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Abstract 37 

We propose a general approach based on morphological thermodynamics for determining 38 

adsorption isotherms, i.e., the chemical potential of a confined fluid as a function of its density. The 39 

validity of this approach and its versatility are established by its remarkable accuracy compared to 40 

Monte-Carlo simulation results and its capability of accounting for a quite large variety of porous 41 

media, ranging from a simple slit pore to a random sponge matrix. It is also revealed that the 42 

contribution of the curvature terms to the chemical potential of the confined fluid is negligibly 43 

small when the interface curvature is not too large. This finding is of a particular importance for 44 

simplifying the treatment of experimental results of adsorption isotherms since no experimental 45 

technique is currently available for determining the curvatures of the pore surface inside a porous 46 

material.    47 

  48 
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1. Introduction 49 

Porous materials are widely used in various domains, e.g., in chemical industry for molecular sieves 50 

and supported catalysts, in new clean energy technology for storing hydrogen, in some new therapy 51 

for long-lasting delivery of medicines by encapsulation. It is now well recognized that confinement 52 

can modify drastically some properties of adsorbed fluids. Accompanying the advent of many high-53 

performance functionalized nanoporous materials, a large number of experimental and theoretical 54 

investigations have been made during the last decades. Nevertheless, a unifying picture 55 

highlighting the behavior of confined fluids emerges quite slowly due to the large diversity of 56 

structure and morphology for various porous materials. One salient characteristic of fluids confined 57 

in porous media is the large interface between fluid and pore wall, which has usually a complex 58 

morphology. Although one expects intuitively an important surface contribution to the 59 

thermodynamic potentials of such systems, it is not obvious whether it is still possible to define a 60 

meaningful surface tension when the characteristic pore size is of the order of a few molecular 61 

diameters of the confined fluid. Even if an approach based on thermodynamics is possible, one still 62 

needs to know which are the most relevant variables for characterizing the complex interface 63 

landscape of fluids adsorbed in porous media. The theoretical study of fluids confined in porous 64 

media is still carried out essentially in a case-by-case way. The morphological thermodynamics 65 

proposed and advocated by K. Mecke, R. Roth and co-workers [1-8] provides a framework for a 66 

general thermodynamic description of complex interfacial systems. Starting from Hadwiger’s 67 

theorem in integral geometry, morphological thermodynamics postulates that four geometrical 68 

measures are enough to characterize the thermodynamic potential of a complex interfacial system, 69 

i.e., volume, surface area, integrated mean curvature and integrated Gauss curvature [1]. Moreover, 70 

Mecke et al assume that the thermodynamic variables conjugated to these geometrical measures, 71 

i.e. pressure, surface tension, as well as two surface bending rigidities, can be determined for a 72 

simple system then be used to describe systems with more complex morphology [1-3]. Although 73 

morphological thermodynamics gives promising results for some systems [1-8], the validity of one 74 

of its fundamental postulates has been questioned. Theoretical and simulation investigations have 75 

provided evidence for the existence of non-Hadwiger terms, i.e., high-order curvature contributions 76 

to surface tension, which are not taken into account in the morphological thermodynamics [9-12]. 77 
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Moreover, these investigations have shown that the first non-Hadwiger term gives a contribution 78 

much smaller than the Hadwiger terms, at least one order of magnitude smaller [9]. Hence, 79 

morphological thermodynamics can allow for formulating useful approximations in practice even 80 

when Hadwiger theorem does not hold rigorously. Fluids adsorbed in porous materials with a 81 

complex morphology of pore space provide an interesting ground for further testing the 82 

applicability of morphological thermodynamics. This constitutes the main objective of the present 83 

work. Some of us (SLZ and WD) have collaborated during a long time with Myroslav Holovko in 84 

the study of fluids confined in porous media [13-17]. It is our great pleasure to dedicate the present 85 

article to this special issue for the eightieth anniversary of Professor Holovko. 86 

Our presentation is organized as follows. A brief introduction of morphological 87 

thermodynamics and a general equation of state for a fluid confined in various porous media will 88 

be presented in the next section. The accuracy of the general equation of state in different confining 89 

media will be assessed in Section III. Some conclusions will be presented in the last section. 90 

2. Theory 91 

A. A brief recall of morphological thermodynamics 92 

The morphological thermodynamics proposed by Mecke, Roth and coworkers is based on the 93 

fundamental assumption that the grand potential of a complex interfacial system is a linear 94 

combination of four morphological measures, i.e., the system’s volume, 𝑉𝑉, the interface area, 𝐴𝐴, 95 

the integrated mean curvature, 𝐶𝐶M, and the integrated Gauss curvatures, 𝐶𝐶G. From this assumption, 96 

one has immediately the following expression for the grand potential, 97 

𝛺𝛺 = −𝑝𝑝bulk(𝑇𝑇, 𝜇𝜇)𝑉𝑉 + 𝛾𝛾0(𝑇𝑇, 𝜇𝜇)𝐴𝐴 + 𝛾𝛾−1(𝑇𝑇, 𝜇𝜇)𝐶𝐶M + 𝛾𝛾−2(𝑇𝑇, 𝜇𝜇)𝐶𝐶G,     (1) 98 

where 𝑇𝑇  is temperature, 𝜇𝜇  the chemical potential. The coefficients of the morphological 99 

measures are respectively the pressure of the corresponding bulk system, 𝑝𝑝bulk, the surface tension 100 

on a flat surface, 𝛾𝛾0, and the bending rigidities, 𝛾𝛾−1 and 𝛾𝛾−2 related to the integrated mean and 101 

Gauss curvatures. Before applying it to study fluids confined in porous media, it is useful to clarify 102 

further some implications of the morphological thermodynamics given in eq.(1). First, it is to note 103 

that the morphological measures are completely decoupled with the properties of the fluid, i.e., the 104 

four morphological measures being independent of the fluid state, i.e., 𝑇𝑇 and 𝜇𝜇. Such decoupling 105 

allows for separating the study of a complex interfacial system into two simpler tasks, one for 106 
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determining the morphological measures in the absence of the fluid and the other for determining 107 

the coefficients, 𝛾𝛾0 ,  𝛾𝛾−1  and 𝛾𝛾−2 , from a simpler system, e.g., the considered fluid near a 108 

spherical surface. On the other hand, the independence of the morphological measures on the fluid 109 

state does not hold for fluid adsorption in very flexible porous materials since the adsorption can 110 

induces large deformation of the materials and modify significantly their morphology. So, the 111 

morphological thermodynamics as presented above cannot be applied for the fluid adsorption in 112 

flexible porous materials. We can also rewrite eq.(1) as, 113 

 𝛺𝛺 = 𝛺𝛺bulk + 𝛾𝛾�𝐴𝐴   ,              (2) 114 

where 115 

𝛾𝛾� = 𝛾𝛾0(𝑇𝑇, 𝜇𝜇) + 𝛾𝛾−1(𝑇𝑇, 𝜇𝜇) 𝐶𝐶M
𝐴𝐴

+ 𝛾𝛾−2(𝑇𝑇, 𝜇𝜇) 𝐶𝐶G
𝐴𝐴

    .        (3) 116 

Recently, one of us has shown that it is necessary to introduce the concepts of differential and 117 

integral surface tensions for strongly confined fluids, i.e., pore size being sufficiently small so that 118 

