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Monotone coupling of Feller Markov processes on the real line

Jean Bérard and Brieuc Frénais

Abstract

We prove that, for any stochastically non-decreasing Feller Markov process on the real
line, two versions of the process starting from distinct initial values always admit an order-
preserving coupling, defined through a Feller Markov process on the set of ordered pairs.

1 Introduction
1.1 Statement of the main result
Consider a continuous-time homogeneous Markov process on the real line, characterized
by a homogeneous family of Markov kernels1 (pt)t≥0 on R, and the corresponding Markov
semi-group (Pt)t≥0, which is defined on the space Bb of bounded real-valued Borel functions
on R by2

∀f ∈ Bb ∀t ≥ 0 ∀x ∈ R Ptf(x) =
∫
R
f(y) pt(x, dy).

If (Xt)t≥0 is a family of random variables defined on a probability space (Ω,F , (Px)x∈R)
providing a version of the process starting from X0 = x ∈ R, we thus have pt(x, ·) =
Px(Xt ∈ ·), and Ptf(x) = Ex(f(Xt)).

In addition to Bb, let us denote by Cb (resp. C0) the set of continuous bounded (resp.
continuous vanishing at ±∞) real-valued functions on R. On Bb (and thus also Cb and C0),
we consider the supremum norm defined by ‖f‖∞ = supx∈R |f(x)|, with respect to which
Bb, Cb and C0 are Banach spaces.

Recall that the semi-group (Pt)t≥0 associated with (pt)t≥0 is said to enjoy the Feller
property if:
(a) ∀t ≥ 0, ∀f ∈ C0, Ptf ∈ C0;
(b) ∀f ∈ C0, limt→0+ ‖Ptf − f‖∞ = 0.

Note that property (a) implies, but is not equivalent to
(a’) ∀t ≥ 0, ∀f ∈ Cb, Ptf ∈ Cb,
with (a’) often being termed "strong Feller property" in the literature (see e.g. [3]). Moreover,
(b) may be replaced by the apparently weaker assumption of pointwise (instead of uniform)
convergence
(b’) ∀f ∈ C0,∀x ∈ R, limt→0+ Ptf(x) = f(x),

1Given a measurable space (E, E), a Markov kernel on E is a map k : E×E → R such that (i) for all x ∈ E,
k(x, ·) is a probability measure on (E, E), and (ii) for all B ∈ E , k(·, B) is a measurable real-valued function
on E. Given two Markov kernels k, ` on E, the composition of the two kernels is yet another Markov kernel k`
defined by (k`)(x,B) =

∫
E
k(x, dy)`(y,B). The composition is an associative (but in general non-commutative)

operation on Markov kernels. We say that (kt)t≥0 is a homogeneous family of Markov kernels on E if (I) for
all x ∈ E and B ∈ E , k0(x,B) = δx(B), and (II) the Chapman-Kolmogorov equation holds: for all s, t ≥ 0,
ks+t = kskt.

2For all f ∈ Bb, we denote by Ptf the function x 7→ Ptf(x), and we have that Ptf ∈ Bb. Moreover, Pt defines
a linear operator from Bb into itself, and satisfies (α) ‖Ptf‖∞ ≤ ‖f‖∞ (β) Ptf ≥ 0 when f ≥ 0 (γ) Pt1 = 1. As
a consequence of the Chapman-Kolmogorov equation for (pt)t≥0, the semi-group property holds: for all s, t ≥ 0,
Ps+t = PsPt.
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but it turns out that a Markov semi-group satisfying (a)(b’) also satisfies (b).
The Feller property has various useful consequences, among which the possibility of

building versions of the corresponding Markov process enjoying "nice" properties: càdlàg
trajectories, strong Markov property, quasi-left-continuity, etc. We refer e.g. to [4] (espe-
cially Chapter 19) for the key definitions and properties of Feller processes.

Then recall the definition of the stochastic dominance ordering between probability mea-
sures on R. Denote by B↗b the set of non-decreasing bounded Borel functions on R. Among
several equivalent characterizations (see e.g. [7]), we say that µ 4 ν if and only if, for every
f ∈ B↗b , one has that

∫
f(x)µ(dx) ≤

∫
f(x)ν(dx). A celebrated result due to Strassen [9]

states that the condition µ 4 ν is equivalent to the existence of a pair of random variables
(Y,Z) such that Y ∼ µ, Z ∼ ν, and Y ≤ Z a.s.

Now we say that (pt)t≥0 is stochastically non-decreasing when, for all t ≥ 0, and all
x, y ∈ R such that x ≤ y, one has pt(x, ·) 4 pt(y, ·). In terms of the semi-group, this
condition rewrites as
(c) ∀t ≥ 0, ∀f ∈ B↗b , Ptf ∈ B

↗
b .

