 1 and (𝐢) show that 𝐾𝑓 ∈ 𝑏(𝑆), and it remains to prove that 𝐾𝑓 goes
to zero at infinity. Given 𝜀 > 0 and a compact 𝐶 such that |𝑓 | ≤ 𝜀 outside 𝐶 , we have |𝐾𝑓 (𝑥)| ≤
‖𝑓‖∞𝐾(𝑥, 𝐶) + 𝜀, so that, thanks to (𝐢𝐢), |𝐾𝑓 (𝑥)| ≤ 2𝜀 as soon as 𝑥 is outside a sufficiently large
compact set 𝐶 ′.

Now for the "only if" part, assuming that (5) is satisfied. From Proposition (1), we have (𝐢), since
0(𝑆) ⊂ 𝑏(𝑆). As for (𝐢𝐢), consider a compact set 𝐶 . By compactness of 𝐶 and local compactness

10The set ℋ is a vector space that contains the constant functions and the supremum of any bounded non-decreasing
sequence of its non-negative elements (thanks to the monotone convergence theorem); the set 𝒞 is stable under pointwise
multiplication.
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of 𝑆, there exists11 a continuous function 𝑓 with compact support such that 𝑓 ≥ 𝟏𝐶 . Then 𝐾(𝑥, 𝐶) =
𝐾𝟏𝐶 (𝑥) ≤ 𝐾𝑓 (𝑥), and, since 𝑓 ∈ 0(𝑆), (5) implies that 𝐾𝑓 ∈ 0(𝑆) so that lim𝑥→∞𝐾𝑓 (𝑥) = 0. □

We now focus on the case where 𝑆 is a compact (hence separable) metric space, denoting by (𝑆)
the space of continuous real-valued functions on 𝑆 (due to the fact that 𝑆 is compact, we have (𝑆) =
𝑏(𝑆) = 0(𝑆)). Among the many possible metrics compatible with the weak convergence topology
on (𝑆), we choose to use the Wasserstein (or Kantorovich-Rubinstein) 𝑊1 distance (see [24], Chapter
6). Specifically, consider the space 𝐿𝑖𝑝(𝑆) of real-valued Lipschitz functions on 𝑆. Denoting by 𝑑𝑆 the
metric on 𝑆, for 𝑓 ∈ 𝐿𝑖𝑝(𝑆), we let ‖𝑓‖𝐿𝑖𝑝 = sup{|𝑓 (𝑦) − 𝑓 (𝑥)|∕𝑑𝑆(𝑥, 𝑦); 𝑥, 𝑦 ∈ 𝑆, 𝑥 ≠ 𝑦}. Note
that, since 𝑆 is compact, every 𝑓 ∈ 𝐿𝑖𝑝(𝑆) is bounded. The 𝑊1 distance on (𝑆) is then given by

(6) 𝑊1(𝜇, 𝜈) = sup
{

|

|

|

|

∫𝑆
𝑓 (𝑥)𝑑𝜇(𝑥) − ∫𝑆

𝑓 (𝑥)𝑑𝜈(𝑥)
|

|

|

|

; ‖𝑓‖𝐿𝑖𝑝 ≤ 1
}

.

Lemma 2. Let 𝐾,𝐿,𝑀 be Markov kernels on 𝑆, then
sup
𝑥∈𝑆

𝑊1(𝐾𝐿(𝑥, ⋅), 𝐾𝑀(𝑥, ⋅)) ≤ sup
𝑥∈𝑆

𝑊1(𝐿(𝑥, ⋅),𝑀(𝑥, ⋅)).

Proof. Consider 𝑓 ∈ 𝐿𝑖𝑝(𝑆) such that ‖𝑓‖𝐿𝑖𝑝 ≤ 1. By definition, for all 𝑥 ∈ 𝑆, we have that
|𝐿𝑓 (𝑥) −𝑀𝑓 (𝑥)| ≤ 𝑊1 (𝐿(𝑥, ⋅),𝑀(𝑥, ⋅)) , so that ‖𝐿𝑓 −𝑀𝑓‖∞ ≤ sup𝑥∈𝑆 𝑊1(𝐿(𝑥, ⋅),𝑀(𝑥, ⋅)). Us-
ing the contraction property (𝛼) of Markov kernels, ‖𝐾𝐿𝑓 −𝐾𝑀𝑓‖∞ ≤ ‖𝐿𝑓 −𝑀𝑓‖∞, so that

sup
𝑥∈𝑆

sup
𝑓∈𝐿𝑖𝑝(𝑆), ‖𝑓‖𝐿𝑖𝑝≤1

|𝐾𝐿𝑓 (𝑥) −𝐾𝑀𝑓 (𝑥)| ≤ sup
𝑥∈𝑆

𝑊1(𝐿(𝑥, ⋅),𝑀(𝑥, ⋅)).

□

Proposition 3. Given a family of Markov kernels (𝐾𝑡)𝑡∈𝐽 on a compact metric space 𝑆, where 𝐽 is a
subset of ]0,+∞[ such that inf 𝐽 = 0, the following properties are equivalent:

(𝐢) ∀𝑓 ∈ (𝑆), lim𝑡→0+
‖

‖

𝐾𝑡𝑓 − 𝑓‖
‖∞ = 0

(𝐢𝐢) for all 𝜀 > 0, and all 𝑥 ∈ 𝑆, 𝐾𝑡(𝑥, 𝐵𝑆(𝑥, 𝜀)𝑐) goes12 to 0 as 𝑡 goes to 0, uniformly over 𝑥 ∈ 𝑆;
(𝐢𝐢𝐢) for all 𝑥 ∈ 𝑆, 𝑊1(𝐾𝑡(𝑥, ⋅), 𝛿𝑥) goes to 0 as 𝑡 goes to 0, uniformly over 𝑥 ∈ 𝑆.

Proof. Before we start the proof, let us introduce a few notations and definitions. For a non-empty set
𝐴 ⊂ 𝑆 and 𝑥 ∈ 𝑆, we let 𝑑𝑆(𝑥,𝐴) = inf{𝑑𝑆(𝑥, 𝑦); 𝑦 ∈ 𝐴}, and, for 𝑟 > 0, we denote 𝐴𝑟 = {𝑥 ∈
𝑆; 𝑑𝑆(𝑥,𝐴) < 𝑟}. We then define the function 𝐼 𝑟𝐴 on 𝑆 by 𝐼 𝑟𝐴(𝑥) = 1 − min(𝑑𝑆 (𝑥,𝐴),𝑟)

𝑟
. We have that

0 ≤ 𝐼 𝑟𝐴 ≤ 1, 𝐼 𝑟𝐴 = 1 on 𝐴, 𝐼 𝑟𝐴 = 0 outside 𝐴𝑟, and ‖

‖

‖

𝐼 𝑟𝐴
‖

‖

‖𝐿𝑖𝑝
≤ 1∕𝑟.

We start with (𝐢) ⇒ (𝐢𝐢). Assume that (𝐢) holds, and consider 𝜀 > 0, 𝑥 ∈ 𝑆, and the function
𝑓 = 𝐼𝜀∕3𝐵𝑆 (𝑥,𝜀∕3)

. For all 𝑦 ∈ 𝐵𝑆(𝑥, 𝜀∕3) one has that 𝑓 (𝑦) = 1, and, for all 𝑧 ∉ 𝐵𝑆(𝑦, 𝜀), one has
that 𝑧 ∉ 𝐵𝑆(𝑥, 𝜀∕3)𝜀∕3 so that 𝑓 (𝑧) = 0. Since 𝑓 ≤ 1, we deduce that 𝐾𝑡(𝑦, 𝐵𝑆(𝑦, 𝜀)𝑐) ≤ 1 − 𝐾𝑡𝑓 (𝑦).
From (𝐢), 𝐾𝑡𝑓 (𝑦) goes to 𝑓 (𝑦) = 1 as 𝑡 goes to 0, uniformly with respect to 𝑦 ∈ 𝐵𝑆(𝑥, 𝜀∕3), so that
𝐾𝑡(𝑦, 𝐵𝑆(𝑦, 𝜀)𝑐) goes to 0 as 𝑡 goes to 0, uniformly with respect to 𝑦 ∈ 𝐵𝑆(𝑥, 𝜀∕3). Covering the compact
set 𝑆 by a finite number of balls of the form 𝐵𝑆(𝑥, 𝜀∕3), we have proved that (𝐢𝐢) holds.

We now prove that (𝐢𝐢) ⇒ (𝐢). Assume that (𝐢𝐢) holds. Consider 𝑓 ∈ (𝑆), and 𝜀 > 0. Since 𝑆
is compact, 𝑓 is uniformly continuous and there is a 𝛿 > 0 such that, whenever 𝑑𝑆(𝑥, 𝑦) ≤ 𝛿, one has
|𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝜀. As a consequence, for all 𝑥 ∈ 𝑆, |𝐾𝑡𝑓 (𝑥) − 𝑓 (𝑥)| ≤ 𝜀+ 2 ‖𝑓‖∞𝐾𝑡(𝑥, 𝐵𝑆(𝑥, 𝜀)𝑐), so
(𝐢𝐢) leads to the desired conclusion.

The proof that (𝐢𝐢) ⇒ (𝐢𝐢𝐢) is similar, where Lipschitz continuity replaces uniform continuity. In-
deed, for 𝑓 ∈ 𝐿𝑖𝑝(𝑆), we have, for all 𝜀 > 0, and for all 𝑥 ∈ 𝑆, that |𝐾𝑡𝑓 (𝑥) − 𝑓 (𝑥)| ≤ ‖𝑓‖𝐿𝑖𝑝 𝜀 +

11This is a rather standard result. Here is an elementary argument, using the notations of the proof of Proposition 3. Since 𝑆
is locally compact, for every 𝑥 ∈ 𝐶 , there exists a number 𝑟 > 0 such that 𝐵(𝑥, 𝑟) is compact. By compactness of 𝐶 , we deduce
that there exist 𝑚 ≥ 1, 𝑥1,… , 𝑥𝑚 ∈ 𝐾 and 𝑟1,… , 𝑟𝑚 > 0 such that 𝐶 ⊂ 𝑈 , where 𝑈 =

⋃𝑚
𝑘=1 𝐵(𝑥𝑘, 𝑟𝑘). By compactness of 𝐶

again, the continuous function 𝑥 ↦ 𝑑(𝑥, 𝑈 𝑐) has a minimum value 𝜌 on 𝐶 , and, since 𝑈 𝑐 is closed and 𝐶 ∩ 𝑈 𝑐 = ∅, we must
have 𝜌 > 0. Choosing 𝜀 ∈]0, 𝜌[ ensures that 𝐶𝜀 ⊂ 𝑈 . As a consequence, 𝐶𝜀 is included in the compact set

⋃𝑚
𝑘=1 𝐵(𝑥𝑘, 𝑟𝑘), so

that 𝐶𝜀 is compact. One can then take 𝑓 = 𝐼𝜀
𝐶 .

