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ABSTRACT 10 

The design and construction of doubly-curved structures often reveals to be challenging and can result 11 

in complex manufacturing and assembly. A recent strategy to tackle this difficulty consists in exploiting 12 

the connection between discrete differential geometry and constructive properties to identify curve 13 

networks with good fabrication or mechanical properties. Following this approach, a family of surfaces, 14 

called Voss surfaces, is here presented. Among other features, they can be built from flat panels, 15 

initially flat straight strips, and hinged connections. These properties arise from the existence of a 16 

conjugate network of geodesic curves. Two generation methods are presented to shape discrete Voss 17 

surfaces: the first allows their exploration through linear spaces; the second provides a unique solution 18 

by means of a direct computation. 19 

Keywords: Voss surface; Geodesic gridshell; Architectural geometry; Space exploration; Chebyshev net 20 

1 INTRODUCTION 21 

Building envelopes are a key aspect of the materialization of architectural intents. The recent advent 22 

of computer graphics opened the door to more complex, free-form shapes in architecture, and thus 23 

challenged conventional strategies of structural design and construction. Irregularly-curved 24 

geometries introduce new design issues that are not encountered with traditional spatial structures, 25 

often leading to fabrication and construction aberrations. For example, the use of triangulated 26 

networks to adapt target shapes often results in unique beam members and intricate nodal 27 

arrangements. On the other side, alternative non-triangular patterns do not ensure the possibility of a 28 

covering with flat panels. In this respect, bending-active structures are particularly appealing for their 29 

capacity to smoothly render freeform shapes and ease their fabrication [1]. Their members are 30 

elastically bent into a target position, and, together, form a network of curved elements fitting a doubly 31 



curved surface. Furthermore, the erection process may contribute to the good mechanical behaviour 32 

of the system when the pre-stressing effect of bent members stiffens the structure. 33 

A remarkable family of bending-active structures are elastic gridshells [2,3]. These structures are 34 

assembled flat on the ground from initially straight beams connected with simple rotational joints, and 35 

then erected into a target curved shape. The erection of the structure as a whole is permitted by a 36 

special arrangement of the beams into a regular grid, known as Chebyshev net. Elastic gridshells 37 

illustrate both the advantages and the difficulties faced when dealing with active-bending systems. 38 

Although, they create lightweight and large spanning support structures from elements that are easy 39 

to manufacture and assemble, their design also presents many issues. The actual geometry and the 40 

mechanical behaviour of elastic gridshells is hard to predict since it is given by the static equilibrium of 41 

the beam network and that members are largely-deformed and interconnected in dense layouts. In 42 

addition, members, generally wooden laths with rectangular cross sections, are subject to severe local 43 

stresses since the layout is imposed by the use of a Chebyshev net [4,5]. Additionally, the covering of 44 

the support structure usually requires custom curved panels, which reveals to be expensive and 45 

difficult to construct, or tailor-made fabric elements which assume a perfect control of the geometry 46 

and an increased maintenance. 47 

1.1 RELATED WORKS 48 

Research responding to the challenges raised for the design of elastic gridshells also proved useful for 49 

the more general field of active-bending structures. Past and current developments address various 50 

design aspects from geometric fitting, to numerical simulation of mechanical behaviour, envelope 51 

design and structural optimization. 52 

From a geometrical point of view, the problem of mapping a given layout, namely a Chebyshev net, on 53 

an input target surface is a main focus. The IL team in Stuttgart pioneered the so-called compass 54 

method and hanging chain models to form-find the geometry of grids on given surfaces [6]. Bouhaya 55 

et al [7] addressed the same problem by projection and later optimized the positioning using genetic 56 

algorithms [8]. Alternatively, Lafuente Hernández et al. [9] proposed a methodology to design with an 57 

approximate Chebyshev net, while Masson [10] proposed solutions to introduce and manage 58 

singularities in the net. Sageman-Furnas et al. [11] gathered these different approaches in a single 59 

framework. 60 

On a numerical modelling level, the capacity to simulate and evaluate the mechanical behaviour of 61 

bending-active structures has been greatly improved by the development of special numerical 62 

methods like dynamic relaxation [12]. Combined with the use of discrete element models, dynamic 63 

relaxation allows the quick and reliable assessment of equilibrium states and stresses in structures. 64 



