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Abstract 

The design of curved structural building envelopes is challenging as it requires to account for a 

wide variety of constraints. In particular, the shape must be mechanically efficient, fabricable, 

and fit the site geometry. This article shows how a family of surfaces, called isotropic Linear 

Weingarten surfaces (nicknamed i-liwien), may fulfil all these constraints together, and be used 

as an intuitive design tool. We start by showing that these shapes are funicular for a uniform 

vertical load, and that principal stress lines form a conjugate net. This allows in particular for the 

design of gridshells with planar faces and low bending moments or for the design of self-stressed 

cable nets cladded by planar glass panels. We then propose a discrete model based on recent 

advances in discrete differential geometry. We use this model to propose a generation method 

from boundary curves with two additional control parameters. We demonstrate the shape 

potential on several examples. The application to shells, membranes, cable-nets and gridshells 

are discussed. 

 

Keywords: Architectural geometry, funicular structures, gridshells, cable-nets, structural design, 

Monge-Ampère equation, discrete differential geometry 
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Figure 1: Design workflow for i-liwein surfaces. A designer can control boundary curves and 2 parameters 

1 Introduction 

Curved structural envelopes combine mechanical efficiency, architectural potential and a wide 

design space to fulfil functional and environment goals. However, curvature complicates 

manufacturing, design and assembly, such that cost and construction time are usually 

significantly higher than for parallelepipedic structures. Furthermore, curvature does not 

guarantee structural efficiency, but may actually result in the opposite if mechanical 

considerations are forgotten. 

Manufacturing complexity may be reduced by making sure that the structure fulfils geometrical 

properties specific to the fabrication method. Similarly, mechanical performance may be 

obtained by structural optimization or form-finding of funicular shapes, which are shapes that 

can resist a given load with pure axial forces. However, considering the other constraints of a 

project such as functional requirements and aesthetic, accounting for both fabricability and 

mechanics leads to highly constrained design problems. In this problem, not only the shape – the 

surface described by the structure – is important, but also the structural pattern, a term by which 

we refer to both the orientation and the connectivity of the structural components. 

The high complexity of this problem can be a barrier to the use of curved structures on projects, 

a barrier that happens at two levels for a designer: firstly, what algorithms work and how to use 

them? Secondly, how to apprehend intuitively the possible shapes? 



It is from this perspective that we focus in this article on isotropic Linear Weingarten, that we will 

nickname i-liwein for brevity, as they happen to have the following properties: 

• They offer a rich design space, that contains some popular architectural shapes such as 

parabolic hyperboloids. The shapes are, we think, smooth and harmonious (see for 

example Figure 1 and Figure 2). 

• They can be covered by a quadrangular pattern with planar faces, such that the edges 

constitute a funicular beam structure under uniform vertical load - thus combining 

mechanical performance with a geometrical property which is highly convenient for 

fabrication of cladding panels. This pattern appears from the so-called isotropic principal 

curvature lines, and tend to form smooth networks. 

• Their behaviour and generation is intuitive and well suited to architectural context: They 

can be controlled from closed boundary curves, letting then to the designer two degrees 

of freedom – the first one corresponding to the “inflation” of the shape, the second to 

the “bumpiness” of its crest line (Figure 1).  

  

Figure 2: isotropic Linear Weingarten (i-liwein) tensile membranes generated on the same boundary curves (in 

black)  

Overview of paper 

After a literature review in subsection 1.1, section 2 presents i-liwein surfaces and the basics of 

isotropic geometry – the geometrical point of view from which they emerge. In section 3, we 

show that i-liwein surfaces have an interesting mechanical property: they are funicular under a 

uniform vertical load, and the principal membrane stress directions then form a conjugate net. 

This makes them well-suited to design mechanically efficient support structures covered with 

planar quadrangles. 

In section 4, we show how they can be generated on target boundaries. The generation is 

equivalent to solving a Dirichlet problem of the Monge-Ampere equation. This method allows to 

control the shape by its boundary curve and by two degrees of freedom. Then, in section 5, we 

highlight some design applications to membranes (Figure 2), cable-nets (Figure 3), gridshells 
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(Figure 1) and funicular shells. Section 6 presents two case studies that investigate the 

mechanical performance of i-liwein shells for various values of the parameter b, considering in 

particular non-uniform loads. We finish in section 7 by a discussion of design applications and 

performances. 

 

Figure 3: A self-stressed cable-net with planar quad glass panels supported at cable crossings 

1.1 Previous work 

Before getting started on i-liwein surfaces, we will be reviewing here the design methods for 

double-curvature structures that account for both mechanical efficiency and fabricability. We 

subdivide the literature based on how the topology and shape are dealt with, as this is the main 

difference of our approach with the core of the literature on the topic. 

From topology to shape 

Many design methods take topology as an input, and explore the possible shapes. For example, 

hanging models, which have been used abundantly for shell and membrane design by master-

builders such as Heinz Isler, Frei Otto or Antonio Gaudi, give funicular shapes that correspond to 

a specific net configuration. Using a hanging cable net with constant edge length gives a shape 

that is both funicular and realizable as an elastic gridshell – a strategy used to find the form of 

the Mannheim gridshell (Happold and Liddel 1975). The numerical form-finding methods, such 

as force density (Schek 1974), particle-spring method, or the thrust network analysis TNA (Block 

2009), also take pattern as an input. The orientation and connectivity of the starting pattern may 

change drastically the shape resulting from these methods, as highlighted in (Ramm and Wall 

2004). Similarly, orientation and connectivity are key parameters when optimizing a geometry to 

combine mechanical efficiency and fabrication properties such as face planarity, as is for example 

done in (Adriaenssens et al. 2012), (Feng and Ge 2013), (Mesnil et al. 2018) or (Tang et al. 2014). 

From shape to topology 

Another common design approach is to take a shape as an input, and to find an optimal pattern 

on it. For structural performance, optimal pattern for a quad gridshell or a waffle shell is 

commonly searched by aligning the pattern with principal stress nets. Similarly, considering 



fabrication alone is done by aligning the pattern with specific surface curves or parametrizations, 

such as conjugate nets (Vouga et al. 2012; Zadravec, Schiftner, and Wallner 2010), geodesics, 

asymptotic curves (Schling, Hitrec, and Barthel 2017), conformal patterns or principal curvature 

lines (Bo et al. 2011; Tellier et al. 2019b; Wang and Liu 2009).  

Structural performance and fabricability can also be searched together with this approach. For 

example, (Schiftner and Balzer 2010) propose to pattern a surface following maximum stress lines 

and their conjugate directions. (Oval 2019; Oval et al. 2018) propose a method to explore various 

topologies and compare their performances. 

From boundaries to shape and topology 

The two above approaches may be limited when trying to obtain too many properties from the 

geometry at the same time.  For example, (Sun 2016) studied how to design a surface fitting a 

target boundaries in which principal stress lines coincide with principal curvature lines in a 

“topology to shape” approach. The limited success of this approach led the team to relax entirely 

the topology: in (Pellis and Pottmann 2018), the alignment of principal stresses and curvature is 

obtained by a new constraint on triangular meshes. The topology of the structural pattern is not 

imposed beforehand; it instead appears in a subsequent remeshing step.  

This article will use the same approach: given our mechanical and fabrication constraints 

(funicularity and face planarity), we derive both the optimal topology and the optimal shape from 

the boundaries. This is permitted by a formulation of these properties which is independent of 

surface parametrization.  

This article extend the work presented at the AAG2020 conference in the continuation of the 

work presented in (Tellier et al. 2018, 2019a, 2020, 2021), in which we looked at the generation 

of constant mean curvature and Linear Weingarten surfaces (not isotropic): on these surfaces, 

principal stresses and curvature are aligned under a uniform normal pressure load. The present 

work differs in the sense that we will now consider vertical uniform loads, which model better 

self-weight and snow loads. 

2 i-liwein surfaces 

2.1 Isotropic geometry 

Isotropic Linear Weingarten surfaces (i-liwein) are objects of isotropic geometry. Isotropic 

geometry is a way to describe the geometry of shapes with a specific set of tools, in which the 

vertical direction plays a particular role. A thorough treatment can be found in (Sachs 1990). 

