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Ultrastrong photon-photon coupling

Recent studies have shown that matter can ultrastrongly couple with the quantum vacuum field inside a photonic cavity, producing a nonclassical ground state that contains a finite number of photons. Here, we present a novel mattervacuum hybrid in a multimode photonic cavity whose ground state contains ultrastrongly coupled photons. This unique photon-photon coupling was realized in a three-dimensional terahertz photonic-crystal cavity, where two adjacent cavity modes mixed together through simultaneous coupling with the cyclotron resonance of a two-dimensional electron gas with a coupling strength exceeding the intermode frequency. Our microscopic theory successfully explains the salient features of our experimental observations, highlighting the spatial overlap of mode profiles as a key enabler of photon-photon ultrastrong coupling. Our findings provide guidelines for harnessing photon-photon correlations for furthering the physics of vacuum-dressed matter as well as for developing vacuum-enabled quantum technology.

Introduction

Correlations between photons play a crucial role in fundamental quantum optics research and quantum technology, such as nonclassical light generation and quantum information processing (1,2). Generating such a state, including squeezed states (3)(4)(5), requires external driving, and hence, the existence of such a state is only transient. Recent theoretical studies have suggested that significant correlations between photons and matter excitations can exist in a cavity quantum electrodynamics (cQED) system without external driving. Specifically, when the light-matter coupling strength, g, is comparable to the bare frequencies of light and matter, the ground state is predicted to be a two-mode squeezed vacuum (6,7). This regime, known as the ultrastrong coupling (USC) regime of light-matter interaction (8)(9)(10), has been achieved in several solid-state platforms, paving the way to realizing macroscopic ground-state squeezing.

Here, we introduce the novel concept of ultrastrong photon-photon coupling in a multimode cQED system. Previous studies have shown that, when g becomes comparable to, or larger than, the spacing between adjacent cavity modes, ∆ω, in a multimode cavity, the system enters the superstrong coupling (SSC) regime (also known as the multimode strong-coupling regime (11)), where matter exchanges energy with the cavity faster than the photon roundtrip time (12,13).

In this regime, intermode coupling is expected, but the ground-state properties of a system that simultaneously achieves USC and SSC have not been explored. An interesting question is whether USC between different photonic modes i and j can be achieved, which should lead to finite intermode correlations in the ground state, i.e., ⟨G|â † i âj |G⟩ > 0, where â † and â are the photon creation and annihilation operators and |G⟩ represents the ground state. Such multimode ground-state correlations would open new possibilities for harnessing vacuum electromagnetic fields to generate multimode nonclassical states of light (14,15) and for studying the many-body regime of cQED in the presence of nonlinearities (16)(17)(18).

We realized USC between two photonic modes of a THz three-dimensional photonic-crystal cavity (3D-PCC). The coupling was mediated by the cyclotron resonance (CR) of a Landauquantized two-dimensional electron gas (2DEG) in GaAs quantum wells (QWs). Namely, the 2DEG CR ultrastrongly coupled with both photonic modes, achieving USC and SSC simultaneously. The cavity had an asymmetric design such that the mode spatial profiles in the 2DEG region depended on the THz electric-field polarization. The magnetic-field dependence of the experimentally observed Landau polariton frequencies was well described by a microscopic quantum model following Ref. (19). Despite the lack of nonlinearity in the GaAs 2DEG, the calculations suggest that the intermode correlations in the ground state, ⟨G|â † 1 â2 |G⟩, was comparable to the intramode correlations (or numbers of photons) in the ground state ⟨G|â † 1 â1 |G⟩ and ⟨G|â † 2 â2 |G⟩. We show that the full in-plane spatial variation of the cavity electromagnetic field has to be considered to reproduce the observed polariton spectra. Although g > ∆ω was always satisfied, intermode correlations in the ground state occurred only when the mode profiles significantly overlapped spatially. We propose a relevant figure of merit (FOM) to quantify photon-photon couplings in multimode systems, which governs the correlations between photonic modes when the matter and photon frequencies are close. We found the conditions for achieving and controlling ultrastrong photon-photon coupling, which show that the 3D-PCC is an ideal candidate for exploring the many-body regime of cQED in the THz frequency range.

Defect-engineered three-dimensional photonic-crystal cavity

Let us consider a cQED system where N cavity modes interact with a single matter excitation.

When g < ∆ω, vacuum Rabi splitting (VRS) occurs at N well-separated values of the detuning, as schematically shown in Fig. 1A for N = 2. When the system enters the SSC regime, g > ∆ω, the matter mode can couple with multiple cavity modes simultaneously at a single value of the detuning. However, if the entire cavity is filled with matter, different photonic modes separately couple with the matter at different spatial locations because the electric-field profiles of the cavity modes are orthogonal to each other over the entire volume of the cavity (assuming no dissipation) (20,21). Consequently, no matter-mediated intermode coupling exists, and each photonic mode splits into an upper polariton (UP) and a lower polariton (LP), resulting in a total of 2N branches. This situation, depicted in Fig. 1B for N = 2, is referred to as the 2N scenario (21,22).

To induce coupling between cavity modes, one can reduce the active region, i.e., the volume inside the cavity occupied by the matter (20,21). This is because the spatial profiles of different cavity modes over a portion of the volume inside the cavity are typically not orthogonal. When the spatial profiles of different cavity modes within the active region highly overlap, these modes can couple with each other through the matter, producing N + 1 polariton branches with an Sshaped middle polariton (MP) (20); see Fig. 1C for N = 2. This situation is known as the N + 1 scenario.

We used a 3D photonic crystal, i.e., a dielectric structure that has periodic modulations of refractive index in all three dimensions and exhibits a complete photonic band gap. Adding a defect into the 3D photonic crystal breaks discrete translational symmetry, inducing photonic modes within the band gap (23). The electromagnetic fields at these photonic mode frequencies are confined in the vicinity of the defect, which can be engineered to tailor the mode spatial profiles. In addition, multiple cavity resonances exist closely in frequency within the photonic band gap, and hence, a THz 3D-PCC provides a suitable platform for exploring multimode USC through coupling with a collective matter excitation confined in the defect.