12We denote by 𝐵𝑆 (𝑥, 𝑟) the open ball of radius 𝑟 centered at 𝑥.
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Δ𝑆 ‖𝑓‖𝐿𝑖𝑝𝐾𝑡(𝑥, 𝐵𝑆(𝑥, 𝜀)𝑐), using the fact that, for all 𝑥, 𝑦 ∈ 𝑆, |𝑓 (𝑦) − 𝑓 (𝑥)| ≤ ‖𝑓‖𝐿𝑖𝑝Δ𝑆 , where
Δ𝑆 = sup𝑥,𝑦∈𝑆 𝑑𝑆(𝑥, 𝑦) is finite thanks to the fact that 𝑆 is compact.

We now prove that (𝐢𝐢𝐢) ⇒ (𝐢𝐢). Given 𝑥 ∈ 𝑆 and 𝜀 > 0, consider the function 𝑓 = 𝐼𝜀∕3𝐵𝑆 (𝑥,𝜀∕3)
used in

the proof that (𝐢) ⇒ (𝐢𝐢). We have that ‖𝑓‖𝐿𝑖𝑝 ≤ 3∕𝜀, so that 𝑔 = (3∕𝜀)−1𝑓 , sastifies ‖𝑔‖𝐿𝑖𝑝 ≤ 1, and as
a consequence, for all 𝑦 ∈ 𝑆, |𝐾𝑡𝑓 (𝑦) − 𝑓 (𝑦)| ≤ (3∕𝜀)𝑊1(𝐾𝑡(𝑦, ⋅), 𝛿𝑦), and we can argue as in the proof
that (𝐢) ⇒ (𝐢𝐢), thanks to (𝐢𝐢𝐢).

□

2.2. Extension of (𝑃𝑡) toℝ. For 𝑢, 𝑣 ∈ ℝ, denote by 𝑢,𝑣(ℝ) the set of continuous functions 𝑓 ∶ ℝ → ℝ
such that lim𝑥→−∞ 𝑓 (𝑥) = 𝑢 and lim𝑥→+∞ 𝑓 (𝑥) = 𝑣.

Proposition 4. A Markov kernel 𝐾 on ℝ satisfying (5) and

(7) ∀𝑓 ∈ ↗
𝑏 (ℝ), 𝐾𝑓 ∈ ↗

𝑏 (ℝ),

also satisfies

(8) ∀𝑓 ∈ 𝑢,𝑣(ℝ), 𝐾𝑓 ∈ 𝑢,𝑣(ℝ).

Proof.
We first prove that, for all 𝑎 > 0,

(9) lim
𝑥→−∞

𝐾(𝑥, [−𝑎,+∞[) = 0 and lim
𝑥→+∞

𝐾(𝑥, ] − ∞, 𝑎]) = 0.

Given 𝑎 > 0, consider 𝜀 > 0. Then choose 𝑏 ≥ 𝑎 such that 𝐾(0, [−𝑏,+𝑏]𝑐) ≤ 𝜀. Thanks to (5) and
Proposition (2), there exists 𝑥0 ≤ 0 such that, for all 𝑥 ≤ 𝑥0, 𝐾(𝑥, [−𝑏,+𝑏]) ≤ 𝜀. By the monotonicity
assumption (7), 𝐾(𝑥, ]𝑏,+∞[) ≤ 𝐾(0, ]𝑏,+∞[)) ≤ 𝜀. Combining the two inequalities for 𝐾(𝑥, ⋅), we
deduce that 𝐾(𝑥, [−𝑏,+∞[) ≤ 2𝜀, and, since 𝑏 ≥ 𝑎, we have that, for all 𝑥 ≤ 𝑥0, 𝐾(𝑥, [−𝑎,+∞[) ≤
𝐾(𝑥, [−𝑏,+∞[) ≤ 2𝜀. We have proved the first part of (9). The second part is proved symmetrically.

Now consider 𝑓 ∈ 𝑢,𝑣(ℝ). Given 𝜖 > 0, there exists 𝑎 > 0 such that, for all 𝑧 < −𝑎, |𝑓 (𝑧) − 𝑢| ≤ 𝜀.
As a consequence, |𝐾𝑓 (𝑥)− 𝑢| ≤ 𝜀+(||𝑓 ||∞+ 𝑢)𝐾(𝑥, [−𝑎,+∞[). Using the first part of (9), we deduce
that lim sup𝑥→−∞ |𝐾𝑓 (𝑥) − 𝑢| ≤ 𝜀. Since 𝜀 is arbitrary, we have thus proved that lim𝑥→−∞𝐾𝑓 (𝑥) = 𝑢.
A similar argument proves that lim𝑥→+∞𝐾𝑓 (𝑥) = 𝑣.

Finally, since 𝑓 ∈ 𝑏(ℝ) and 𝐾 satisfies (5), Proposition 2 shows that 𝐾𝑓 is a continuous function.
□

We equip the extended real line ℝ = ℝ ∪ {−∞,+∞} = [−∞,+∞] with the metric 𝑑1(𝑥, 𝑦) =
|𝜙(𝑦) − 𝜙(𝑥)|, where 𝜙(𝑥) = tanh(𝑥) (with tanh(+∞) = 1 and tanh(−∞) = −1), which makes it a
separable compact metric space. For 𝑛 ≥ 2, we equip ℝ

𝑛
with the metric 𝑑𝑛(𝐱, 𝐲) =

∑𝑛
𝑖=1 |𝜙(𝑦𝑖)−𝜙(𝑥𝑖)|.

Given a Borel probability measure 𝜇 on ℝ, we extend it to a probability measure �̃� on ℝ by letting,
for every Borel set 𝐵 of ℝ, �̃�(𝐵) = 𝜇(𝐵 ∩ℝ).

Lemma 3. Given Borel probability measures 𝜇, 𝜇1, 𝜇2,… on ℝ, 𝜇𝑘
𝐰

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝜇 if and only if 𝜇𝑘
𝐰

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

�̃�.

Proof. Assume that 𝜇𝑘
𝐰

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

�̃�. For 𝑓 ∈ 0(ℝ), 𝑓 can be extended to a function 𝑓 ∈ (ℝ) by letting

𝑓 (±∞) = 0. For any probability measure 𝜈 on ℝ, we have that ∫ℝ 𝑓 (𝑥)𝑑𝜈(𝑥) = ∫ℝ 𝑓 (𝑥)𝑑𝜈(𝑥). As a con-
sequence, the fact that lim𝑘→+∞ ∫ℝ 𝑓 (𝑥)𝑑𝜇𝑘(𝑥) = ∫ℝ 𝑓 (𝑥)𝑑�̃�(𝑥) implies that lim𝑘→+∞ ∫ℝ 𝑓 (𝑥)𝑑𝜇𝑘(𝑥) =

∫ℝ 𝑓 (𝑥)𝑑𝜇(𝑥). So we have proved that 𝜇𝑘
𝐰

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝜇.

Now assume that 𝜇𝑘
𝐰

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝜇. For 𝑓 ∈ (ℝ), the restriction of 𝑓 to ℝ is a bounded continuous
function, so we have that lim𝑘→+∞ ∫ℝ 𝑓 (𝑥)𝑑𝜇𝑘(𝑥) = ∫ℝ 𝑓 (𝑥)𝑑𝜇(𝑥), whence lim𝑘→+∞ ∫ℝ 𝑓 (𝑥)𝑑𝜇𝑘(𝑥) =

∫ℝ 𝑓 (𝑥)𝑑�̃�(𝑥). So we have proved that 𝜇𝑘
𝐰

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

�̃�. □
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We extend (𝑃𝑡)𝑡∈ℝ+
to a family of Markov kernels (𝑃𝑡)𝑡∈ℝ+

on ℝ by setting, for all 𝑥 ∈ ℝ: 𝑃𝑡(𝑥, ⋅) =
𝑃𝑡(𝑥, ⋅), 𝑃𝑡(+∞, ⋅) = 𝛿+∞(⋅) and 𝑃𝑡(−∞, ⋅) = 𝛿−∞(⋅).

Proposition 5. If (𝑃𝑡)ℝ+
is stochastically monotone and enjoys the Feller property, then (𝑃𝑡)𝑡≥0 has the

Feller property.

Proof. We first prove (Fa), i.e. ∀𝑓 ∈ (ℝ) and 𝑡 ≥ 0, 𝑃𝑡𝑓 ∈ (ℝ). Given 𝑓 ∈ (ℝ), we denote by 𝑓
|ℝ

the restriction of 𝑓 to ℝ, and observe that 𝑓
|ℝ ∈ 𝑢,𝑣(ℝ), where 𝑢 = 𝑓 (−∞) and 𝑣 = 𝑓 (+∞), so, by

Proposition 4, 𝑃𝑡𝑓|ℝ ∈ 𝑢,𝑣(ℝ). For 𝑥 ∈ ℝ, 𝑃𝑡𝑓 (𝑥) = 𝑃𝑡𝑓|ℝ(𝑥), while 𝑃𝑡𝑓 (−∞) = 𝑢 and 𝑃𝑡𝑓 (+∞) = 𝑣.
We deduce that 𝑃𝑡𝑓 is continuous on ℝ.

