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Abstract: We demonstrated a method for in situ temporal characterization of an intense femtosecond
laser pulse around its focus where the laser intensity exceeds 1014 W/cm2. Our method is based
on the second harmonic generation (SHG) by a relatively weak femtosecond probe pulse and the
intense femtosecond pulses under analysis in the gas plasma. With the increase in the gas pressure, it
was found that the incident pulse evolves from a Gaussian profile to a more complicated structure
featured by multiple peaks in the temporal domain. Numerical simulations of filamentation prop-
agation support the experimental observations of temporal evolution. This simple method can be
applied to many situations involving femtosecond laser–gas interaction, when the temporal profile
of the femtosecond pump laser pulse with an intensity above 1014 W/cm2 cannot be measured in
traditional ways.

Keywords: second harmonic; gas plasma; temporal profile

1. Introduction

The temporal characterization of femtosecond laser pulses is basic and important for
the development of ultrafast laser technology and the study of the nonlinear interaction of
ultrafast lasers with materials [1]. Up to now, many kinds of techniques based on different
principles have been developed, such as autocorrelator [2,3], Frequency Resolved Optical
Gating (FROG) [4], Spectral Phase Interferometry for Direct Electric-field Reconstruction
(SPIDER) [5,6], d-scan [7,8], etc. All the techniques sample the optical pulse under investi-
gation with a pulse energy on the level of nanojoules to microjoules due to the limitation of
optical damage of the optical components inside the measurement devices. On the other
hand, the focused laser intensity can easily go beyond 1014 W/cm2, even with a commercial
femtosecond laser system delivering millijoule-level pulses, and such high intensity can
result in the ionization of any materials including gases. As a result, it is impossible to
measure the temporal profile of such focused intense pulses locally with the above devices.
Therefore, the temporal profile of the laser pulse and its evolution during laser–gas in-
teraction around the beam focus largely remains out of reach since traditional detectors
or devices will be damaged by the intense pulses. Recently, for intense few-cycle pulses
(10 fs) around its focus, it has been demonstrated that the stereographic above-threshold
ionization (ATI) measurement of photoelectrons provides a pulse length measurement at
the position of the laser–gas interaction [9]. This method is based on the fact that the ATI
spectrum of noble gases such as Xe is dependent upon the carrier envelope phase (CEP)
and that this dependence increases as the pulse length decreases. Nevertheless, this method
is applicable only for a few cycle pulses and sophisticated apparatus for electron detection
is necessary. In most cases, information about the temporal profile of the pulses around
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the focus during interaction can only be assessed by numerical simulations [10,11]. There-
fore, direct characterization of the pulse temporal profile at the location of the laser–gas
interaction where photoionization occurs is highly desired.

In this study, we proposed and demonstrated a nonlinear optical method for in situ
characterization of the temporal profile of the intense femtosecond laser pulse during the
laser–gas interaction around its focus. We proposed that the second harmonic generation
in the inhomogeneous gas plasma by a weak femtosecond probe pulse together with the
intense pump pulses under test provide a second-order cross-correlation of the two pulses.
In the experiments, we recorded the SHG signal from nitrogen, air, or argon plasma as a
function of gas pressure and observed the temporal evolution of the intense pulse from a
Gaussian profile to a multiple-peak structure for higher gas pressure. Our observations
were confirmed by numerical simulation of nonlinear pulse propagation where multiple
peaks in the temporal domain are produced due to a competition between Kerr self-focusing
and plasma defocusing. We believe that this simple method can find applications for pulse
characterization in many situations of laser–gas interactions such as high-order harmonic
generation, laser particle acceleration, generation of Terahertz radiation from laser-induced
plasma, etc.