𝛾𝛾0, 𝛾𝛾−1 and 𝛾𝛾−2 in eq.(3) can also depends on the pore size in addition of 𝑇𝑇 and 𝜇𝜇 [18,19]. 119 

Although 𝛾𝛾� defined from eq.(2) is an integral surface tension, the assumption that 𝛾𝛾0, 𝛾𝛾−1 and 120 

𝛾𝛾−2 are only functions of temperature and chemical potential is too restrictive to account for more 121 

complex situations. Therefore, we can anticipate that the morphological thermodynamics can 122 

become less and less accurate when confinement becomes stronger and stronger. 123 

B. Adsorption isotherms based on morphological thermodynamics 124 

The morphological thermodynamics extends Gibbs surface thermodynamics by proposing a 125 

concrete recipe to account for the curvature contributions in the grand potential. It is 126 

straightforward to show that the surface tension given in eq.(3) satisfies Gibbs adsorption equation, 127 

i.e., 128 

 �𝜕𝜕𝛾𝛾�
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝐶𝐶M,𝐶𝐶G

= 1
𝐴𝐴
��𝜕𝜕𝛺𝛺

𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝐶𝐶M,𝐶𝐶G

− �𝜕𝜕𝛺𝛺
bulk

𝜕𝜕𝜕𝜕
�
𝑇𝑇
� = −𝑁𝑁1−𝑁𝑁𝑏𝑏

𝐴𝐴
= −𝛤𝛤   ,    (4) 129 

where 𝛤𝛤  is defined as adsorption, 𝑁𝑁1  and 𝑁𝑁𝑏𝑏  are respectively the particle number of the 130 

confined fluid and that of the corresponding bulk fluid in the same volume with the same 131 

temperature and chemical potential. This equation provides a relation between the density of the 132 

confined fluid, 𝜌𝜌1 = 𝑁𝑁1𝑉𝑉−1, and that of the corresponding bulk fluid, 𝜌𝜌𝑏𝑏 = 𝑁𝑁𝑏𝑏𝑉𝑉−1,  133 

 𝜌𝜌𝑏𝑏 = 𝜌𝜌1 + �𝜕𝜕𝛾𝛾�
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝐶𝐶M,𝐶𝐶G

𝐴𝐴
𝑉𝑉
   .             (5) 134 
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Now, from the equation of state of the bulk fluid and the relation given by eq.(5), we obtain 135 

immediately the following equation of state for the confined fluid, 136 

 𝜇𝜇(𝜌𝜌1) = 𝜇𝜇bulk �𝜌𝜌1 + �𝜕𝜕𝛾𝛾�
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝐶𝐶M,𝐶𝐶G

𝐴𝐴
𝑉𝑉
�   .          (6) 137 

3. Results and discussion 138 

The theoretical framework presented in the last section is a quite general one which can be applied 139 

for studying a large variety of confined fluids. We illustrate this by considering some benchmark 140 

model systems.  141 

A. A hard sphere fluid confined in a slit pore with hard walls 142 

We consider first a hard sphere (HS) fluid confined in a slit pore formed with two parallel hard 143 

walls. A schematic presentation of such a system is given in Figure 1. The morphological 144 

thermodynamic approach described in Section 2.B is based on two prerequisites: i) an equation of 145 

state for the bulk fluid; ii) the surface tension for the considered interface. For a HS fluid confined 146 

in a slit pore with two hard walls, scaled particle theory (SPT) [20-22] provides both the equation 147 

of state of the bulk fluid and the surface tension of a HS fluid near a flat hard wall.  148 

 149 

Figure 1. Schematic presentation of a fluid of hard spheres (blue spheres) confined in a slit pore 150 

with two walls (grey) separated by a distance of 𝐿𝐿 (surface normal along the z-direction). The 151 

dashed lines mark the closest accessible plans for the hard-sphere centers, ℓ = 𝐿𝐿 − 𝜎𝜎 being the 152 

accessible width (𝜎𝜎: fluid hard sphere diameter). 153 

The SPT equation of state for a bulk HS fluid is given by, 154 

 𝛽𝛽𝜇𝜇SPT = ln(𝛬𝛬3𝜌𝜌𝑏𝑏) − ln(1 − 𝜂𝜂𝑏𝑏) + 7𝜂𝜂𝑏𝑏

1−𝜂𝜂𝑏𝑏
+ 15

2
� 𝜂𝜂𝑏𝑏

1−𝜂𝜂𝑏𝑏
�
2

+ 3 � 𝜂𝜂𝑏𝑏

1−𝜂𝜂𝑏𝑏
�
3
   .     (7) 155 
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where 𝛬𝛬 is the thermal wavelength, 𝛽𝛽 = (𝑘𝑘B𝑇𝑇)−1 (𝑘𝑘B: Boltzmann constant), 𝜂𝜂𝑏𝑏 = 𝜋𝜋𝜎𝜎3𝜌𝜌𝑏𝑏6−1 156 

is the packing fraction of the bulk fluid. The surface tension for a fluid-wall interface and the 157 

adsorption depend on the choice of Gibbs dividing surface. For the present work, we choose the 158 

wall surfaces located at 𝑧𝑧 = ± 𝐿𝐿 2⁄  as the dividing surfaces (see Fig. 1). For this choice, the SPT 159 

gives the following result for the surface tension,  160 

 𝜋𝜋𝜎𝜎2𝛽𝛽𝛾𝛾0SPT = 3𝜂𝜂𝑏𝑏

1−𝜂𝜂𝑏𝑏
+ 9

2
� 𝜂𝜂𝑏𝑏

1−𝜂𝜂𝑏𝑏
�
2
   .             (8) 161 

From the Gibbs adsorption equation, i.e., eq.(4), and the results given in eqs.(7) and (8), we obtain 162 

straightforwardly the adsorption on one pore wall, 163 

 𝜋𝜋𝜎𝜎2𝛤𝛤0SPT = −𝜋𝜋𝜎𝜎2 �𝜕𝜕𝜕𝜕0
SPT

𝜕𝜕𝜕𝜕SPT
�
𝑇𝑇

= −𝜋𝜋𝜎𝜎2 �𝜕𝜕𝜕𝜕0
SPT

𝜕𝜕𝜂𝜂𝑏𝑏
�
𝑇𝑇

�𝜕𝜕𝜕𝜕
SPT

𝜕𝜕𝜂𝜂𝑏𝑏
�
𝑇𝑇

� = −3𝜂𝜂𝑏𝑏�1−𝜂𝜂𝑏𝑏�
1+2𝜂𝜂𝑏𝑏

  .  (9)  164 

Since the slit pore is composed of two hard walls, we have the following relation between the 165 

packing fraction of the confined fluid, 𝜂𝜂1 = 𝜋𝜋𝜎𝜎3𝜌𝜌16−1, and that of the bulk one, 166 