Since the initial development of the discrete element with three degrees of freedom accounting for 65 

axial stresses and bending [13], more complete formulations have been proposed to improve the 66 

precision of the model [14–18]. In contrast, Douthe et al. [19] evaded the problem of excessive stresses 67 

in members imposed by the Chebyshev net layout by using circular hollow cross section beams, hence 68 

avoiding torsion and improving bending compliancy. This approach proved to be conclusive in other 69 

works [5,20]. Other types of bending-active systems were also investigated mechanically [1]. 70 

Although bending-active structures and more specifically elastic gridshells have regained interest at 71 

the beginning of this century, their construction remains rare. This can be explained by the difficulty 72 

to cover these systems with envelopes, which has not much been addressed in research. In this regard, 73 

Schober and Schlaich [22] pioneered the use of translational net to ensure the covering of the structure 74 

with flat quadrangular panels. Recently, Douthe et al. [23] studied the special case of isoradial surfaces. 75 

The particularity of these manifolds is that they can be mapped by a Chebyshev grid and covered with 76 

planar faces. In geometry, it was found that conjugate nets of curves on smooth surfaces have a 77 

discrete equivalent: meshes with planar quadrilateral faces [24]. Since grid support structures are 78 

modelled as nets on surfaces, this property can be applied to ensure a covering of the structure with 79 

flat quadrilateral panels. In the case of isoradial surfaces, the interesting cladding property is due to 80 

the duality of the Chebyshev net with the conjugate net of principal curvature lines. 81 

On another aspect, the problem of designing active bending with rectangular laths was not solved in 82 

the case of elastic gridshells but only wisely avoided by using an alternative cross section. Inspired by 83 

the precursory work of J. Natterer [25], Pirazzi and Weinand [26] propose an interesting solution for 84 

the design of bending-active shells with rectangular laths by using geodesic lines. Geodesic lines on 85 

surfaces have a vanishing geodesic curvature, therefore, a lath following such a line will not bend 86 

sideways. Since the slender element is not bent along its strong axis, severe stresses are avoided, as 87 

well as local instabilities. A geodesic line corresponds to the natural path of such elements on surfaces. 88 

Geodesic patterns on surfaces were further studied by Pottmann et al. [27]. The mapping of curved 89 

surfaces is addressed using several families of geodesic lines. Rabinovich et al. [26,27]  used a special 90 

case of geodesic net, namely orthogonal geodesic nets, to model, deform, and explore the shape space 91 

of developable surfaces. In relation with the erection process of Chebyshev nets, Soriano et al. [30] as 92 

well as Pillwein et al. [31] explored the design of geodesic shells that can be constructed from an 93 

initially flat grid of laths. Wang et al. [32] used a similar notion, referred to as geodesic parallels to map 94 

surfaces with piecewise initially-flat strips. 95 

In conclusion, various strategies for designing complex shaped envelopes can be found within the 96 

scope of bending-active systems. In particular, geodesic shells allow to build structures with 97 



rectangular cross-sections tangent to the target surface. However, much like elastic gridshells, the lack 98 

of covering solutions with flat panels is a major limitation and contribute to a low uptake of such shells. 99 

1.2 OVERVIEW 100 

This paper studies the generation and transformation of discrete Voss surfaces, a special family of 101 

surfaces, whose geometrical properties ease fabrication and construction processes of freeform shells 102 

and gridshells. Voss surfaces were introduced and defined by Aurel E. Voss in 1888 [33] in their smooth 103 

version as surfaces that can be mapped by a conjugate network of geodesics. In their discrete version, 104 