We embedded a multiple-QW 2DEG layer (∼2 µm thick) on a 58-µm-thick planar GaAs substrate between a pair of woodpile structures, often adopted 3D photonic crystals created by stacking rod arrays periodically with alternating orientations (Fig. 1D). There is no translational invariance along the stacking direction, z, while (discrete) translational symmetry exists in the x-y plane. We computed the projected band structure of the bare woodpile cavity without the 2DEG layer, with infinite periods above and below the GaAs defect, in the in-plane irreducible first Brillouin zone using plane-wave expansion (Fig. 1E). The dimensions of the woodpile structure are shown in Fig. 2A. Guided modes (black lines in Fig. 1E) that are exponentially localized in the vicinity of the defect (along the z direction) and propagate in the x-y plane are present in the photonic band gap (between 318 GHz and 478 GHz at the Γ point) (24).

Our designed woodpile structure contained only two periods on each side of the cavity in the z direction, so the modes in the photonic band gap had finite lifetimes. The lifetimes were estimated from transmission spectra via numerical simulations, as shown in Fig. 1F, where the 3D-PCC was probed at normal incidence (corresponding to the Γ point). Our 3D-PCC hosted modes with varying quality factors depending on the position of the modes within the band gap: modes with frequencies, ω 1 /2π = 338 GHz, ω 2 /2π = 382 GHz, ω 3 /2π = 417 GHz, and ω 4 /2π = 468 GHz exhibited quality factors of 72, 70, 6200, and 1540, respectively. We used deep reactive ion etching to create a bar array in a silicon wafer (Fig. 1G). The final woodpile structure was formed by mechanically stacking multiple patterned silicon wafers.

The active region for light-matter coupling in our system is restricted to the 2D plane occupied by the 2DEG. Our cavity structure lacks mirror symmetry in the vertical direction because the silicon bars at the edges of the defect are oriented perpendicular to each other (Fig. 2A).

When there is no 2DEG layer inside the cavity, the transmittance spectrum is the same for xand y-polarized THz light (24,25). However, even though they have the same frequencies, their in-plane mode profiles at the vertical location of the 2DEG, z 2DEG , vary, depending on the polarization of the incident THz radiation. We refer to the modes excited by x-and y-polarized incident THz radiation as the transverse-magnetic (TM) and transverse-electric (TE) modes, respectively. The electric energy density of cavity mode 1 is maximized at slightly different vertical locations for the TM and TE modes (Fig. 2, B and C) (24). Figures 2, D andE, display the spatial profiles of modes 1 and 2 at z 2DEG for the TM modes, in which the cavity electric field is tightly confined at the edges of the bar. By contrast, the mode profiles for the TE modes distribute more evenly within the unit cell (Fig. 2, F andG). Therefore, the spatial overlap of the mode profiles within the active region is different for the TE and TM modes.

Polarization-dependent mixing of photonic modes

Figures 3, A andB, show transmittance spectra for our 3D-PCC with a 2DEG layer as a function of magnetic field applied along the z direction, B, for the TM and TE modes, respectively.

The white dots denote the B-dependent polariton frequencies that were extracted from longer time-domain traces (24). For simplicity, we restrict ourselves to the first two modes p = 1, 2 in the following discussion. Three polariton branches, one UP and two LPs, are observed for TM (Fig. 3A), accompanied by a splitting spanning the space around the line of the bare CR frequency (white dashed), ω c , that separates the UP and LPs. This is consistent with the 2N scenario (Fig. 1B). By contrast, such a splitting is not visible for TE (Fig. 3B). Instead, a polariton branch that crosses the CR line and resembles the S-shaped MP in the N + 1 scenario (20,22) (Fig. 1C) is observed.

To gain a better understanding of the observed polarization-dependent transmittance spectra, we developed a microscopic quantum model described by the Hamiltonian Ĥ = Ĥcav + ĤCR + Ĥint + ĤA 2 (24). The free-photon Hamiltonian is Ĥcav = p,j ℏω p â † p,j âp,j , with âp,j the annihilation operator of a photon in mode p with polarization j and frequency ω p . For simplicity, we did not introduce another index in the photon operators to distinguish between the 

The next term in the Hamiltonian

Ĥint = p,j dρ a ℏg p,j (ρ) b(ρ) + η j b † (ρ) âp,j + η j â † p,j (1) 
is the linear coupling between the CR and each cavity mode (p, j), whose strength is g p,j (ρ) = E p,j (ρ, z 2DEG ) e 2 ω c n e /(4ε 0 m eff ω p a). Here, η x = +, η y = -for the two cavity photon polarizations, e and m eff are the electron charge and mass in GaAs, respectively, ε 0 is the vacuum permittivity, and n e is the total electron density. Since the electric field in the 3D-PCC is not uniform in the plane (in contrast to 1D-PCCs (26,27)), the coupling of CR excitations to each mode (p, j) is weighted by the (real, dimensionless) electric field mode functions E p,j at the in-plane position ρ and the vertical location z 2DEG of the QWs.

The final term in the Hamiltonian, the so-called A 2 term

ĤA 2 = p,p ′ ,j dρ a 2 ℏg p,j (ρ)g p ′ ,j (ρ) 
ω c âp,j + η j â † p,j â † p ′ ,j + η j âp ′ ,j (2) 
is responsible for direct intermode coupling. This term scales with dρ g p,j (ρ)g p ′ ,j (ρ)/ω c , and thus, involves an overlap integral between the in-plane spatial profiles of the modes E p,j (ρ, z 2DEG ).

As mentioned previously, the cavity modes over the entire volume inside the cavity are orthogonal to each other, dρdz ε(ρ, z)E p,j (ρ, z)E p ′ ,j ′ (ρ, z) = a 3 δ p,p ′ , with ε(ρ, z) the inhomogeneous dielectric profile. However, the cavity mode profiles within the 2D plane at z 2DEG do not necessarily follow the orthogonality relation (20). Alternatively, the orthogonal modes can also be quantum mechanically coupled through dissipation, which can be described by quantized quasinormal mode theory (28).