2. Materials and Methods

The origin of the proposed method stems from the fact that a second harmonic signal
from the laser-induced air plasma has been observed by several groups [12–14]. Although
air is a centrosymmetric media that prohibits the generation of even order harmonics
in the perturbative regime, the second harmonic generation (SHG) of the fundamental
800 nm pulses has been widely observed in gas plasma [12–14]. The main mechanism
underlying this SHG has been largely attributed to the gradient of photoionization-induced
plasma caused by the ponderomotive force [12–14]. It has been observed that the SHG
presents a nearly quadratic dependence on the laser intensity above the ionization threshold
intensity [12,13]. Taking advantage of this quadratic dependence, we conceive that this
SHG in the plasma can be used for cross-correlation of an unknown laser field with a
reference pulse, such as the traditional cross-correlation based on the second harmonic
generation with a Beta-Barium Borate (BBO) crystal.

Femtosecond laser pulses at a central wavelength of 800 nm from a Ti: sapphire
amplifier (Coherent Legend DUO, Coherent Inc, Santa Clara, CA, USA) were used in
the experiments. The duration of the pulses was 35 fs and the maximum pulse energy
was 12 mJ. The main experimental setup is depicted in Figure 1. In Figure 1, the pulses
were focused by a focal lens of f = 30 cm in a gas chamber and the generated SH in the
forward direction were detected after a dichroic mirror (high reflectivity at 800 nm and
high transmission at 400 nm) and proper glass filters (BG 39 and BG 40). With this setup,
we measured the dependence of the SHG intensity on the pump laser intensity. In the
second experiment, the femtosecond pulses were divided into two beams. The relatively
stronger 800 nm laser beam with the pump energy of ~3.4 mJ served as the pump pulse to
produce a filamentary plasma string in the gas chamber. Another weak 800 nm laser beam
was used as a probe pulse. Both the pump and probe laser pulses were focused by a fused
silica lens of f = 30 cm into the gas chamber. The two beams cross each other at a crossing
angle of ~10◦. This angle cannot be smaller due to the scattered light from the pump beam
into the spectrometer installed downstream of the probe beam. The focal lens of the pump
pulse is installed on a three-dimensional translation stage so that the different locations
of the plasma string produced by the pump pulse can be spatially overlapped with the
focus of the probe pulse. In the experiment, we concentrated on the second harmonic signal
generated in the probe beam path. After passing through proper glass filters (BG 39 and BG
40) and bandpass filters with a central wavelength at 400 nm, the spectrum of the second
harmonic in the probe beam path was recorded by a spectrometer. The gas pressure and
specie can be changed inside the chamber.
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Figure 1. Schematic diagram of experimental setup. Illustration a, b, c shows the pump pulse at 
different locations along the plasma string was detected by the probe pulse. 

3. Results 
In Figure 2a, we present the spectra of the second harmonic generated in 20 mbar 

nitrogen gas with a pump energy of 8.7 mJ. It can be seen that the spectral range of the 
second harmonic is from 390 nm to 410 nm, and the center is about 398 nm. We also meas-
ured the intensity of the second harmonic signal as a function of the pump laser energy, 
shown in Figure 2b. The nitrogen gas pressure is 20 mbar. The signal shows a good agree-
ment with a quadratic fit, indicating that the SHG inside the plasma can be used as a sec-
ond-order nonlinear optical process. 
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Figure 2. (a) Spectra of second harmonic generated in nitrogen with pump energy of 8.7 mJ. (b) The 
intensity of the SH signal as a function of the pump energy. The gas pressure is at 20 mbar in both 
(a,b). 

With the scaling law of the SH signal on the pump pulse intensity confirmed, we can 
perform cross-correlation experiments of an intense femtosecond laser pulse under inves-
tigation with a relatively weak probe pulse. To separate the second harmonic signal due 
to the cross-correlation of the two pulses from that generated by the intense pulse itself, 
the probe pulse intersects the intense pulse with an angle of ~10° in our experiments. At a 
distance ~ 50 cm away from the plasma, the beam spot of the probe is well separated from 
that of the intense pulse. The second harmonic signal produced due to the interaction of 
the two pulses was then recorded as a function of the delay τ between them. In the exper-
iment, shortwave pass filter (BG39) and interference filter centered around 400 nm were 
used to isolate the second harmonic radiation from the residual 800 nm probe pulse. 