Voss surfaces are meshes with flat quadrilateral faces whose opposite angles between edges at each 105 

vertex are equal [34]. Architectural envelopes based on discrete Voss surfaces can be built from regular 106 

elements despite their freeform shape. In particular, discrete Voss surfaces support the construction 107 

of geodesic gridshells, but can also be applied to flexible shell formworks [35] made of quadrangular 108 

flat panels, and assembled with simply-hinged connections. In the case of geodesic gridshells, they 109 

allow the use of initially-straight rectangular-cross-section beams without sideways bending, and 110 

covered with flat panels. 111 

In section 2, the representation of discrete Voss nets, i.e. conjugate geodesic nets carried by Voss 112 

surfaces, through normal vectors is studied. This approach, inspired by existing studies on smooth 113 

cases, provides a dual shape encompassing all necessary constraints characterizing Voss nets. Then, in 114 

section 3, transformations are introduced to characterize the domain of possible shapes. Particular 115 

families of transformations enable the geometric alteration of Voss nets while maintaining their good 116 

constructive properties. In section 4, the above-mentioned characteristics are used for the generation 117 

of meshes from a relevant family of surfaces, namely Chebyshev nets on the unit sphere ��. More 118 

accurately, the shape space of Chebyshev nets on �� creates a linear space of discrete Voss surfaces. 119 

The linear space is then used in section 5 to investigate and deform Voss surfaces using well-chosen 120 

transformation modes. This methodology addresses the design of surfaces from an exploratory point 121 

of view. A more straightforward method is then described, in which Voss surfaces are built from two 122 

boundary curves. Finally, applications of these techniques are exposed in section 6. Resulting doubly-123 

curved shapes illustrate the large potential of discrete Voss surfaces for architectural applications.  124 

1.3 NOTATIONS 125 

The remainder of this paper focuses on meshes with planar quadrilateral faces. In this context, a 126 

general mesh, a mesh with planar faces and a planar quad mesh (so-called PQ mesh) will be denoted 127 

respectively by the script letters ℳ, � and �. Similarly, � will refer to a Voss net. Meshes are defined 128 



by their list of vertices �v	
	��, of edges e����� and of faces �f�
��� where the size of these lists are 129 

respectively �, �, �. The vertices of the mesh are stored in a column vector � of size 3�, where matrixes 130 

will be distinguished by the use of bold capital letters. Therefore, � is given by: 131 

�� �	 �v�, , v�,!, v�,", v�, , #�,!, … , v�,!, #�,"% 132 

Specific notions are introduced to qualify planar quad meshes. The vertex-star refers to the 133 

configuration depicted on Figure 1 - left and the face-star to the configuration on Figure 1 - right. 134 

Notations on these figures will be used in the following to depict the neighbourhood of vertices and 135 

faces. Vertices (Figure 1 - left), respectively faces (Figure 1 - right), on opposite sides of a vertex, 136 

respectively a face, have the same index. One is underlined, the other is not. Indices of a face in the 137 

neighbourhood of a vertex v (Figure 1 - left) are equivalent to the indices of the two other vertices 138 

bounding that face. The same is true when swapping vertices and faces (Figure 1 - right). Additionally, 139 

the affiliation to a mesh will be denoted in exponent when needed. 140 

 141 

Figure 1: Illustration and naming convention for a vertex-star (left) and a face-star (right) 142 

2 GAUSS MAP OF DISCRETE VOSS NETS 143 

In the domain of classical differential geometry, a prolific strategy to extract properties of a surface is 144 

to study the variation its normal vectors. Its importance is highlighted by the central notion of Gauss 145 

Map. With � an orientable smooth surface, the Gauss map is the application that associates to each 146 

unit normal vector of � a point on the unit sphere ��, producing a new surface on ��. The study of 147 



this application has proven useful to characterize and represent smooth varieties like developable 148 

surfaces. 149 

The discrete counterpart of the Gauss Map is equivocal and subject to discussion. Indeed, when 150 

addressing polygonal meshes, the set of normal vectors can be defined upon several entities, i.e. the 151 

faces, the edges, or the vertices. Thus, different notions of Gauss maps can be defined, as long as they 152 

are consistent with one another. The relevance of a Gauss map is evaluated from the image produced 153 

on the unit sphere �� and its capacity to characterize the underlying mesh. For example, Pottmann et 154 

al. [36] established a definition of Gauss map in the context of parallel meshes in which normals vectors 155 

are determined by comparing a pair of parallel meshes � and �′. The normal vectors are defined by 156 

unitizing the distance between the corresponding vertices of � and �′. This formulation proves to be 157 

relevant to analyse offset properties of support structures. 158 

When it comes to planar quadrilateral meshes, a variety of options exists to determine normal vectors. 159 