(Pottmann and Liu 2007) gives a concise introduction. 



6 

 

In isotropic geometry, the notions of distance, angles and curvature differ from the traditional 

Euclidian geometry. They are all computed relatively to a vertical projection on the horizontal 

plane. The notion of surface curvature is also described differently. This difference is best 

understood by looking at a planar curve 𝑧 = 𝑓(𝑥)  (Figure 4). There are two ways to describe the 

inclination of the tangent of such a curve: 

• The angle it makes with a reference axis (e.g. a horizontal axis); 

• The slope 𝑑𝑧/𝑑𝑥. 

With the first one (the angle), the curvature is naturally understood as the variation of the angle 

of the tangent as we move along the curve (𝑑𝛼/𝑑𝑠, with 𝑑𝑠 = √𝑑𝑥2 + 𝑑𝑧2), which is the inverse 

of the radius of the tangent circle: this is the Euclidian curvature. With the second one (the slope), 

the curvature is best defined as the variation of slope with respect to 𝑥 (𝑑²𝑧/𝑑𝑥²): this is the 

isotropic curvature.  

 

Figure 4: Description of curvature in Euclidian and isotropic geometry 

We remark that the slope of a vertical line is infinite: isotropic geometry is not the right tool to 

describe curves with vertical tangents or surfaces with vertical tangent planes. It is then natural 

to describe surfaces as height fields: 

(𝑥, 𝑦) ↦ (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) (1) 

We will mostly use this way of parametrizing surfaces throughout this paper. The role of the 

curvature tensor is played by the hessian of 𝑓: 

∇2𝑓 = [
𝜕𝑥𝑥𝑓 𝜕𝑥𝑦𝑓

𝜕𝑥𝑦𝑓 𝜕𝑦𝑦𝑓
] 

∇2𝑓 is symmetric, so it admits two orthogonal eigenvectors in the 𝑥𝑦 plane, which are called the 

i-principal directions. The maximum and minimum eigenvalues, 𝑓1and 𝑓2, are called i-principal 

curvatures. By integrating the i-principal directions, one obtains the i-principal curvature lines. 

They differ from the Euclidian principal curvature lines. However, they still form a conjugate net, 



which is a smooth equivalent of planar quad meshes (Sauer 1970). Furthermore, their vertical 

projection on the 𝑥𝑦 plane is an orthogonal net.  

2.2 i-liwein surfaces 

Similarly, to Euclidian geometry, the Gauss and mean curvature can be defined as the 

determinant and half-trace of the curvature tensor (an i superscript is used to differentiate them 

from the traditional Euclidian curvatures): 

𝐾𝑖 = 𝜕𝑥𝑥𝑓𝜕𝑦𝑦𝑓 − 𝜕𝑥𝑦𝑓2 = 𝑓1𝑓2 

𝐻𝑖 =
1

2
(𝜕𝑥𝑥𝑓 + 𝜕𝑦𝑦𝑓) =

1

2
Δ𝑓 =

1

2
(𝑓1 + 𝑓2) 

i-liwein can then be defined as the surfaces verifying at each point: 

𝑎𝐻𝑖 + 𝑏𝐾𝑖 = 𝑐 (2) 

for given constant real coefficients a, b and c.  

 

2.3 Examples 

It turns out that some well-known families of surfaces satisfy equation (2), including popular 

shapes in architecture. 

2.3.1 Paraboloids 

Paraboloids are a very common family of shapes for shells (see Figure 5). With a proper choice of 

axes and origin, their equation reads: 

𝑧 = 𝛼𝑥2 + 𝛽𝑦² 

If 𝛼𝛽 < 0, the surface is called a hyperbolic paraboloid (or « hypar »), and contains two families 

of straight lines. If 𝛼𝛽 > 0, the surface is called an elliptic paraboloid. The Hessian of the height 

field reads: 

∇2𝑓 = [
2𝛼 0
0 2𝛽

] 

Paraboloids are isotropic LW surfaces, as their mean and Gaussian curvature are both constant: 

𝐻𝑖 = 𝛼 + 𝛽  

𝐾𝑖 = 4𝛼𝛽 
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Figure 5: These three structure are composed of paraboloids, which are a special types of isotropic LW surfaces. 

Top left: El Oceanográfico (F. Candela), Valencia, Spain (©Felipe Gabaldón); 

Top right: Teepott restaurant, Warnemünde, Germany (©An-D) ; 

Bottom: Courtyard roof Industriepalast, Leipzig (reproduced with permission from (Glymph et al. 2004)) 

There is actually one degree of freedom to define the (𝑎, 𝑏, 𝑐) coefficients of the LW relationship 

(more precisely, one more degree of freedom than the trivial scaling of a, b and c). If we fix the 

trivial scaling of (𝑎, 𝑏, 𝑐) by setting either 𝑐 = 0 or 𝑐 = 1, equation (1) is verified for any value of 

𝑎 as long as:  

 𝑏 =
c − 𝑎(𝛼 + 𝛽)

4𝛼𝛽
 (3) 

2.3.2 Pelikan surfaces 

Membranes for which the membrane stress tensor, when projected in the horizontal plane, is 

constant, are called Pelikan surfaces. They were introduced in (Pelikan 1958).  These surfaces 

have been generated by dynamic relaxation (Hincz and Gaspar 1999), and have been used for 

example to design of membranes and  concrete shells, such as the Keramion ceramics museum 

in Frechen (Figure 6), for which a tensile membrane was used as a formwork for a concrete shell 

(www.keramion.de). 



 

Figure 6: The concrete shell of the Keramion museum in Frechen, Germany, is a Pelikan surface – a special type 

of i-LW surface also referred to as i-minimal. ©Klaas Vermaas 

2.3.3 Harmonic functions as height fields 

Scalar harmonic functions of the plane are functions for which the Laplacian is null at any point: 

Δ𝑓 = 0. They are therefore field heights of i-minimal surfaces, i.e. surfaces verifying 𝐻𝑖 = 0. 

There is a rich mathematical theory behind these surfaces. One method to generate a rich variety 

of analytical harmonic functions is via complex holomorphic functions (Cartan 1963). A 

holomorphic function of a region 𝐷 ⊂ ℂ is a function 𝑓: 𝐷 → ℂ which is conform, i.e. it transforms 

an infinitesimal square into another infinitesimal square. Most of the complex functions that one 

could think about that do not contain the complex conjugate 𝑧̅ are holomorphic. This is the case 

in particular of the following functions: 

• Polynomials. Ex : 𝑓(𝑧) = 𝑧7 − 42𝑖𝑧  , 𝑧 ∈ ℂ  

• Rational functions (fractions of polynomials). Ex : 𝑓(𝑧) =
𝑧+1

𝑧−1
 

• Exponential functions. Ex : 𝑓(𝑧) =
𝑒𝑖𝑧+𝑒−𝑖𝑧

2
= cos 𝑧 

• Linear combination of harmonic functions. Ex : 𝑓(𝑧) = 𝑒𝑧 + 1/𝑧  

The link with i-minimal surfaces appears with an important theorem about holomorphic 

functions: Their real part and imaginary part are both harmonic. Figure 7 shows several i-minimal 

surfaces generated using this property: 

• Top left: 𝑓(𝑧) = 𝑅𝑒(log 𝑧) where 𝑅𝑒(𝑧) is the real part of a complex number 𝑧. 