We now prove (Fb’), i.e. ∀𝑓 ∈ (ℝ) and 𝑥 ∈ ℝ, lim𝑡→0 𝑃𝑡𝑓 (𝑥) = 𝑓 (𝑥). This is immediate for
𝑥 = ±∞ since then 𝑃𝑡𝑓 (𝑥) = 𝑓 (𝑥) for all 𝑡. For all 𝑥 ∈ ℝ, we have that 𝑃𝑡(𝑥, ⋅) converges weakly to 𝛿𝑥
as 𝑡 → 0, so that, since 𝑓

|ℝ ∈ 𝑏(ℝ), lim𝑡→0 𝑃𝑡𝑓ℝ(𝑥) = 𝑓ℝ(𝑥), whence lim𝑡→0 𝑃𝑡𝑓 (𝑥) = 𝑓 (𝑥).
□

Remark 1. Observe that it is not true that, without additional assumptions, the extension to ℝ of a Feller
Markov semigroup on ℝ always inherits the Feller property (this is true nonetheless for the extension
to the one-point compactification ℝ ∪ {∞}). Consider for instance the semigroup (𝑃𝑡) associated with
a standard brownian motion (𝐵𝑡)𝑡∈ℝ+

on ℝ whose sign is reversed at each occurrence of an indepen-
dent rate 1 Poisson process (𝑁𝑡)𝑡∈ℝ+

, i.e. 𝑋𝑡 = 𝐵𝑡 ⋅ (−1)𝑁𝑡 . Indeed, for 𝑓 ∈ 𝑎,𝑏(ℝ) with 𝑎 ≠ 𝑏,
lim𝑥→−∞ 𝑃𝑡𝑓 (𝑥) = 𝑎ℙ(𝑁𝑡 is even) + 𝑏ℙ(𝑁𝑡 is odd), so 𝑃𝑡𝑓 ∉ 𝑎,𝑏(ℝ) for 𝑡 > 0.

3. PROOF OF THEOREM 1

This section is devoted to the proof of Theorem 1. First, in Subsection 3.1, we define the kernels 𝑄(𝑛)
𝑡

by using, for 𝐱 = (𝑥1,… , 𝑥𝑛) and 𝑡 ≥ 0, the classical comonotone coupling of 𝑃𝑡(𝑥1, ⋅),… , 𝑃𝑡(𝑥𝑛, ⋅),
which turns out to be order-preserving thanks to the stochastic monotonicity of (𝑃𝑡)𝑡≥0 (more precisely,
we work with the extended semigroup (𝑃𝑡)𝑡≥0 on ℝ). Then, in Subsection 3.2, we construct the kernels
𝑃 (𝑛)
𝑡 by iterating the composition of 𝑄(𝑛)

𝑠 a large number of times for smaller and smaller 𝑠, then taking
the limit. One key tool to prove that this procedure leads to a well-behaved limit is Proposition 7, which
enables the transfer of regularity properties of the kernels 𝑃𝑡 to the kernels 𝑄(𝑛)

𝑡 , thanks to the interplay
between order-preserving properties of kernels and estimates in the 𝑊 (𝑛)

1 distance.

3.1. Discrete-time flow. For 𝑥 ∈ ℝ and 𝑡 ≥ 0, let 𝐹 [−1]
𝑥,𝑡 ∶ [0, 1] → ℝ denote the quantile function

of the probability distribution 𝑃𝑡(𝑥, ⋅), i.e. 𝐹 [−1]
𝑥,𝑡 (𝑢) = inf{𝑦 ∈ ℝ;𝑃𝑡(𝑥, ] − ∞, 𝑦]) ≥ 𝑢}. We extend the

definition to 𝑥 ∈ ℝ by letting 𝐹 [−1]
−∞,𝑡 ≡ −∞ and 𝐹 [−1]

+∞,𝑡 ≡ +∞.

Lemma 4. The family of functions 𝐹 [−1]
𝑥,𝑡 enjoys the following properties:

(a) for all 𝑥 ∈ ℝ and 𝑡 ≥ 0, the map 𝐹 [−1]
𝑥,𝑡 is non-decreasing;

(b) for all 𝑥 ∈ ℝ, 𝑡 ≥ 0 and 𝑢 ∈]0, 1[, 𝐹 [−1]
𝑥,𝑡 (𝑢) ∈ ℝ;

(c) for all 𝑡 ≥ 0 and 𝑢 ∈]0, 1[, the map 𝑥 ↦ 𝐹 [−1]
𝑥,𝑡 (𝑢) is non-decreasing;

(d) If 𝑈 is a random variable following the uniform distribution on the interval [0, 1], then, for all
𝑥, 𝑡, the distribution of the random variable 𝐹 [−1]

𝑥,𝑡 (𝑈 ) is 𝑃𝑡(𝑥, ⋅);
(e) for all 𝑡 ∈ ℝ, and 𝑥 ∈ ℝ, except for an at most countable set of values of 𝑢 ∈ [0, 1], the map

𝑦 ↦ 𝐹 [−1]
𝑦,𝑡 (𝑢) is continuous at 𝑥.

Proof.
Properties (a) and (b) are immediate consequences of the definition and of the fact that the cdf of a

real-valued random variable is non-decreasing, with limits 0 and 1 at −∞ and +∞, respectively. Property
(c) is a consequence of stochastic monotonicity: if 𝑥1, 𝑥2 ∈ ℝ are such that 𝑥1 ≤ 𝑥2, then, for all 𝑦 ∈ ℝ,
𝑃𝑡(𝑥1, ]−∞, 𝑦]) ≥ 𝑃𝑡(𝑥2, ]−∞, 𝑦]). Extension to ℝ is immediate in view of the definition of 𝐹 [−1]

𝑥,𝑡 when
8



𝑥 = ±∞. Property (d) is obvious when 𝑥 = ±∞, and classical when 𝑥 ∈ ℝ, we e.g. refer to the proof
of Theorem 25.6 in [4]. We now deal with property (e). Given 𝑡 ≥ 0, 𝑥 ∈ ℝ and a sequence (𝑥𝑘)𝑘≥1
of real numbers such that lim𝑘→+∞ 𝑥𝑘 = 𝑥, we have the weak convergence 𝑃𝑡(𝑥𝑘, ⋅)

𝐰
←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝑃𝑡(𝑥, ⋅),

so that, refering again to the proof of Theorem 25.6 in [4], whenever 𝐹 [−1]
𝑥,𝑡 is continuous at a certain

𝑢 ∈]0, 1[, we have that lim𝑘→+∞ 𝐹 [−1]
𝑥𝑘,𝑡

(𝑢) = 𝐹 [−1]
𝑥,𝑡 (𝑢). Since 𝐹 [−1]

𝑥,𝑡 is non-decreasing, the number of
points of discontinuity is at most countable. Assume now that 𝑥 = +∞. From the proof of Proposition 4,
we have that, for any 𝑎 > 0, lim𝑥→+∞ 𝑃𝑡(𝑥, ] −∞, 𝑎]) = 0, so that, for any 𝑢 ∈]0, 1], lim𝑥→+∞ 𝐹 [−1]

𝑥,𝑡 (𝑢) =
+∞ = 𝐹 [−1]

+∞,𝑡(𝑢). The case 𝑥 = −∞ is treated symmetrically.
□

Given 𝑡 ≥ 0 and 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ ℝ
𝑛
, define 𝑄(𝑛)

𝑡 (𝐱, ⋅) as the distribution on ℝ
𝑛

of the random vector
𝑍𝐱 =

(

𝐹 [−1]
𝑥𝑖,𝑡

(𝑈 )
)

1≤𝑖≤𝑛
, where 𝑈 is a random variable following the uniform distribution on the interval

[0, 1].

Proposition 6. For all 𝑡 ≥ 0, and 𝑛 ≥ 2, 𝑄(𝑛)
𝑡 is an order-preserving13 Markov kernel on ℝ

𝑛
. Moreover,

for all 𝑡 ≥ 0, the family (𝑄(𝑛)
𝑡 )𝑛≥2 is a consistent extension of 𝑃𝑡.

Proof. By Lemma 4 (c), we have that, for any 𝑢 ∈ [0, 1[,
(

𝐹 [−1]
𝑥𝑖,𝑡

(𝑢)
)

1≤𝑖≤𝑛
is order-compatible with

𝑥1,… , 𝑥𝑛. To check that 𝑄(𝑛)
𝑡 is a Markov kernel, we note that, by definition, for all 𝐱, 𝑄(𝑛)

𝑡 (𝐱, ⋅) is a prob-
ability measure on ℝ

𝑛
. Now consider a function 𝑓 ∈ (ℝ

𝑛
), and define 𝑄(𝑛)

𝑡 𝑓 (𝐱) = ∫ℝ𝑛 𝑓 (𝐲)𝑑𝑄(𝑛)
𝑡 (𝐱, 𝑦).

Given 𝐱 ∈ ℝ and a sequence (𝐱𝑘)𝑘≥1 such that lim𝑘→+∞ 𝐱𝑘 = 𝐱, we deduce from Lemma 4 (e) that,
almost surely, lim𝑘→+∞𝑍𝐱𝑘 = 𝑍𝐱, so that, by continuity of 𝑓 , almost surely, lim𝑘→+∞ 𝑓 (𝑍𝐱𝑘) = 𝑓 (𝑍𝐱),
whence, by dominated convergence, lim𝑘→+∞𝑄(𝑛)

𝑡 𝑓 (𝐱𝑘) = 𝑄(𝑛)
𝑡 𝑓 (𝐱). We deduce that 𝑄(𝑛)

𝑡 𝑓 ∈ (ℝ
𝑛
),

then invoke Lemma 1 to deduce that 𝑄(𝑛)
𝑡 is a Markov kernel.

That 𝑄(𝑛)
𝑡 is an extension of 𝑃𝑡 is a direct consequence of Lemma 4 (d). Consistency is a consequence

of the fact that, by definition, 𝜋𝑛
𝑖1,…,𝑖𝑘

(𝑍𝐱) =
(

𝐹 [−1]
𝑥𝑖𝑗 ,𝑡

(𝑈 )
)

1≤𝑗≤𝑘
= 𝑍𝜋𝑛

𝑖1 ,…,𝑖𝑘
(𝐱).