The following sub-sections detail two of them that prove to be particularly relevant and 160 

complementary when dealing with discrete Voss surfaces. 161 

2.1 DEFINITION FROM FACE NORMALS 162 

Since discrete Voss nets are meshes with planar faces, a first way to determine normal vectors on the 163 

mesh builds on the faces’ normals. 164 

Definition 1: Let � be a planar quad net, the Gauss map, or spherical projection of � is the application 165 

which maps each normal vector of the faces of � to the corresponding point on the unit sphere ��. 166 

In the remainder, the Gauss map ' designates either this application or the resulting mesh on �� 167 

without ambiguity. As a consequence of the definition, the image of the Gauss map ' is topologically 168 

dual to the initial mesh � (Figure 2): every face, edge, or vertex of � is transformed respectively to a 169 

vertex, edge or face of '. This relation is reciprocal: every face, internal edge, internal vertex of ' is 170 

respectively transformed to a vertex, edge, face of �. 171 

The above definition of the Gauss map is actually more general than just the context of PQ meshes, 172 

and can be used to represent any mesh � with planar faces. 173 



 174 

Figure 2: Schematic representation of the dual relation between a PQ net � (left) and its Gauss map ' (right).  175 

It follows a first property on the projection of the angles made by edges around a vertex-star [37]: 176 

Property 1: Let � be a planar quad net, ' its Gauss map, and the angles (��, (��, (��, (�� around the 177 

vertex v of �, at a vertex-star. Let also )��, )��, )��, )�� be the angles of the face f of ', dual to v, at 178 

the vertices n��, n��, n��, n��, dual to the faces f��, f��, f��, f�� in � (Figure 3). By construction, the 179 

spherical projection implies that the angles (��, (��, (��, (�� are transformed to their supplementary 180 

angles )��, )��, )��, )�� respectively: 181 

)�� � 	+ , (��, )�� � 	+ , (��, )�� � 	+ , (��, )�� � 	+ , (��. 182 

 183 

Figure 3: Spherical projection of a vertex-star. Angles around a vertex (left) are transformed to supplementary angles in the 184 
dual face of the Gauss map (right). 185 

As an immediate consequence of the spherical projection of angles around a vertex, the faces of the 186 

Gauss map ' of �, a Voss surface, have equal opposite angles too. Thus, since ' is a net on the unit 187 

sphere, the faces of ' are spherical parallelograms (Figure 5). This is the defining property of discrete 188 

Chebyshev nets, which implies the essential characteristic of Voss nets [34]: 189 

Property 2: Let � be a discrete Voss surface. The Gauss map of � is a Chebyshev net on the unit 190 

sphere ��, and will be denoted by .. 191 



 192 

Figure 4: An example of a Voss net (left) and its Gauss Map (right) 193 

As a consequence, any discrete Voss surfaces � is associated with a unique Chebyshev net . on the 194 

sphere �� (Figure 4). The exact smooth counterpart of this property was stated in the founding article 195 

by A. Voss [33]. 196 

In this paper, a discrete Chebyshev net refers to a quad mesh whose faces are parallelograms on the 197 

surface. Therefore, the faces of a discrete Chebyshev net have equal opposite angles but also equal 198 

opposite edge lengths. On ��, since the curvature is constant, it is possible to rightfully replace the 199 

smooth notion of arc length with the discrete notion of length. Some papers make a distinction 200 

between regular Chebyshev and weak (or generalized) Chebyshev nets [38]. In the first case all edges 201 

of the quad mesh have equal length, while it is not necessarily true in the second case for which the 202 

length equality only stands for opposite edges in each faces. In 2D, the distinction segregates nets 203 

whose faces are all sheared squares in the first case or sheared rectangles in the second. The remainder 204 

of this paper considers the more general case of weak Chebyshev nets. 205 



 206 

Figure 5: Spherical projection of dihedral angles of a discrete Voss net (left) onto its Gauss map (right), on which dihedral 207 
angles corresponds to the arc length of edges. 208 