 𝜂𝜂1 = 𝜂𝜂𝑏𝑏 + 2𝜋𝜋𝜎𝜎2𝛤𝛤0SPT

6𝐿𝐿∗
= 𝜂𝜂𝑏𝑏 − 𝜂𝜂𝑏𝑏�1−𝜂𝜂𝑏𝑏�

𝐿𝐿∗�1+2𝜂𝜂𝑏𝑏�
  ,          (10) 167 

where 𝐿𝐿∗ = 𝐿𝐿𝜎𝜎−1 is the pore width measured with the HS diameter. Since eq.(10) is a second 168 

order polynomial, we obtain the following explicit expression of 𝜂𝜂𝑏𝑏 in terms of 𝜂𝜂1, 169 

 𝜂𝜂𝑏𝑏 = 1−𝐿𝐿∗+2𝐿𝐿∗𝜂𝜂1+�(1−𝐿𝐿∗+2𝐿𝐿∗𝜂𝜂1)2+4𝐿𝐿∗(1+2𝐿𝐿∗)𝜂𝜂1
2(1+2𝐿𝐿∗)   .         (11) 170 

Now, the adsorption isotherm for a HS fluid confined in a slit pore is given by, 171 

 𝛽𝛽𝛽𝛽(𝜂𝜂1) = 𝛽𝛽𝛽𝛽bulk(𝜂𝜂𝑏𝑏)   .             (12) 172 

The right-hand-side of eq.(12) is given by substituting eq.(11) into eq.(7). Eq. (10) shows clearly 173 

that with the increase of 𝐿𝐿∗, the difference between 𝜂𝜂1 and 𝜂𝜂𝑏𝑏 becomes smaller and smaller and 174 

lim
𝐿𝐿∗→∞

𝜂𝜂1 = 𝜂𝜂𝑏𝑏, one recovers the bulk result from eq.(12) for 𝐿𝐿∗ → ∞ as one can expect. For point 175 

particle, i.e. 𝜎𝜎 = 0, eqs. (7) and (12) gives the same exact result for the confined and the bulk ideal 176 

gas as we expect. 177 

In Figure 2, some results given by eq. (12) are presented for a few pore widths and compared 178 

to the results of Monte-Carlo (MC) simulations. Since the adsorption for this system is negative, 179 

the adsorption isotherms of the confined fluid are always above the isotherm of the bulk fluid. As 180 

the surface contribution decreases when the pore width becomes larger, the isotherm of the confined 181 

fluid approaches more and more the isotherm of the bulk fluid. The agreement between the results 182 
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of morphological thermodynamics and those of the MC simulations is very good for 𝐿𝐿∗ ≥ 3.5.  183 

 184 

Figure 2. Chemical potential of a hard sphere fluid confined in a slit pore as a function of fluid 185 

density from morphological thermodynamics, i.e., eq. (12) (continuous line) and NVT-ensemble 186 

Monte-Carlo simulations (symbols, see Appendix B for the details about simulation method and 187 

computation conditions). 1) 𝐿𝐿∗ = 3.5 (red); 2) 𝐿𝐿∗ = 5.0 (blue); 3) 𝐿𝐿∗ = 7.5 (yellow); 4) 𝐿𝐿∗ →188 

∞ (black). 189 

 Figure 3 shows the results for some narrower pores, 𝐿𝐿∗ ≤ 3.0. Up to the moderate fluid density, 190 

i.e., 𝜌𝜌1𝜎𝜎3 ≤ 0.6, morphological thermodynamics gives accurate results. For higher densities, the 191 

 192 
Figure 3. Chemical potential of a hard sphere fluid confined in a narrow slit pore as a function of 193 

fluid density from morphological thermodynamics, i.e., eq. (12) (continuous line) and NVT-194 

ensemble Monte-Carlo simulations (symbols, see Appendix B for the details about simulation 195 

method and computation conditions). 1) 𝐿𝐿∗ = 2.5  (purple); 2) 𝐿𝐿∗ = 3.0  (green); 3) 𝐿𝐿∗ → ∞ 196 

(black). 197 

results of morphological thermodynamics deviate more and more from those of the MC simulations. 198 

For very narrow pores, a disjoining pressure [23, 24] arises in the confined fluid. One of us (WD) 199 
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has shown that due to the contribution of the disjoining pressure, the surface tension for very narrow 200 

pores is no longer equal to that for the fluid near one single wall [18]. However, the contribution 201 

of the disjoining pressure is not accounted for by the morphological thermodynamics. We believe 202 

this is the main reason for the failure of morphological thermodynamics in describing accurately 203 

the strongly confined fluids at high densities in very narrow slit pores. 204 

 Slit pore is a model extensively used for studying confined fluids. Many simulations have been 205 

carried out for fluids confined in a slit pore. Labik and Smith reported NVT-ensemble Monte Carlo 206 

simulation results for hard spheres in a hard slit pore [25] and our simulation results are in good 207 

agreement with theirs. Smith and coworkers [26] and Alejandre et al [27] have used integral 208 

equations to study a hard sphere fluid in a slit pore. Many investigations on a variety of fluids 209 

confined in a slit pore have been made with the help of density functional theory (DFT) and many 210 

of them aim at determining the fluid distribution inside the pore (see e.g., [28], an exhaustive review 211 

is beyond the scope of the present article). The theoretical approaches based on DFT or integral 212 

equations requires first determining the one- and two-body distribution functions. Our approach in 213 

this work focuses only on the thermodynamic properties, which requires only the equation of state 214 

of the considered fluid in the bulk phase and the surface tension for the considered interface. When 215 

SPT is used for these properties, we obtain a totally analytical result for the adsorption isotherms 216 

of a hard sphere fluid confined in a slit pore.      217 

B. A hard sphere fluid confined in an ordered or a disordered hard sphere matrix 218 

The porous matrix model with quenched matrix particles proposed by Madden and Glandt [29] 219 

accounts for more characteristics of porous media than the simple slit pore model, e.g., pore 220 

connectivity, curved pore surface, variation of pore size inside a porous material. Figure 4 illustrates 221 

three types of porous matrices: i) ordered hard sphere matrix with matrix particles fixed on a lattice; 222 

ii) disordered hard sphere matrix with matrix particles quenched from an equilibrium configuration 223 

of a fluid [29]; iii) overlapping hard sphere matrix with matrix particles distributed totally randomly 224 

in space. By construction, the morphological thermodynamics cannot distinguish the matrices of 225 

types i and ii. When the dividing surface is chosen as the surface of HS matrix particles, the fluid-226 

matrix interface area of type i or ii matrices can be calculated easily and we have, 227 

 𝐴𝐴 = 𝜋𝜋𝜎𝜎02𝑁𝑁0   ,               (13) 228 
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where 𝑁𝑁0 and 𝜎𝜎0 are respectively the number and diameter of the matrix particle. 229 

 230 

Figure 4. Schematic presentation of a fluid of hard spheres (blue spheres) confined in different 231 

porous matrices composed quenched matrix particles (grey). a) ordered porous matrix with hard 232 

sphere matrix particles fixed on a simple cubic lattice; b) hard sphere matrix quenched from an 233 

equilibrium liquid configuration; c) overlapping hard sphere matrix with matrix particles 234 

distributed totally randomly in space. 235 

The fundamental assumption of the morphological thermodynamics for treating the type i and 236 

type ii matrices is to describe the adsorption as the sum of adsorption around each matrix particle. 237 