Figure 3a shows the spectrum of second harmonic collected at the end of the probe 
beam path. The time delay between the pump and probe pulses τ was set to be zero. For 
comparison, the spectrum measured with only the pump (blue line) or probe pulses (red 
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Figure 1. Schematic diagram of experimental setup. Illustration a, b, c shows the pump pulse at
different locations along the plasma string was detected by the probe pulse.

3. Results

In Figure 2a, we present the spectra of the second harmonic generated in 20 mbar
nitrogen gas with a pump energy of 8.7 mJ. It can be seen that the spectral range of the
second harmonic is from 390 nm to 410 nm, and the center is about 398 nm. We also
measured the intensity of the second harmonic signal as a function of the pump laser
energy, shown in Figure 2b. The nitrogen gas pressure is 20 mbar. The signal shows a good
agreement with a quadratic fit, indicating that the SHG inside the plasma can be used as a
second-order nonlinear optical process.
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Figure 2. (a) Spectra of second harmonic generated in nitrogen with pump energy of 8.7 mJ.
(b) The intensity of the SH signal as a function of the pump energy. The gas pressure is at 20 mbar in
both (a,b).

With the scaling law of the SH signal on the pump pulse intensity confirmed, we
can perform cross-correlation experiments of an intense femtosecond laser pulse under
investigation with a relatively weak probe pulse. To separate the second harmonic signal
due to the cross-correlation of the two pulses from that generated by the intense pulse itself,
the probe pulse intersects the intense pulse with an angle of ~10◦ in our experiments. At a
distance ~50 cm away from the plasma, the beam spot of the probe is well separated from
that of the intense pulse. The second harmonic signal produced due to the interaction of the
two pulses was then recorded as a function of the delay τ between them. In the experiment,
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shortwave pass filter (BG39) and interference filter centered around 400 nm were used to
isolate the second harmonic radiation from the residual 800 nm probe pulse.

Figure 3a shows the spectrum of second harmonic collected at the end of the probe
beam path. The time delay between the pump and probe pulses τ was set to be zero.
For comparison, the spectrum measured with only the pump (blue line) or probe pulses
(red line) are also shown. In the case of only pump pulses, a very weak second harmonic
signal can be observed, which is due to the scattered light from the pump beam path to
the detector situated on the propagation axis of the probe beam. This residual SH signal
can be eliminated with a larger angle between the pump and probe beams. With only
the probe pulse, the SH spectrum shows a relatively wide range from 393 nm to 402 nm.
With the presence of both the pump and probe pulses, the intensity of SH is significantly
enhanced and the spectrum extends towards the longwave length side. This enhanced
second harmonic signal corresponds to the cross-correlation signal and can be exploited for
the temporal characterization of an unknown pulse.
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Figure 3. (a) SH spectra generated in the cases with pump and without pump pulse. (b) The signal
intensities of SH at around 398 nm as a function of the time delay between pump and probe pulses
with different nitrogen pressure.

To demonstrate the characterization of the temporal profile of an intense femtosecond
laser pulse at focus, we measured the SH signal intensity as a function of the time delay
τ for different gas pressures. The results are presented in Figure 3b. The zero time delay
is set at the instant when the signal intensity is the strongest, and the positive time delay
corresponds to the fact that the probe pulse lags behind the pump pulse. At relatively low
pressures of 5 and 10 mbar, we observed only one peak of the second harmonic signal in
the temporal domain. This agrees with the expectation that the pulse experiences linear
propagation in very low gas pressure and the temporal profile remains the initial Gaussian
profile. In the linear pulse propagation regime, the laser intensity can be estimated to be
2.6 × 1016 W/cm2 around the focus by consideration of a focus diameter of 22 µm. With
the increase in the gas pressure, it was found that the incident pulse evolves into a more
complicated structure featured by two or more peaks in the temporal domain. Similar
results to Figure 3 have also been obtained in argon gas and air for increasing pressures. It
has been well established that in the filamentation regime the laser intensity is clamped
above 1.5 × 1014 W/cm2 for a millijoule level pulse [15]. Therefore, this method pro-
vided a simple in situ temporal characterization of the intense pulses with intensity above
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1014 W/cm2 and revealed the rich temporal evolution of the pulse during nonlinear propa-
gation. This pulse splitting and temporal transformation of the pulse will be elaborated
later with numerical simulations.