Since the Gauss map of a Voss net � is a Chebyshev net, the dihedral angles correspond to the angles 209 

made by the normal vectors of two adjacent faces. Because the length of opposite edges of a face of 210 . are equal, the duality between . and � suggests that in both direction of the PQ mesh �, dihedral 211 

angles are constant along each parameter line (Figure 5). According to Schief et al. [39], this property 212 

on dihedral angles can be taken as an alternative definition for discrete Voss surfaces. Thus: 213 

Property 3: Let 	�  be a planar quadrilateral net and '  its Gauss map on the unit sphere. If '  is a 214 

Chebyshev net on ��, then � is Voss net. 215 

2.2 DEFINITION FROM VERTEX NORMALS 216 

An alternative choice of normal vectors, described upon the vertices, can be found interpreting PQ 217 

meshes as discrete parametrizations of smooth surfaces. The notions of tangent and normal vectors 218 

to a curve need to be presented first. If / is a regular, non-degenerate curve at arc length 0�, i.e. /′�0�
 219 

and /′′�0�
 are non-null, then it is possible to compute the Frenet frame (t�, n�, b�) at 0�, in which t� 220 

is the tangent vector, n�  the normal vector and b�  the binormal vector [40]. A discrete analogous 221 

definition exists for non-degenerate discrete curves, i.e. polylines for which any three consecutive 222 

vertices are not aligned: 223 

Definition 2: Let 3 be a non-degenerate polyline and p	5�, p	, p	6� three consecutive vertices of P 224 

(Figure 6 - left). The Frenet frame of P at p	, is designated by (t	, n	, b	), where: 225 

δp	 �	p	5� ,	p	 , δp	 �	p	6� ,	p	, 226 

t	 �	 δp	 , δp	8δp	 , δp	8 , n	 �	 δp	 9 δp	8δp	 9 δp	8 , b	 � t	 ∧ n	. 227 



 228 

Figure 6: Frenet frame of a non-degenerate polyline (left) and mesh normal vector at a vertex computed from the tangent 229 
vectors of the coordinate-lines (right). 230 

As mentioned above, PQ meshes define a two-way grid in space. It is thus possible to compute two 231 

Frenet frames (t�, n�, b�) and (t�, n�, b�) in both directions at a vertex-star v (Figure 6 - right). With t� 232 

and t� the tangent vectors at vertex v, the normal vector at the vertex is defined by: 233 

n � 	 t� 	; 	 t�‖t� 	; 	 t�‖. (1) 

This definition imitates the smooth case: with /� and /� two curves on a surface, intersecting at a point 234 v, and t�, t�  the tangent vectors of these curves at v, the normal of the surface at v is aligned with the 235 

cross product of the tangent vectors t� and t�. 236 

For discrete geodesic nets, and therefore for Voss nets, Rabinovich et al. [28] showed that, just like in 237 

the smooth case, the normal vectors of two intersecting discrete geodesic curves agree at their 238 

intersection, meaning at their common vertex. As a consequence, the common normal vector of the 239 

curves coincides with the normal n in equation (1). Rabinovich et al. [28] used this result to define an 240 

adapted set of normals upon the vertices for the Gauss map of discrete orthogonal geodesic nets. 241 

 242 

Figure 7: Projection of a normal at a node in a Voss net (left) onto its Gauss Map (right) 243 



As a matter of fact, it is possible to identify this set of normal vectors defined upon the vertices in the 244 

Gauss Map of discrete Voss nets (Figure 7). 245 

Property 4: Let � be a discrete Voss net and . its Gauss Map. Let’s consider a vertex-star  configuration 246 

and its spherical projection on ��.Thus, the face’s normal n���	 , n��� , n���	 , n���	  around the vertex v of � 247 

are dual to n��.	 , n��. , n��.	 , n��.	   the vertices of ., belonging to the face f, dual to v. The normal vector n 248 

at the vertex v of � corresponds on �� to the centre of the spherical parallelogram f.  249 