The lossless, multimode Hamiltonian, Ĥ, can be simplified to a decoupled Hamiltonian under certain circumstances. We introduce new CR excitation operators following the spatial profiles of the cavity modes, bp,j = (dρ/a) (g p,j (ρ)/ g p,j ) b(ρ), with the effective coupling strength g p,j = (dρ/a 2 ) g 2 p,j (ρ). The commutation relations between these new CR modes can be put in the form [ bp,j , b † p ′ ,j ′ ] = ξ p,p ′ ;j,j ′ , where ξ p,p ′ ;j,j ′ = (dρ/a 2 ) g p,j (ρ)g p ′ ,j ′ (ρ)/( g p,j g p ′ ,j ′ ) (0 ≤ ξ p,p ′ ;j,j ′ ≤ 1) is proportional to the in-plane spatial overlap of the different cavity modes, exactly as the off-diagonal contributions to the A 2 term, and is similar to the normalized overlap factor defined in Ref. (20). Assuming that the new CR modes are orthogonal, which is a priori not the case, one would have ξ p,p ′ ;j,j ′ = δ p,p ′ δ j,j ′ . The full Hamiltonian would then be simplified to a "decoupled" Hamiltonian with ĤCR = ℏω c b † p,j bp,j , and

Ĥint = ℏ g p,j bp,j + η j b † p,j âp,j + η j â † p,j ĤA 2 = ℏ g 2 p,j ω c âp,j + η j â † p,j â † p,j + η j âp,j . (3) 
The deviation of the parameter ξ p,p ′ ;j,j ′ with respect to δ p,p ′ δ j,j ′ , therefore, tells us how accurate the approximation of using the decoupled Hamiltonian to compute the polariton branches is as compared to the full Hamiltonian. For instance, ξ p,p ′ ;j,j = 1 (ξ p,p ′ ;j,j = 0) corresponds to perfect overlap (no overlap) between the cavity modes p and p ′ both with polarization j, in which case the cavity modes are coupled (decoupled) via the CR.

We computed transmittance spectra by extending the input-output model of Ref. (29) in a simple planar geometry to a multimode PCC cavity (24). We took into account dissipation through the (Markovian) coupling of cavity modes and CR excitations to phenomenological bosonic reservoirs, with associated quality factors of the bare cavity modes and the intrinsic CR decay rate, respectively (24). For our 3D-PCC system, there is only a small overlap between the spatial profiles of the TM modes 1 and 2 (ξ 1,2;x,x = 0.29), suggesting that the intermode coupling is weak. The decoupled model in Eq. ( 3) is thus expected to provide a faithful description of the system and in particular the existence of a LP-UP splitting close to resonance, which is consistent with the transmittance spectra calculated using the full and decoupled Hamiltonian in Fig. 3, C and E. Conversely, for TE modes, the spatial profiles of cavity modes 1 and 2 highly overlap (ξ 1,2;y,y = 0.91), suggesting that they are strongly coupled through the CR.

The full model predicts the emergence of an S-shaped MP that adiabatically transforms from the UP of mode 1 to the LP of mode 2, passing continuously through the CR line (Fig. 3D).

Note that the small LP-UP polariton splitting would vanish if ξ 1,2;y,y is exactly equal to 1 (24).

The decoupled model that predicts the LP-UP splitting thus exhibits large deviations from the experimental data points (Fig. 3F). In addition, we find that ξ p,p ′ ;x,y < 2 × 10 -3 for all p, p ′ , indicating that cavity modes with different polarizations are weakly coupled.

Ultrastrong photon-photon coupling

The strength of the light-matter interaction is usually estimated using the on-resonance VRS obtained from experiments, which is typically equal to twice the coupling constant of the linear coupling term Ĥint . However, in the 3D-PCC, the VRS at zero detuning cannot accurately determine the strength of the light-matter interaction for two reasons: (i) the coupling constant depends on the position ρ in the unit cell, while the VRS is contributed by the coupling at all ρ;

and (ii) the shift of the polariton branches, which is induced by the intermode coupling, reduces the VRS (e.g., the redshift of the UP marked by the yellow arrows in Fig. 3, D andF).

In order to quantify the strength of all possible couplings for a multimode system in the USC regime, we propose to use a generalized FOM defined as

η pp ′ ,j ≡ (dρ/a 2 ) g p,j (ρ)g p ′ ,j (ρ) ω c (ω p + ω p ′ )/2 . ( 4 
)
Note that η pp ′ ,j does not depend on B, and thus it is independent of detuning. The strength of the coupling between the CR and the cavity mode p can be characterized by the "diagonal" contributions (p = p ′ ), which is the same as the conventional FOM for the USC regime (8-10), except that it includes the integral of g p,j (ρ) over the whole unit cell. For TM modes, η 11,x ≈ η 22,x = 0.21, η 33,x = 0.22, and η 44,x = 0.19, while for TE modes, η 11,y = 0.2, η 22,y = 0.17, η 33,y = 0.08, and η 44,y = 0.19. Hence, our system reached the USC regime for both the TE and TM modes since η pp,j ≳ 0.1 for all p and j. The "off-diagonal" contributions (p ̸ = p ′ ), which are related to the spatial overlap of the mode profiles (ξ p,p ′ ;j,j ∝ η 2 pp ′ ,j ), determine the effective coupling between different cavity modes with the same polarization j. The parameter η pp ′ ,j serves as a good FOM to quantify the photon-photon coupling because the intermode ground-state correlations scale with it (24). As η 12,x = 0.11 and η 12,y = 0.17, our system was in the USC regime in terms of photon-photon coupling (η pp ′ ,j ≳ 0.1).