Thanks to Strassen’s result, condition (c) also means that, starting from two initial
positions x1 ≤ x2, and for all t ≥ 0, there exists a couple of random variables (X1

t , X
2
t )

such that X1
t and X2

t respectively follow the distribution of the Markov process at time t
starting respectively from x1 and from x2, and such that X1

t ≤ X2
t a.s. The question we

investigate in this paper is whether this statement can be strengthened to the effect that
there exists a process of pairs (X1

t , X
2
t )t≥0 such that (X1

t )t≥0 and (X2
t )t≥0 respectively follow

the distribution of the Markov process starting respectively from x1 and from x2, and such
that a.s. ∀t ≥ 0, X1

t ≤ X2
t , while also enjoying "nice" properties. We shall consider the

space of ordered pairs
S = {(x1, x2) ∈ R2, x1 ≤ x2},

and show that it is indeed possible to build a Feller process of pairs on S, as we now explain.
Note that the definition and key properties of Feller processes that we have quoted above,

are valid not just for R−valued Markov processes, but in the general context of a locally
compact separable metric space, which is clearly the case of S (note that S is also a complete
metric space, as a closed subset of R2). One just has to replace the spaces Bb, Cb, C0 of real-
valued functions defined on R, by the corresponding spaces of real-valued functions defined
on S, hereafter denoted by Bb(S), Cb(S), C0(S).

Theorem 1 If (Pt)t≥0 enjoys the Feller property (a)(b) and the stochastic monotonicity
property (c), there exists a homogeneous family of Markov kernels (rt)t≥0 on S, with a
corresponding Markov semi-group (Rt)t≥0, such that:

• for all t ≥ 0, all x1 ≤ x2, and every Borel subset B of R,{
rt((x1, x2), (B × R) ∩ S) = pt(x1, B)
rt((x1, x2), (R×B) ∩ S) = pt(x2, B) ;

• the semi-group (Rt)t≥0 enjoys the Feller property.

In terms of trajectories, Theorem 1 shows that, starting from any two initial positions
x1 ≤ x2, we can define a Markov process of pairs (X1

t , X
2
t )t≥0 on R2 such that (X1

t )t≥0
and (X2

t )t≥0 respectively follow the distribution of the Markov process starting respectively
from x1 and from x2, and such that a.s. ∀t ≥ 0, X1

t ≤ X2
t . Moreover, the Feller property

of (Rt)t≥0 entails that the process of pairs can be constructed so as to have càdlàg paths,
the strong Markov property, and quasi-left-continuity, these properties being inherited by
the coordinate processes (X1

t )t≥0 and (X2
t )t≥0.

1.2 Discussion
Note the following two classical settings in which Assumption (c) is satisfied, and for which
a process of pairs can be defined in a rather direct and explicit way:
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(a) Doeblin coupling
(b) Parallel coupling

Figure 1: Special cases of Theorem 1 with easier constructions

• strong Markov processes with continuous paths; one can use the so-called Doeblin or
classical coupling, in which the two processes evolve independently until they meet,
and then stick together (see Figure 1a);

• space-homogeneous Markov processes (e.g. Lévy processes); one can use the parallel
coupling, i.e. always keeping the same distance between both versions of the process
(see Figure 1b).

In our view, the interest of Theorem 1 is that it holds in a completely general setting: the
existence of a Feller process of ordered pairs on R2 is established under optimal assumptions.
One may wonder whether weaker assumptions on the transition function (pt)t≥0 may lead
to a (weaker) version of the conclusion of Theorem 1, but we do not pursue such a question
here.

Note that a similar question has been considered by Kamae et al.([5]), in the broader
context of partially ordered Polish spaces, and with two possibly distinct Markov processes
(Xt)t≥0 and (Yt)t≥0 being compared (not just two versions of the same process started at
two distinct initial values) through the appropriate extension of condition (c). Specifically,
Theorem 5 in [5] states that, provided that individual càdlàg versions of the two processes
exist, it is possible to define càdlàg versions of both processes on the same probability space,
in such a way that a.s. ∀t ≥ 0 Xt ≤ Yt (Feller-type properties are not considered in [5]).
Unfortunately, we believe that a part of the proof of Theorem 5 in [5] is problematic, as
explained in Section 3.

Let us also mention [10], which deals with the case of jump processes on partially ordered
Polish spaces (relying on [1]), and [6], which provides a rather general sufficient criterion for
a (suitably regular) one-dimensional Feller proces to enjoy property (c).

Finally, note that, although we focused on a coupling between two versions of a Markov
process, the arguments used to prove Theorem 1 can be immediately extended to deal with
an ordered n−tuple of processes, with n ≥ 2, instead of just a pair.

2 Proof of Theorem 1
Step 1. For any fixed dyadic time t, a sequence of Markov kernels
(q(n)

t )n≥n0.