The centre of the spherical parallelogram can be defined alternatively as the centre or intersection of 250 

its diagonals, or as the centre or the intersection of its medians [41] (id non vidi). This connection 251 

between the two notions of Gauss map, upon faces and vertices, enriches significantly the 252 

representation of discrete Voss surfaces on the unit sphere. The Chebyshev net on the unit sphere not 253 

only provides information on the face normals but also on the vertex normals of the Voss net. 254 

3 TRANSFORMATIONS OF VOSS NETS 255 

The study of mesh transformation is a very active field in geometry processing. Editing a mesh by 256 

prescribing displacements [42], or by using adapted subdivision patterns has been explored in many 257 

different situations and different paradigms compete.  258 

A common method for mesh editing operates handle-based transformations: the user controls a small 259 

set of vertices and drags them around. Following these modifications, a new shape is computed after 260 

the resolution of an optimization problem [40,41]. Another method for editing polyhedral meshes 261 

operates constraint-based transformations: a given smooth surface is approximated by a mesh on 262 

which geometric constraints are defined [45]. The constraints, prescribed upon the vertices or the 263 

faces, express the geometrical behaviour expected for the tangential mesh. In practice this method 264 

tends to be time consuming and the resulting mesh only loosely respects the constraints [43,44].  265 

Recently, an alternative approach has been proposed by Vaxman et al. [48] for polyhedral meshes and 266 

meshes with planar faces and has later been generalized by Poranne et al. [49]: polyhedral meshes and 267 

their transformation are described as linear spaces. The advantage of this method is that only exact 268 

solutions are explored in the process, which, on the other hand means that the design space is smaller 269 

than the previous methods. In [48], the shape space allows affine transformations of faces. Inspired by 270 

this approach, family of meshes, addressed as linear space, have been used in different contexts such 271 

as the design of planar quadrilateral meshes [50], and the form-finding of a shell-nexorade hybrid [51]. 272 

Pottmann et al. [36] address the linear space of parallel meshes for other reasons. This approach will 273 

be of particular interest in our context as well.  274 



In this section, transformations that do not alter the defining attributes of discrete Voss nets are 275 

identified. The aim is to simplify the exploration of the shape space of Voss nets by using the point of 276 

view of meshes as linear spaces.  277 

3.1 ISOMETRIC TRANSFORMATIONS 278 

Isometric transformations have been a primary concern in discrete differential geometry during the 279 

past decade. In simple terms, they are defined as distance-preserving transformations. Their study is 280 

highly related to research on developable surfaces and on the exploration of deployable systems. 281 

Discrete isometric transformations are extensively used in origami for it preserves the length of the 282 

edge and only “folds” the mesh along these edges, and not at all faces. 283 

Schief et al. [39] provide a thorough mathematical study on infinitesimal isometric transformation of 284 

discrete nets which reveals that discrete Voss surfaces admit a one-parameter family of isometric 285 

transformation that preserve their defining properties. Therefore, given a discrete Voss surface �, it is 286 

possible to append the overall shape of the net without changing the edge length. In fact, only the 287 

dihedral angles of the mesh are modified. The transformation is ruled by the following relation (Figure 288 

8): 289 

=>? @A2C =>? @D2C � 	 sin	�( 9 )
0G?�(
 9 0G?�)
. 290 

Keeping (  and )  constant, the isometric transformation of a discrete Voss surface is ruled by one 291 

parameter H	I	ℝ: 292 

K		=>? @A2C		=>? @D2C 	 										L				MNO						 	K		H	 ∙ =>? @A2C		1H ∙ 	=>? @D2C. 293 

In essence, the isometric transformation of Voss surfaces is determined by the choice of a single 294 

dihedral angle between two consecutive faces. 295 

Tachi et al. [52] identified that generalized eggbox patterns in origami are discrete Voss surfaces. 296 

Indeed, opposite angles made by edges around each vertex are equal. For generalized eggbox patterns, 297 

the mesh corresponds to an alternation of valleys and mountain folds. It is this alternation that gives 298 

the bidirectional flat rigid-foldability property to the eggbox pattern. Mitchell et al. [53] made a 299 

connection between this rigid-foldability property of Voss surfaces and graphic statics, and used it to 300 

build a kinematic pavilion. 301 



 302 

Figure 8: Angle properties of a Voss vertex-star (left); Folding motion of the eggbox pattern (right). 303 