• Top middle: Monkey saddle of order 3:  𝑓(𝑧) = 𝑅𝑒(𝑧3) = 𝑥3 − 3𝑥𝑦2 

• Top right:  𝑓(𝑧) = 𝑅𝑒(1/‖𝑧‖2) 

• Bottom left: 𝑓(𝑥, 𝑦) = cos 𝑥 exp(𝑦 − 1) + cos(𝑥 + 𝜋) exp(−𝑦 − 1) 

• Bottom right: 𝑓(𝑧) = 𝑅𝑒(tan−1(𝑧))  
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Figure 7: Analytical i-minimal surfaces – each surface can be realized as a tension membrane  

2.3.4 Developable surfaces 

Developable surfaces are characterized by 𝐾 = 0. For a height field surface defined as in 

equation (1), 𝐾 and 𝐾𝑖  are related by (do Carmo 1976): 

𝐾 =
𝜕𝑥𝑥𝑓𝜕𝑦𝑦𝑓 − 𝜕𝑥𝑦𝑓2 

(1 + 𝜕𝑥𝑓2 + 𝜕𝑦𝑓2)
2 =

𝐾𝑖

(1 + ‖∇𝑓‖2)2
 

Therefore, any developable surface (𝐾 = 0) that can be described as a height field is i-liwein 

(𝐾𝑖 = 0). 

Note: 

The mean curvature can also be expressed as a function of the isotropic mean curvature: 

𝐻 =
𝐻𝑖 +

1
2

 ∇𝑓. ∇2�̂�. ∇𝑓

(1 + ‖∇𝑓‖2)3/2
 

From that expression, it appears clearly that there is no equivalence between minimal and i-

minimal. 

2.3.5 Surfaces of revolution and helices 

(Ogrenmis 2016) solved the ordinary differential equation fulfilled by the meridian of an i-liwein surface of 

revolution, and gives the analytical solution. There are two degrees of freedom to design the meridian for a given 

set of coefficients (𝑎, 𝑏, 𝑐) – except for some degenerate coefficients for which there is only one. (Yoon and Lee 

2016) performed the same work for i-liwein surfaces with helicoidal symmetry. 



3 Mechanics of i-liwein surfaces 

3.1 Funicularity 

This section shows that i-liwein surfaces enjoy a mechanical property very similar to their 

Euclidian counterparts. This property is best expressed using the tensor 𝐍𝐢 of projected 

membrane stresses in the 𝑥𝑦 plane. 

Proposition 1 

Let us consider a shell with membrane-compatible support conditions and with an i-liwein 

reference surface fulfilling equation (2) (a𝐻𝑖 + 𝑏𝐾𝑖 = 𝑐). 

If 𝑐 ≠ 0, the shell is funicular for uniform vertical loads 𝑤𝑒𝑧 (𝑤 is in kN/m2). The projected 

membrane stresses are given by: 

𝐍𝐢 =
𝑤

2𝑐
(𝑎 𝐈 + 𝑏 ∇2�̂�) 

Where 𝐈 the identity tensor of the 𝑥𝑦 plane, and ∇2�̂� is the tensor obtained by rotating the 

hessian ∇2𝑓 by +90° around the 𝑧 axis: 

∇2�̂� = [
𝜕𝑦𝑦𝑓 −𝜕𝑥𝑦𝑓

−𝜕𝑥𝑦𝑓 𝜕𝑥𝑥𝑓
] 

If 𝑐 = 0, the shell admits a one parameter family of self-stress fields given by: 

𝐍𝐢 = 𝜆(𝑎 𝐈 + 𝑏∇2�̂�)  , 𝜆 ∈ ℝ 

Corollary 

Under a uniform vertical load, principal membrane stresses on an i-liwein shell form a conjugate 

net and coincide with i-curvature directions. Discretization by stress lines hence give quadrangles 

which are near-planar. 

Proof: 

Membrane equations can be written in Cartesian coordinates, as detailed for example in (Ventsel 

and Krauthammer 2001). The projected membrane stress field 𝐍𝐢 is at equilibrium under a 

vertical load 𝐺𝑒𝑧 if it verifies: 

𝑑𝑖𝑣 𝐍𝐢 = 𝟎 

𝑑𝑖𝑣(𝐍𝐢. ∇𝑓) = 𝐺 

These equations correspond respectively to the horizontal and vertical equilibrium. The fact that  

𝑑𝑖𝑣 𝐍𝐢 = 0 can be used to simplify the vertical equilibrium equation in the form: 

𝑡𝑟(𝐍𝐢. ∇2𝑓) = 𝐺 

The divergence of the stress fields from the proposition are: 
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𝑑𝑖𝑣 𝐍𝐢 =
𝑤

2𝑐
(𝑎 𝑑𝑖𝑣 𝐈 + 𝑏 𝑑𝑖𝑣(∇2�̂�) 

Obviously, 𝑑𝑖𝑣 𝐈 = 0. Furthermore, by expressing ∇2�̂� in 𝑥, 𝑦 coordinates: 

𝑑𝑖𝑣(∇2�̂�) = 𝑑𝑖𝑣 [
𝜕𝑦𝑦𝑓 −𝜕𝑥𝑦𝑓

−𝜕𝑥𝑦𝑓 𝜕𝑥𝑥𝑓
] = 0 

The proposed stress fields are therefore at horizontal equilibrium.  

The vertical equilibrium is obtained by expressing ∇2𝑓 and ∇2�̂�  in the i-principal curvature 

directions:  

If 𝑐 ≠ 0: 

𝑡𝑟(𝐍𝐢. ∇2𝑓) =
𝑤

2𝑐
𝑡𝑟 ((𝑎 [

1 0
0 1

] + 𝑏 [
𝑓2 0
0 𝑓1

]) [
𝑓1 0
0 𝑓2

]) 

=
𝑤

2𝑐
(𝑎(𝑓1 + 𝑓2) + 2𝑏𝑓1𝑓2) 

=
𝑤

2𝑐
(2𝑎𝐻𝑖 + 2𝑏𝐾𝑖) 

= 𝑤 

The same reasoning applies to the case 𝑐 = 0. The corollary stems from the fact that eigenvectors 

of ∇2𝑓 are also eigenvectors of ∇2�̂�, which in turn are eigenvectors of 𝑎 𝐈 + 𝑏∇2�̂�. 

The corollary is proved by remarking that the eigenvectors of 𝐍𝐢 = 𝜆(𝑎 𝐈 + 𝑏∇2�̂�) are the 

eigenvectors of ∇2�̂� : 

𝑤𝑖𝑡ℎ 𝑘 ∈ ℝ , 𝜆 (𝑎 𝐈 + 𝑏∇2�̂�)𝒖 = 𝑘𝒖  ⟺ ∇2�̂�𝒖 = (
𝑘/𝜆 − 𝑎

𝑏
) 𝒖 

Since ∇2𝑓 is symmetric, its eigenvectors are orthogonal. As ∇2�̂� is obtained by rotating ∇2𝑓 in-

plane by 90°, eigenvectors of ∇2�̂� and ∇2𝑓 coincide. We can conclude that the eigendirections of 

𝐍𝐢 coincide with i-principal curvature directions of the surface 𝑓. ∎ 

3.2 Link with Airy stress function 

Planar stress tensors at equilibrium without external loads can be expressed with the hessian of 

a scalar function Φ, called the Airy stress function. When a shell is subject to purely vertical 

forces, such a function can be used to describe the projected stress tensor 𝑵𝒊: 

𝑵𝒊 = ∇2Φ̂ 

In our case, the Airy stress function Φ is : 

Φ(x, y) =
𝑎

2
(𝑥2 + 𝑦2) + 𝑏𝑓(𝑥, 𝑦) 



The Airy stress function is hence a linear combination of the heights of the isotropic sphere and 

of the surface height itself, which is a remarkable property. 

