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Abstract=================================================================== 

There has been a paradigm shift from the well-known laws of thermal radiation derived over a century 

ago, valid only when the length scales involved are much larger than the thermal wavelength (around 

10 µm at room temperature), to a general framework known as fluctuational electrodynamics that allows 

calculations of radiative heat transfer for arbitrary sizes and length scales. Near-field radiative heat 

transfer and thermal emission in systems of sub-wavelength size can exhibit super-Planckian behaviour, 

i.e. flux rates several orders of magnitude larger than that predicted by the Stefan–Boltzmann (or 

blackbody) limit. These effects can be combined with novel materials, e.g. low-dimensional or 

topological systems, to yield even larger modifications and spectral and/or directional selectivity. We 

introduce briefly the context and the main steps that have led to the current boom of ideas and 

applications. We then discuss the original and impactful works gathered in the associated Special Topic 

collection, which provides an overview of the flourishing field of nanoscale thermal radiation. 

========================================================================= 

 

The ability to control thermal radiation is important for a broad range of applications, including thermal 

management, spectroscopy, optoelectronics, and energy-conversion devices. Many of these applications 

can take advantage of nanotechnology, often by nano-manufacturing certain components which are 

involved in the technologies or making them more compact. As a result, there is a strong need for an 

accurate description of thermal radiation in nanoscale configurations. Furthermore, the general approach 

to investigate these phenomena has undergone a paradigm shift, from the well-known laws of thermal 

radiation, valid only when the involved length scales are much larger than the thermal wavelength 

(around 10 µm at room temperature), to a general framework known as fluctuational electrodynamics 

that allows calculations of radiative heat transfer for arbitrary sizes and distances. In the following, we 

first describe some of the remarkable steps that led to the current state of the art in thermal radiation 

engineering, then provide key concepts explored by the diverse works reported in the Special Topic 

collection entitled ‘Thermal Radiation at Nanoscale and Applications’, which highlights the dramatic 

surge in both theoretical and applied investigations of this field.  

== 

 



 

Figure 1. Examples of size effect in thermal radiation (a-c). The thermal wavelength 𝜆𝑡ℎ is schematized 

in yellow. (a) Thermal emission by an object of sub-wavelength size 𝐷 ≪  𝜆𝑡ℎ. (b) Near-field thermal 

radiation, also called thermal-photon tunneling, where 𝑑 ≪ 𝜆𝑡ℎis the distance between the radiating 

objects at different temperatures. (c) Three examples of large surfaces emitting thermal radiation 

downwards with features of size comparable to or smaller than 𝜆𝑡ℎ : a multilayer with layers of 

thicknesses 𝑡𝑖, a surface with a roundy shape of curvature radius 𝜌, a metasurface or a grating with 

height ℎ, pillar length 𝑙 and periodicity 𝑝 

Planck’s famous law of surface-to-surface radiative exchange between opaque bodies is a century old1 

and is able to deal successfully with innumerable configurations. However, Planck himself underlined 

in his book that the law would only be able to address objects, distances and curvature radii larger than 

the relevant wavelengths at which radiative transfer occurs. As a consequence, other famous features of 

macroscopic thermal radiation, such as the 𝑇4 dependence of Stefan-Boltzmann’s law, are not expected 

to work at small scales. Fifty years ago, two landmark papers went further and correctly described 

radiative heat transfer in situations outside the aforementioned ray optics regimes, namely anobject of 

subwavelength size2 (1970, see Fig. 1a) and two objects separated by a small vacuum gap3 (1971, see 

Fig. 1b). To do so, they relied on fluctuational electrodynamics (FE), a theory combining Maxwell’s 

equations and statistical principles developed by Sergei Rytov4,5 and coworkers, an approach sometimes 

referred to as stochastic electrodynamics.  

Because FE exploits the full generality of Maxwell’s equations in describing thermal radiation, wave 

effects such as interference and photon tunneling are included in the theory. The electromagnetic waves 

carrying thermal radiation originate from classical albeit stochastic sources describing thermal agitation 

of charges in matter. A key element of this formulation is the fluctuation-dissipation theorem (FDT), 

expressed by Callen and Welton6 following the description of random fluctuation of charges in 

conductors, i.e. the electric noise, by Nyquist7 and Johnson8. The FDT provides a link between 

dissipation (how energy is absorbed in a medium) and thermal agitation, underlining the fact that energy 

is a quadratic quantity described by two-point correlation functions. Green’s functions relating causes - 

thermal sources - and consequences - electromagnetic fields - provide an additional element allowing 

studies of arbitrary structural configurations. In addition to radiative heat transfer, FE is also at the heart 

of the nanoscale description of other phenomena, such as the Casimir force9 and noncontact friction10.  