3.2 COMBESCURE TRANSFORMATIONS 304 

Further essential examples of transformations are Combescure transformations. They are 305 

encountered for parallel meshes [36]. Two meshes are termed parallel if they have the same 306 

connectivity and if their corresponding edges are parallel. The transformation between two parallel 307 

meshes is called a Combescure transformation. Thus, given two parallel meshes �  and �′ , with 308 e�����, e′����� their edges respectively, they respect the following linear relation: 309 

∀	S	I	�, T� ; TU� � 0 310 

 311 

Figure 9: Two meshes related by Combescure transform. 312 

Any planar quadrilateral net � admits an infinite number of Combescure transforms. However, the 313 

dimension of the space of Combescure transforms W� of � is finite and is combinatorically given by 314 

the following equation [36]: 315 

dimW�� � 	Z[ , 2Z\ 9 3 316 

where Z[ is the number of edges in �, and Z\ the number of faces in �. The dimension of the space of 317 

Combescure transforms must be understood as the number of degrees of freedom of the 318 

transformation. It represents the number of edge lengths that can be chosen within the mesh �, under 319 

the condition that all the constraints are compatible with one another. The number 3 at the end of the 320 



equation stands for the global translations in the 3D Euclidean space, which leaves the edge length of 321 

the net unchanged. 322 

If � and �′ are two planar quadrilateral meshes, related by a Combescure transform, then their Gauss 323 

maps are identical. This results from the fact that by keeping edges parallel, the normal vectors of the 324 

faces remain unchanged. Therefore, Combescure transformations change Voss nets into other Voss 325 

nets, while preserving the Gauss map [39]. 326 

4 LINEAR SPACES OF VOSS NETS 327 

The previous sections reviewed discrete surfaces whose geometric features are relevant for modelling 328 

shells from geodesic lines, with useful constructive and architectural properties – e.g. absence of 329 

sideways bending in rectangular cross-sections and covering with flat quadrilateral panels. The study 330 

highlighted remarkable properties, already known to geometers, notably on the Gauss map. Those 331 

properties are now used to set a methodology to identify appropriate design spaces of Voss surfaces.  332 

4.1 REQUIREMENTS 333 

The linear space of Voss nets is obtained after characterizing an appropriate shape space of 334 

quadrilateral meshes. This family of PQ meshes serves as the initialization for the creation of the linear 335 

space, in a similar fashion as proposed by Poranne et al. [49]. This ensures that the mesh, called a 336 

realization of the topology, always complies with the constraints used to create the linear space. 337 

When identifying and computing a proper design space for Voss nets, the difficulty is to find the 338 

appropriate set of properties that corresponds to Voss nets. On the one hand, the number of 339 

constraints should be minimal: since explored shape spaces are already small in comparison with other 340 

non-linear methods, it is important to ensure that no potential member is missing out. On the other 341 

hand, constraints should not be too weak, in order to ensure that the linear space does not contain 342 

any mesh that is not a discrete Voss net. In addition to this, the design space exploration should be 343 

convenient. 344 

4.2 ROLE OF THE GAUSS MAP 345 

Following section 2, a relevant design space for discrete Voss nets is the Gauss map of this variety, 346 

namely the space of discrete Chebyshev nets on the unit sphere. In other words, the design of Voss 347 

nets is facilitated and guaranteed by starting from a Chebyshev net on ��. 348 

Mimicking the behaviour of smooth Voss surfaces, all defining properties of discrete Voss nets are 349 

enclosed in their Gauss map and not more. Indeed, as stated, with � a planar quad net, and ' its Gauss 350 



map, if '  is a Chebyshev net then �  is a Voss net since the dihedral angles are constant along a 351 

coordinate-line. In addition, with the definition adopted for the spherical projection, it is always 352 

possible to define a planar quad net from a given mesh on the unit sphere (section 4.3). Hence, the 353 

Gauss map defines a surjection between the space of discrete Voss surfaces and the space of 354 

Chebyshev nets on the unit sphere. This demonstrates that the space of Chebyshev net on �� , 355 

representing the Gauss map of an underlying Voss net, is maximal. 356 

However, for this space to be relevant for the design, it should allow a surjection from the space of 357 