□

3.2. Construction of the limit 𝑅(𝑛)
𝑡 . Now we call 𝐷+ the set of positive dyadic rational numbers. Given

𝑡 ∈ 𝐷+, we write 𝑡 = 𝑘2−𝑚0 ∈ 𝐷+ where 𝑘 ≥ 1 and 𝑚0 ≥ 0 are integers, and 𝑚0 has the minimum
possible value in such an expression. Then, for every integer 𝑚 ≥ 𝑚0, we let

𝑄(𝑛),𝑚
𝑡 =

[

𝑄(𝑛)
2−𝑚

]𝑘2𝑚−𝑚0
,

i.e. 𝑄(𝑛),𝑚
𝑡 is the repeated composition of kernels 𝑄(𝑛)

2−𝑚 ⋯𝑄(𝑛)
2−𝑚 with a total of 𝑘2𝑚−𝑚0 kernels in the

composition.
As a result, (𝑄(𝑛),𝑚

𝑡 )𝑚≥𝑚0
is a sequence of Markov kernels on ℝ

𝑛
. Moreover, from Proposition 6, for

all 𝑡 ∈ 𝐷+, 𝑛 ≥ 2, and 𝑚 ≥ 𝑚0, 𝑄(𝑛),𝑚
𝑡 is order-preserving14, and, for all 𝑡 ∈ 𝐷+ and 𝑚 ≥ 𝑚0, the family

(𝑄(𝑛),𝑚
𝑡 )𝑛≥2 is a consistent extension15 of 𝑃𝑡. Now let 𝐐(𝑛),𝑚

𝑡 = 𝑄(𝑛),𝑚
𝑡 .

Denote by𝑊 (𝑛)
1 the Wasserstein (or Kantorovich-Rubinstein) distance on(ℝ

𝑛
), whereℝ

𝑛
is equipped

with the distance 𝑑𝑛 defined in Subsection 2.2.

13We extend the definition of an order-preserving Markov kernel on ℝ𝑛 to that of an order-preserving Markov kernel on ℝ
𝑛

in the obvious way.
14Using the fact that the composition of order-preserving Markov kernels is still an order-preserving Markov kernel, see

Lemma 5 in Section 6.
15Using the fact that, if (𝐾 (𝑛))𝑛≥2 and (𝐿(𝑛))𝑛≥2 are consistent extensions, respectively of 𝐾 and 𝐿, then (𝐾 (𝑛)𝐿(𝑛))𝑛≥2 is a

consistent extension of 𝐾𝐿, see Lemma 6 in Section 6.
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Proposition 7. For all 𝑚 ≥ 𝑚0, the map 𝐐(𝑛),𝑚
𝑡 from ℝ

𝑛
to (ℝ

𝑛
) satisfies:

𝑊 (𝑛)
1

(

𝐐(𝑛),𝑚
𝑡 (𝐱),𝐐(𝑛),𝑚

𝑡 (𝐲)
)

≤
𝑛
∑

𝑖=1
|𝑃𝑡𝜙(𝑦𝑖) − 𝑃𝑡𝜙(𝑥𝑖)|.

Proof. Let 𝐳 = (𝐱, 𝐲) = (𝑥1,… , 𝑥𝑛, 𝑦1,… , 𝑦𝑛). Let (𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑛) be a random vector on
ℝ

𝑛
whose distribution is 𝑄(2𝑛),𝑚

𝑡 (𝐳, ⋅). By the consistency property, the distribution of (𝑋1,… , 𝑋𝑛) is
𝑄(𝑛),𝑚

𝑡 (𝐱, ⋅) and the distribution of (𝑌1,… , 𝑌𝑛) is 𝑄(𝑛),𝑚
𝑡 (𝐲, ⋅). Moreover, the order-preserving property

implies that, with probability 1, for all 1 ≤ 𝑖 ≤ 𝑛, the relative order of 𝑋𝑖 and 𝑌𝑖 is the same16 as the
relative order between 𝑥𝑖 and 𝑦𝑖. Now consider a function 𝑓 ∈ 𝐿𝑖𝑝(ℝ

𝑛
) such that ‖𝑓‖𝐿𝑖𝑝 ≤ 1. Let

𝐗 = (𝑋1,… , 𝑋𝑛) and 𝐘 = (𝑌1,… , 𝑌𝑛). We have that
|

|

|

𝑄(𝑛),𝑚
𝑡 (𝐲, ⋅) −𝑄(𝑛),𝑚

𝑡 (𝐱, ⋅)||
|

= |𝔼𝑓 (𝐘) − 𝔼𝑓 (𝐗)| ≤ 𝔼 |𝑓 (𝐘) − 𝑓 (𝐗)| .

Since ‖𝑓‖𝐿𝑖𝑝 ≤ 1,

𝔼 |𝑓 (𝐘) − 𝑓 (𝐗)| ≤ 𝔼
𝑛
∑

𝑖=1
|𝜙(𝑌𝑖) − 𝜙(𝑋𝑖)| =

𝑛
∑

𝑖=1
𝔼|𝜙(𝑌𝑖) − 𝜙(𝑋𝑖)|.

Since 𝜙 is non-decreasing and the relative order of 𝑋𝑖 and 𝑌𝑖 is non-random, we have that

𝔼|𝜙(𝑌𝑖) − 𝜙(𝑋𝑖)| =
|

|

|

𝔼
(

𝜙(𝑌𝑖) − 𝜙(𝑋𝑖)
)

|

|

|

= |

|

𝔼𝜙(𝑌𝑖) − 𝔼𝜙(𝑋𝑖)|| .

Since 𝑄(𝑛),𝑚
𝑡 is an extension of 𝑃𝑡, we have that 𝔼𝜙(𝑋𝑖) = 𝑃𝑡𝜙(𝑥𝑖) and 𝔼𝜙(𝑌𝑖) = 𝑃𝑡𝜙(𝑦𝑖). □

Corollary 1. For all 𝑛 ≥ 2 and 𝑡 ∈ 𝐷+, the family
(

𝐐(𝑛),𝑚
𝑡

)

𝑚≥𝑚0
of maps from ℝ

𝑛
to (ℝ

𝑛
) is equicon-

tinuous.
Proof. Note that 𝜙 ∈ (ℝ), so the Feller property of 𝑃𝑡 implies that 𝑃𝑡𝜙 is continuous. □

Denote by ℭ𝑛 the set of continuous functions from ℝ
𝑛

to (ℝ
𝑛
), equipped with the distance

𝑑ℭ𝑛
(𝐊,𝐋) = sup

𝑥∈ℝ
𝑛
𝑊 (𝑛)

1 (𝐊(𝑥),𝐋(𝑥)).

Remember that ℝ
𝑛

is a compact metric space, so that (ℝ
𝑛
) is also a compact metric space, hence a

complete metric space. As a consequence, for each 𝑡 ∈ 𝐷+ and 𝑛 ≥ 2, in view of Corollary 1, we
can invoke the Arzelà-Ascoli theorem (see e.g. [8]) to show the convergence along a subsequence: the
sequence of maps

(

𝐐(𝑛),𝑚𝑘
𝑡

)

𝑘≥1
converges, as 𝑘 → +∞, to a limiting map 𝐑(𝑛)

𝑡 , in the sense of uniform

convergence of continuous maps from ℝ
𝑛

to (ℝ
𝑛
). Moreover, by diagonal extraction, we can assume

that convergence occurs simultaneously for every 𝑡 in (the countable set) 𝐷+ and every 𝑛 ≥ 2. To sum up,
we have a strictly increasing sequence of integers (𝑚𝑘)𝑘≥1 and, for every 𝑡 ∈ 𝐷+ and 𝑛 ≥ 2, an element
𝐑(𝑛)
𝑡 of ℭ𝑛, such that17

(10) lim
𝑘→+∞

𝑑ℭ𝑛
(𝐐(𝑛),𝑚𝑘

𝑡 ,𝐑(𝑛)
𝑡 ) = 0.

Now let 𝑅(𝑛)
𝑡 = 𝐑(𝑛)

𝑡 , and note that 𝑅(𝑛)
𝑡 is a Markov kernel (e.g. since 𝐑(𝑛)

𝑡 is a continuous map from ℝ
𝑛

to (ℝ
𝑛
), see Lemma 1), and that, by continuity of the projection maps 𝜋𝑛

𝑖1,…,𝑖𝑘
, for each 𝑡 ∈ 𝐷+, the

family of Markov kernels (𝑅(𝑛)
𝑡 )𝑛≥2 inherits the property of being a family of order-preserving kernels

forming a consistent extension of 𝑃𝑡.
Let us now check that the semigroup property (restricted to𝐷+) holds for our family of Markov kernels:

(11) ∀𝑠, 𝑡 ∈ 𝐷+, 𝑅
(𝑛)
𝑠+𝑡 = 𝑅(𝑛)

𝑠 𝑅(𝑛)
𝑡 .

16To be explicit: if 𝑥𝑖 ≤ 𝑦𝑖, then almost surely 𝑋𝑖 ≤ 𝑌𝑖, while, if 𝑦𝑖 ≤ 𝑥𝑖, then almost surely 𝑌𝑖 ≤ 𝑋𝑖.
17Note that 𝐐(𝑛),𝑚𝑘

𝑡 is defined as soon as 𝑚𝑘 ≥ 𝑚0, where 𝑚0 depends on 𝑡.
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By construction, given 𝑠, 𝑡 ∈ 𝐷+, we have that 𝑄(𝑛),𝑚𝑘
𝑠 𝑄(𝑛),𝑚𝑘

𝑡 = 𝑄(𝑛),𝑚𝑘
𝑠+𝑡 for all large enough 𝑘. Now

consider 𝑓 ∈ 𝐿𝑖𝑝(ℝ
𝑛
) such that ‖𝑓‖𝐿𝑖𝑝 ≤ 1, and write

𝑄(𝑛),𝑚𝑘
𝑠 𝑄(𝑛),𝑚𝑘

𝑡 𝑓 − 𝑅(𝑛)
𝑠 𝑅(𝑛)

𝑡 𝑓 = 𝑄(𝑛),𝑚𝑘
𝑠 𝑄(𝑛),𝑚𝑘

𝑡 𝑓 −𝑄(𝑛),𝑚𝑘
𝑠 𝑅(𝑛)

𝑡 𝑓 +𝑄(𝑛),𝑚𝑘
𝑠 𝑅(𝑛)

𝑡 𝑓 − 𝑅(𝑛)
𝑠 𝑅(𝑛)

𝑡 𝑓.