Fix t > 0 and, for every x ∈ R, denote by F [−1]
x,t the quantile function of Xt starting from x,

i.e. for u ∈ (0, 1)

F
[−1]
x,t (u) = inf{y ∈ R such that u ≤ Px(Xt ≤ y)}.
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Then consider a random variable U with uniform distribution on (0, 1). For every x ∈ R,
the distribution of the random variable F [−1]

x,t (U) is the distribution of Xt sarting from x, i.e.
pt(x, ·). Moreover, the stochastic monotonicity property (c) implies that, for every u ∈ (0, 1),
and every x1 ≤ x2, one has F [−1]

x1,t (u) ≤ F [−1]
x2,t (u), so that (F [−1]

x1,t (U), F [−1]
x2,t (U)) is an S−valued

random pair. Now, for every (x1, x2) ∈ S, we define qt((x1, x2), ·) as the probability distri-
bution of (F [−1]

x1,t (U), F [−1]
x2,t (U)) on S, and we observe that its marginals coincide respectively

with pt(x1, ·) and pt(x2, ·). We also defineQtf(x1, x2) =
∫
S
f(x′1, x′2) qt((x1, x2), (dx′1, dx′2)),

for every (x1, x2) ∈ S and every bounded real-valued Borel function f on S.
Our goal is now to check that for any Borel setB of S, the map (x1, x2) 7−→ qt((x1, x2), B)

is Borel, so that qt defines a Markov kernel on S. We start by checking that, if f ∈ Cb(S),
then Qtf is a continuous function.

By the Feller property (a), if we take a sequence of real numbers (xk)k≥1 converging to
x ∈ R, pt(xk, ·) converges weakly3 to pt(x, ·). Hence F [−1]

xk,t
(U) converges a.s. to F [−1]

x,t (U)
(see for instance [2], Chapter 14, Proposition 5). As a consequence, if we take a sequence
(x1
k, x

2
k)k≥1 converging to (x1, x2) in S, we have the a.s. convergence of f(F [−1]

x1
k
,t

(U), F [−1]
x2
k
,t

(U))

to f(F [−1]
x1,t (U), F [−1]

x2,t (U)), for every f ∈ Cb(S). By the dominated convergence theorem, this
implies thatQtf(x1

k, x
2
k) converges toQtf(x1, x2), so we have proved thatQtf is a continuous

function.
Now we apply Theorem 0.2.2 in [8], which is a functional version of the monotone class

theorem: the set H of bounded real-valued Borel functions on S such that Qtf is Borel
contains Cb(S) – which plays the role of C in [8] – and the assumptions of the theorem are
met4, so that H contains all σ(Cb(S))-measurable functions, and thus all bounded real-
valued Borel functions on S. In particular Qt1B is a Borel function for any Borel set B in
S, so qt is indeed a Markov kernel on S.

Now we call D+ the set of positive dyadic rational numbers. Given t ∈ D+, we write
t = k2−n0 ∈ D+ where k ≥ 1 and n0 ≥ 0 are integers, and n0 has the minimum possible
value in such an expression. Then, for every integer n ≥ n0, we let

q
(n)
t = (q2−n)k2n−n0

,

i.e. q(n)
t is the repeated composition of kernels q2−n · · · q2−n with a total of k2n−n0 kernels

in the composition. As a result, (q(n)
t )n≥n0 is a sequence of Markov kernels on S. Moreover,

thanks to the fact that, for every (x1, x2) ∈ S, the marginals of q2−n((x1, x2), ·) coincide
respectively with p2−n(x1, ·) and p2−n(x2, ·), and to the fact that, thanks to the Chapman-
Kolmogorov equation, pt = (p2−n)k2n−n0 , we have that, for every (x1, x2) ∈ S and n ≥ n0,
the marginals of q(n)

t ((x1, x2), ·) coincide respectively with pt(x1, ·) and pt(x2, ·).
In the sequel, we denote by Q(n)

t f the action of q(n)
t on the bounded real-valued Borel

function f on S.

Step 2. Equicontinuity of (Q(n)
t fK)n≥1.

For every K > 0, we define a function φK : R→ R by setting, for every x ∈ R,

φK(x) = −K1{x<−K} + x1{−K≤x≤K} +K1{x>K},

and we note that φK is non-decreasing, bounded (by K) and continuous. Now, for every
bounded real-valued Lipschitz function f on S, we define a function fK on S by setting, for
every (x1, x2) ∈ S,

fK(x1, x2) = f(φK(x1), φK(x2)).
3We call weak convergence the convergence in distribution for probability measures.
4The set H is a vector space that contains the constant functions and the supremum of any bounded non-

decreasing sequence of its non-negative elements (thanks to the monotone convergence theorem); the set C is
stable under pointwise multiplication.
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We claim that, for fixed t, K and f , the sequence (Q(n)
t fK)n≥n0 is equicontinuous: given

(x1, x2) ∈ S, for any ε > 0, there exists η > 0 such that for all n ≥ n0 and (x′1, x′2) ∈ S
such that |x′1 − x1|+ |x′2 − x2| ≤ η, we have

|Q(n)
t fK(x′1, x′2)−Q(n)

t fK(x1, x2)| ≤ ε. (1)

To begin with, since f is a Lipschitz function, there exists a real number L > 0 such that
for all (x1, x2), (x′1, x′2) ∈ S we have

|f(x′1, x′2)− f(x1, x2)| ≤ L(|x′1 − x1|+ |x′2 − x2|).