3.3 Application to paraboloids 

The above result can be applied to paraboloids with an interesting consequence: they are 

funicular for two different load cases. Given a paraboloid 𝑧 = 𝛼𝑥2 + 𝛽𝑦² we have two possible 

choices for parameter 𝑐, 𝑐 = 0 or 𝑐 = 1: 

With 𝑐 = 1, we can interpret the shape as funicular under uniform vertical. Using equation (3), 

there is a one-parameter family of admissible stress fields :  

𝐍𝐢 =
𝑤

2
(𝑎 𝐼 + 𝑏 ∇2�̂�) =

𝑤

2
(𝑎 [

1 0
0 1

] + (
1 − 𝑎(𝛼 + 𝛽)

4𝛼𝛽
) [

2𝛽 0
0 2𝛼

]) , 𝑎 ∈ ℝ 

With 𝑐 = 0, we find another family of admissible stress fields, which corresponds to self-stressed 

states: 

𝑵𝒊 = 𝑎 𝑰 + 𝑏𝛻2�̂� = 𝑎 ( [
1 0
0 1

] −
(𝛼 + 𝛽)

2𝛼𝛽
[
𝛽 0
0 𝛼

]) , 𝑎 ∈ ℝ 

The fact that paraboloids are at the same time self-stress shapes and funicular shaped under 

uniform load is remarkable. For example, if a hypar membrane or cable-net (case 𝛼𝛽 < 0) is used 

as a formwork for casting a concrete shell, the membrane deflection under the dead load of the 

fresh concrete is expected to be very low compared to other arbitrary membrane shapes: 

deflections will be mostly due to material stretching rather than to a deflection to get into a 

funicular shape. We remark that if 𝛼 + 𝛽 = 𝐻𝑖 ≠  0, warp and weft of the membranes need to 

be aligned with the horizontal 𝑥 and 𝑦 axes – otherwise the stress field is not admissible. 

Patching paraboloids 

Rows of paraboloids can be assembled to form a C1 surface that is still i-liwein. Indeed, let us 

consider the paraboloids of Figure 8 which form a row on the 𝑥 axis. Blue and white patches can 

be described respectively by equations 𝑧 = 𝛼𝑏𝑙𝑢𝑒𝑥2 + 𝛽𝑦² and 𝑧 = 𝛼𝑤ℎ𝑖𝑡𝑒𝑥2 + 𝛽𝑦² , 𝛽 being 

identical to insure continuity. If we set: 

𝑎 = 1 ; 𝑏 =
−1

4𝛽
 ; 𝑐 = 𝛽 

Then, for both blue patches: 

𝑎𝐻𝑖 + 𝑏𝐾𝑖 = (𝛼𝑏𝑙𝑢𝑒 + 𝛽) +
−1

4𝛽
 4𝛼𝑏𝑙𝑢𝑒𝛽 = 𝛽 = 𝑐 

The same results hold for the white patches. The surface is therefore i-liwein. The fact that it is 

not C2 does not alter the mechanical properties: we can find a continuous membrane stress field 

across the whole surface under uniform vertical load. It does not either alter the panelling by 

planar quads, because the i-principal curvatures are aligned with the 𝑥 and 𝑦 axes for all patches.   
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Figure 8: C1 i-liwein surface composed of paraboloids 

This reasoning can be actually extended to an arbitrary number of patches 𝑧 = 𝛼𝑖𝑥
2 + 𝛽𝑦2, 𝑖 =

1,2 … , 𝑛, or even to a translation surface generated by translating a parabola of the 𝑦𝑧 plane 

along a curve of the 𝑥𝑧 plane, i.e. a surface with equation:  

𝑧 = 𝑔(𝑥) + 𝛽𝑦2  

where 𝑔 is an arbitrary real continuous function and 𝛽 a real number. 

 

3.4 Invariance by x, y or z scaling 

One can easily prove that the vertical scaling conserve the i-liwein property. However, a 

horizontal scaling (for example a 1D-scaling of 𝑥 direction) transforms equation (2) into the form: 

𝑎𝑥𝜕𝑥𝑥𝑓 + 𝑎𝑦𝜕𝑦𝑦𝑓 + 𝑏0𝐾𝑖 = 𝑐0 

The same reasoning as in 3.1 shows that these surfaces are also funicular under a uniform vertical 

load. In particular, scaling an i-CMC surface (𝐻𝑖 = 𝑐𝑡𝑒) yields surfaces with constant projected 

stress tensors, i.e. a general Pelikan surfaces.  

3.5 Extension to surfaces funicular to self-weight  

Proposition 1 considers a uniform vertical load. This is often a good approximation of dead load 

if the slope of an envelope is small, and it is always a good model of symmetric snow loads. 

However, in shell structure of constant thickness with high slopes, this approximation might not 

be precise. The result of proposition 1 can actually be adapted for this setting to search for 

surfaces with constant projected stresses: 

Proposition 2 

A shell of constant thickness with reference surface 𝑧 = 𝑓(𝑥, 𝑦) such that: 

𝑡𝑟(∇2𝑓)

√1 + ‖∇f‖²
= 𝑐  , 𝑐 ∈ ℝ 

is self-supported: It can resist its own weight with pure membrane stresses, such that the 

projected membrane stress tensor in the horizontal plane is isotropic and constant. 



Proof: 

Self-weight is a vertical load of amplitude: 

𝐺(𝑥, 𝑦) = 𝜇 √1 + ‖∇f‖²  , 𝜇 ∈ ℝ 

Where G is expressed for example in kN per m² of projected area in the xy plane. Let us consider 

the projected stress tensor 𝐍𝐢 =
𝜇

𝑐
 𝐈. It verifies 𝑑𝑖𝑣 𝐍𝐢 = 𝟎. Furthermore: 

𝑡𝑟(𝐍𝐢. ∇2𝑓) = 𝑡𝑟 (
𝜇

𝑐
 ∇2𝑓) = 𝜇 √1 + ‖∇f‖² = 𝐺 

𝐍𝐢 is therefore at equilibirum under the load 𝐺. ∎ 

This equation opens the way to the search of analytical self-supporting grids. One could for 

example search for a family of funicular surfaces of revolution: Their meridians could be found 

by solving an ordinary differential equation, with one variable. One could also look for funicular 

surfaces of translations. These surfaces will not be addressed further in this article. 

3.6 Recovering membrane stresses 

The membrane stress tensor 𝐍 can be recovered from the projected tensor 𝐍𝐢 following equations given for example 

in (Frey and Studer 2003). Let us call: 

• 𝒆𝒙 and 𝒆𝒚 the base vectors of the plane 𝑥𝑦; 

• 𝒆𝒙
𝑺 and 𝒆𝒚

𝑺 the projections of the base vectors 𝒆𝒙 and 𝒆𝒚 in the tangent plane of the surface. These 

vectors are in general not orthogonal; 

• 𝑁𝑥𝑥 , 𝑁𝑥𝑦, 𝑁𝑦𝑦, the components of the membrane tensor 𝐍 in the basis (𝒆𝒙
𝑺, 𝒆𝒚

𝑺). 𝑁𝑥𝑥  𝒆𝒙
𝑺 + 𝑁𝑥𝑦 𝒆𝒚

𝑺 

(respectively 𝑁𝑥𝑦 𝒆𝒙
𝑺 +  𝑁𝑦𝑦 𝒆𝒚

𝑺 ) is then the membrane stress vectors acting on a facet with 

normal 𝒆𝒙
𝑺 (resp. 𝒆𝒚

𝑺);  

• 𝛼 and 𝛽 are the slope angles in the 𝑥 and 𝑦 directions: 

tan 𝛼 = 𝜕𝑥𝑓  ;   tan 𝛽 = 𝜕𝑦𝑓 

The coefficients of the membrane stress tensor are then: 

𝑁𝑥𝑥 = 𝑁𝑥𝑥
𝑖

cos 𝛽

cos 𝛼
   ;   𝑁𝑥𝑦 = 𝑁𝑥𝑦

𝑖   ;   𝑁𝑦𝑦 = 𝑁𝑦𝑦
𝑖

cos 𝛼

cos 𝛽
    

Note: Despite the fact that 𝑁𝑥𝑦 = 𝑁𝑥𝑦
𝑖 , principal directions of 𝐍𝐢 (for which shear is null) are not the projections of 

the principal directions of 𝐍. This is due to the fact that the 𝑥 and 𝑦 axes do not project in general to orthogonal 

axes on the membrane tangent plane. 

4 Generation of i-LW surfaces from boundary curves 

In this section, a generation method for elliptical i-liwein surfaces (verifying 𝑎2 + 4𝑏𝑐 > 0) from 

a boundary curves is presented.  