We computed the photon ground-state (virtual) correlations ⟨â † p,j âp ′ ,j ⟩ for both the TE and TM modes by inverting the Bogoliubov transformation that diagonalizes the full (quadratic) Hamiltonian; see Fig. 4. The intermode correlation in the ground state for the TE modes, ⟨â † 1,y â2,y ⟩, lies between the intramode correlations in the ground state, ⟨â † 1,y â1,y ⟩ and ⟨â † 2,y â2,y ⟩, confirming the existence of significant correlations between the photonic modes in the ground state of the system. Furthermore, the intermode correlations for the TE modes (Fig. 4B) are larger than those for the TM modes (Fig. 4A) by a factor ≃ 2.6. Note that those intermode ground-state correlations are contributed by both Ĥint and ĤA 2 terms (24). Further, we used the standard FOM g p,j /∆ω pp ′ , with ∆ω pp ′ = |ω pω p ′ |, to demonstrate that our system was in the SSC regime. At resonance between the first cavity mode and the CR (ω c = ω 1 ), g 1,x /∆ω 21 = 1.71 and g 2,x /∆ω 21 = 1.84 for TM modes, while g 1,y /∆ω 21 = 1.61 and g 2,y /∆ω 21 = 1.46 for TE modes. Thus, g p,j /∆ω pp ′ > 1 for both TE and TM modes.

Discussion

We reported ultrastrong photon-photon coupling in a THz cQED system that simultaneously achieves USC and SSC, namely, a Landau-quantized 2DEG in GaAs coupled to multiple photonic modes of a THz 3D-PCC. We introduced a detuning-independent parameter, η pp ′ ,j , which can be generalized to a larger matrix for more modes, to quantify couplings in multimode systems. Our findings showed that the ground-state correlations between the photonic modes are controlled by the frequencies of both matter and photonic modes, as well as the spatial overlap of the cavity mode profiles. Due to the absence of mirror symmetry in the stacking direction of our cavity, the TE and TM photonic modes exhibited different in-plane mode profiles at the 2DEG position, leading to a switchable photon-photon coupling while preserving the USC between the matter and each photonic mode. Our results highlight the importance of considering the full spatial dependence of the electric field in modeling the light-matter interaction inside cavities with spatially nonuniform electromagnetic fields, even if the spatial variation of the mode profiles is almost negligible within the typical wavelengths associated with the coupled electronic degrees of freedom.

Although the matter excitation in the present work is linear in the sense that the energy spacings between adjacent Landau levels are constant, further studies on nonlinear systems can be conducted by replacing GaAs with a non-parabolic semiconductor or graphene. The ultrastrong photon-photon coupling opens up interesting perspectives to realize vacuum-induced effects (30)(31)(32)(33) and explore many-body regimes of quantum optics with quantum vacuum fields from different modes. The 3D-PCC design is highly versatile and can be tailored to achieve photonic modes with smaller mode volumes and higher quality factors (34). Our approach can be utilized to investigate the coupling between the topological edge states of a 2DEG and the topological edge states of a chiral woodpile structure (35,36). Moreover, the photonic modes with well-defined in-plane wavevectors in the 3D-PCC satisfy the condition to circumvent the no-go theorem for the Dicke superradiant phase transition (or photon condensation) (37)(38)(39).

While the photon wavevector ∼ 2π/a is limited by the lattice parameter a of the 3D-PCC and remains relatively small compared to the electron momentum ∼ 1/l c , the possibility of fulfilling the criterion for 2D photon condensation in this regime has been recently discussed (38). 

S1.2 Fabrication of the THz woodpile cavity

A 100-µm-thick silicon wafer was coated by lift-off resist and photoresist layers through spin coating. The layers were patterned by photolithography. An ∼ 1.2-µm-thick Al 2 O 3 layer was deposited on the coated silicon wafer by an e-beam evaporator. The lift-off process was completed by removing the resist with Remover PG; leaving Al 2 O 3 on the patterned area. Afterwards, the silicon wafer was etched by deep reactive ion etching using a Bosch process. During this process, the silicon wafer was cut into multiple smaller pieces, and the gaps between silicon rods and holes at the corners were also created in each piece of the smaller wafer. The remaining Al 2 O 3 layer was removed by immersing the sample in a heated 1:3 solution of phosphoric acid and sulphuric acid. The width of the silicon rods and the periodicity were 87 µm and 333 µm, respectively. A custom-made sample holder was used for stacking the silicon wafers to form a woodpile cavity. The orientation of the silicon rods was fixed by the screws that passed through the holes at the corners. The woodpile cavity can be conveniently disassembled and reassembled.

S1.3 THz time-domain magnetospectroscopy measurements

Transmittance spectra for samples were measured by a home-built THz time-domain magnetospectroscopy setup (26,27,(40)(41)(42)(43)(44)(45)(46)(47)(48). 

S2.2 Microscopic model

The microscopic Hamiltonian is derived in the Coulomb gauge by extending the models of Refs. (19,27,49). We use the vector potential operator

Â(ρ, z) = p,j ℏ 2ε 0 ω p a 3 E p,j (ρ, z)e j âp,j + â † p,j . (S1)
At normal incidence (Γ point of the first Brillouin zone), the electric field mode functions E p,j (ρ, z) can be chosen real without loss of generality. The calculation can be trivially extended to the full Brillouin zone using complex fields with a quasi-momentum q as computed by FDTD. The linear coupling term between light and matter reads

e m eff dρdz Ψ † (ρ, z) π • Â(ρ, z) Ψ(ρ, z), ( S2 
)
with π the gauge-invariant in-plane momentum including the contribution of the static magnetic field B, and the fermion field Ψ(ρ, z) = L -1/2 n,k e -iky χ n,k (x)ξ(z)ĉ n,k (49). We use the Landau gauge, where single electron states are characterized by an integer n and the y component of the electron momentum k. The wave functions are plane waves in the y direction (L is the length of the 2DEG in the plane), and those of a harmonic oscillator (Hermite polynomial of order n) centered at the guiding center position k l 2 c , with l c = ℏ/eB the magnetic length. When computing the matrix elements entering Eq. (S2), we assume that E p,j (ρ, z) remains constant over the QW thickness, and exploit the discrete translational invariance in the plane by decomposing the electric field spatial functions into Fourier series E p,j (ρ, z 2DEG ) = G U p,j (G)e iG•ρ , with G = (2πm x /a)e x + (2πm y /a)e y (m x , m y ∈ N) the reciprocal lattice vectors. One is then left with the calculation of overlap integrals of the kind