Now, using a sequence (U1, · · · , Uk2n−n0 ) of i.i.d. random variables with uniform distribution
on (0, 1), we build two pairs of random variables (X1, X2) and (X ′1, X ′2) whose distribu-
tions are respectively q(n)

t ((x1, x2), ·) and q
(n)
t ((x′1, x′2), ·), and such that the ordering be-

tween x1, x′1, x2, x′2 is the same as the ordering between X1, X ′1, X2, X ′2. To do so, define
inductively {

(X1
0 , X

2
0 ) = (x1, x2)

(X1
i , X

2
i ) = (F [−1]

X1
i−1,2−n

(Ui), F [−1]
X2
i−1,2−n

(Ui)) 1 ≤ i ≤ k2n−n0

and set (X1, X2) = (X1
k2n−n0 , X

2
k2n−n0 ). Then make the same construction starting from

(X ′10 , X
′2
0 ) = (x′1, x′2) to build (X ′1, X ′2) = (X ′1k2n−n0 , X

′2
k2n−n0 ), using the same random

variables Ui. It is apparent from the definition that both (X1, X2) and (X ′1, X ′2) have the
desired distributions, since each step in the inductive construction above amounts to one
Markov transition step according to the kernel q2−n . Moreover, we have already observed
in Step 1 that, thanks to the stochastic monotonicity property (c), the map x 7→ F

[−1]
x,t (u)

is non-decreasing for every given u ∈ (0, 1). As a consequence, since we used the same
Ui’s for both (X1, X2) and (X ′1, X ′2), the initial ordering between (X1

0 , X
′1
0 , X

2
0 , X

′2
0 ) =

(x1, x′1, x2, x′2) is preserved at each step of the construction, and is thus identical to the
ordering between (X1, X ′1, X2, X ′2).

We now write

|Q(n)
t fK(x′1, x′2)−Q(n)

t fK(x1, x2)| = |E(fK(X ′1, X ′2)− fK(X1, X2))|.

Using the triangle inequality and the Lipschitz property of f , we obtain

|Q(n)
t fK(x′1, x′2)−Q(n)

t fK(x1, x2)| ≤ LE(|φK(X ′1)−φK(X1)|+ |φK(X ′2)−φK(X2)|). (2)

Now by construction the sign of X ′1 − X1, and hence of φK(X ′1) − φK(X1) since φK is
non-decreasing, is the same as that of x′1 − x1, regardless of the randomness, so we can get
the absolute value out of the expectation:

E(|φK(X ′1)− φK(X1)|) = |E(φK(X ′1)− φK(X1))| = |PtφK(x′1)− PtφK(x1)|,

and the same goes for X2 and X ′2. Plugging these identities into (2), we obtain that

|Q(n)
t fK(x′1, x′2)−Q(n)

t fK(x1, x2)| ≤ L(|PtφK(x′1)−PtφK(x1)|+ |PtφK(x′2)−PtφK(x2)|).
(3)

By the Feller property (a’) for (Pt)t≥0, since φK is in Cb(R), PtφK is in Cb(R) too, so that,
invoking continuity,

|PtφK(x′1)− PtφK(x1)| ≤ ε

2L
as soon as x′1 is close enough to x1. Doing the same with x′2 and x2, we can bound the the
r.h.s. in (3) independently from n by ε > 0, as soon as x′1 and x′2 are close enough to x1

and x2 (i.e. when the distance between them is smaller than a certain η > 0 given by the
continuity of PtφK at x1 and x2), which gives (1).
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Step 3. Construction of a limiting transition kernel by diagonal
extraction.
We have already observed that, given t ∈ D+ and (x1, x2) ∈ S, the marginals of q(n)

t ((x1, x2), ·)
are respectively pt(x1, ·) and pt(x2, ·) for every n ≥ n0. From this observation, we deduce
that the sequence (q(n)

t ((x1, x2), ·))n≥n0 is tight5, allowing us to extract a weakly converging
subsequence.

Now fix a countable dense subset DS of S. By diagonal extraction, there exists an
increasing sequence of integers ϕ(n) such that for all t ∈ D+ and (x1, x2) ∈ DS , as n→ +∞,
the sequence q(ϕ(n))

t ((x1, x2), ·) converges weakly to some probability measure rt((x1, x2), ·)
on S. We shall prove that rt can be extended to a limiting Markov kernel on the whole of
S.