4.1 The Monge-Ampere equation 

As i-liwein surfaces are necessarily height fields, they can be generated by solving the partial 

differential equation (2) in a function 𝑓 of 𝑧. This is a special case of the Monge-Ampère equation  

as it can be written in the form (Courant and Hilbert 1962): 
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𝐸(𝜕𝑥𝑥𝑓𝜕𝑦𝑦𝑓 − 𝜕𝑥𝑦𝑓2) + 𝐴 𝜕𝑥𝑥𝑓 + 2𝐵 𝜕𝑥𝑦𝑓 + 𝐶 𝜕𝑦𝑦𝑓 + 𝐷 = 𝑔(𝑥, 𝑦) 

With 𝐸 = 𝑏  ;   𝐴 = 𝐶 =
𝑎

2
 ;   𝐵 = 0  ;   𝐷 = −𝑐 ; 𝑔(𝑥, 𝑦) = 0 

The Monge Ampere equation has many physical applications, ranging from optimal transport 

problems (Benamou, Froese, and Oberman 2014; Villani 2003) to reflector design (Wu et al. 

2013). It  also has many applications in differential geometry, allowing for example the proof of 

the existence of particular types of surface (Trudinger and Wang 2008). Numerical resolution has 

been addressed quite recently by research. A review of is given in (Neilan, Salgado, and Zhang 

2020).  

This problem is particularly complex to solve for the following reasons:  

• It is a fully nonlinear problem: the term with highest derivative is not linear; 

• Solutions have low regularity and are not unique; 

• Weak solutions are not based on variational principles. A significant portion of the 

literature is devoted to viscosity solutions, which may have weaker regularity; 

• Existence and uniqueness of solutions is subject to a constraint on the convexity of the 

solution and domain – which is a strong constraint for application to architecture. 

Many resolution methods are based on finite differences and a quad grid discretization of the 

plane, (Benamou, Froese, and Oberman 2010; Dean and Glowinski 2003, 2004; Oberman 2008). 

These are less suited for irregular contours, as are likely to occur in an architectural context. Also, 

these methods only search for a convex solution to the problem, which we will refer to as type 

II, in section 4.3.1. 

(Feng and Jensen 2017) introduced a finite-element formulation based on a triangular 

discretization. It was used in (Jensen 2018) to explore some solutions of the Monge-Ampere 

equation on non-convex domains. As this method is relatively complex, we will use the fact that, 

in our context, 𝑔 = 𝑐𝑡𝑒, to propose a simpler generation method based on a quadratic discrete 

operator on triangular meshes from discrete differential geometry. 

4.2 Discrete i-liwein surfaces 

Discrete curvature models 

We discretize i-liwein surfaces by using the vertex-wise discrete model for 𝐻𝑖 and 𝐾𝑖 for 

unstructured triangular meshes proposed in (Pottmann and Liu 2007). The calculation steps to 

compute the curvature of a vertex 𝑣 in a mesh M are the following: 



i. Compute the metric dual of the planes of the faces adjacent to vertex 𝑣. The dual of the 

plane of a face 𝑖 is a point, which, once projected vertically onto the 𝑥𝑦 plane, yields a 

point 𝑚𝑖. The points 𝑚𝑖 form a closed polygon 𝐿𝑚. The area of this polygon, 𝐴(𝐿𝑚) can 

be calculated as: 

𝐴(𝐿𝑚) =
1

2
∑ det(𝑚𝑖, 𝑚𝑖+1) 

ii. Project the 1-star of 𝑣 vertically on the Maxwell paraboloid Σ. Compute the metric dual 

of the projected faces: they form a closed polygon. Project it onto the 𝑥𝑦 plane, thus 

forming the polygon 𝑠1𝑠2 … called 𝐿𝑠, with oriented area A(𝐿𝑠). 

iii. Compute the mixed area of polygons 𝐿𝑀 and 𝐿𝑆, defined as: 

𝐴(𝐿𝑀 , 𝐿𝑆) =
1

4
∑(det(𝑚𝑖 , 𝑠𝑖+1) + det (𝑠𝑖, 𝑚𝑖+1)) 

iv. The discrete Gaussian and mean curvature are then computed as: 

𝐾𝑖(𝑣) =
𝐴(𝐿𝑚)

𝐴(𝐿𝑠)
 ,   𝐻𝑖(𝑣) =

𝐴(𝐿𝑚, 𝐿𝑠)

𝐴(𝐿𝑠)
 

 

Notes: 

• With this model, vertices should not have too high 𝑥 or 𝑦 coordinates: The projection to the i-

sphere gets points to an altitude 𝑥² + 𝑦², working tolerance can be reached easily. 

• 𝐻𝑖(𝑣) could be calculated in a more simple way by taking a discrete Laplacian of the 𝑧 coordinates 

of the vertices. The chosen discretization is more complex, but more consistent with the discrete 

model of 𝐾𝑖. 

Assessment of discrete model 

Figure 9 shows the values given by these two discrete models for two triangular meshes inscribed 

in paraboloids – for which the Gaussian and mean curvature are known analytically. By inscribed, 

we mean that the mesh vertices are exactly on the surfaces. We observe that the discrete 

curvatures are very close to the ones of the smooth paraboloids for the synclastic paraboloid. 

However, high discrepancies are observed for 𝐾𝑖 for the hypar, especially for nodes of valence 

different from 6, and in areas of high slope. This problem of approximation of Gaussian curvature 

for inscribed meshes was identified in (Borrelli, Cazals, and Morvan 2003) in Euclidian geometry. 

We observe the same issue in isotropic geometry. However, we shall see in section 4.5 that these 

discrepancies are not an issue in our method because they are due to the fact that we use 

inscribed meshes. 
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Figure 9: Evaluation of discrete models for isotropic Gaussian and mean curvatures 

i-liwein meshes 

From these discrete models, i-liwein triangular meshes can naturally be defined as meshes for 

which a linear combination of these two curvatures is constant for each vertex: 

∀ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣, 𝑎𝐻𝑖(𝑣) + 𝑏𝐾𝑖(𝑣) = 𝑐, 𝑎, 𝑏, 𝑐 ∈ ℝ 

 

4.3 Preliminaries on smooth i-liwein surfaces 

4.3.1 Type I and II solutions 

Important geometrical insight on i-liwein surfaces can be obtained from the curvature diagram, 

i.e. a diagram plotting the value of 𝐻𝑖 and 𝐾𝑖 at each surface point (Figure 10). For i-liwein 

surfaces, this diagram is included in a straight line. We observe that the isotropic Gaussian and 

mean curvature verify the inequality: 

𝐻𝑖 2 − 𝐾𝑖 = (
𝑓1 − 𝑓2

2
)

2

≥ 0 

There is hence a domain of the diagram which is impossible geometrically (in red). If 𝑎2 + 4𝑏𝑐 ≥

0, the line defined by equation (2) crosses this forbidden domain. The curvature diagram is hence 

included in the union of two rays (semi-infinite lines). Now, in a smooth surface, curvatures vary 

continuously: the curvature diagram is a one-connected domain. As a result, the curvature 

diagram of an i-liwein surface with 𝑎2 + 4𝑏𝑐 ≥ 0 cannot be on both rays. We will call type I (resp. 

type II) the i-liwein surfaces having their curvature diagram entirely in the left (resp. right) ray. 

From a design perspective, type I surfaces are more interesting formally than type II, because the 

latter tend to look quite spherical.  



 

Figure 10: Curvature diagram 

4.3.2 Condition for elliptic PDE 

One can show that, if 𝑏 ≠ 0, equation (2) can be put in the following form with the change of 

variable  

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) +
𝑎

4𝑏
(𝑥2 + 𝑦2): 

4𝑏2𝐾𝑖(𝑔) = 𝑎2 + 4𝑏𝑐 

Solving equation (2) with 𝑎2 + 4𝑏𝑐 > 0 is therefore equivalent to computing the geometry of a 

surface with positive constant i-Gaussian curvature. This problem is elliptic, and is hence well 

suited to a generation from a closed boundary.  