Using Lemma 2, we have that, for all 𝐱 ∈ ℝ
𝑛
,

(12) |

|

|

𝑄(𝑛),𝑚𝑘
𝑠 𝑄(𝑛),𝑚𝑘

𝑡 𝑓 (𝐱) −𝑄(𝑛),𝑚𝑘
𝑠 𝑅(𝑛)

𝑡 𝑓 (𝐱)||
|

≤ 𝑑ℭ𝑛
(𝐐(𝑛),𝑚𝑘

𝑡 ,𝐑(𝑛)
𝑡 ).

On the other hand, 𝑅(𝑛)
𝑡 𝑓 ∈ (ℝ

𝑛
) since 𝑓 ∈ (ℝ

𝑛
) and 𝐑(𝑛)

𝑡 is a continuous map from ℝ
𝑛

to (ℝ
𝑛
) (see

Proposition 1). Since, for every 𝐱 ∈ ℝ
𝑛
, we have the weak convergence 𝑄(𝑛),𝑚𝑘

𝑠 (𝐱, ⋅)
𝐰

←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝑅(𝑛)
𝑠 (𝐱, ⋅),

we deduce that

(13) lim
𝑘→+∞

𝑄(𝑛),𝑚𝑘
𝑠 𝑅(𝑛)

𝑡 𝑓 (𝐱) = 𝑅(𝑛)
𝑠 𝑅(𝑛)

𝑡 𝑓 (𝐱).

Combining (10), (12) and (13), we have that, for all 𝐱 ∈ ℝ
𝑛
, lim𝑘→+∞𝑄(𝑛),𝑚𝑘

𝑠 𝑄(𝑛),𝑚𝑘
𝑡 𝑓 (𝐱) = 𝑅(𝑛)

𝑠 𝑅(𝑛)
𝑡 𝑓 (𝐱).

Now the weak convergence 𝑄(𝑛),𝑚𝑘
𝑠+𝑡 (𝐱, ⋅)

𝐰
←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝑅(𝑛)
𝑠+𝑡(𝐱, ⋅) implies that lim𝑘→+∞𝑄(𝑛),𝑚𝑘

𝑠+𝑡 𝑓 (𝐱) = 𝑅(𝑛)
𝑠+𝑡𝑓 (𝐱).

Using the identity 𝑄(𝑛),𝑚𝑘
𝑠 𝑄(𝑛),𝑚𝑘

𝑡 = 𝑄(𝑛),𝑚𝑘
𝑠+𝑡 , we deduce that lim𝑘→+∞𝑄(𝑛),𝑚𝑘

𝑠 𝑄(𝑛),𝑚𝑘
𝑡 𝑓 (𝐱) = 𝑅(𝑛)

𝑠+𝑡𝑓 (𝐱), so
that 𝑅(𝑛)

𝑠 𝑅(𝑛)
𝑡 𝑓 (𝐱) = 𝑅(𝑛)

𝑠+𝑡𝑓 (𝐱), and (11) is established18.
Now for 𝐱 = (𝑥1,… , 𝑥𝑛) and 𝜀 > 0, observe that 𝐵ℝ

𝑛(𝐱, 𝜀)𝑐 ⊂
⋃𝑛

𝑖=1 𝐵ℝ(𝑥𝑖, 𝜀∕𝑛)
𝑐 , so that, using the

fact that 𝑅(𝑛)
𝑡 is an extension of 𝑃𝑡 and the union bound,

𝑅(𝑛)
𝑡 (𝐱, 𝐵ℝ

𝑛(𝐱, 𝜀)𝑐) ≤
𝑛
∑

𝑖=1
𝑃𝑡(𝑥𝑖, 𝐵ℝ(𝑥𝑖, 𝜀∕𝑛)

𝑐).

Using the Feller property of (𝑃𝑡)𝑡≥0 and Proposition 3 (ii), we deduce that 𝑅(𝑛)
𝑡 (𝐱, 𝐵ℝ

𝑛(𝐱, 𝜀)𝑐) goes to 0
as 𝑡 goes to 0, uniformly over 𝐱 ∈ ℝ

𝑛
, which, thanks to Proposition 3 again, shows that

(14) lim
𝑡→0
𝑡∈𝐷+

sup
𝑥∈ℝ

𝑛
𝑊 (𝑛)

1 (𝑅(𝑛)
𝑡 (𝑥, ⋅), 𝛿𝑥) = 0.

Using Lemma 2, we have that

(15) sup
𝑥∈ℝ

𝑛
𝑊 (𝑛)

1 (𝑅(𝑛)
𝑠+𝑡(𝑥, ⋅), 𝑅

(𝑛)
𝑠 (𝑥, ⋅)) ≤ sup

𝑥∈ℝ
𝑛
𝑊 (𝑛)

1 (𝑅(𝑛)
𝑡 (𝑥, ⋅), 𝛿𝑥).

Combining (14) and (15) shows that the map 𝑠 ↦ 𝐑(𝑛)
𝑠 from 𝐷+ to ℭ𝑛 is uniformly continuous. Since

ℭ𝑛 is a complete metric space, and 𝐷+ is a dense subset of ℝ+, there is a unique extension (see [8]) to a

uniformly continuous map 𝑠 ↦ 𝐑(𝑛)
𝑠 from ℝ+ to ℭ𝑛. This allows us to extend the definition 𝑅(𝑛)

𝑡 = 𝐑(𝑛)
𝑡

to every 𝑡 ∈ ℝ+.
We now check that the semigroup property holds for (𝑅𝑡)𝑡∈ℝ+

, i.e.

(16) ∀𝑠, 𝑡 ∈ ℝ+, 𝑅
(𝑛)
𝑠+𝑡 = 𝑅(𝑛)

𝑠 𝑅(𝑛)
𝑡 .

Let (𝑠𝑘)𝑘≥1 and (𝑡𝑘)𝑘≥1 be sequences of elements in 𝐷+ which converge to 𝑠 and 𝑡 respectively. By (11),
we have that 𝑅(𝑛)

𝑠𝑘 𝑅
(𝑛)
𝑡𝑘

= 𝑅(𝑛)
𝑠𝑘+𝑡𝑘

. Now, for 𝑓 ∈ 𝐿𝑖𝑝(ℝ
𝑛
) such that ‖𝑓‖𝐿𝑖𝑝 ≤ 1, we write

𝑅(𝑛)
𝑠𝑘
𝑅(𝑛)

𝑡𝑘
𝑓 − 𝑅(𝑛)

𝑠 𝑅(𝑛)
𝑡 𝑓 = 𝑅(𝑛)

𝑠𝑘
𝑅(𝑛)

𝑡𝑘
𝑓 − 𝑅(𝑛)

𝑠𝑘
𝑅(𝑛)

𝑡 𝑓 + 𝑅(𝑛)
𝑠𝑘
𝑅(𝑛)

𝑡 𝑓 − 𝑅(𝑛)
𝑠 𝑅(𝑛)

𝑡 𝑓.

Using Lemma 2, we have that, for all 𝐱 ∈ ℝ
𝑛
,

|

|

|

𝑅(𝑛)
𝑠𝑘
𝑅(𝑛)

𝑡𝑘
𝑓 (𝐱) − 𝑅(𝑛)

𝑠𝑘
𝑅(𝑛)

𝑡 𝑓 (𝐱)||
|

≤ 𝑑ℭ𝑛
(𝐑(𝑛)

𝑡𝑘
,𝐑(𝑛)

𝑡 ).

18Indeed, we have established that, for all 𝐱 ∈ ℝ
𝑛
, 𝑊 (𝑛)

1 (𝑅(𝑛)
𝑠 𝑅(𝑛)

𝑡 (𝐱, ⋅), 𝑅(𝑛)
𝑠+𝑡(𝐱, ⋅)) = 0.
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Arguing exactly as in the proof of (11), we have that 𝑅(𝑛)
𝑡 𝑓 ∈ (ℝ

𝑛
). Moreover, by continuity of the

extension to ℝ+, we have the weak convergence 𝑅(𝑛)
𝑠𝑘 (𝐱, ⋅)

𝐰
←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

𝑅(𝑛)
𝑠 (𝐱, ⋅), so that

lim
𝑘→+∞

𝑅(𝑛)
𝑠𝑘
𝑅(𝑛)

𝑡 𝑓 (𝐱) = 𝑅(𝑛)
𝑠 𝑅(𝑛)

𝑡 𝑓 (𝐱),

and similarly
lim

𝑘→+∞
𝑅(𝑛)

𝑠𝑘+𝑡𝑘
𝑓 (𝐱) = 𝑅(𝑛)

𝑠+𝑡𝑓 (𝐱),

so that 𝑅(𝑛)
𝑠+𝑡𝑓 (𝐱) = 𝑅(𝑛)

𝑠 𝑅(𝑛)
𝑡 𝑓 (𝐱), and (16) is established.

We now observe that, by continuity of the projection maps 𝜋𝑛
𝑖1,…,𝑖𝑘

, and the Feller property of (𝑃𝑡)𝑡∈ℝ+
,

the property that (𝑅(𝑛)
𝑡 )𝑛≥2 is a family of order-preserving kernels forming a consistent extension of 𝑃𝑡,

already established for every 𝑡 ∈ 𝐷+, holds for every 𝑡 ∈ ℝ+. Also, thanks to the continuity of 𝑡 ↦ 𝐑(𝑛)
𝑡

at 𝑡 = 0, and by Proposition 3, the family of Markov kernels (𝑅(𝑛)
𝑡 )𝑛≥2 satisfies property (Fb).