For any bounded real-valued Borel function f on S, and every (x1, x2) ∈ DS let

Rtf(x1, x2) =
∫
S

f(x′1, x′2) rt((x1, x2), (dx′1, dx′2)).

Now take t ∈ D+ and (x1, x2) ∈ S, fix K > 0 and a certain bounded Lipschitz function f
as in Step 2, and let ε > 0. Since DS is dense in S, we can find (x′1, x′2) ∈ DS such that
|x′1−x1|+ |x′2−x2| ≤ η, where η is the modulus of equicontinuity at (x1, x2) given in Step
2 for the sequence (Q(n)

t fK)n≥n0 . Thus we have, for all n ≥ n0,

|Q(n)
t fK(x′1, x′2)−Q(n)

t fK(x1, x2)| ≤ ε.

Now since (x′1, x′2) is in DS , Q(ϕ(n))
t fK(x′1, x′2) converges to RtfK(x′1, x′2) as n goes to

infinity, so for all large enough n we have that

|Q(ϕ(n))
t fK(x′1, x′2)−RtfK(x′1, x′2)| ≤ ε,

so that, combining the two inequalities,

|Q(ϕ(n))
t fK(x1, x2)−RtfK(x′1, x′2)| ≤ 2ε. (4)

Now if we also take m ≥ n, we have, using (4) twice and the triangle inequality

|Q(ϕ(n))
t fK(x1, x2)−Q(ϕ(m))

t fK(x1, x2)| ≤ 4ε.

We have thus proved that the sequence (Q(ϕ(n))
t fK(x1, x2))n≥n0 is Cauchy, and thus con-

verges to a certain limit as n goes to infinity. We denote this limit by RtfK(x1, x2), thus
extending the definition of RtfK to every (x1, x2) ∈ S (when (x1, x2) ∈ DS , we already
know that the limit exists and is equal to RtfK(x1, x2)). As a consequence, any weak limit
ν along a subsequence of (q(ϕ(n))

t ((x1, x2), ·))n≥n0 has to satisfy
∫
S
fK(y1, y2)ν(dy1, dy2) =

RtfK(x1, x2). Since this is true for every K > 0 and bounded Lipschitz f , we deduce6

that there can be at most one such weak limit. Moreover, as we have already noted, the
sequence (q(ϕ(n))

t ((x1, x2), ·))n≥n0 is tight, so it indeed has a weak limit, which we denote
by rt((x1, x2), ·), thus extending the definition of rt to every (x1, x2) ∈ S. We extend the
definition of Rt accordingly, so that Rtf(x1, x2) is defined for every (x1, x2) ∈ S and every
bounded Borel real-valued function f on S.

To conclude that rt defines a Markov kernel on S, we prove that the class of functions f
such that Rtf is Borel contains Cb(S). Given f ∈ Cb(S), weak convergence implies that Rtf
is the pointwise limit of the sequence of functions Q(ϕ(n))

t f as n → +∞. Each function in
the sequence is Borel since f is bounded and Borel and Q(ϕ(n))

t is a Markov kernel, so the
pointwise limit of the sequence is Borel. We then argue exactly as in Step 1.

5Let H1, H2 be compact subsets of R such that pt(x1, Hc
1) ≤ ε

2 and pt(x2, Hc
2) ≤ ε

2 for a certain ε > 0. Then
H = (H1×H2) ∩ S is compact and, by the union bound, q(n)

t ((x1, x2), Hc) ≤ pt(x1, Hc
1) + pt(x2, Hc

2) ≤ ε for all
n ≥ n0.

6Any bounded Lipschitz function with compact support can be written f = fK for a sufficiently large K. And
the class of bounded Lipschitz functions with compact support separates Borel probability measures on S.
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Step 4. (Rt)t∈D+ has the Feller property.
We have built for all t ∈ D+ a Markov kernel rt, and now we prove that (Rt)t∈D+ enjoys
the characteristic properties of a Feller semi-group, restricted to indices t ∈ D+.

• First we prove that, if f ∈ Cb(S), then Rtf ∈ Cb(S). Fix ε > 0 and (x1, x2) ∈ S. As
in Steps 2 and 3, fix a bounded Lipschitz function f and K > 0, and take η > 0 a
modulus of equicontinuity as in Step 2, meaning that for every (x′1, x′2) ∈ S such that
|x′1 − x1|+ |x′2 − x2| ≤ η, we have for all n such that ϕ(n) ≥ n0

|Q(ϕ(n))
t fK(x′1, x′2)−Q(ϕ(n))

t fK(x1, x2)| ≤ ε.