4.4 Generation method 

We introduce an iterative method to solve the equation, with the following simple pseudo-code: 

i. Triangulate domain 

ii. Create initial solution (e.g. z=0 or minimal) 

iii. Iterate the following steps until displacements are below tolerance: 

a. Solve the equation 𝑎𝐻𝑖 + 𝑏𝐾𝑖  = 𝑐 for each vertex individually, assuming that 

neighbours are fixed. 

b. Move each vertex to the calculated position. 

Local resolution 

The key step of the algorithm is the resolution with fixed neighbours (step iii.a). The equation is 

nonlinear, but we remark that, as the centre vertex of a 1-star is moved along a vertical axis: 

• 𝐴(𝐿𝑠) does not change; 

• 𝐴(𝐿𝑚) varies quadratically; 

• 𝐴(𝐿𝑚, 𝐿𝑠) varies linearly. 
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Hence, 𝐻𝑖 and 𝐾𝑖 vary respectively linearly and quadratically with a vertex height. Therefore, 

𝑎𝐻𝑖 + 𝐵𝐾𝑖 − 𝑐 is quadratic in 𝑧. Thus, there exists real coefficients 𝛼, 𝛽 and 𝛾 such that: 

𝑎𝐻𝑖 + 𝑏𝐾𝑖 − 𝑐 = 𝑃(𝑧) =  𝛼𝑧2 + 𝛽𝑧 + 𝛾 

The resolution in 𝑧 is then straightforward, we use the following method: 

Case 𝑏 = 0 

If 𝑏 = 0, the equation is linear. This case corresponds to i-CMC surfaces. 𝛼, 𝛽 and 𝛾 are given by: 

𝛼 = 0  ;  𝛾 = 𝑃(0)  ;   𝛽 =
𝑃(ℎ) − 𝛾

ℎ
 

Where ℎ is an arbitrary length, taken for example as the average edge length of the 1-star 

boundary. Then: 

𝑧 = −𝛾/𝛽 

Case 𝑏 ≠ 0 

In that case, the equation is quadratic. We calculate coefficients 𝛼, 𝛽 and 𝛾 as follows: 

𝛾 = 𝑃(0)  ;  𝛽 =
𝑃(ℎ) − 𝑃(−ℎ)

2ℎ
  ;   𝛼 =

𝑃(ℎ) − 𝛽ℎ − 𝛾

ℎ²
 

We then compute the discriminant ∆= 𝛽2 − 4𝛼𝛾. We choose the height z as follows: 

• If ∆> 0 : For a type I solution, we choose the root solution 𝑧 =
−𝛽−√∆

2𝑎
; for a type II solution, 

we choose      𝑧 =
−𝛽+√∆

2𝑎
 

• If ∆= 0, we obviously return the only solution; 

• If ∆< 0, we output the critical point, which minimizes |𝑎𝐻 + 𝑏𝐾 − 𝑐|: 

𝑧 = −
𝛽

2𝛼
 

4.5 Validation 

The generation method is validated using again paraboloids. By generating a surface with the 

analytical boundaries of a paraboloid, one can obtain an i-liwein mesh very close to the 

paraboloid. Examples are given in Figure 11. Curvatures, Gaussian and mean, both converge well 

to their expected value. Results are given for 1000 iterations 



 

Figure 11: Validation of generation method - Construction of paraboloids from their boundaries as i-liwein surfaces 

Note: 

To finish our discussion about vertex-wise approximation of curvatures, related to (Borrelli et al. 

2003), we remark that that the discrete scheme of 𝐾𝑖 and 𝐻𝑖, which were giving poor results for 

a mesh inscribed in an i-liwein surface, can actually converge very well to the smooth curvatures 

of the underlying surface (whatever the vertex valence) if the mesh approximates the surface 

without being inscribed in it, i.e. if its vertices are not constrained to be on the surface. 

4.6 Cases of non-existence of solutions 

We do not have theoretical results on the convergence of our method. For convex boundaries 

(i.e. boundaries for which the projection in the 𝑥𝑦 plane defines a convex domain of the plane), 

existence of solutions to our form of the Monge-Ampere is guaranteed, and our method proves 

to be fairly robust. However, there is at the moment no existence result regarding non-convex 

boundaries. Practically, instability may be encountered on non-convex boundaries: if parameter 

𝑏 is pushed to a certain value, and if |𝑐| is low, then the vertex height may diverge. This may 

happen even at low values of 𝑏 if the domain has holes with a highly curved concave boundary. 

The search of existence of solutions for non-convex boundaries for given parameters (𝑎, 𝑏, 𝑐) is 

beyond the scope of this paper. 

5 Designing with i-liwein surfaces 

The generation algorithm presented in section 4 and the analytical primitives shown in section 2 

may be used to design various typologies of structures which simultaneously have planar panels 

and are funicular or self-stressed. 

5.1 Membranes and cable nets 

With 𝑐 = 0, surfaces 𝑎𝐻𝑖 + 𝑏𝐾𝑖 = 0 correspond to the equilibrium shapes of self-stressed 

membranes or cable nets. The shape of i-liwein membranes can be understood by comparing i-

minimal with minimal surfaces. Minimal surfaces correspond to shapes of soap films, they have 
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been a great source of inspiration for the design of textile membranes in architecture (Bach, 

Burkhard, and Otto 1988). Compared with minimal surfaces, i-minimal surfaces: 

• Cannot be self-stressed with constant isotropic membrane stresses. They still correspond 

to self-stressed membranes (proposition 1), but the constant isotropic quantity is their 

projected stresses. This implies that membrane stresses are higher in areas of high slope; 

• Are restricted to shapes that are field heights; 

• Can join boundaries with significant height difference, which cannot be interpolated by a 

single minimal surface. 

The shape differences are illustrated in Figure 12. i-minimal and minimal surfaces are created on 

the same three boundaries, with increasing height differences between the large oval on the 

ground and the two loops at the centre. In the top row, the height difference is quite low, such 

that the difference between the two surfaces is hardly noticeable. In the middle row, the height 

difference is increased: the difference between the two surfaces is clear. Necking is observed in 

the minimal surface around the center loops, but not for the i-minimal surface, which is actually 

just a scaled copy (in the z-direction) of the one above. In the bottom row, the height difference 

is further increased. There does not exist anymore a stable minimal surface fitting the boundary 

curves. 

 

Figure 12: Comparison of the shape of i-minimal and minimal membranes on three sets of boundary curves, with increasing 

height difference. 

i-liwein membranes do not require that the isotropic direction is vertical: whatever the direction, 

they correspond to a self-stressed membrane geometry. Therefore, on a given boundary, the 

isotropic direction can be tilted to explore shape variations. An example is shown in Figure 13, 

where three i-minimal surfaces are generated on the same boundaries (two coaxial circles), but 



with different isotropic directions (indicated by red arrows). In each case, the stresses projected 

in the plane perpendicular to the red arrows are constant.  

 

Figure 13: i-minimal membranes constructed on the same boundary, but with different isotropic directions 

The effect of parameter 𝑏 on the geometry can be visualised in Figure 2. It makes the surface 

tend towards the upper or lower portion of the convex envelope of the boundary curves.  

Figure 14 shows Pelikan surfaces obtained by scaling the boundary in the x or y direction of an i-

minimal surface (middle), creating an i-minimal surface on it, and scaling everything back to the 

original boundary. This result in with increased transverse (left figure) and longitudinal (right) 

tension.  

 

Figure 14: Middle: i-Minimal surface. Left and right: Pelikan surfaces with respectively increased transverse and longitudinal 

tension 

Figures 12 to 14 illustrate how i-liwein surfaces may be used to design membranes. They were 

generated from the workflow of section 4. Figure 14 shows a cable net designed from a monkey 

saddle (such as the one shown in Figure 7). The pattern and the surface were derived from the 

analytical equation (given in 2.3.3).  