 

Figure 2. Timeline of advances in the field of thermal radiation at nanoscale 

While the theoretical principles underlying radiative heat transfer (RHT) were established 50 years ago, 

experiments were not easy to realize at the time due to the small spatial scales required: at room 

temperature, the thermal wavelength is close to 10 µm, and small-scale effects become relevant only in 

the sub-micrometre regime. Early attempts to measure near-field radiative heat transfer (NFRHT) for 

NASA, performed at lower temperatures (recall Wien’s law where the peak thermal wavelength is 𝜆𝑡ℎ ≈
3000/𝑇 µm, with 𝑇 the temperature) and therefore much longer wavelengths11, or at Philipps Research, 

where the experiment by Hargreaves12 (supervised by Hendrik Casimir, the colleague of Dirk Polder) 

predated the landmark theoretical paper, provided first hints but could not lead to numerous 

experimental confirmations. It is only in the last 15 years (see initial papers by Shen et al. and Rousseau 

et al. in 200813,14) that a profusion of sensitive near-field experiments appeared15, as a consequence of 

the development of nanotechnology with atomic force microscopy, nanolithography and MEMS 

fabrication processes. The first clear experiments of thermal emission of sub-wavelength objects are 

very recent, less than 5-year old16,17. In both cases, it was shown that the radiated flux can exceed that 

predicted by Planck’s blackbody theory (applicable only in the ray optics regime mentioned above, but 

unfortunately applied often out of its validity domain). Such a phenomenon has been termed super-

Planckian emission18. 

Just prior, a theoretical revival emerged 20 years ago, when it was realized that surface polaritons, i.e. 

collective charge oscillations at surfaces associated with bound material resonances, could introduce 

interesting features. One of them is associated with coherent thermal radiation: scattering surface 

polaritons by a periodic structure (a grating) allows for directional emission at each contributing 

wavelength19. This is in contrast to the usual broadband and isotropic nature of far-field emission. 

Surface nanostructuring in optics has led to the field of metasurfaces20, proving a fruitful an avenue for 

novel thermal-emission engineering. As an example, spectrally and/or directionally selective emission 

have become possible. More strikingly, it was shown21 recently that bi-anisotropic materials can break, 

under certain conditions, the famous Kirchhoff’s law22, a pedestal of thermal radiation studies, which 

states that spectral-directional emissivity is equal to spectral-directional absorptivity23. Fig. 2 

summarizes graphically some of the key dates mentioned above associated with the field of nanoscale 

thermal radiation. 



 

Figure 3. Spectral selectivity required for two key applications: (a) thermophotovoltaics, here with a 

GaSb cell at room temperature and an emitter at 1800 K, (b) night-time radiative cooling. Blackbodies 

at the different temperatures are represented in red and blue. In TPV (a), high efficiency can be achieved 

if the cell emissivity is unity close to the bandgap since reflected photons are not lost. Reducing the 

spectral bandwidth however decreases the output power density. Radiative cooling (b) takes place if the 

body radiates toward universe (low temperature) while reflecting other radiative fluxes. For day-time 

radiative cooling, solar radiation (not represented here) should especially be reflected. 

In parallel to all these fundamental developments, there have also been several forays into thermal 

applications. When in the near field, surface polaritons lead to spectra very different from those usually 

known in the far field. Close-to-monochromatic spectra can be obtained for small distances or small 

emitters24,25. It was postulated early26,27 that this could be helpful for thermophotovoltaics (TPV), one 

among other compelling applications of NFRHT. TPV in the far field (see Fig. 3(left)) involves 

conversion of thermal radiation from a hot emitter into electricity – photovoltaics operating in the 

infrared. One hurdle of solar photovoltaics is the need to convert a broad radiative spectrum while 

photovoltaic cells work efficiently for radiation of energy confined just above the bandgap. In contrast, 

the TPV efficiency is better controlled as the incoming radiation can be confined spectrally. Despite it 

being a very mature field (Kolm and Aigrain are credited with the first steps in the 1950s-1960s), TPV28 

design is currently experiencing significant interest owing to advances in nanofabrication,30, 

development of back-reflectors allowing for high efficiency by recycling nonconverted photons31–33 and 

the first experimental demonstrations of near-field TPV conversion in the last 5 years34–37. While near-

field TPV experiments have thus far failed to exploit surface-polariton effects, several ongoing efforts 

show promise. The energy crisis highlights indeed the need for recovering waste heat at all temperature 

scales. 

Another key application benefitting from theoretical progresses in tailoring far-field thermal radiative 

properties is radiative cooling38–41 (see Fig. 3(right)). Radiative cooling consists in emitting more 

thermal radiation than absorbing it, and therefore usually requires a strong emission in the atmospheric 

transmission window in the mid-infrared band. In some sense, it is the opposite of the greenhouse effect. 

While this is quite an old topic, the possibility of nanostructuring thermal emitters has broadened the 

panel of concepts that can be applied for enhancing the effect in day-time environments42. It is especially 

timely due to the need for passive cooling of buildings and humans in hot environments. 