Now, thanks to the weak convergence, we also have for n large enough (depending on
x1, x2, t, f and K but not on x′1, x′2)

|Q(ϕ(n))
t fK(x1, x2)−RtfK(x1, x2)| ≤ ε,

so that
|Q(ϕ(n))

t fK(x′1, x′2)−RtfK(x1, x2)| ≤ 2ε, (5)
and taking the limit n→ +∞, we obtain

|RtfK(x′1, x′2)−RtfK(x1, x2)| ≤ 2ε. (6)

Thus, we have proved that RtfK(x′1, x′2) converges to RtfK(x1, x2) as (x′1, x′2) goes
to (x1, x2). Moreover, the class of functions of the form fK , where K > 0 and f is
a bounded Lipschitz function, characterizes weak convergence towards a probability
measure7, so that rt((x′1, x′2), ·) converges weakly to rt((x1, x2), ·) as (x′1, x′2) goes to
(x1, x2). In particular, for g ∈ Cb(S), Rtg(x′1, x′2) converges to Rtg(x1, x2) as (x′1, x′2)
goes to (x1, x2). We have proved that Rtg is continuous. It is also bounded by ‖g‖∞,
so it is in Cb(S).

• Now let us prove that if g is in C0(S), then Rtg is also in C0(S). We already know it
is continuous, so we just have to prove that it vanishes at infinity. First, fix ε > 0 and
let M > 0 such that |g| is bounded by ε on S\[−M,M ]2 (M exists since g vanishes at
±∞). Then we have

|Rtg(x1, x2)| ≤ ‖g‖∞ rt((x1, x2), S ∩ [−M,M ]2) + ε.

Now, since (Pt)t maps C0 into C0, and rt’s marginals are respectively pt(x1, ·) and
pt(x2, ·), rt((x1, x2), S ∩ [−M,M ]2) goes to zero as x1 and x2 go to infinity8, so we can
make |Rtg(x1, x2)| arbitrarily small by taking (x1, x2) far enough from the origin, and
thus Rtg is in C0(S).

• Let us prove the semi-group property. First, recall t = k02−n0 and also take s = l02−m0

another dyadic time. If n is such that ϕ(n) ≥ max(n0,m0), we have by construction

Q(ϕ(n))
s Q

(ϕ(n))
t = Q

(ϕ(n))
s+t .

To prove that RsRt = Rs+t we will prove that the corresponding operators coincide
on the functions fK , with f Lipschitz and K > 0. Fix M > 0. We have for every
g, h ∈ Cb(S) bounded by a same constant C > 0

|Q(ϕ(n))
s g(x1, x2)−Q(ϕ(n))

s h(x1, x2)|
≤ ‖g − h‖∞,S∩[−M,M ]2 + 2Cq(ϕ(n))

s ((x1, x2), S\[−M,M ]2), (7)

7Any bounded Lipschitz function with compact support can be written f = fK for a sufficiently large K. And
the class of bounded Lipschitz functions with compact support characterizes weak convergence towards a Borel
probability measure on S.

8We have rt((x1, x2), S ∩ [−M,M ]2) ≤ pt(x1, [−M,M ]), and, given a function f ∈ C0(R) such that f ≥
1[−M,M ], Ptf vanishes at infinity.
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where ‖·‖∞,B is the supremum norm on functions restricted to a domain B. Using the
fact that the sequence of probability measures (q(ϕ(n))

s ((x1, x2), ·))n∈N is tight since it
converges weakly, we can make the second term in the r.h.s. of (7) arbitrarily small
by taking M large enough. Now if we take g = Q

(ϕ(n))
t fK and h = RtfK , both

bounded by ‖f‖∞, we will see that we can also make the first term as small as we
want. Indeed, looking back at (5) and (6), we have that, for all (y1, y2) ∈ S, and all
ε > 0, there exists an η > 0 such that, for all large enough n and (y′1, y′2) such that
|y′1 − y1|+ |y′2 − y2| ≤ η,

|Q(ϕ(n))
t fK(y′1, y′2)−RtfK(y′1, y′2)| ≤ 4ε,

which means that the convergence of Q(ϕ(n))
t fK to RtfK is locally uniform around

(y1, y2), and thus uniform on any compact subset of S. Taking S ∩ [−M,M ]2 for this
compact, we can make (7) arbitrarily small, namely

|Q(ϕ(n))
s Q

(ϕ(n))
t fK(x1, x2)−Q(ϕ(n))

s RtfK(x1, x2)| ≤ ε (8)

for n large enough.
Now sinceRtfK is in Cb(S) (because fK is) and rs((x1, x2), ·) is the weak limit of q(ϕ(n))

s ,
Q

(ϕ(n))
s RtfK(x1, x2) converges to RsRtfK(x1, x2), so that Q(ϕ(n))

s Q
(ϕ(n))
t fK(x1, x2)

also converges to RsRtfK(x1, x2) thanks to (8). Furthermore, since Q(ϕ(n))
s Q

(ϕ(n))
t =

Q
(ϕ(n))
s+t , and since s+t is also dyadic, the weak convergence of q(ϕ(n))

s+t ((x1, x2), ·) ensures
that Q(ϕ(n))

s Q
(ϕ(n))
t fK(x1, x2) converges to Rs+tfK(x1, x2), hence RsRtfK(x1, x2) =

Rs+tfK(x1, x2). Using again the fact that the functions fK separate probability mea-
sures on S, we deduce that rsrt = rs+t and that RsRt = Rs+t.