To obtain insight into the temporal evolution of the incident pulse along the filamentary
plasma, we further measured the SH intensity as a function of time delay τ at a different
location of the plasma. The visible filament was about 10 mm long in this experiment. The
results are presented in Figure 4. Here, 2 mm, 6 mm, and 10 mm correspond to the front,
middle, and rear parts of the plasma, respectively. As shown in Figure 4a, in a relatively
lower pressure of 15 mbar, we can observe that the temporal profile of the SH signal is a
Gaussian profile at 2 mm and 6 mm, while two peaks appear in the time domain at 10 mm.
For a relatively higher pressure of 80 mbar, the temporal profile of the SH signal starts to
show two or more peaks at the position of 2 mm and 6 mm, as illustrated in Figure 4b.
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Figure 4. The temporal evolution of the SH signal generated in the nitrogen gas at the pressure of
15 mbar (a) and 80 mbar (b); 2 mm, 6 mm, and 10 mm correspond to the front, middle, and rear
sections of the plasma, respectively.

4. Discussion

To confirm our above observation of the temporal transformation dynamic of the pulse
during nonlinear propagation, we performed a numerical simulation of the nonlinear pulse
propagation in argon gas. We propagate a Gaussian pulse with experimental parameters,
by means of numerical simulations of the Unidirectional Pulse Propagation Equation
(UPPE) [16,17], coupled with the matter response,

∂Ê
∂z

= ikzÊ + i
µ0ω

2kz

[
ωP̂nl + i

(
Ĵ f + Ĵa

)]
(1)

where Ê(kx, ky, ω, z) denotes the Fourier component of the angularly resolved frequency

spectrum of the laser pulse, kz
(
kx, ky, ω

)
≡
[
k2(ω)− k2

x − k2
y

]1/2
is the propagation con-

stant with kx, ky, and ω being the spatial and temporal angular frequencies, and µ0 is
the vacuum permeability. Dispersion or argon is taken into account via the frequency-
dependent refractive index, n(ω), given by the Sellmeier relation in [18], which appears
in the propagation constant k(ω) = n(ω)ω/c, with c, the speed of light in vacuum. The
nonlinear terms in (1) include the nonlinear polarization Pnl induced by bound electrons,
the current density induced by free electrons J f , and a phenomenological current density
Ja accounting for nonlinear absorption. They are all calculated in the space-time domain,
and their angularly resolved frequency spectra are obtained by Fourier transforms at each
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propagation step for space marching the spectral components of the axially symmetric field
E(z, r, t) using (1). The nonlinear polarization describes the optical Kerr effect,

Pnl(z, r, t) = ε0χ3E3(z, r, t) (2)

where ε0 is the vacuum permittivity, χ3 = 4ε0cn2
0n2/3 is the cubic susceptibility, with n2

being the nonlinear index and n0 being the medium refractive index at the pulse central fre-
quency ω0. The free electron current is calculated from a frequency-resolved Drude model
that describes the excitation of the current of free electrons J f (z, r, t) by the propagating
electric field E(z, r, t), coupled with the photoionization model describing the generation of
free electrons of density ρe(z, r, t), at the rate W(|E|),

∂J f

∂t
+ νc J f =

q2
e

me
ρe(t)E(t) (3)

∂ρe

∂t
= W(|E|)(ρnt − ρe(t)) (4)

Here, qe and me are the charge and mass of the electron, νc = 5.26 THz bar−1 is the
collision frequency [19], and ρnt = 2.5× 1019 cm−3 bar−1 is the density of neutral argon
atoms. The current that is responsible for nonlinear absorption reads