I n ′ ±1,k ′ n,k (G) = dy L e i(k-k ′ +Gy)y dx χ n,k (x)χ n ′ ±1,k ′ (x)e iGxx . ( S3 
)
While the integral in the y direction simply provides the selection rule k ′ = k + G y , the calculation of the integral along x is performed using the dipole approximation. The mode functions E p,j (ρ, z 2DEG ) are slowly varying over the typical extent of the harmonic oscillator wave functions χ n,k (x). For a magnetic field B ≃ 1 T, the latter is indeed ∼ l c ≃ 10 -100 nm, which is much smaller than the woodpile lattice parameter a = 333 µm. Since the Fourier coefficients U p,j (G) exhibit large peaks at G j ∼ 1/a (m x ∼ m y ∼ 1) and rapidly decrease as

G j a → ∞, one has G j l c ∼ l c /a ≪ 1. Equation (S3) thus provides I n ′ ±1,k ′ n,k (G) ≈ δ k ′ ,k+Gy δ n,n ′ ±1 e iGxkl 2 c .
We introduce the CR excitation creation operator The transmission spectra shown in the main text were computed using an input-output model, which is an extension of the one introduced in Ref. (29) in a simple planar geometry.

b † (ρ) = 1 a √ N k,G ĉ † ν,k-Gy ĉν-1,k e
Transmission of THz radiation through the 3D-PCC is modeled by introducing two identical photon reservoirs on each side of the cavity in the z direction (top, bottom). Similarly, CR excitations of the 2DEG acquire a finite lifetime by interacting with a phenomenological bosonic reservoir. The total Hamiltonian includes the contribution (neglecting counter-rotating terms) ĤR = p,j,λ dq ω p,j (q)α † p,j,λ (q)α p,j,λ (q) + iκ p,j (q) αp,j,λ (q)â † p,jâp,j α † p,j,λ (q)

+ dq dρ ω(q, ρ) β † (ρ, q) β(ρ, q) + i κ(ρ, q) β(ρ, q) b † (ρ) -b(ρ) β † (ρ, q) . (S4)
The first contributions in the first and second lines of Eq. (S4) describe the energy of the photonic modes in each reservoir λ = (top, bot) and that of the matter excitation reservoir, respectively. q denotes a phenomenological (continuous) parameter ensuring that the reservoirs have continuous spectra. The second terms in both lines describe the coupling between the mode of the reservoirs and the modes of the system, which provides the latter with a finite lifetime. The input-output method consists in solving the equations of motion of the system by introducing "input" and "output" operators: αin p,j,λ (q) = lim t→-∞ αp,j,λ (q, t)e iω p,j (q)t , αout p,j,λ (q) = lim t→+∞ αp,j,λ (q, t)e iω p,j (q)t , and similar expressions for the matter excitation reservoir operators. One can then find a linear relation between the input and output operators, which allows to compute the normalized transmission spectrum (transmitted light with polarization j ′ , incident light with polarization j) as

T j,j ′ (ω) = p ′ ⟨α out † p ′ ,j ′ ,bot (q)α out p ′ ,j ′ ,bot (q) 
⟩ p ⟨α in † p,j,top (q)α in p,j,top (q)⟩ .

We assume THz radiation coming from the top reservoir and populating all photonic modes equally, i.e., ⟨α in † p,j,top (q)α in p,j,top (q)⟩ does not depend on p nor j, while ⟨α in † p,j,bot (q)α in p,j,bot (q)⟩ = 0 ∀ (p, j) and ⟨ βin † (ρ, q) βin (ρ, q)⟩ = 0 ∀ ρ. The output expectation value ⟨α out † p,j,bot (q)α out p,j,bot (q)⟩ depends on the decay rates of each photonic modes Γ p,j = ω p /Q p,j ≡ πκ 2 p,j (q 0 )ρ(ω), with Q p,j the quality factor of the photonic mode (p, j) as computed in FDTD (MEEP implementation ( 50)) without the 2DEG, and on the CR excitation decay rate Γ c ≡ π κ 2 (ρ, q 0 )ρ(ω). The latter corresponds to the intrinsic CR decay rate. The quality factors of the photonic modes were obtained by fitting the peaks in transmittance spectra with Lorentzian functions. However, deviations from pure Lorentzian line shapes were clearly observed (especially for low-Q modes), similar to a previous report for 0D-PCCs (51), which has been attributed to dissipation (radiative leakage of the cavity modes) [START_REF] Sauvan | Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators[END_REF]. Note that the CR decay rate is suppressed when the 2DEG is placed inside a high-Q cavity (26). As a good estimate, we used the CR decay rate obtained from previous experiments with a 1D-PCC (Γ c /2π = 5.7 GHz) (26). In the previous equations, q 0 and q 0 are solutions of ωω p,j (q) = 0 and ωω(q, ρ) = 0, respectively, and ρ(ω) is the effective density of states of the reservoirs, which are assumed to be Markovian, i.e., ρ(ω) is supposed to be frequency-independent in the range of interest.