SPT gives the following result for the adsorption around the surface of one matrix particle, 238 

𝜋𝜋𝜎𝜎02𝛤𝛤𝑠𝑠SPT = −𝜋𝜋𝜎𝜎2 �
𝜕𝜕𝛾𝛾SPT

𝜕𝜕𝜕𝜕SPT
�
𝑇𝑇,𝜎𝜎0

= −𝜋𝜋𝜎𝜎2 �
𝜕𝜕𝛾𝛾SPT

𝜕𝜕𝜂𝜂𝑏𝑏
�
𝑇𝑇,𝜎𝜎0

�
𝜕𝜕𝜕𝜕SPT

𝜕𝜕𝜂𝜂𝑏𝑏
�
𝑇𝑇,𝜎𝜎0

�  239 

  = −3𝜂𝜂𝑏𝑏�1−𝜂𝜂𝑏𝑏�
1+2𝜂𝜂𝑏𝑏

�𝜏𝜏2 + 𝜏𝜏�1−𝜂𝜂𝑏𝑏�
1+2𝜂𝜂𝑏𝑏

+ �1−𝜂𝜂𝑏𝑏�
2

3�1+2𝜂𝜂𝑏𝑏�
�    ,      (14)    240 

where 𝜏𝜏 = 𝜎𝜎0 𝜎𝜎⁄   is the size ratio between the matrix and fluid particles (𝜎𝜎0 : matrix particle 241 

diameter). Besides the contribution given by eq.(14), there is also an additional contribution to the 242 
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adsorption given by, 243 

 𝜋𝜋𝜎𝜎02𝛤𝛤0 = �𝜙𝜙0HS−1�𝜌𝜌𝑏𝑏𝑉𝑉
𝑁𝑁0

   ,             (15) 244 

where 𝑉𝑉 is the volume of the matrix sample and 𝜙𝜙0HS the geometric porosity for a hard sphere 245 

matrix, 246 

 𝜙𝜙0HS = 1 − 𝜋𝜋𝜎𝜎03𝑁𝑁0
6𝑉𝑉

= 1 − 𝜂𝜂0𝜏𝜏3   ,           (16) 247 

with 𝜂𝜂0 = 𝜋𝜋𝜎𝜎3𝑁𝑁0𝑉𝑉−16−1. Now, the relation between the packing fraction of the confined fluid 248 

and that of the bulk fluid with the same chemical potential is given by, 249 

 𝜂𝜂1 = 𝜙𝜙0HS𝜂𝜂𝑏𝑏 −
3𝜂𝜂0𝜂𝜂𝑏𝑏�1−𝜂𝜂𝑏𝑏�
�1+2𝜂𝜂𝑏𝑏�

�𝜏𝜏2 + 𝜏𝜏�1−𝜂𝜂𝑏𝑏�
1+2𝜂𝜂𝑏𝑏

+ �1−𝜂𝜂𝑏𝑏�
2

3�1+2𝜂𝜂𝑏𝑏�
�  .       (17) 250 

Unlike the case of a slit pore, it is not possible to solve eq.(17) for obtaining an analytical expression 251 

of 𝜂𝜂𝑏𝑏  in terms of 𝜂𝜂1  like eq.(11). Nevertheless, it is still quite easy to obtain the adsorption 252 

isotherm of the confined fluid with the following procedure. With a given 𝜌𝜌𝑏𝑏, one obtains a value 253 

of chemical potential, 𝜇𝜇, and the fluid density of the confined fluid having the same chemical 254 

potential is given by eq.(17), thus the relation between 𝜇𝜇 and 𝜂𝜂1 is found. When the size of the 255 

fluid HS shrinks to zero, i.e., 𝜎𝜎 = 0, eq.(17) becomes 𝜌𝜌1 = 𝜙𝜙0HS𝜌𝜌𝑏𝑏 and this allows for obtaining 256 

the exact result for an ideal gas confined in a HS matrix, i.e., 𝛽𝛽𝛽𝛽 = ln�𝛬𝛬3 𝜌𝜌1 𝜙𝜙0HS⁄ �. So, without 257 

the additional contribution to the adsorption given in eq.(15), it is impossible to recover the exact 258 

ideal gas results in the limit of point particles. A more detailed discussion about this point is 259 

presented in Appendix A. 260 

The results for a HS fluid confined in two ordered HS matrices with different matrix particle 261 

sizes and matrix densities are presented in Fig. 5. The analytical approach by combining 262 

morphological thermodynamics and SPT gives excellent results for the chemical potential, as 263 

evidenced by the comparison with the results of the Monte-Carlo simulations we performed. It is 264 

to note that we define the density of a fluid confined in a porous matrix with respect to the sample 265 

volume which contains fluid and matrix particles. Due to this definition, the range of fluid densities 266 

considered for fluids confined in porous matrices appears smaller than that considered for a fluid 267 

confined in a slit pore. For example, in Figs. 2 and 3 the considered fluid density goes up to 0.8 268 

while the fluid density considered in Fig. 5 goes only to 0.6. In fact, to make a more plausible 269 

comparison between the fluid density in a porous matrix and that in a slit pore, we should take into 270 
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account the porosity of the porous matrix. For the matrix with 𝜎𝜎0 𝜎𝜎⁄ = 10  and 𝜌𝜌0𝜎𝜎3 =271 

5.7804 × 10−4 in Fig. 5, the porosity is given by 𝜙𝜙0 = 1 − 𝜋𝜋𝜌𝜌0𝜎𝜎03 6⁄ = 0.69734. Dividing the 272 

fluid density defined with respect to the sample volume by the porosity give the fluid density 273 

defined with respect to the void volume. So, 𝜌𝜌1𝜎𝜎3 = 0.6 corresponds in fact to a fluid density 274 

defined with respect to void volume equal to 𝜌𝜌1𝜎𝜎3 𝜙𝜙0⁄ = 0.86. 275 

 276 

Figure 5. Chemical potential of a hard sphere fluid confined in an ordered porous matrix, with hard 277 

sphere matrix particles fixed on a simple cubic lattice, as a function of fluid density. Matrix to fluid 278 

particle size ratio: 𝜎𝜎0 𝜎𝜎⁄ = 5, 10 ; Matrix density: 𝜌𝜌0𝜎𝜎3 = 0.001, 5.7804 × 10−4 ; Red lines: 279 

Morphological thermodynamics combined with SPT; Black squares: NVT-ensemble Monet-Carlo 280 

simulation (see Appendix B for the details about simulation method and computation conditions). 281 

 We consider next the effect of matrix disorder on the chemical potential of the confined fluid. 282 

The results for a HS fluid confined in a disordered HS matrix are presented in Fig. 6. By 283 

construction, the morphological thermodynamics does not take the effect of matrix disorder into 284 

account. However, our Monte-Carlo simulation results given in Fig. 6 are performed for disordered 285 