Ja = ε0cn0Ui
∂ρe

∂t
E

ρnt|E|2
(5)

where Ui = 15.76 eV is the ionization potential of argon.
Photoionization rates W(|E|) are calculated from a Keldysh-like formulation [20],

including further developments by PPT [21] and Shcheblanov et al. [22]. The value of
the nonlinear index coefficient for argon is n2 = 10× 10−20 cm−2 W−1 bar−1. Changing
the pressure of argon results in a modification of the index of refraction according to the
Lorentz–Lorenz equation. The index of refraction is then dependent on the pressure p
through the following relations

χ =
n2

0 − 1
n2

0 + 2
, n(p) =

(
1 + 2pχ

1− pχ

) 1
2

(6)

where n0 denotes the frequency dependent index of refraction at 1 bar, and p is expressed
in bar. Other model parameters are pressure dependent. For instance, the nonlinear index
coefficient, the density of neutral atoms, and the collision frequency are multiplied by
the pressure.

The simulations are performed for carrier-wave-resolved fields in axially symmetrical
geometry (t; r) + z with a temporal domain of 2.4 ps, using 16,384 evenly distributed grid
points, leading to a temporal resolution of 0.14 fs (18 grid points per wavelength). In the
transverse domain r, the initial beam has the largest radius of 5.5 mm. We choose a 10 mm
large r-domain with 600 unevenly distributed grid points giving the best resolution of
12 µm in the region close to the axis, increasing to the edge of the domain. Space marching
is performed with adaptative z-step as required to resolve nonlinearity within the focal
region. The numerical grid is 212 (t) × 600 (r), and a single z-step needs to be kept in
computer memory for space marching, so our solver requires 1.2 GB RAM. Standard tests
to benchmark propagation codes are presented in [16] and were successfully passed.

For the initial conditions for simulation, we considered a 40 fs pulse at the central
wavelength of 800 nm. The pulse energy is 3.4 mJ. The initial beam with a width of 11 mm
is focused by a lens of f = 50 cm in nitrogen gas of pressure between 5 and 200 mbar. In
Figure 5, we present the temporal profile of the on-axis intensity as a function of propagation
distance. Around the focus, the initial Gaussian temporal profile gradually evolves into a
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complex structure featured by multiple peaks due to the nonlinear interaction of the laser
and the gaseous plasma.
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Commented [M4]: Figure 5. has been revised.  Figure 5. The on-axis laser intensity as a function of the propagation distance for a 40 fs, 3.4 mJ pulse.
The gas pressure is 200 mbar.

In Figure 6, we presented the temporal profile of the laser intensity on the axis
(r = 0) at the focus for different gas pressures. For a relatively low gas pressure of 5 mbar,
the pulse propagates linearly and it keeps the initial temporal profile. For higher pressures,
more and more complicated temporal structures appear, which agree qualitatively with our
experimental observations and justify the principle of the proposed method. We would like
to point out that the difference between the experimental observations and the simulated
results can be due to the fact that in our experiments we used a probe pulse of 35 fs which is
not short enough to detect the subtle temporal transformation of the pump pulse. We think
that a more precise temporal characterization of an intense pulse can be obtained by the
employment of a few-cycle probe pulse and the usage of deconvolution of the measured
results with the temporal profile of the probe pulse.
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Figure 6. The temporal evolution of an intense femtosecond laser pulse propagating in argon. The
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5. Conclusions

In conclusion, we demonstrated an in situ nonlinear optical method to characterize
the temporal profile of an intense femtosecond pulse around its focal zone where the
laser intensity is on the order of 1014–1016 W/cm2. The method is based on the second
harmonic generation in the gas plasma at the interception of the weak probe pulse and
the intense pump pulse under measurement. We have shown that around the focus of the
intense pulse where photoionization occurs, its temporal profile evolves from an initial
Gaussian profile to a multiple-peak structure for increasing gas pressure. Tests in different
gases including nitrogen, argon, and air confirmed the wide applicability of the method.
Moreover, the evolution of the temporal profile of the pulse along the propagation direction
was also demonstrated. Our experimental observations were confirmed by numerical
simulation of the nonlinear pulse propagation. This method should be also applicable
inside isotropic solids such as fused silica. We believe that this simple in situ method
for temporal characterization of the ionizing laser pulse can find wide applications in the
domain of high-field physics.
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