5.2 Gridshells  

For a gridshell, i-principal curvature directions of i-liwein surfaces combine both fabrication and 

mechanical properties. An application is illustrated in Figure 1 and Figure 15. An i-liwein surface 

is generated on a boundary composed of closed boundary curves – the boundary of Figure 15 

mimics the one of the Chadstone gridshell. An i-principal curvature net is computed, and is used 

to define the position and orientation of the beams of a gridshell. Since the i-principal net forms 

a conjugate curve network, mesh faces are almost planar (an optimization could make them 

exactly planar with small vertex displacements). Furthermore, beams are aligned with principal 

stress directions under uniform vertical pressure (snow load), so they have a relevant orientation. 

Finally, we can notice that pattern drawn by i-curvature lines is smooth, and gives faces with 

approximately uniform size. 
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If one were to search by optimization of vertex positions the geometry of a gridshell combining 

planar quads and beams aligned with principal stresses, a main question would be: what is the 

right mesh combinatorics to start with? In i-liwein surfaces, this combinatorics appears naturally 

from the curvature field. 

 

Figure 15: Funicular gridshell with planar quads, constructed by discretizing an i-CMC surface along i-principal curvature 

directions on the boundary of the Chadstone gridshell (right picture ©Seele) 

5.3 Funicular shells 

i-liwein surfaces can also be used to design funicular shells. The method allows a quick 

exploration of a 2-parameter family of funicular surfaces fitting a target boundary. For a concrete 

shell, the fact that i-principal curvature lines form a conjugate net could be used to simplify the 

fabrication of formwork. For example, the surface can be covered with developable strips so that 

thin flexible panels can be used as formwork. 

 

Figure 16: i-LW surfaces generated on the same boundaries as the gridshell of Figure 15.  

Left: b>0. Right: b<0, close to the limit a²+4bc=0 (this is a close-up of Figure 1) 

The effect of parameters b and c on the surface geometry are the following: Parameter c allows 

to more or less inflate the surface (with a pressure acting vertically), while parameter b allows 

the control of the height difference between saddles and hill tops. This is illustrated in Figure 16, 

in which the reference surface of Figure 15 (which is i-CMC) is deformed. The left picture shows 

the case b<0: the surface looks like domes connected by low corridors. The right picture shows 

the case b>0: the surface now looks level, a more unified space is defined underneath. 



6 Mechanical behavior: two case studies 

In this section, we perform two case studies to investigate first the effect of parameters a, b and 

c on the mechanical behavior of a concrete shell, then the efficiency of i-curvature lines for 

defining the layout of a gridshell structure. 

6.1 Application to concrete shell rooves 

We compare three i-liwein surfaces (Figure 17) with the same boundary (that resembles an eight 

or a peanut), and same area (430m²), but different values of b. The constant area is ensured by 

adjusting the value of c while b varies (see table 1). With b<0, the height difference between the 

two domes and the valley is higher, while with b>0, the crest line is more uniform (see figure 15 

and table 1). All three surfaces present two portions with positive Gaussian curvature on the side 

(the domes) and one portion with negative Gaussian curvature in the middle (the valley). 

Practically, the reference mesh is the same triangulated mesh with 1852 faces for the three 

surfaces. 

Table 1: Geometric characteristics of the three i-liwein surfaces 

a=0.5 C Min 

Height of 

saddle 

Max 

Height of 

dome 

Max 

Gaussian 

curvature 

Min 

Gaussian 

curvature 

% flat area 

(|K| < 0.0016) 

b=0 

(iCMC) 

0.083 1.51 2.54 -15.2 6.6 11.5% 

b=1.7 0.076 1.13 2.61 -16.4 5.7 9.8% 

b=-1.4 0.086 1.79 2.46 -15.0 7.8 14.7% 

•   

 

Figure 17: Influence of parameter b on the shape of i-liwein surfaces with same boundary curve and same area. Top: 

Longitudinal cut on the three shapes. Bottom: Perspective view (left: b=1.4, middle: b=0  iCMC and right: b=-1.7). 

Supposing now that these three surfaces are compared in terms of mechanical performances in 

order to build a concrete shell roof. The rise over span ratio of the surfaces remaining between 
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1/7 and 1/5, the shells cannot be considered as low shells and their behaviour should be similar 

and dominated by membrane actions with limited bending stresses. The thickness of the shell is 

uniform and equal to 10cm, so approximately 1/100 of the average span (10.5m). As the area is 

constant over the three surfaces, the quantity of material used for the three shells is the same. 

Differences in the structural response will thus be uniquely related to the shape of the shell. 

Two support conditions are investigated: i) membrane supports with zero displacements in the 

tangent plane and ii) fixed supports with no translations and no rotations along the edge. The 

first one corresponds to the theoretical membrane model where the shell develop forces only 

within the surface. The second one corresponds to more practical concrete shell roof boundary 

conditions and will develop bending moments around the edge. 

Two loading conditions are then applied to the shell: i) uniform vertical load on the whole 

structure, ii) uniform vertical load on one fourth of the structure. The shells are all funicular for 

the first load and should resist without bending, while they should exhibit some under the second 

load.  

Two kinds of analysis are conducted: i) standard static linear analysis and ii) linear buckling 

analysis. The first one is used to retrieve principal stress pattern, as well as displacement 

measures; the second one critical buckling loads. Key information for comparison is not absolute 

but relative, the intensity of load and Young modulus being somewhat arbitrary (here 25kN/m² 

and 31GPa respectively). All calculations are conducted with finite element software Karamba3D. 

Alignment of i-principal stresses with i-principal curvatures 

For the three surfaces, one first compares the layout of i-principal stresses under uniform vertical 

load with i-principal curvature lines. The formers are calculated by simple integration of the 

membrane stress field in the shell by Karamba3d, the later from the principal curvature lines 

obtained by EvoluteTools Tmap. Both networks are calculated on a scaled down geometry by a 

factor of 10 in the z-direction so that principal network and i-principal network can be 

assimilated. As one can see on figure 16 for the iCMC surface on membrane supports, i-principal 

stresses and i-principal curvature coincide very well: the surface is hence funicular in the sense 

of isotropic geometry.  



 

Figure 16: Comparison of i-curvature lines (left) and i-stress line (right) for an iCMC surface under UPL. 

The alignment was tested for fixed boundary conditions and, as expected, the perturbations 

induced by the boundaries affect mainly the neighbourhood of the boundary. It remains very 

good in the central part of shell.  

Buckling capacity 

Concerning mechanical performances, several criteria were tested: maximum displacement, 

strain energy and buckling capacity which all lead to the same conclusions regarding the influence 

of the shell shape. For conciseness, it was thus chosen to focus on the buckling capacity which is 

often the sizing criterion for concrete shell structures. Critical factors for the three surfaces under 

both loadings with both boundary conditions have been reported in Table 2. One remarks that, 

for all cases, the capacity of the three shells compares well. Indeed, relative differences (max – 

min)/average range from 10% to 27% with membrane supports and fall down to a range of 4% 

to 6% with fixed edges. One can thus conclude that the shape has less influence than the 

boundary conditions. Once appropriated boundary conditions are given to the shell (here fixed 

supports), then the shape of the i-liwein shell has few influence on the capacity. This is true for 

the funicular load as well as for the non-symmetric loading on one quarter of the structure.  

Table 2: Geometric characteristics of the three surfaces 

supports Loaded area b=0 b=1.7 b=-1.4 Max-

min/aver. 

Membrane 

supports 

Whole 317 288 300 10% 

quarter 324 252 335 27% 

Fixed supports Whole 477 448 464 6% 

quarter 568 552 547 4% 

 

This small example demonstrates that the framework of i-liwein surfaces provides to the designer 

a whole family of shapes with constant area (and by there, constant volume of material) and 

similar mechanical performances. This family of shapes can be explored easily with help of two 
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parameters, b and c (which are not independent if the area has to remain constant) in order to 

satisfy other criteria than mechanical performance, such as aesthetic or functionality. 

6.2 Application to steel gridshell structures 

The interest of i-liwein surfaces for structural engineers is further investigated through a gridshell 

variant of the iCMC surface studied in previous section. To obtain the grid layout, the following 

procedure was applied: 

Form the desired surface by adjusting parameters b and c for a given boundary; 

Scale down the surface and find the network of principal curvatures; 

Project this network vertically on the surface. 