Finally, all these advances would not have been possible without improvements in metrology, 

spectroscopy, and nanofabrication. For spectral analysis, this includes progress in near-field 

spectroscopic techniques based on atomic force microscopy43–47 combined with the more common 

Fourier-transform infrared (FTIR) spectrometer, and the possibility of infrared ellipsometry. At the 



integrated level (power), the development of tiny thermocouples or resistive thermometers has allowed 

for measurement of sensitive heat flux densities. 

== 

At this stage, we would like to emphasize that there are many insightful references dealing with thermal 

radiation at the nanoscale. We wish first to highlight the book by Zhang48, which provides a detailed 

introduction. Among good review papers on particular sub-topics, we can mention the following. Small-

object emission has been discussed by Carlos-Cuevas et al.49. Near-field radiative heat transfer was 

discussed e.g. in Refs 50–52 and more recently by Papadakis et al.53 with a focus on resonances in 

dielectrics. A report on current experiments can be found in Ref. 15, with Song et al. providing a detailed 

review on near-field thermophotovoltaic energy conversion54. Thermal emission of surfaces and 

metasurfaces was reported in Refs 55,56. The possibility of designing thermal logics and functions was 

underlined by Biehs and Ben-Abdallah57. Many-body systems, as electromagnetism is nonadditive, are 

now addressed in the near field58. The combination of radiative heat transfer and junctions in energy-

conversion devices was detailed by Tervo et al.59. Many other references could be added. 

== 

We now turn to an analysis of the topics addressed in the Special Topic collection, which provides a 

nice overview of the current lines of investigations in the field. Figure 4 summarizes the key 

contributions, splitting between configurations, methods and applicative fields. One a clear trend toward 

increasingly complex configurations, which now either couple thermal radiation studies with electron-

hole transport in materials or address advanced topologies such as metasurfaces, nanoparticle chains, or 

higher-dimensiona objects where orientation plays a key role. Related to computational methods, we 

observe progressively that one-dimensional FE is replaced by numerical calculations and even large-

scale brute-force optimization. On the experimental side, nanofabrication is spread among all studies, 

where spectroscopy is required when spectral selectivity is key to the goal and flux measurements can 

be realized by photoacoustic or photothermal techniques. Finally, we can divide the applications studied 

into three categories: (i) purely thermal, such as those involving thermal management (including 

switching/rectification) or radiative cooling, (ii) those where electrical control or output is desired in a 

device (bolometers, MOS transistors, PIN diodes, energy-harvesting…), and (iii) those where coupling 

between thermal radiation and other fluctuating phenomena (such as near-field friction) is considered. 

We note that the articles of the collection are published under many categories of APL – 

metasurfaces/materials60–67, photonics/optoelectronics68–73, properties74–78, energy79–81, device physics82–

84, imaging85,86, applied physics87, surfaces/interfaces88 -, which highlights the interdisciplinarity and the 

various fields addressed by nanoscale thermal radiation. 

 

 



 

Figure 4. Schematic showing typical configurations addressed, the methods applied, and the 

applications involved. 

Finally, this Special Topic collection reveals the diversity of specialization area and scientific origin of 

its contributors. In contrast to early days of the field, more than half of the submissions are coming from 

Asia, including roughly one third from China. America (USA, Canada, Mexico) is responsible for ¼ of 

the submissions, while the rest are coming from Europe (France, Germany, Finland, Spain, etc.). While 

this distribution of the submissions provides probably only a qualitative idea of the forces at the global 

scale, it is in line with the notable rapid rise of China in optics and condensed matter-related fields and 

the current strength of other Asian countries (Japan, South Korea). It will be interesting to analyze where 

applications develop. 

 

Conclusions and prospects 

To conclude, we underline that the abovementioned sub-topics highlight very well the dynamism of the 

community tackling thermal radiation at the crossroad of heat transfer and nanophotonics, as well as the 

variety of applications that can be addressed. This resonates particularly in this time where the need for 

rational and optimal use of energy and the quest for efficient harvesting are extremely important. One 

difficulty we have not discussed yet is the cost and upscaling of the envisioned structures to the level of 

technological devices. Nanostructuring is not always easy for large-scale elements, and strategies based 

on bottom-up system design or chemical synthesis would certainly be preferred. Radiative-cooling 

textiles and paintings have already entered this stage. For thermophotovoltaics, start-ups have already 

begun to address the question of economic viability.  Other application-driven systems have hardly 

tackled such issues yet. At the level of fundamental science, there remain many questions to be 

addressed. Many pillars of the macroscopic thermal-radiation theory have been progressively revisited 

over the past decades: the blackbody limit, Kirchhoff’s law, and even nonlinear fluctuation statistics. 

There certainly remain others soon to undergo their ‘revolution’. 
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