HS matrices (see Appendix B for simulation methods and computation conditions). The very good 286 

agreement between the results of the morphological thermodynamics and the simulation ones show 287 

that the effect of matrix disorder on the chemical potential is negligibly small. This conforms also 288 

to the same finding of our recent work [30]. In Fig. 6, the results of the morphological 289 

thermodynamics are also compared to those of SPT2b1 theory we proposed previously [16], which 290 

is an approach developed specifically for disordered porous matrices while the morphological 291 

thermodynamics is a general approach applicable for a larger variety of inhomogeneous fluids. 292 
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 293 
Figure 6. Chemical potential of a hard sphere fluid confined in a disordered hard sphere matrix as 294 

a function of fluid density. a) Matrix to fluid particle size ratio: 𝜎𝜎0 𝜎𝜎⁄ = 2 ; Matrix density:  295 

𝜌𝜌0𝜎𝜎3 = 0.05 ; b) Matrix to fluid particle size ratio: 𝜎𝜎0 𝜎𝜎⁄ = 3 ; Matrix density:           296 

𝜌𝜌0𝜎𝜎3 = 0.0149208, 0.019397; c) Matrix to fluid particle size ratio: 𝜎𝜎0 𝜎𝜎⁄ = 5; Matrix density: 297 

𝜌𝜌0𝜎𝜎3 = 0.0044421, 0.0057473; Red lines: Morphological thermodynamics combined with SPT; 298 

Blue dashed lines: SPT2b1 theory [16]; Black squares: Monte-Carlo simulation (Results in (a) from 299 

our NVT-ensemble Monte-Carlo simulations with the details of simulation method and 300 

computation conditions given in Appendix B, those in (b) and (c) from the µVT-ensemble Monte-301 

Carlo simulations given in Table III of [15]). 302 

C. A hard sphere fluid confined in an overlapping hard sphere matrix 303 

The application of morphological thermodynamics to this case follows the general procedure 304 

described above. So, we need first determine the porosity of the matrix for a point particle, 𝜙𝜙0, 305 

which is required for determining ideal gas contribution to the chemical potential. 306 
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 𝜙𝜙0OHS = 1
𝑉𝑉𝑉𝑉𝑁𝑁0 ∫ 𝑑𝑑𝒓𝒓∏ ∫𝒒𝒒𝑖𝑖

𝑁𝑁0
𝑖𝑖=1 e−𝛽𝛽∑ 𝑢𝑢fm��𝒓𝒓−𝒒𝒒𝑗𝑗��

𝑁𝑁0
𝑗𝑗=1 = 1

𝑉𝑉𝑁𝑁0
�𝑉𝑉 − 4𝜋𝜋𝑅𝑅03

3
�
𝑁𝑁0

     307 

       = exp �− 4𝜋𝜋𝑅𝑅03𝜌𝜌0
3

� = exp(−𝜂𝜂0𝜏𝜏3)  ,         (18)  308 

where 𝒓𝒓 is the position vector of the point particle and 𝒒𝒒𝑖𝑖 the position vector of the i-th matrix 309 

particle. The interaction between the point particle and a matrix particle is given by, 310 

𝑢𝑢fm��𝒓𝒓 − 𝒒𝒒𝑗𝑗�� = �
∞         ,                 �𝒓𝒓 − 𝒒𝒒𝑗𝑗� < 𝑅𝑅0
0          ,                 �𝒓𝒓 − 𝒒𝒒𝑗𝑗� ≥ 𝑅𝑅0

 .       (19) 311 

with 𝑅𝑅0 = 𝜎𝜎0 2⁄ . The thermodynamic limit is taken, i.e., lim
𝑁𝑁0→∞,𝑉𝑉→∞ 

𝑁𝑁0 𝑉𝑉⁄ = 𝜌𝜌0, when going to the 312 

third equality of eq.(18). The interface area is given by, 313 

 𝐴𝐴OHS = 𝑑𝑑�𝑉𝑉−𝜙𝜙0OHS𝑉𝑉�
𝑑𝑑𝑅𝑅0

= 𝑉𝑉4𝜋𝜋𝑅𝑅02𝜌𝜌0exp �− 4𝜋𝜋𝑅𝑅03𝜌𝜌0
3

� = 𝑉𝑉4𝜋𝜋𝑅𝑅02𝜌𝜌0𝜙𝜙0OHS  .   (20)   314 

The integrated mean and Gauss curvatures are given respectively by, 315 

 𝐶𝐶−1OHS = 1
2
𝑑𝑑𝐴𝐴
𝑑𝑑𝑅𝑅0

= 𝑉𝑉4𝜋𝜋𝑅𝑅0𝜌𝜌0�1 − 2𝜋𝜋𝑅𝑅03𝜌𝜌0�exp �− 4𝜋𝜋𝑅𝑅03𝜌𝜌0
3

�   316 

  = 𝑉𝑉4𝜋𝜋𝑅𝑅0𝜌𝜌0 �1 − 3
2
𝜂𝜂0𝜏𝜏3�𝜙𝜙0OHS  ,          (21) 317 

 𝐶𝐶−2OHS = 1
2
𝑑𝑑2𝐴𝐴
𝑑𝑑𝑅𝑅02

= 𝑉𝑉4𝜋𝜋𝜌𝜌0�1 − 12𝜋𝜋𝑅𝑅03𝜌𝜌0 + 8𝜋𝜋𝑅𝑅06𝜌𝜌02�exp �− 4𝜋𝜋𝑅𝑅03𝜌𝜌0
3

�    318 

  = 𝑉𝑉4𝜋𝜋𝜌𝜌0 �1 − 9𝜂𝜂0𝜏𝜏3 + 9
2
𝜂𝜂02𝜏𝜏6�𝜙𝜙0OHS  .       (22) 319 

Finally, the morphological thermodynamics combined with SPT gives the following relation 320 

between the density of the confined fluid to that of the bulk fluid which has the same chemical 321 

potential, 322 

 𝜂𝜂1 = 𝜙𝜙0OHS𝜂𝜂𝑏𝑏 −
3𝜂𝜂0𝜂𝜂𝑏𝑏�1−𝜂𝜂𝑏𝑏�
�1+2𝜂𝜂𝑏𝑏�

𝜙𝜙0OHS �𝜏𝜏2 + 𝜏𝜏�1−𝜂𝜂𝑏𝑏�
1+2𝜂𝜂𝑏𝑏

�1 − 3
2
𝜂𝜂0𝜏𝜏3� �+

�1−𝜂𝜂𝑏𝑏�
2

3�1+2𝜂𝜂𝑏𝑏�
�   323 

    + �1−𝜂𝜂𝑏𝑏�
2

3�1+2𝜂𝜂𝑏𝑏�
�1 − 9𝜂𝜂0𝜏𝜏3 + 9

2
𝜂𝜂02𝜏𝜏6��  .        (23) 324 

 The results for a HS fluid confined in an overlapping hard sphere matrix are presented in Fig.7. 325 

The results given by morphological thermodynamics are again in excellent agreement with the 326 

simulation ones under all the conditions we have studied. 327 
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 328 

Figure 7. Chemical potential of a hard sphere fluid confined in an overlapping hard sphere matrix 329 

as a function of fluid density. Red lines: Morphological thermodynamics combined with SPT; Blue 330 

dashed lines: SPT2b1 theory [16]; Black squares: Monte-Carlo simulation (Results in (a) from our 331 