In order to further characterize the full and decoupled models discussed in the main text, we introduce a toy model with two photonic modes, only one polarization, and continuously tunable spatial overlap between the photonic modes. The toy model Hamiltonian reads

H = p ℏω p â † p âp + dρℏω c b † (ρ) b(ρ) + p dρ a ℏg p (ρ) b(ρ) + b † (ρ) âp + â † p + p,p ′ dρ a 2 ℏg p (ρ)g p ′ (ρ) ω c âp + â † p â † p ′ + âp ′ , (S5) 
with the coupling strength g p (ρ) = E p (ρ) e 2 ω c n e /(4ε 0 m eff ω p a), and the in-plane mode pro-files 

E 1 (ρ) = sin 2πx a sin 2πy a E 2 (ρ) = sin 2πx a + (1 -ϵ)π 2 sin 2πy a + (1 -ϵ)π 2 . ( S6 

S2.3 Ground-state correlations from different terms in Hamiltonian

Figure S3 shows the contribution of the ground-state correlations from different terms in the Hamiltonian. The Ĥint term provides the magnetic field dependence of the ground-state correlation (Fig. S3A). The ĤA 2 term provides the baseline of the ground-state correlation with the full Hamiltonian (Fig. S3B), supporting the claim that the η pp ′ ,j is a suitable FOM for ultrastrong photon-photon coupling. The ground-state correlations are zero if the antiresonant part of the Ĥint and ĤA 2 terms are neglected (Fig. S3C). The ground-state correlation will be overestimated if the resonant part of the Ĥint and ĤA 2 terms are neglected (Fig. S3D).

S2.4 Vacuum fluctuations and localization of the cavity modes

The vacuum fluctuations of the photonic modes shown in the main text were computed as follows: The variance of the electric energy density along z in the vacuum state |0⟩ reads 

I(z) = dρ ε 0 ε(ρ, z) ⟨0| Ê2 (ρ, z) |0⟩ /2,
E p (ρ) = ℏω p 2ε 0 a 3 × E 2 p,x (ρ, z 2DEG ) + E 2 p,y (ρ, z 2DEG ). (S9) 
In order to assess the degree of localization of the different cavity modes in the z direction, one can treat the electric energy density of mode (p, j) as a normalized probability distribution, i.e., (about two Si logs thick), and σ 3,x ≈ σ 4,x ≈ σ 3,y ≈ σ 4,y = 0.2a (less than one Si log thick). For all cavity modes, more than 97% of the electric energy is located in the 3D-PCC. As expected, the localization of the cavity modes along the z direction increases as the latter are located deeper into the photonic band gap.

S2.5 Numerical simulations

The mode profiles of the cavity modes induced by a 60 µm-thick bare GaAs layer were calculated by the MEEP software (50). The electric field was assumed to be constant over the thickness d ≃ 2 µm of the QW heterostructure. The transmittance spectrum of the bare cavity in the main text was simulated by using the COMSOL Multiphysics software. We used the permittivity ε = 11.6964 for the silicon layers, and ε = 12.96 for the GaAs layer. For the simulations with the 2DEG layer (Fig. S4), because the woodpile structure exhibits mirror symmetries, only 1/4 of the unit cell of the woodpile structure was considered in the geometry to reduce the simulation time. A transition boundary condition with an effective thickness, d = 2 µm, was used to emulate the MQW structure. A gyrotropic permittivity tensor was used to describe the complex permittivity of the 2DEG layer at different magnetic fields:

ε =   ε xx (ω) ε xy (ω) 0 -ε xy (ω) ε xx (ω) 0 0 0 ε zz   , (S13) 
with

ε xx (ω) = ε bg - ω 2 pl (ω -iγ) ωd[(ω -iγ) 2 -ω 2 c ] , (S14) 
ε xy (ω) = -iω 2 pl ω c ωd[(ω -iγ) 2 -ω 2 c ] , (S15) 
ε zz = ε bg , (S16) 
where ε bg = 12.96 is the background permittivity, ω pl = n e e 2 /(ε 0 m eff ) is the plasma frequency and ω c = eB/m eff is the cyclotron frequency.

S2.6 Thickness of the defect layer in numerical calculations

Due to imperfections in mechanical polishing, the thickness of the GaAs substrate of the 2DEG layer in the experiment was not perfectly homogeneous. To determine the suitable thickness of the substrate for numerical simulations, we ran simulations in the presence of the 2DEG layer at B = 0, 1.5, 2.5, and 7 T with different thicknesses of the GaAs substrate. We calculated the deviations of the polariton frequencies for TE and TM modes between the experiment and simulation, ∆f P,B = f expf sim , where P = {UP, LP1, LP2} at each B. Finally, we calculated the root mean square of the total deviation,

D = TE,TM B P ∆f 2 P,B 2N , (S17) 
where N = 13 is the number of data points. The optimized thickness of the defect layer that gives the minimum deviation is 60 µm (including the 2-µm-thick MQW layer), as shown in Fig. S5. This is consistent with the profilometer measurement.

S2.7 Simulations with different ranges of time delays

We investigated the transmittance spectra of the system with different ranges of time delays in FDTD simulations (Lumerical). As shown in Fig. S6, in order to resolve modes 3 and 4 with high Q-factors in the spectrum, a long time-domain trace is needed. The amplitudes of modes 3 and 4 are weak for a time-domain trace up to 200 ps.

S2.8 Extraction of peak frequencies

The linewidth of the polariton branches in the color plot in the main text is limited by the frequency resolution of the measurements as a short time-domain range (33 ps) was considered.

Scanning a long range of time delays is required for THz-TDS measurements to resolve the actual linewidth of the coupled modes in the high-Q 3D-PCC. For instance, Fig. S7,A Echoes of THz pulses come from multiple optical components in the system, for instance, cryostat windows and crystals.

  TE and TM modes; instead, we directly mention it in the text. The effective CR Hamiltonian ĤCR = ℏω c b † (ρ) b(ρ) is written in terms of the collective excitation operators between adjacent Landau levels b(ρ) and b † (ρ) at the in-plane position ρ, which approximately satisfy the bosonic commutation relations [ b(ρ), b † (ρ ′ )] = δ(ρρ ′ ).