For 𝑛 ≥ 2, 𝑡 ∈ ℝ+, 𝐱 ∈ ℝ𝑛 and Borel set 𝐵 of ℝ𝑛, we define 𝑃 (𝑛)
𝑡 (𝐱, 𝐵) = 𝑅(𝑛)

𝑡 (𝐱, 𝐵). Since 𝑅(𝑛)
𝑡 is an

extension of 𝑃𝑡 and 𝑃𝑡(𝑥𝑖,ℝ) = 1, we have that 𝑅(𝑛)
𝑡 (𝐱,ℝ𝑛) = 1, so 𝑃 (𝑛)

𝑡 is indeed a Markov kernel on ℝ,
and the fact that, for all 𝑡, (𝑃 (𝑛)

𝑡 )𝑛≥2 is a consistent extension of 𝑃𝑡 by order-preserving Markov kernels is
an immediate consequence of the fact that (𝑅(𝑛)

𝑡 )𝑛≥2 is a consistent extension of 𝑃𝑡 by order-preserving
Markov kernels. Since a function 𝑓 ∈ 0(ℝ𝑛) immediately extends to a function 𝑓 ∈ (ℝ

𝑛
), we deduce

the fact that 𝑃 (𝑛)
𝑡 𝑓 ∈ 𝑏(ℝ𝑛) and the convergence lim𝑡→0

‖

‖

‖

𝑃 (𝑛)
𝑡 𝑓 − 𝑓‖‖

‖∞
= 0 from the corresponding

properties of 𝑅(𝑛)
𝑡 . To complete the proof of the Feller property of (𝑃 (𝑛)

𝑡 )𝑡∈ℝ+
, it remains to prove that

𝑃 (𝑛)
𝑡 𝑓 ∈ 0(ℝ𝑛), i.e. lim𝐱→∞ 𝑃 (𝑛)

𝑡 𝑓 (𝐱) = 0, since we already know that 𝑃 (𝑛)
𝑡 𝑓 ∈ 𝑏(ℝ𝑛). To this end,

using the fact that 𝑃 (𝑛)
𝑡 is an extension of 𝑃𝑡, we have that, for all 𝑎 > 0:

𝑃 (𝑛)
𝑡 (𝐱, [−𝑎,+𝑎]𝑛) ≤ min

1≤𝑖≤𝑛
𝑃𝑡(𝑥𝑖, [−𝑎,+𝑎]).

Thanks to Proposition 2 and the Feller property of 𝑃𝑡, we deduce that lim𝐱→∞ 𝑃 (𝑛)
𝑡 (𝐱, [−𝑎,+𝑎]𝑛) = 0,

and, thanks to Proposition 2 again, that lim𝐱→∞ 𝑃 (𝑛)
𝑡 𝑓 (𝐱) = 0.

4. PROOF OF THEOREM 2

This (short) section is devoted to the proof of Theorem 2. We start with a general result showing that
the ≤𝐬𝐦 order is preserved by consistent families of order-preserving Markov kernels. Combined with
the maximal property of the co-monotone coupling with respect to ≤𝐬𝐦 and the fact that (𝑃 (𝑛)

𝑡 )𝑡∈ℝ+
is

obtained as a limit of the composition of order-preserving kernels constructed using the co-monotone
coupling, we deduce Theorem 2.

Proposition 8. If (𝐾 (𝑛))𝑛≥1 is a consistent family of order-preserving Markov kernels on the successive
powers of ℝ, then, for all 𝑛 ≥ 2 and 𝑓 ∈ 𝑏(ℝ𝑛), 𝐾 (𝑛)𝑓 ∈ 𝑏(ℝ𝑛).

Proof. Consider 𝐱 = (𝑥1,… , 𝑥𝑛) and 𝐲 = (𝑦1,… , 𝑦𝑛). Let 𝐳 = (𝐱, 𝐲) = (𝑥1,… , 𝑥𝑛, 𝑦1,… , 𝑦𝑛).
Let (𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑛) be a random vector on ℝ

𝑛
whose distribution is 𝐾 (2𝑛)(𝐳, ⋅), and let X =

(𝑋1,… , 𝑋𝑛) and 𝐘 = (𝑌1,… , 𝑌𝑛). By the consistency property, the distribution of 𝐗 is 𝐾 (𝑛)(𝐱, ⋅) and the
distribution of 𝐘 is 𝐾 (𝑛)(𝐲, ⋅), so that 𝐾 (𝑛)𝑓 (𝐱) = 𝔼𝑓 (𝐗) and 𝐾 (𝑛)𝑓 (𝐲) = 𝔼𝑓 (𝐘). Now, for 1 ≤ 𝑖 ≤ 𝑛, let
𝑍+

𝑖 = 𝑋𝑖 and 𝑍−
𝑖 = 𝑌𝑖 when 𝑥𝑖 ≤ 𝑦𝑖, 𝑍+

𝑖 = 𝑌𝑖 and 𝑍−
𝑖 = 𝑋𝑖 when 𝑥𝑖 > 𝑦𝑖, so that, thanks to the consis-

tency property again, the distribution of (𝑍+
1 ,… , 𝑍+

𝑛 ) is𝐾 (𝑛)(𝐱∨𝐲, ⋅) and the distribution of (𝑍−
1 ,… , 𝑍−

𝑛 )
is 𝐾 (𝑛)(𝐱∧𝐲, ⋅), so that 𝐾 (𝑛)𝑓 (𝐱∨𝐲) = 𝔼𝑓 (𝑍+

1 ,… , 𝑍+
𝑛 ) and 𝐾 (𝑛)𝑓 (𝐱∧𝐲) = 𝔼𝑓 (𝑍−

1 ,… , 𝑍−
𝑛 ). Moreover,

by the order-preserving property of𝐾 (2𝑛), we have that𝐗∨𝐘 = (𝑍+
1 ,… , 𝑍+

𝑛 ) and𝐗∧𝐘 = (𝑍−
1 ,… , 𝑍−

𝑛 ).
By the super-modularity property of 𝑓 , 𝑓 (𝐗 ∨ 𝐘) + 𝑓 (𝐗 ∧ 𝐘) ≥ 𝑓 (𝐗) + 𝑓 (𝐘), and we thus de-
duce that 𝑓 (𝑍+

1 ,… , 𝑍+
𝑛 ) + 𝑓 (𝑍−

1 ,… , 𝑍−
𝑛 ) ≥ 𝑓 (𝐗) + 𝑓 (𝐘). Taking expectations, we deduce that

𝐾 (𝑛)𝑓 (𝐱 ∨ 𝐲) +𝐾 (𝑛)𝑓 (𝐱 ∧ 𝐲) ≥ 𝐾 (𝑛)𝑓 (𝐱) +𝐾 (𝑛)𝑓 (𝐲), so we have proved that 𝐾 (𝑛)𝑓 is super-modular. □
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Proposition 9. Let (𝑀 (𝑛)
𝑡 )𝑡≥0 ∈ 𝔐𝑛, and let (𝑄(𝑛)

𝑡 )𝑡≥0 be the family of Markov kernels introduced in
Subsection 3.1. Then, for all 𝑡 ≥ 0 and 𝐱 ∈ ℝ𝑛, 𝑀 (𝑛)

𝑡 (𝐱, ⋅) ≤𝐬𝐦 𝑄(𝑛)
𝑡 (𝐱, ⋅).

Proof. By construction (see Theorem 3.1.1 in [21]), 𝑄(𝑛)
𝑡 (𝐱, ⋅) is a comonotone probability distribution

on ℝ𝑛. Moreover, 𝑄(𝑛)
𝑡 (𝐱, ⋅) and 𝑀 (𝑛)

𝑡 (𝐱, ⋅) have the same marginals: 𝑃𝑡(𝑥1, ⋅),… , 𝑃𝑡(𝑥𝑛, ⋅). By Theorem
3.9.8 in [21] (using property (P5)), we deduce that 𝑀 (𝑛)

𝑡 (𝐱, ⋅) ≤𝐬𝐦 𝑄(𝑛)
𝑡 (𝐱, ⋅). □

We now prove by induction that, for all 𝑓 ∈ 𝑏(ℝ𝑛), 𝑠 ≥ 0, and integer 𝑘 ≥ 0,

(17) 𝑀 (𝑛)
𝑠𝑘 𝑓 ≤

[

𝑄(𝑛)
𝑠
]𝑘 𝑓.

For 𝑘 = 0, this is obvious since the property to be proved is that 𝑓 ≤ 𝑓 . Now write
[

𝑄(𝑛)
𝑠

]𝑘+1
𝑓 =

𝑄(𝑛)
𝑠

[

𝑄(𝑛)
𝑠

]𝑘
𝑓 . Thanks to Proposition 8,

[

𝑄(𝑛)
𝑠

]𝑘
𝑓 is super-modular. We deduce from Proposition 9 that

𝑀 (𝑛)
𝑠

[

𝑄(𝑛)
𝑠

]𝑘
𝑓 ≤ 𝑄(𝑛)

𝑠

[

𝑄(𝑛)
𝑠

]𝑘
𝑓 =

[

𝑄(𝑛)
𝑠

]𝑘+1
𝑓 . Assuming that 𝑀 (𝑛)

𝑠𝑘 𝑓 ≤
[

𝑄(𝑛)
𝑠

]𝑘
𝑓 , positivity implies

that 𝑀 (𝑛)
𝑠(𝑘+1)𝑓 = 𝑀 (𝑛)

𝑠 𝑀 (𝑛)
𝑠𝑘 𝑓 ≤ 𝑀 (𝑛)

𝑠

[

𝑄(𝑛)
𝑠

]𝑘
𝑓 , so that, combining the previous inequalities, we deduce

that 𝑀 (𝑛)
𝑠(𝑘+1)𝑓 ≤

[

𝑄(𝑛)
𝑠

]𝑘+1
𝑓 , and (17) is proved by induction.