NVT-ensemble Monte-Carlo simulations with the details of simulation method and computation 332 

conditions given in Appendix B, those in (b) and (c) from µVT-ensemble Monte-Carlo simulations 333 

of [15]). a) Matrix to fluid particle size ratio: 𝜎𝜎0 𝜎𝜎⁄ = 1; Matrix density: 𝜌𝜌0𝜎𝜎3 = 0.1590 (the red 334 

line and the blue dashed lines nearly overlap each other); b) Matrix to fluid particle size ratio: 335 

𝜎𝜎0 𝜎𝜎⁄ = 3; Matrix density: 𝜌𝜌0𝜎𝜎3 = 0.020683, 0.031328; c) Matrix to fluid particle size ratio: 336 

𝜎𝜎0 𝜎𝜎⁄ = 5; Matrix density: 𝜌𝜌0𝜎𝜎3 = 0.006128, 0.0092824. 337 

D. A hard sphere fluid confined in a hard sponge matrix 338 

The last system we consider is a hard sphere fluid confined in a hard sponge model proposed by 339 

two of us (SLZ and WD) with Q. H. Liu [31]. Figure 8 gives a schematic presentation of this model. 340 
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In this case, the interaction potential between a fluid particle and the matrix is a non-additive n-341 

body one given by, 342 

 𝑣𝑣fm�𝒓𝒓,𝒒𝒒1,𝒒𝒒2, . . . ,𝒒𝒒𝑁𝑁0� = −kB𝑇𝑇ln �1 − e−𝛽𝛽∑ 𝑢𝑢fm��𝒓𝒓−𝒒𝒒𝑗𝑗��
𝑁𝑁0
𝑗𝑗=1 �  ,      (24)  343 

where 𝑢𝑢fm��𝒓𝒓 − 𝒒𝒒𝑗𝑗�� is given by eq.(19) and now 𝜎𝜎0 is the diameter of a spherical cavity in the 344 

sponge matrix. Although this fluid-matrix interaction potential is non-additive, it is still possible to 345 

obtain an analytical result for the porosity, i.e., 346 

𝜙𝜙0HSG = 1
𝑉𝑉𝑉𝑉𝑁𝑁0 ∫ 𝑑𝑑𝒓𝒓∏ ∫𝒒𝒒𝑖𝑖

𝑁𝑁0
𝑖𝑖=1 e−𝛽𝛽𝑣𝑣fm�𝒓𝒓,𝒒𝒒1,𝒒𝒒2,...,𝒒𝒒𝑁𝑁0�     347 

      = 1
𝑉𝑉𝑉𝑉𝑁𝑁0 ∫ 𝑑𝑑𝒓𝒓∏ ∫𝒒𝒒𝑖𝑖

𝑁𝑁0
𝑖𝑖=1 �1 − e−𝛽𝛽∑ 𝑢𝑢fm��𝒓𝒓−𝒒𝒒𝑗𝑗��

𝑁𝑁0
𝑗𝑗=1 �     348 

       = 1 − 1
𝑉𝑉𝑁𝑁0

�𝑉𝑉 − 𝜋𝜋𝜎𝜎03

6
�
𝑁𝑁0

= 1 − exp �−𝜋𝜋𝜎𝜎03𝜌𝜌0
6

� = 1 −𝜙𝜙0OHS  .   (25) 349 

The thermodynamic limit is taken, i.e., lim
𝑁𝑁0→∞,𝑉𝑉→∞ 

𝑁𝑁0 𝑉𝑉⁄ = 𝜌𝜌0, when going to the fourth equality 350 

of eq.(25). It is not difficult to see that if the cavity diameter is the same as that of the matrix particle 351 

in an OHS matrix and their number densities are also equal, the following relations hold between 352 

the interface area, integrated mean and Gauss curvatures of the hard sponge matrix and those of 353 

the OHS matrix, 354 

 𝐴𝐴HSG = 𝐴𝐴OHS    ,               (26)   355 

 𝐶𝐶−1HSG = −𝐶𝐶−1OHS  ,              (27) 356 

 𝐶𝐶−2HSG = 𝐶𝐶−2OHS   .              (28) 357 

The relation given in eq.(27) reflects the simple fact that the confined fluid is adsorbed on a convex 358 

surface in a OHS matrix but on a concave surface in a hard sponge matrix. 359 

 360 

Figure 8. Schematic presentation of a fluid of hard spheres (blue spheres) confined in a hard sponge 361 
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matrix (grey). 362 

In figure 9, the results of the morphological thermodynamics for a HS fluid in a hard sponge 363 

matrix are presented along with simulation results under different conditions. The accuracy of our 364 

approach based on the morphological thermodynamics is again remarkable. 365 

 366 
Figure 9. Chemical potential of a hard sphere fluid confined in a hard sponge matrix as a function 367 

of fluid density. a) Cavity to fluid particle size ratio: 𝜎𝜎0 𝜎𝜎⁄ = 5 ; Cavity center density:     368 

𝜌𝜌0𝜎𝜎3 = 0.020685, 0.012855 ; b) Cavity to fluid particle size ratio: 𝜎𝜎0 𝜎𝜎⁄ = 7 ; Cavity center 369 

density: 𝜌𝜌0𝜎𝜎3 = 0.006128, 0.003809; c) Cavity to fluid particle size ratio: 𝜎𝜎0 𝜎𝜎⁄ = 10; Cavity 370 

center density: 𝜌𝜌0𝜎𝜎3 = 0.001816, 0.001129 ; Red lines: Morphological thermodynamics 371 

combined with SPT; Blue dashed lines: SPT2b1 theory [16]; Black squares: µVT-ensemble Monet-372 

Carlo simulations (results from Fig. 4 of [16]). 373 

D. Contribution of surface curvatures 374 

The comparison of the respective results for OHS and hard sponge matrices indicates that the 375 
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contribution of the surface curvature terms to the adsorption isotherm can be quite small. More 376 

detailed analyses show that when the matrix particle is three times larger than the fluid particle, the 377 

contribution of the surface curvatures is negligible. Figure 10 shows that even for the size ratio  378 

 379 

Figure 10. Comparison of the results for the chemical potential of a confined fluid given by the full 380 

morphological thermodynamics (full orange lines) and by its simplified version without the 381 

contribution of curvature terms (dashed green lines). a) a HS fluid in a HS matrix with size ratio 382 

𝜎𝜎0 𝜎𝜎⁄ = 2  and matrix density 𝜌𝜌0𝜎𝜎3 = 0.05 ; b) a HS fluid in a HS matrix with size ratio   383 

𝜎𝜎0 𝜎𝜎⁄ = 3 and matrix density 𝜌𝜌0𝜎𝜎3 = 0.0149208, 0.019397; c) a HS fluid in an overlapping HS 384 

matrix with size ratio 𝜎𝜎0 𝜎𝜎⁄ = 1 and matrix density 𝜌𝜌0𝜎𝜎3 = 0.1590. 385 

(𝜏𝜏 = 𝜎𝜎0 𝜎𝜎⁄ ) equal to 1, 2 or 3, the contribution of the surface curvatures is quite moderate. Bryk et 386 

al have studied the adsorption of hard spheres confined between two uniaxial cylinders by using 387 