• Finally we prove the uniform convergence of Rtf to f , for any f ∈ C0(S), as t goes
to 0 (for t ∈ D+). Fix ε > 0 and η a modulus of uniform continuity for f , i.e. for
all (x1, x2), (x′1, x′2) in S such that |x′1 − x1| + |x′2 − x2| ≤ η, we have |f(x′1, x′2) −
f(x1, x2)| ≤ ε. Also fixM > 0 such that |f | < ε on S\[−M,M ]2. We want to dominate
|Rtf(x1, x2)− f(x1, x2)| uniformly in (x1, x2).

• Assume that (x1, x2) is outside [−(M + 1),M + 1]2. Since |f | ≤ ε outside
[−M,M ]2,

|Rtf(x1, x2)− f(x1, x2)| ≤ ε+ |Rtf(x1, x2)|
≤ 2ε+Rt(|f |1[−M,M ]2)(x1, x2)
≤ 2ε+ ‖f‖∞ pt(x1, [−M,M ]).

Now observe that the Feller property for Pt used on the function h depicted in
Figure 2a proves that pt(x, [−M,M ]) converges to zero as t→ 0, uniformly for x
outside [−(M + 1),M + 1]: indeed, pt(x, [−M,M ]) is smaller than Pth(x), which
converges uniformly to h(x) = 0. We deduce that |Rtf(x1, x2) − f(x1, x2)| is
smaller than 3ε for t small enough, uniformly for (x1, x2) 6∈ [−(M + 1),M + 1]2.

• Assume that (x1, x2) is in [−(M + 1),M + 1]2. Denote (X1
t , X

2
t ) a couple of

random variables whose distribution is rt((x1, x2), ·), and, for x ∈ R and δ > 0,
denote by Iδ(x) the interval [x− δ, x+ δ]. We have

|Rtf(x1, x2)− f(x1, x2)| ≤ E(|f(X1
t , X

2
t )− f(x1, x2)|)

≤ ε+ 2 ‖f‖∞ P(|X1
t − x1|+ |X2

t − x2| > η)

≤ ε+ 2 ‖f‖∞
(
P
(
|X1

t − x1| > η

2

)
+ P

(
|X2

t − x2| > η

2

))
= ε+ 2 ‖f‖∞

(
pt(x1, Icη/2(x1)) + pt(x2, Icη/2(x2))

)
.

Now, we only need to prove that pt(x, Icη/2(x)) converges to zero uniformly on the
interval [−(M + 1),M + 1]. To do so, we prove that this convergence is locally
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uniform around every x in R, so that it is uniform on every compact subset of
R. To this end, we apply the Feller property for Pt to the function h depicted in
Figure 2b. Since h ≤ 1I2δ(x), we have for x′ ∈ Iδ(x), Pth(x′) ≤ pt(x′, I2δ(x)) ≤
pt(x′, I3δ(x′)). Since Pth converges uniformly to h as t goes to zero, Pth(x′)
converges to 1 uniformly for x′ ∈ Iδ(x), hence so does pt(x′, I3δ(x′)). Taking
δ = η

6 allows us to complete the proof of uniform convergence of Rtf to f as t
goes to zero.

Step 5. Extension of (Rt)t∈D+ to all times.
Let t > 0 be a non-dyadic time, and s, s′ ∈ D+ such that t < s < s′. Also fix f ∈ C0(S).
Thanks to the semi-group property for dyadic times, we have

‖Rs′f −Rsf‖∞ ≤ ‖Rs(Rs′−sf − f)‖∞ ≤ ‖Rs′−sf − f‖∞ ,

so (Rsf)s>t satisfies the Cauchy condition with respect to the ‖·‖∞ norm as s goes to t with
s > t, thanks to the uniform convergence of Rs′−sf to f as s′ − s goes to 0. Then we can
define Rtf = lim

s→t+
Rsf ∈ C0(S). Consider a sequence (sn)n≥1 converging to t such that, for

all n ≥ 1, sn ∈ D+, and sn > t. For all x1 ≤ x2, the marginals of rsn((x1, x2), ·) are given by
psn(x1, ·) and psn(x2, ·), which, by the Feller property (b), converge weakly to pt(x1, ·) and
pt(x2, ·). As a consequence, the sequence (rsn((x1, x2), ·))n≥1 is tight, and the convergence
of Rsnf to Rtf for every f ∈ C0(S) shows that there indeed is a probability distribution
rt((x1, x2), ·) which is the weak limit of rsn((x1, x2), ·) as n → +∞, with Rtf(x1, x2) =∫
S
f(x′1, x′2) rt((x1, x2), (dx′1, dx′2)) for every f ∈ C0(S), and whose marginals are pt(x1, ·)

and pt(x2, ·). As in Step 3, we check that rt is a Markov kernel as a (pointwise) weak limit
of Markov kernels.