  52. C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators, Phys. Rev. Lett. 110, 237401 (2013).
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 12 Fig. 1: The 3D-PCC. (A to C) Schematic diagrams for polariton frequencies as a function of detuning for a cQED system with two cavity modes (i.e., N = 2, red dashed lines) and one matter excitation (blue dashed line). When the light-matter coupling strength, g, is smaller than the frequency spacing between the cavity modes (∆ω) (A), the vacuum Rabi splittings are well separated in frequency. When g becomes larger than ∆ω (the superstrong coupling regime), there are two scenarios for the polariton branches, depending on the spatial overlap of the mode profiles: (B) the 2N scenario; and (C) the N + 1 scenario. UP, upper polariton; LP, lower polariton; MP, middle polariton. (D) Schematic of a 2DEG embedded in a 3D woodpile cavity. (E) Projected band structure of the bare woodpile cavity ((D) without the 2DEG layer). The grey-shaded regions and black lines denote modes extended in the whole crystal and the guided modes within the band gap, respectively. (F) Transmittance spectrum of the bare 3D-PCC from numerical simulation. The shaded region represents the photonic band gap expected from (E). The blue arrows mark cavity modes 1 to 4. The inset is a magnified view of the spectrum. (G) A photo of a fabricated architecture containing the designed woodpile structure.
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 34 Fig. 3: Polarization-dependent mixing of photonic modes. (A to F) Magnetic-fielddependent transmittance (T ) spectra obtained from (A and B) experiments and calculations using (C and D) the full Hamiltonian and (E and F) the decoupled Hamiltonian, respectively. The top (bottom) panels are for TM (TE) modes. The white dots denote the peak frequencies extracted from experimental data using longer time-domain traces (24). The white dashed line shows the bare CR frequency. The LP-UP splitting and S-shaped MP are marked. The yellow arrows in (D) and (F) indicate the UP that shows a significant deviation between the spectra calculated using the full and decoupled Hamiltonian.
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  The near-infrared (775 nm) output beam of a Ti:sapphire regenerative amplifier (1 kHz, 200 fs, Clark-MXR, Inc.,CPA-2001) was split into pump and probe beams. The pump beam was used to generate linearly polarized THz radiation in a ZnTe crystal through optical rectification. The generated THz beam was focused onto the sample that was mounted on the sample holder of a 10-T superconducting magnet cryostat (Oxford Instruments, Inc.). The direction of the static magnetic field was normal to the sample surface. The time-domain waveform of the transmitted THz radiation, E sample (t), was measured with another ZnTe crystal via electro-optic sampling with controlled time delays. A reference signal, E reference (t), was measured by repeating the measurements in the absence of a sample. E sample (t) and E reference (t) were Fourier-transformed into complex-valued frequencydomain spectra, Ẽsample (ω) and Ẽreference (ω), respectively. Transmittance, T , is equal to| Ẽsample (ω)| 2 /| Ẽreference (ω)| 2 .S2 Supplementary TextS2.1 Transmittance spectrum for the bare 3D-PCCWe performed transmission measurements on a bare 3D-PCC, i.e., a bare GaAs substrate without the 2DEG layer, to examine the quality of the fabricated 3D-PCC, see Fig.S1. The GaAs substrate was polished down to ∼85 µm due to the inaccuracy of the polishing process. Although the bare GaAs substrate has a thickness that was slightly different from the actual GaAs sample with the 2DEG layer, the thickness discrepancy only caused shifts of photonic mode frequencies. The frequencies of modes 1 and 2 in the experimental data are consistent with the simulation with an 85-µm-thick GaAs layer. Modes 3 and 4, which have extremely nar-row linewidths, were not observed in the experimental data due to the limited resolution of THz spectroscopy. The experimental data confirmed that the transmittance spectra of the bare 3D-PCC for TE and TM modes are degenerate.

ξ

  (z) is a normalized wave function that describes the QW confinement in the z direction. c † n,k and c n,k are the creation and annihilation operators of an electron in the state (n, k).

  iGxkl 2 c e -iG•ρ , which promotes an electron with momentum k in the highest-occupied Landau level (LL) n = ν -1 to the lowest-unoccupied LL n = ν and momentum k -G y . ν = 2πn e l 2 c denotes the filling factor of the 2DEG and N is the LL degeneracy. The in-plane position vector ρ is restricted to a woodpile unit cell. The CR excitation operators b(ρ) and b † (ρ) satisfy bosonic commutation relations when the number of CR excitations remains small compared to N , i.e., ⟨[ b(ρ), b † (ρ ′ )]⟩ = δ(ρρ ′ ), where ⟨• • • ⟩ denotes the expectation value in the electronic ground state (in which the lowest ν LLs are fully occupied). Note that the LL degeneracy entering the definition of the CR excitation operators is here written as N = a 2 /(2πl 2 c ), using the lattice constant a instead of the length L of the 2DEG. This is indeed the only physical choice as the light-matter coupling strength should not depend explicitly on any length scale other than l c in the plane. With those definitions, one recovers the light-matter coupling term H int discussed in the main text. The A 2 term is derived in a similar fashion.

)

  While we keep the same parameters (n e , ω p , ...) as in the model describing the woodpile structure, the new parameter ϵ ∈ [0, 1] allows us to artificially tune the spatial overlap between the two cavity modes. As ϵ is increased from 0 (no overlap) to 1 (perfect overlap), the splitting between the UP of the first mode p = 1 and the LP of the second one p = 2 becomes narrower and vanishes at ϵ = 1. The B-dependent transmission spectrum obtained with perfect overlap (ϵ = 1) is shown in S2A as an example. In this case, the polariton dispersion features a S-shaped MP in between the LP and the UP. The spectra found for ϵ ̸ = 1 are very similar to the ones reported in the main text with the full model describing the 3D-PCC. S2B shows the scaling of the intermode correlations ⟨a † 1 a 2 ⟩ computed from the toy model with the off-diagonal FOMη 12 = (dρ/a 2 ) g 1 (ρ)g 2 (ρ) ω c (ω 1 + ω 2 )/2introduced in the main text. The colored dots are obtained by tuning the mode frequencies (for ϵ = 1), while the black dashed line is obtained by tuning the overlap parameter ϵ. We observe that close to resonance, ω c ≈ ω p , intermode correlations are solely governed by η 12 , which is thus a relevant FOM for multimode ultrastrong photon-photon coupling.