DFT. They compared the results for such a confined fluid with those for a HS fluid confined in a 388 

slit pore of two flat walls and found that the surface curvature effect is quite small [32]. Our results 389 

presented in Fig. 10 are consistent with their finding. To the best of our knowledge, there exist no 390 

experimental technique for measuring the interface curvatures of any porous materials. So, our 391 
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finding here provides a simplified procedure to interpret the experimental results for adsorption 392 

isotherms by neglecting the contribution of surface curvature terms. 393 

4. Conclusion 394 

In the present work, we propose a general approach based on the morphological thermodynamics 395 

for determining the chemical potential of a fluid confined in a large variety of porous media, from 396 

a simple slit pore to a random hard sponge matrix. Our approach requires an equation of state of 397 

the considered fluid in a bulk phase and the surface tension of the fluid on a wall with a much 398 

simpler morphology than the complex porous medium under consideration. For the hard sphere 399 

fluid confined in the various hard porous media considered in this work, scaled particle theory 400 

gives both the equation of state of the bulk fluid and the surface tension for a HS fluid on a hard-401 

sphere wall. These are enough for constructing a totally analytical approach for all porous media 402 

considered in the present work. The comparison with simulation results show that the overall 403 

accuracy of our approach is excellent. Moderate discrepancies are found only for very narrow slit 404 

pores (𝐿𝐿 ≤ 3𝜎𝜎) and at high fluid densities.  405 

Although previous investigations have shown that non-Hadwiger terms (high-order curvature 406 

terms not included in morphological thermodynamics) do not vanish rigorously [9-12], their 407 

contributions are usually smaller by one order of magnitude. In the present work, we find that even 408 

the integrated mean and Gauss curvature terms have a negligible contribution to the chemical 409 

potential of the confined fluid when the surface curvature is not too large. So, even the contribution 410 

of the integrated mean and Gauss curvatures can be neglected in many cases. This simplify 411 

significantly the treatment of the experimental results for the adsorption isotherms in practice since 412 

the experimental technique is currently lacking for measuring the interface curvatures inside a 413 

porous material. Thus, it is in principle possible to elaborate an experimental method for 414 

determining the surface tension for the interface between a fluid and the pore wall inside a porous 415 

material, with the help of its adsorption isotherms.  416 
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Appendix A. An ideal gas confined in a hard sphere matrix 417 

In this appendix, we show how surface thermodynamics can be applied for an ideal gas adsorbed 418 

in a hard sphere matrix and how the surface tension can be defined in this case. As in the main text, 419 

we consider a grand canonic ensemble. The fluid-matrix interaction is given by, 420 

𝒱𝒱 = ∑ ∑ 𝑢𝑢fm��𝒓𝒓𝑖𝑖 − 𝒒𝒒𝑗𝑗��
𝑁𝑁0
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1     ,            (A1) 421 

where 𝒓𝒓𝑖𝑖 is the position vector of ith fluid particle and 𝒒𝒒𝑗𝑗 the position vector of jth matrix particle. 422 

The interaction potential between a fluid particle and a matrix particle is given by, 423 

𝑢𝑢fm��𝒓𝒓𝑖𝑖 − 𝒒𝒒𝑗𝑗�� = �
∞         ,                 �𝒓𝒓𝑖𝑖 − 𝒒𝒒𝑗𝑗� < 𝑅𝑅0
0          ,                 �𝒓𝒓𝑖𝑖 − 𝒒𝒒𝑗𝑗� ≥ 𝑅𝑅0

 .       (A2) 424 

The partition is given by, 425 

𝛯𝛯 = ∑ 𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽

𝛬𝛬3𝑁𝑁𝑁𝑁!∫ ∏ 𝑑𝑑𝒓𝒓𝑖𝑖𝑁𝑁
𝑖𝑖=1 e−𝛽𝛽𝛽𝛽𝑉𝑉

∞
𝑁𝑁=0 = ∑ 𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽

𝛬𝛬3𝑁𝑁𝑁𝑁!
�𝑉𝑉 − 4𝜋𝜋𝑅𝑅03𝑁𝑁0

3
�
𝑁𝑁

∞
𝑁𝑁=0   426 

  = exp �𝑒𝑒
𝛽𝛽𝛽𝛽

𝛬𝛬3
�𝑉𝑉 − 4𝜋𝜋𝑅𝑅03𝑁𝑁0

3
��         .          (A3) 427 

One obtains straightforwardly following result for the grand potential, 428 

𝛺𝛺 = −𝑘𝑘𝐵𝐵𝑇𝑇ln𝛯𝛯 = −𝑘𝑘𝐵𝐵𝑇𝑇
𝑒𝑒𝛽𝛽𝛽𝛽

𝛬𝛬3
𝑉𝑉𝜙𝜙0HS         .             (A4) 429 

Eq.(A4) shows that the grand partition function does not depend on the configuration of the porous 430 

matrices. So, the disorder of the matrix configurations does not have any influence on the 431 

thermodynamics of this system. Moreover, the grand potential does not depend on the surface area 432 

of the matrix particle. Thus, the immediate consequence of this is that the differential surface 433 

tension is zero, i.e., 434 

𝛾𝛾 = �𝜕𝜕𝛺𝛺
𝜕𝜕𝐴𝐴
�
𝑇𝑇,𝑉𝑉,𝜇𝜇,𝜌𝜌0,𝑅𝑅0

= 0 .               (A5) 435 

At the first glance, this indicates that surface thermodynamics does not apply for such a system. 436 

However, it is also straightforward to show that the adsorption in this hard sphere matrix is not zero. 437 

The number of the confined fluid inside the matrix is given by, 438 

𝑁𝑁cf = −�𝜕𝜕𝛺𝛺
𝜕𝜕𝜇𝜇
�
𝑇𝑇,𝑉𝑉,𝐴𝐴,𝜌𝜌0,𝑅𝑅0

= 𝑒𝑒𝛽𝛽𝛽𝛽

𝛬𝛬3
𝑉𝑉𝜙𝜙0HS  .                (A6) 439 

However, the number of a bulk ideal gas occupying the same volume and having the same 440 

temperature and the same chemical potential is given by, 441 
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𝑁𝑁bulk = 𝑒𝑒𝛽𝛽𝛽𝛽