Assume that 𝑓 is continuous in addition to being in 𝑏(ℝ𝑛). Given 𝑡 ∈ 𝐷+, remember from

Subsection 3.2 that, for 𝑚 ≥ 𝑚0, 𝑄(𝑛),𝑚
𝑡 =

[

𝑄(𝑛)
2−𝑚

]𝑘2𝑚−𝑚0
, where 𝑡 = 𝑘2−𝑚0 ∈ 𝐷+, and 𝑘 ≥ 1 and 𝑚0 ≥ 0

are integers. As a consequence, (17) implies that 𝑀 (𝑛)
𝑡 𝑓 ≤ 𝑄(𝑛),𝑚

𝑡 𝑓 . Remember that 𝑃 (𝑛)
𝑡 is defined as the

limit for 𝑘 → +∞ of a subsequence
(

𝑄(𝑛),𝑚𝑘
𝑡

)

𝑘≥1
. Since 𝑓 is continuous, we have, by weak convergence,

that, as 𝑘 → +∞, 𝑄(𝑛),𝑚𝑘
𝑡 𝑓 converges pointwise to 𝑃 (𝑛)

𝑡 𝑓 , so that, taking the limit in our inequality, we
have that 𝑀 (𝑛)

𝑡 𝑓 ≤ 𝑃 (𝑛)
𝑡 𝑓 . Given 𝑡 ∈ ℝ+, consider a sequence (𝑠𝑚)𝑚≥1 of elements of 𝐷+ such that

lim𝑚→+∞ 𝑠𝑚 = 𝑡. By the Feller property of (𝑀 (𝑛)
𝑠 )𝑠∈ℝ+

and (𝑃 (𝑛)
𝑠 )𝑠∈ℝ+

, we have that, as 𝑚 → +∞, 𝑀 (𝑛)
𝑠𝑚 𝑓

converges pointwise to 𝑀 (𝑛)
𝑡 𝑓 , and 𝑃 (𝑛)

𝑠𝑚 𝑓 converges pointwise to 𝑃 (𝑛)
𝑡 𝑓 , so that, taking the limit in the

inequality 𝑀 (𝑛)
𝑠𝑚 𝑓 ≤ 𝑃 (𝑛)

𝑠𝑚 𝑓 , we have that 𝑀 (𝑛)
𝑡 𝑓 ≤ 𝑃 (𝑛)

𝑡 𝑓 . Using [21] (Theorems 3.9.10 and 3.9.11),
Theorem 2 is proved.
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5. ABOUT THEOREMS 4 AND 5 IN [13]

In this section, we explain why we think an element is missing in the proof of Theorem 4 in [13], and
hence of Theorem 5 in [13], which is a corollary.

5.1. About Theorem 4. Theorem 4 in [13] considers a partially ordered Polish space (𝐸,≼), two fam-
ilies of 𝐸−valued random variables (𝑋𝑡)𝑡∈ℝ+

and (𝑌𝑡)𝑡∈ℝ+
such that 𝑡 ↦ 𝑋𝑡 and 𝑡 ↦ 𝑌𝑡 are (random)

càdlàg paths from ℝ+ to 𝐸, and, assumes that, for all 𝑛 ≥ 2, 𝑥1,… , 𝑥𝑛−1 ∈ ℝ, 𝑦1,… , 𝑦𝑛−1 ∈ ℝ such
that 𝑥𝑖 ≼ 𝑦𝑖 for 𝑖 = 1,… , 𝑛 − 1, and ordered time indices 0 ≤ 𝑡1 < ⋯ < 𝑡𝑛 ∈ ℝ, one has

(18) ℙ(𝑋𝑡𝑛 ∈ ⋅|𝑋𝑡1 = 𝑥1,⋯ , 𝑋𝑡𝑛−1 = 𝑥𝑛−1) ≼𝐬𝐭 ℙ(𝑌𝑡𝑛 ∈ ⋅|𝑌𝑡1 = 𝑦1,⋯ , 𝑌𝑡𝑛−1 = 𝑦𝑛−1),

where ≼𝐬𝐭 denotes stochastic domination between probability measures on (𝐸,≼) (see [13]).
Assuming moreover that ℙ(𝑋0 ∈ ⋅) ≼𝐬𝐭 ℙ(𝑌0 ∈ ⋅), the conclusion of Theorem 4 is that one can define

a family of pairs of 𝐸−valued random variables (�̃�𝑡, 𝑌𝑡)𝑡≥0 on the same probability space, in such a way
that 𝑡 ↦ �̃�𝑡 and 𝑡 ↦ 𝑌𝑡 are (random) càdlàg paths from ℝ+ to 𝐸, that almost surely for all 𝑡, �̃�𝑡 ≼ 𝑌𝑡,
that (�̃�𝑡)𝑡≥0 has the same (joint) distribution as (𝑋𝑡)𝑡≥0, and that (𝑌𝑡)𝑡≥0 has the same (joint) distribution
as (𝑌𝑡)𝑡≥0.

We now consider the proof of Theorem 4. Given an increasing sequence 0 = 𝑡1 < 𝑡2 < ⋯, one can
use (18) and Strassen’s theorem to define inductively a sequence of pairs of 𝐸−valued random variables
(�̃�𝑡𝑛 , 𝑌𝑡𝑛)𝑛≥1 in such a way that, almost surely, for all 𝑛 ≥ 1, �̃�𝑡𝑛 ≼ 𝑌𝑡𝑛 , and such that (�̃�𝑡1 ,… , �̃�𝑡𝑛) has
the same distribution as (𝑋𝑡1 ,… , 𝑋𝑡𝑛), and (𝑌𝑡1 ,… , 𝑌𝑡𝑛) has the same distribution as (𝑌𝑡1 ,… , 𝑌𝑡𝑛). (This
mirrors the argument used to prove Theorem 2 in [13].)

The problem is the claim (without an explanation), in the proof of Theorem 4, that this approach can
be used to produce a sequence of random variables (�̃�𝑡𝑛 , 𝑌𝑡𝑛)𝑛≥1 with the above properties, where (𝑡𝑛)𝑛≥1
is an enumeration of a countable dense subset of ℝ+, since clearly such an enumeration cannot be done
using an increasing sequence. Thus, to make the proof of Theorem 4 work, it seems that the following
strengthening of Assumption (18) would be needed, allowing for unordered sequences of time indices:
for every 𝑛 ≥ 2, 𝑥1,… , 𝑥𝑛−1 ∈ ℝ, 𝑦1,… , 𝑦𝑛−1 ∈ ℝ such that 𝑥𝑖 ≼ 𝑦𝑖 for 𝑖 = 1,… , 𝑛 − 1, and pairwise
distinct time indices 𝑡1,… , 𝑡𝑛 ∈ ℝ+, one has

(19) ℙ(𝑋𝑡𝑛 ∈ ⋅|𝑋𝑡1 = 𝑥1,⋯ , 𝑋𝑡𝑛−1 = 𝑥𝑛−1) ≼𝐬𝐭 ℙ(𝑌𝑡𝑛 ∈ ⋅|𝑌𝑡1 = 𝑦1,⋯ , 𝑌𝑡𝑛−1 = 𝑦𝑛−1).
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5.2. About Theorem 5. Now Theorem 5 in [13] assumes that (𝑋𝑡)𝑡∈ℝ+
and (𝑌𝑡)𝑡∈ℝ+

are (possibly time-
inhomogeneous) Markov processes, and does not directly assume (18), but instead the following stochas-
tic monotonicity condition: for all 𝑠, 𝑡 ≥ 0, and all 𝑥, 𝑦 ∈ 𝐸 such that 𝑥 ≼ 𝑦,

(20) ℙ(𝑋𝑡+𝑠 ∈ ⋅|𝑋𝑡 = 𝑥) ≼𝐬𝐭 ℙ(𝑌𝑡+𝑠 ∈ ⋅|𝑌𝑡 = 𝑦),

with the same conclusion as Theorem 4. The proof of Theorem 5 consists in observing that, using the
Markov property, (20) implies (18), then invoking Theorem 4. However, in view of our previous remark,
this approach does not seem to lead to a complete proof of Theorem 5 unless one can prove that (20)
implies (19). Unfortunately, such an implication is not true in general, as we show in the following
counterexample.

Take𝐸 = {𝑎, 𝑏, 𝑐}, where 𝑎 ≼ 𝑏 ≼ 𝑐, and where𝑋 and 𝑌 are two versions of the same continuous-time
Markov chain on 𝐸 with distinct starting points. The infinitesimal generator of the chain is prescribed
by the 𝑄−matrix (see e.g. [1])

𝐿 = (𝐿𝑥𝑦)𝑥∈𝐸,𝑦∈𝐸 =

𝑎 𝑏 𝑐
( )𝑎 −2.5 1.75 0.75

𝑏 1.5 −2.5 1
𝑐 0.5 0 −0.5

and defines a Markov semigroup on 𝐸, given, for all 𝑡 ≥ 0, by the transition matrix 𝑃𝑡 = exp(𝑡𝐿). To
check that 𝐿 indeed defines a stochastically monotone Markov semigroup on 𝐸, we check the condition
stated in [1] (Theorem 3.4 page 249, attributed to [14]), which in our setting reduces to the two conditions
𝐿𝑎𝑐 ≤ 𝐿𝑏𝑐 and 𝐿𝑏𝑎 ≥ 𝐿𝑐𝑎, both visibly satisfied. We now check numerically that

ℙ(𝑋1 ∈ ⋅|𝑋0 = 𝑎,𝑋2 = 𝑎) ⋠ ℙ(𝑌1 ∈ ⋅|𝑌0 = 𝑏, 𝑌2 = 𝑏).

Denoting 𝑃 = exp(𝐿), we have that

ℙ(𝑋1 ≼ 𝑎|𝑋0 = 𝑎,𝑋2 = 𝑎) = ℙ(𝑋1 = 𝑎|𝑋0 = 𝑎,𝑋2 = 𝑎) =
𝑃𝑎𝑎𝑃𝑎𝑎

𝑃𝑎𝑎𝑃𝑎𝑎 + 𝑃𝑎𝑏𝑃𝑏𝑎 + 𝑃𝑎𝑐𝑃𝑐𝑎
,

and
ℙ(𝑌1 ≼ 𝑎|𝑌0 = 𝑏, 𝑌2 = 𝑏) = ℙ(𝑌1 = 𝑎|𝑌0 = 𝑏, 𝑌2 = 𝑏) =

𝑃𝑏𝑎𝑃𝑎𝑏

𝑃𝑏𝑎𝑃𝑎𝑏 + 𝑃𝑏𝑏𝑃𝑏𝑏 + 𝑃𝑏𝑐𝑃𝑐𝑏
.