Build the gridshell on this network orienting cross-section according the bisecting plane of 

adjacent faces. 

The generated grids have by construction quasi-flat quadrangular panels because they follow a 

conjugate network on the reference smooth surfaces. In the present case (the iCMC surface 

studied in previous section), the maximum out-of plane default (calculated as the distance 

between quad diagonals relatively to the length of the largest diagonal) is hence below 1%. It can 

be easily reduced by a short optimisation for planarity of the node positions. Indeed, authorising 

a displacement of maximum 2cm around the initial position on the mesh allow to fit standard 

construction tolerances for glass panels (i.e. out of plane default below 0.5%).  

Figure 16: Planarity of quad panels (coloured quad from green 0% to red 0.5% out-of plane default) and torsion 

at node (coloured spheres from green 0 mrad to red 15 mrad angular torsion at nodes) of a gridshell built on i-

curvature lines of an i-CMC surface. 



Theoretically, non-trivial offsets with torsion free nodes are guaranteed on gridshells built on 

curvature lines, not on i-curvature lines. However, the geodesic torsion of i-curvature lines is still 

small and they can build some reasonable inputs for optimisation. In the present case after 

planarization of faces, no optimisation is computed but torsion at nodes is evaluated considering 

that the local beam planes are set according to the bisecting plane of adjacent panels (i.e. normal 

to the surface). One can hence build  four axes at nodes by intersecting the beam planes and 

compute the angles between node axes which gives an estimation of torsion at nodes. Here the 

maximum is of 10 mrad, which corresponds to 1 mm for a 10 cm beam and is almost acceptable 

as it is.  

Once the grid is found, it is tested for funicularity and submitted to a uniform projected load 

(UPL): each node is loaded according to its tributary area in the top view with 1kN/m². It is also 

loaded with the same load applied on one quarter of the surface. All connexions between 

members are fixed, as well as all supports on the ground. A rectangular hollow section of 

100x50x8 is attributed to all members orienting the cross-section according to the bisecting plane 

of adjacent faces. Extremal values of internal forces are shown in table 3. 

Table 3: Internal forces in the gridshell built on the i-curvature lines of the iCMC surface 

 UPL UPL on one quarter ratio 

N [kN] -11.5 0.02 -40.7 22 4  

Mt [kNm] -0.012 0.012 -0.51 0.46 43 38 

My [kNm] -0.17 0.13 -4.7 4.1 27 30 

Mz [kNm] -0.03 0.04 -1.5 1.5 44 37 

 

Under uniform projected load, the structure is hence under pure compression: no tension arises 

and the average bending stresses represent less than 1% of the total stresses. One can thus 

conclude that the gridshell is funicular of UPL, verifying hence the discrete version of the theorem 

demonstrated earlier for the smooth geometry. Under non symmetric loading (UPL on one 

quarter of the grid), bending forces are multiplied by 40 in the weak direction and torsion 

compared to UPL. These moments correspond to shear forces in the equivalent continuous 

membrane which were almost equal to zero under UPL because the beams are aligned with i-

principal stress directions. In the strong axis, the increase is large but smaller because under UPL 

some bending moments were already induced by edge effects near the supports. However, 

stresses due to normal forces still represent 87% of the total stress in average (more than 80% 
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for 80% of beams) which demonstrates that this kind of funicular gridshell is also very efficient 

under non-symmetrical loads. 

7 Discussion 

Application to design and comparison with other methods 

Our proposed framework has the following limitations. Firstly, although i-liwein surfaces are 

efficient for uniform vertical load, a final design would require checking asymmetrical loads and 

buckling. They might not be optimal then. Secondly, the proposed method does not give access 

to the entire design space of surfaces of funicular planar quads.  

However, a strength of the proposed method is the speed at which a designer can explore a rich 

design space in a project. Compared to the popular “topology to shape” methods discussed in 

section 1.1, designers need not input trial topologies, a step which may by time consuming for 

complex boundaries. Even though this preliminary shape might not be the final one, the designer 

knows a shape that works, and can still deform it afterwards to account for other constraints. 

Considering both strengths and limitations, we believe our method is particularly suited for 

conceptual design phases, especially in situations in which one wants to explore curved options 

such as gridshells or membranes with very limited available time. 

Implementation details 

The algorithm described and used in sections 4 and 5 was implemented by scripting the software 

Rhino/Grasshopper. All the numerical images of this section were generated from that script. The 

linear algebra package Math.net numerics is used to diagonalize curvature and stress matrices. 

The i-Principal net in Figure 1 or 14 are computed in three steps: 

1. The surface is scaled down in z direction such that its height is significantly lower than 

its width. In this state, principal and i-principal directions nearly coincide. 

2. A principal net is computed, using commercial software Evolute Tmap. 

3. The net and the surface are scaled back in the z direction to fit the original geometry. 

We use the fact that i-principal directions are invariant under z scaling (the eigenvectors 

of ∇2𝑓 are the eigenvectors of λ∇2𝑓 (with λ ∈ ℝ)).  

In the current setup, a designer can interactively deform a surface by controlling parameters. It 

takes about 10 seconds to deform a mesh with 500 vertices to a near LW surface on a 3.5GHz 

CPU with 16Go of RAM, and get a good idea of the final shape. Full convergence (displacements 



below 1/1000 of surface dimensions) takes about a minute, but could be made much faster by 

not displaying intermediate calculation steps and using a second order solver, like L-BFGS. In 

particular, we remark that if 𝑏 = 0, our algorithm does not benefit from the linearity of the 

problem. Faster resolution methods are a topic of future work. 

Elastic deformations 

i-liwein surfaces admit an admissible membrane stress field under uniform vertical load. They 

hence correspond to equilibrium shapes of deformed configurations. However, there is no 

guaranty that an i-liwein will stay i-liwein under elastic deformation, or even that i-liwein surfaces 

can be obtained exactly by elastic deformation of an initially stress-free material configuration. 

The study of this problem could be addressed in future work. However, these are not issues in 

the considered applications: 

• In the case of a funicular shell, displacements are very small. If the initial state is i-liwein, 

the deformed state will be nearly i-liwein. The analytical stress fields can then be used for 

limit analysis, for example for checking that a funicular surface can be found within the 

middle third of the cross section of a masonry shell (Heyman 1997). In the case of a 

concrete shell, the surface also does not need to be exactly i-liwein, as it can 

accommodate some bending. 

• In the case of a tensile membrane, our approach is similar to popular methods such as 

force densities or dynamic relaxation method: Both methods also yield a deformed 

configuration at equilibrium. Potential incompatibilities are usually not a problem, 

because patterning and pretensioning is an approximate task anyway: tension is applied 

in warp and weft directions to membrane patches, so the actual deformed configuration 

is always a bit different from the target surface. In worst case, this leads to small waves 

on the surface. 

Buckling 

As stresses are known analytically, there might be ways to assess buckling loads under uniform 

load analytically. This could be the topic of future work. 

Conclusion 

This article showed the relevance of isotropic Linear Weingarten (“i-liwein”) for architectural 

design, with applications to many structural typologies: gridshells, membranes, shells and cable 

nets. It was proven that these surfaces remarkably combine mechanical and fabrication 



32 

 

properties: they may be covered by a pattern of planar quadrangles which is also funicular under 

a uniform load or self-stressed. A generation method based on discrete differential geometry 

was proposed. i-liwein surfaces appear to offer an interesting design space, with a control from 

boundary curves which is well suited for many architectural projects. Parameters 𝑎, 𝑏 and 𝑐 offer 

a global shape control, which is particularly interesting for editing complex shapes. The low 

amount of pre-processing required for the designer makes this method particularly suited in the 

context of conceptual design explorations.  

On a final note, it is remarkable to observe how constant mean-curvature surfaces and Linear 

Weingarten surfaces are funicular for a normal pressure or a vertical pressure depending on the 

type of geometry used to define the curvature: Euclidian or isotropic. 
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