𝛬𝛬3
𝑉𝑉  .                  (A7) 442 

Eqs.(A6) and (A7) lead immediately to the following nonzero adsorption, 443 

𝛤𝛤 = 𝑁𝑁cf−𝑁𝑁bulk

𝐴𝐴
= 𝑒𝑒𝛽𝛽𝛽𝛽

𝛬𝛬3
𝑉𝑉
𝐴𝐴
�𝜙𝜙0HS − 1�  .                (A8) 444 

The well-known Gibbs adsorption equation implies that a nonzero adsorption should lead to a 445 

nonzero surface tension. So, this result seems to be in contradiction with that of eq.(A5) which 446 

shows the surface tension is zero. 447 

 Now, we will show that there is in fact no contradiction. It is recently revealed that two surface 448 

tensions can arises, one is the differential surface tension and the other is the integral surface 449 

tension[18, 19]. Moreover, it is the integral surface tension which satisfies a generalized Gibbs 450 

adsorption equation [18]. The integral surface tension includes a contribution from the differential 451 

surface tension and another contribution from the disjoining pressure. We calculate now the 452 

disjoining pressure and show it is indeed nonzero for the system considered here. The pressures of 453 

the confined and bulk fluids are given respectively by, 454 

𝑝𝑝 = −�𝜕𝜕𝛺𝛺
𝜕𝜕𝑉𝑉
�
𝑇𝑇,𝐴𝐴 ,𝜇𝜇,𝜌𝜌0,𝑅𝑅0

= kB𝑇𝑇
𝑒𝑒𝛽𝛽𝛽𝛽

𝛬𝛬3
𝜙𝜙0HS ,            (A9) 455 

𝑝𝑝bulk = −�𝜕𝜕𝛺𝛺
bulk

𝜕𝜕𝑉𝑉
�
𝑇𝑇 ,𝜇𝜇,

= kB𝑇𝑇
𝑒𝑒𝛽𝛽𝛽𝛽

𝛬𝛬3
 .            (A10) 456 

Then, one obtains the following result for the disjoining pressure, 457 

𝛱𝛱 = 𝑝𝑝 − 𝑝𝑝bulk = kB𝑇𝑇
𝑒𝑒𝛽𝛽𝛽𝛽

𝛬𝛬3
�𝜙𝜙0HS − 1� .             (A11) 458 

Disjoining pressure was discovered by Derjaguin in 1930’s for a fluid confined between two 459 

closely approached flat solid surfaces [23, 24]. To the best of our knowledge, nonzero disjoining 460 

pressure has never been found for a fluid confined in a fluid confined in a porous matrix. The 461 

integral surface tension is given by, 462 

𝛾𝛾� = 𝛾𝛾 − 𝛱𝛱 𝑉𝑉
𝐴𝐴

= −kB𝑇𝑇
𝑒𝑒𝛽𝛽𝛽𝛽

𝛬𝛬3
�𝜙𝜙0HS − 1� 𝑉𝑉

𝐴𝐴
 .           (A12) 463 

One readily check that this integral surface tension and the adsorption given in eq.(8) satisfies the 464 

following generalized Gibbs adsorption equation [18, 19], i.e., 465 

�𝜕𝜕𝛾𝛾�
𝜕𝜕𝜇𝜇
�
𝑇𝑇,ℓ�

= −𝛤𝛤  ,                      (A13) 466 

where  ℓ� = 𝑉𝑉 𝐴𝐴⁄ . 467 

 Finally, we show that accounting adequately for the integral surface tension and the related 468 
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adsorption allows for introducing properly the porosity, 𝜙𝜙0, into the adsorption isotherms, i.e., the 469 

chemical potential as a function of the density of the confined fluid. From eq.(A7), one has the 470 

following equation of state for the bulk ideal gas, 471 

𝛽𝛽𝜇𝜇bulk = ln�𝛬𝛬3𝜌𝜌bulk� .               (A14) 472 

From eqs.(A6) – (A8), we obtain, 473 

𝜌𝜌bulk = 𝜌𝜌cf − 𝛤𝛤 𝐴𝐴
𝑉𝑉

= 𝜌𝜌cf − 𝜌𝜌cf 𝜙𝜙0
HS−1
𝜙𝜙0
HS = 𝜌𝜌cf

𝜙𝜙0
HS   ,         (A15) 474 

where 𝜌𝜌bulk = 𝑁𝑁bulk𝑉𝑉−1, 𝜌𝜌cf = 𝑁𝑁cf𝑉𝑉−1. Substituting eq.(A15) into eq.(A14), we obtain, 475 

𝛽𝛽𝜇𝜇bulk = ln �𝛬𝛬
3𝜌𝜌cf

𝜙𝜙0
HS � = 𝛽𝛽𝜇𝜇cf .              (A16) 476 

When going to the last equality of eq.(A16), eq.(A6) is used. This achieves the proof that the matrix 477 

porosity enters into the isotherm of adsorption, i.e., the relation between the chemical potential and 478 

the density of the confined fluid, through the adsorption due to the disjoining pressure.  479 
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Appendix B. Simulation method and computational conditions 480 

In the main text, accompanying the presentation of the results given by morphological 481 

thermodynamics, Monte-Carlo simulation results are also presented to assess the accuracy of 482 

theoretical approach in each case. Except those results with their references being indicated, all the 483 

other ones are obtained from our own simulations. In this appendix, we summarize the simulation 484 

methods and the computation conditions for each porous medium. 485 

1. Fluid in a slit pore 486 

The Monte-Carlo simulation results presented in Figs. 2 and 3 are obtained by our own simulation 487 

in a NVT-ensemble. The chemical potential is calculated by using the test particle method based on 488 

Widom’s potential distribution theorem [33]. The two pore walls are respectively placed at     489 

𝑧𝑧 = ± 𝐿𝐿 2⁄  . The pore wall has a square shape of the size 10𝜎𝜎 × 10𝜎𝜎 . The periodic boundary 490 

condition is used in the two directions parallel to the pore walls. For each simulation run, 2 × 105 491 

Monte-Carlo cycles are first performed to prepare the system to equilibrium, then 106 MC cycles 492 

are performed to calculate the chemical potential. 493 

2. Fluid in various porous matrices 494 

For the ordered porous matrix (results shown in Fig. 5), we studied only the case with matrix 495 

particles placed on a simple cubic lattice. A single matrix particle is placed at the center of the cubic 496 

simulation box. The periodic boundary condition is applied in three directions to generate a simple 497 

cubic lattice. The simulation box has respectively the size of 20𝜎𝜎 × 20𝜎𝜎 × 20𝜎𝜎  and 498 

36𝜎𝜎 × 36𝜎𝜎 × 36𝜎𝜎 for the cases of 𝜎𝜎0 = 5𝜎𝜎 and 𝜎𝜎0 = 10 𝜎𝜎. 499 

 For the disordered HS matrix (results shown in Fig. 6), a matrix sample is first generated with 500 

an NVT-ensemble Monte-Carlo simulation for 50 hard spheres of diameter 𝜎𝜎0 in a simulation box 501 

of the size 10𝜎𝜎 × 10𝜎𝜎 × 10𝜎𝜎. Then, fluid particles are introduced into the HS matrix and NVT-502 

ensemble Monte-Carlo simulations are performed for the confined fluid. The average over matrix 503 

configurations is realized with about 10-20 different matrix samples. 504 

 For the overlapping hard sphere matrix (results shown in Fig. 7a), 159 matrix particles with 505 

the same diameter as the fluid particle, i.e. 𝜎𝜎0 = 𝜎𝜎, are placed totally randomly in the simulation 506 

box of the size, 10𝜎𝜎 × 10𝜎𝜎 × 10𝜎𝜎. The average over matrix configurations is realized with 10 507 
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different matrix samples. 508 

As for the slit pore, each simulation for a given matrix sample includes about 2 × 105 Monte-509 

Carlo cycles for preparing the system to equilibrium and 106 production cycles for determining 510 

the chemical potential. The simulation code can be found on GitHub 511 

(https://github.com/qiaochongzhi/MC-for-ConfinedFluid). 512 
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