Numerically computing 𝑃 with the SciPy open-source software19, we get, rounding to 3 decimal places,
that ℙ(𝑋1 ≼ 𝑎|𝑋0 = 𝑎,𝑋2 = 𝑎) ≈ 0.362 and ℙ(𝑌1 ≼ 𝑎|𝑌0 = 𝑏, 𝑌2 = 𝑏) ≈ 0.374, while the stochastic
domination ℙ(𝑋1 ∈ ⋅|𝑋0 = 𝑎,𝑋2 = 𝑎) ≼ ℙ(𝑌1 ∈ ⋅|𝑌0 = 𝑏, 𝑌2 = 𝑏) would imply the inequality
ℙ(𝑌1 ≼ 𝑎|𝑌0 = 𝑏, 𝑌2 = 𝑏) ≤ ℙ(𝑋1 ≼ 𝑎|𝑋0 = 𝑎,𝑋2 = 𝑎).

To sum up, an element seems to be missing in the proof of Theorem 5. We observe that, in the specific
case where 𝐸 = ℝ and where (𝑋𝑡)𝑡≥0 and (𝑌𝑡)𝑡≥0 are two versions of the same Feller process with distinct
starting points, Theorem 1 in the present paper can be used to deduce the conclusion of Theorem 5.

6. MISCELLANEOUS LEMMAS

Lemma 5. If 𝐾 (𝑛) and 𝐿(𝑛) are order-preserving kernels on ℝ𝑛, so is their composition 𝐾 (𝑛)𝐿(𝑛).

Proof. By definition, for all 𝐱 ∈ ℝ𝑛, we have that 𝐾 (𝑛)𝐿(𝑛)(𝐱,ℝ𝑛
𝐱) = ∫ℝ𝑛 𝐿(𝑛)(𝐲,ℝ𝑛

𝐱)𝑑𝐾
(𝑛)(𝐱, 𝐲). Since

𝐾 (𝑛) is order-preserving, we have that 𝐾 (𝑛)(𝐱,ℝ𝑛
𝐱) = 1, so the previous integral can be rewritten as

∫ℝ𝑛
𝐱
𝐿(𝑛)(𝐲,ℝ𝑛

𝐱)𝑑𝐾
(𝑛)(𝐱, 𝐲). For all 𝐲 ∈ ℝ𝑛

𝐱, the definition shows that20 ℝ𝑛
𝐲 ⊂ ℝ𝑛

𝐱, so that, since 𝐿(𝑛) is
order-preserving, 𝐿(𝑛)(𝐲,ℝ𝑛

𝐱) = 1, and we have proved that 𝐾 (𝑛)𝐿(𝑛)(𝐱,ℝ𝑛
𝐱) = 1. □

Lemma 6. If (𝐾 (𝑛))𝑛≥2 and (𝐿(𝑛))𝑛≥2 are consistent extensions, respectively of𝐾 and𝐿, then (𝐾 (𝑛)𝐿(𝑛))𝑛≥2
is a consistent extension of 𝐾𝐿.

19Specifically, we used scipy.linalg.expm to compute the matrix exponential.
20If 𝐱 = (𝑥1,… , 𝑥𝑛), 𝐲 = (𝑦1,… , 𝑦𝑛), 𝐳 = (𝑧1,… , 𝑧𝑛) are such that 𝐲 ∈ ℝ𝑛

𝐱 and 𝐳 ∈ ℝ𝑛
𝐲, we have that, for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

𝑥𝑖 ≤ 𝑥𝑗 ⇒ 𝑦𝑖 ≤ 𝑦𝑗 (since 𝐲 ∈ ℝ𝑛
𝐱), hence 𝑥𝑖 ≤ 𝑥𝑗 ⇒ 𝑧𝑖 ≤ 𝑧𝑗 (since 𝐳 ∈ ℝ𝑛

𝐲).
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Proof. Let 𝐾 (1) = 𝐾 and 𝐿(1) = 𝐿. Given integers 1 ≤ 𝑘 ≤ 𝑛, 𝑖1,… , 𝑖𝑘 ∈ J1, 𝑛K, 𝐱 ∈ 𝑆𝑛 and measurable
subset 𝐵 of 𝑆𝑘, we have by definition

𝐾 (𝑛)𝐿(𝑛)(𝐱, (𝜋𝑛
𝑖1,…,𝑖𝑘

)−1(𝐵)) = ∫𝑆𝑛
𝐿(𝑛)(𝐲, (𝜋𝑛

𝑖1,…,𝑖𝑘
)−1(𝐵))𝑑𝐾 (𝑛)(𝐱, 𝐲).

Since (𝐿(𝑛))𝑛≥2 is a consistent extension of 𝐿, we have that 𝐿(𝑛)(𝐲, (𝜋𝑛
𝑖1,…,𝑖𝑘

)−1(𝐵)) = 𝐿(𝑘)(𝜋𝑛
𝑖1,…,𝑖𝑘

(𝐲), 𝐵),
so that

(21) 𝐾 (𝑛)𝐿(𝑛)(𝐱, (𝜋𝑛
𝑖1,…,𝑖𝑘

)−1(𝐵)) = ∫𝑆𝑛
𝐿(𝑘)(𝜋𝑛

𝑖1,…,𝑖𝑘
(𝐲), 𝐵)𝑑𝐾 (𝑛)(𝐱, 𝐲).

Denoting by (𝜋𝑛
𝑖1,…,𝑖𝑘

)∗𝐾 (𝑛)(𝐱, ⋅) the image probability measure on 𝑆𝑘 defined by
[

(𝜋𝑛
𝑖1,…,𝑖𝑘

)∗𝐾 (𝑛)(𝐱, ⋅)
]

(𝐴) = 𝐾 (𝑛)(𝐱, (𝜋𝑛
𝑖1,…,𝑖𝑘

)−1(𝐴),

(21) rewrites as

𝐾 (𝑛)𝐿(𝑛)(𝐱, (𝜋𝑛
𝑖1,…,𝑖𝑘

)−1(𝐵)) = ∫𝑆𝑘
𝐿(𝑘)(𝐳, 𝐵)𝑑

[

(𝜋𝑛
𝑖1,…,𝑖𝑘

)∗𝐾 (𝑛)(𝐱, ⋅)
]

(𝐳).

On the other hand, since (𝐾 (𝑛))𝑛≥2 is a consistent extension of 𝐾 , we have that
[

(𝜋𝑛
𝑖1,…,𝑖𝑘

)∗𝐾 (𝑛)(𝐱, ⋅)
]

(𝐴) = 𝐾 (𝑘)(𝜋𝑛
𝑖1,…,𝑖𝑘

(𝐱), 𝐴),

so that
𝐾 (𝑛)𝐿(𝑛)(𝐱, (𝜋𝑛

𝑖1,…,𝑖𝑘
)−1(𝐵)) = ∫𝑆𝑘

𝐿(𝑘)(𝐳, 𝐵)𝑑𝐾 (𝑘)(𝜋𝑛
𝑖1,…,𝑖𝑘

(𝐱), 𝐳),

and thus
𝐾 (𝑛)𝐿(𝑛)(𝐱, (𝜋𝑛

𝑖1,…,𝑖𝑘
)−1(𝐵)) = (𝐾 (𝑘)𝐿(𝑘))(𝜋𝑛

𝑖1,…,𝑖𝑘
(𝐱), 𝐵),

which proves the conclusion of the Lemma. □

7. NUMERICAL ILLUSTRATIONS

In this section, we show some numerical simulations to illustrate our construction, when the underlying
process is a square-root diffusion as defined by the following s.d.e.

(22) 𝑑𝑋𝑡 = 𝑎(𝑏 −𝑋𝑡)𝑑𝑡 + 𝜎
√

𝑋𝑡𝑑𝑊𝑡,

where (𝑊𝑡)𝑡≥0 is a standard one-dimensional brownian motion. Provided that the condition 2𝑎𝑏 ≥ 𝜎2 is
satisfied, (22) defines an explicit Feller semigroup on ]0,+∞[: for 𝑡 > 0, 𝑃𝑡(𝑥, ⋅) is the distribution of
𝑍∕(2 ∗ 𝑐), where 𝑐 = 2𝑎

(1−𝑒−𝑎𝑡)𝜎2
, and 𝑍 follows a non-central chi-square distribution with 4𝑎𝑏

𝜎2
degrees of

freedom and non-centrality parameter 2𝑐𝑥𝑒−𝑎𝑡. (This class of processes has been studied by Feller [10],
and gained popularity in financial mathematics as a model for the dynamics of interest rates [7]). To
stick to the framework of the present paper, that is, Feller processes on ℝ, and not on ]0,+∞[, one may
consider the semigroup associated with the process (log(𝑋𝑡))𝑡≥0 instead, which leads to identical results
up to applying a log change of scale. For the sake of simplicity, we keep working with the semigroup
associated to (𝑋𝑡)𝑡≥0 in the following illustrations.

We work with the set of parameters 𝑎 = 3, 𝑏 = 2 and 𝜎2 = 8. The following figures depict the values
of 𝑁 = 5000 simulated i.i.d. pairs distributed according to 𝑄(2),𝑚

𝑡 ((𝑥1, 𝑥2), ⋅), for 𝑥1 = 0.5, 𝑥2 = 2,
𝑡 = 0.5, and 𝑚 = 1,… , 6. Fig. 2 displays each pair (𝑥, 𝑦) as a point with coordinates (𝑥, 𝑦), while Fig.
3 uses the point with coordinates (𝑥, 𝑦 − 𝑥) instead. Simulations were done using the R open-source
software.

For 𝑚 = 1, 𝑄(2),𝑚
𝑡 ((𝑥1, 𝑥2), ⋅) is just the classical monotonic coupling, which is the reason why the

points are lying on a curve. As 𝑚 gets larger, the array of points gets more spread out, with barely
distinguishable differences between the few last consecutive graphs.
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FIGURE 2. 5000 simulated pairs following the distribution 𝑄(2),𝑚
𝑡 ((𝑥1, 𝑥2), ⋅).
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FIGURE 3. Transformation (𝑥, 𝑦) ↦ (𝑥, 𝑦 − 𝑥) applied to the graphs in Fig. 2.
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