  with the electric field operatorÊ(ρ, z) = i p,j ℏω p 2ε 0 a 3 E p,j (ρ, z)e j âp,jâ † p,j ,(S7)and e j the unit vector in the direction j = x, y. The contribution of the cavity mode p to the variance of the electric energy density [i.e., I(z) = p I p (z)] thus readsI p (z) = ℏω p 4a dρ a 2 ε(ρ, z) E 2 p,x (ρ, z) + E 2 p,y (ρ, z) . (S8) Note that the integral runs over a unit cell of the woodpile structure. The standard deviation of the in-plane spatial profile of the electric field (at the vertical location of the 2DEG) in the vacuum state reads E(ρ) = ⟨0| Ê2 (ρ, z 2DEG ) |0⟩. Similarly as before, one can write the contribution of the cavity mode p to E(ρ) [i.e., E(ρ) = p E p (ρ)] as

  standard deviation of the electric energy density along zσ p,j = dρ a 2 dz a (zzp,j ) 2 ε(ρ, z)E 2 p,j (ρ, z), ρ, z)E 2 p,j (ρ, z). (S12)Note that since photonic modes are localized in the vicinity of the defect layer in the z direction and exhibit discrete translational symmetry in the plane, we compute the spatial profile E p,j (ρ, z) in a woodpile unit cell of surface a 2 = (333 µm)2 . The integral along z runs over the whole computational cell, which includes air layers on each side of the woodpile structure in the z direction. The standard deviations of the 3D-PCC are σ 1,x ≈ σ 2,x ≈ σ 1,y ≈ σ 2,y = 0.6a

Fig. S1 :

 S1 Fig.S1: Transmittance spectrum for the bare 3D-PCC with a 85-µm-thick GaAs layer. We performed transmission measurements on a bare 3D-PCC, i.e., the defect layer is a bare GaAs substrate without the 2DEG layer. The red, black, and green lines denote the spectra obtained from numerical simulation and experiments with y-(TE) and x-(TM) polarized incident THz radiation, respectively. The blue arrows mark cavity modes 1 to 4.
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 S2S5 Fig. S2: Transmittance spectra and ground-state correlation of a toy model with two cavity modes and continuously tunable ξ p,p ′ . (A) Magnetic-field-dependent transmittance spectrum with perfect overlap (ϵ = 1), which shows an S-shaped MP. (B) Scaling of the intermode correlations with the off-diagonal coupling strength η 12 . The green and blue dots are obtained by tuning the frequency ω 1 = 2π × [0.339, 90] THz (while keeping ω 2 = 2π × 0.384 THz) and ω 2 = 2π × [0.384, 90] THz (while keeping ω 1 = 2π × 0.339 THz), respectively. The overlap parameter is ϵ = 1. The black dashed line is obtained by tuning ϵ between 0 and 1, with ω 1 = 2π × 0.339 THz and ω 2 = 2π × 0.384 THz. The magnetic field is set to B = 0.81 T, for which ω c = ω 1 . The overlap of all traces confirms that the intermode correlations at the ground state are governed by the FOM η 12 .
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 S6S7 Fig. S6: Simulations with different lengths of time window. (A) Transmittance spectra of a bare 3D-PCC with a series of time windows obtained from simulations. The peaks corresponding to the third and fourth cavity modes become pronounced when the time window is longer than 1000 ps. (B) Transmittance spectra in (A) that are plotted in logarithmic scale.

  Ga 0.76 As barriers. Silicon dopants were placed 80 nm away from the GaAs MQW. An electron density per well of 3.08 × 10 11 cm -2 and a mobility of 2.36 × 10 7 cm 2 /Vs were extracted from Hall transport measurements at 300 mK in the dark. The total electron density of the MQW was 3.08 × 10 12 cm -2 .

	S1 Materials and Methods	
	S1.1 Preparation of the multiple quantum well sample	
	. . . . . . . . . . . . A wafer containing multiple GaAs quantum wells (MQW) was grown by the Purdue molecular 3
	1.2 Fabrication of the THz woodpile cavity . . . . . . . . . . . . . . . . . . . . . beam epitaxy system. This structure had ten 30-nm-thick GaAs MQW separated by 160-nm 3
	1.3 THz time-domain magnetospectroscopy measurements . . . . . . . . . . . . . Al 0.24	4
	2 Supplementary Text	4
	3 Fig. S1 to S8	15

2.1 Transmittance spectrum for the bare 3D-PCC . . . . . . . . . . . . . . . . . . 4 2.2 Microscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Ground-state correlations from different terms in Hamiltonian . . . . . . . . . 9 2.4 Vacuum fluctuations and localization of the cavity modes . . . . . . . . . . . . 10 2.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Thickness of the defect layer in numerical calculations . . . . . . . . . . . . . 12 2.7 Simulations with different ranges of time delays . . . . . . . . . . . . . . . . . 12 2.8 Extraction of peak frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Acknowledgments

This work was done in part using resources of the Research Support Shop and Shared Equipment Authority at Rice University, as well as computational resources of the Centre de calcul de l'université de Strasbourg (CCUS). We thank Motoaki Bamba, Kaden Hazzard, Tal Schwartz, Thibault Chervy, and Cyriaque Genet for useful discussions.

Funding: J.K. acknowledges support from the U.S. Army Research Office (through Award No. W911NF2110157), the Gordon and Betty Moore Foundation (through Grant No. 11520), the W. M. Keck Foundation (through Award No. 995764), and the Robert A. Welch Foundation (through Grant No. C-1509).

Authors' contributions: F.T., D.H., and J.K. conceptualized the project. F.T. and A.M. designed and fabricated the cavity device. F.T., A.B., and H.X. performed the measurements. F.T. analyzed the experimental data. D.H. derived the microscopic model and performed MEEP simulations and calculations. S.L., G.C.G., and M.J.M. grew the 2DEG sample by the molecular beam epitaxy system. F.T., S.S., and A.A. conducted COMSOL simulations. A.B., D.H., and J.K. supervised the project. F.T., D.H., and J.K. wrote the manuscript, with inputs from all authors.

Competing interests: The authors have no competing interests.

Data and materials availability: All data and codes are deposited at Dryad. 

Supplementary Materials

Materials and Methods

Supplementary Text