Note that, by construction, Rt maps C0(S) into C0(S), and, composing uniform limits,
we also obtain that Rtf goes uniformly to f as t goes to zero, so properties (a) and (b)
are satisfied. Finally, the semi-group property comes from the uniform convergence on the
dyadics: let s, t > 0 and consider two sequences of elements of D+ denoted by (sn)n≥1,
(tn)n≥1, with sn ≥ s and tn ≥ t for all n, and sn −→ s, tn −→ t. Then we have, for all
f ∈ C0(S),

‖Rs+tf −RsRtf‖∞ ≤ ‖Rs+tf −RsnRtnf‖∞ + ‖RsnRtnf −RsnRtf‖∞
+ ‖RsnRtf −RsRtf‖∞ .

Now, thanks to the semi-group property on D+, the first term is ‖Rs+tf −Rsn+tnf‖∞ and
can be made arbitrarily small since sn + tn converges to s+ t. The third term is also small,
because Rsng converges to Rsg uniformly for all g ∈ C0(S). Finally, the second term is
smaller than ‖Rtnf −Rtf‖∞ and thus also converges to zero. Hence we obtain the semi-
group property of (Rt)t≥0 on C0(S), and the corresponding Chapman-Kolmogorov equation
for (rt)t≥0.

3 About the proof of Kamae et al.
The argument of Kamae et al. in [5] to deal with the case of continuous-time Markov
processes with càdlàg paths (Theorem 5) is by reduction to the discrete-time case (Theorem
2 via Theorem 4), invoking a step-by-step construction over rational time indices which is
then extended to time-indices in R+.

We now explain the issue with the step-by-step construction, in the context of two
versions of the same process Markov X starting from distinct initial values being compared.
The construction relies on an enumeration (tn)n≥1 of non-negative rational numbers, and
the Markov kernels

p̃t1,··· ,tn((x1, · · · , xn−1), ·) = P(Xtn ∈ ·|Xt1 = x1, · · · , Xtn−1 = xn−1).
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(a)

(b)

Figure 2: Auxiliary functions used to obtain Feller property

10



Figure 3: A non-decreasing Markov chain whose post-conditioned kernels are not non-decreasing

with the key assumption that, for all n ≥ 1 and all x1, x2 ∈ Rn−1 such that x1
i ≤ x2

i for
1 ≤ i ≤ n− 1

p̃t1,··· ,tn((x1
1, · · · , x1

n−1), ·) 4 p̃t1,··· ,tn((x2
1, · · · , x2

n−1), ·), (9)

where 4 denotes the stochastic dominance ordering between probability measures.
From property (c) and the Markov property, (9) is certainly true when tn ≥ ti for all

1 ≤ i ≤ n− 1. However, since it is certainly not possible to enumerate a dense subset of R+
using a increasing sequence, the sequence (tn)n≥1 cannot be increasing, and the success of
the step-by-step construction relies on (9) being true also when there exist 1 ≤ i, j ≤ n− 1
such that ti < tn < tj . Unfortunately, property (c) is not sufficient to ensure that (9) is true
in such situations, as we now show using a counter-example.

Consider a Markov chain X on a set of three states a < b < c, whose transition kernel
involves parameters p, q, r, as depicted on Figure 3. For x0, x1, x2 ∈ {a, b, c}, denote by
Fx0 the c.d.f. of X1 under the condition X0 = x0, Fx0x2 that of X1 under the condition
X0 = x0, X2 = x2, and px0x1 the probability of transition from x0 to x1 (in one jump).
One checks that, as soon as p ≤ q, we have Fa ≥ Fb ≥ Fc, so that the Markov chain is
stochastically non-decreasing. Now let us compute Faa(a) and Fbb(a). We have

Faa(a) = paapaa
paapaa + pabpba + pacpca

= q2

q2 + (1− q)p ,

Fbb(a) = pbapab
pbapab + pbbpbb + pbcpcb

= p(1− q)
p(1− q) + r2 ,

As a consequence, if we find p, q, r ∈ [0, 1] such that

p(1− q)
p(1− q) + r2 −

q2

q2 + (1− q)p > 0

with conditions p ≤ q and p+ r ≤ 1, we have Fbb(a) > Faa(a), which shows that we do not
have the ordering P(X1 ∈ ·|X0 = a,X2 = a) 4 P(X1 ∈ ·|X0 = b,X2 = b), despite the fact
that a < b.

For instance9, taking p = 1
2 , q = 3

5 and r = 1
4 works.

9Notice that if we had r = 1− p, the third state c would be useless. However it is not, precisely because the
inequation has no solution in that case.
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