Voss surfaces but also enable the exploration of all feasible discrete Voss surfaces. Further study into 358 

the inverse mapping is required.  359 

4.3 COMPUTATION 360 

In line with the previous section, the set of Chebyshev nets on ��, to be understood as the space of 361 

the Gauss maps of Voss nets, allows to narrow down the degrees of freedom for design exploration. 362 

For this manifold, the space of Gauss maps encloses just enough information, ensuring that the 363 

realization of the mesh will indeed be a Voss net. A construction of the linear space of Voss surfaces is 364 

provided in this section. More precisely, given an input Chebyshev net . on the unit sphere ��, the 365 

design space of Voss surfaces whose Gauss map is that input is characterized. Dealing with planar 366 

meshes, the following property holds: 367 

Property 6: Let � be a mesh with planar faces, and e an edge of � that does not lie on the boundary. 368 

Let n]  and nL be the normal vectors of the faces adjacent to the edge e. Provided that n]  and nL are 369 

not parallel, n] ; nL is parallel to edge e, i.e.:  370 

�n] ; nL
 ; e � 0. 371 

Considering the Gauss map of a net with planar faces, this property can be reformulated as follows: 372 

Corollary 1: Let � be a mesh with planar faces and ' its Gauss map. Let also e	� be an internal edge of 373 �  and e	'  the corresponding edge in ' by the spherical projection. The normal vectors of the faces 374 

adjacent to e	� correspond to the start vertex v^_`L_'
 and the end vertex vabc'

 of the edge e	'. And thus 375 e^_`L_' 	; 	eabc' � is parallel to the direction of e	�. 376 

As a consequence, the Gauss map encloses the direction of the edges of the underlying meshes. To 377 

simplify the discussion, the reconstruction of a single-face Voss net from the Gauss map is examined 378 

(Figure 10). Considering a Chebyshev net . reduced to only a vertex-star, the direction of the edges of 379 

the underlying face f� of �, dual to the vertex v. of ., are given by: 380 



e�� 	‖	v�. 	;	v.� e�� 	‖	v�. 	;	v.� e�� 	‖	v�. 	;	v.� e�� 	‖	v�. 	;	v.� 

(2) 

 381 

 382 

Figure 10: A Chebyshev net on the unit sphere (right) as the Gauss map . of a Voss surface � (left) to be determined. Edges 383 T��  of �, common to faces of normal ?�  and ?�� 	(left), are dual to edges T�.of ., linking vertices #.  and #�.  (right). 384 

The directions of the edges are computed linearly upon the vertices of the Chebyshev net. However, 385 

recalling the notion of mesh parallelism, it is clear that having the information of the edge directions 386 

does not uniquely determine the face f. As illustrated in Figure 9, two distinct faces, related by a 387 

Combescure transform, can have parallel edges. With �\ the column vector containing the coordinates 388 

of vertices v���	 , v�d�� , v��eeee� , v��d�  of face f, above relations (2) are rewritten: 389 

fgh
giv�. ; v.� ; v���	 , v��d� � � 0v�. ; v.� ; v�d�� , v���	 � � 0v�. ; v.� ; v��eeee� , v�d�� � � 0v�. ; v.� ; v��d� , v��eeee� � � 0

		⇒	k\�.
 ∙ �\ � 0			 390 

The relation of edge parallelism is expressed linearly using the vertices of the face to rebuild, and a 391 

matrix k\ which only depends on the vertices of .. In this equation, the unknown is the column �\, 392 

which contains the vertices of face f. Consequently, the null space null�k\
	can be interpreted as the 393 

linear space containing all quadrilateral faces whose edges are parallel to the direction prescribed by 394 

the Gauss map ..  395 

Now, with ., a more complex Chebyshev net, with several faces, the characterization of the underlying 396 

meshes �, with several faces, relies on the generalization of matrix k\. Computing all matrixes k\ 397 



independently, for each face f of �, using each vertex-stars of ., the matrixes k\ are combined in a 398 

single large matrix k of size �3�� ; 	3��%, which gives: 399 

k�.
 ∙ � � 0 400 

Where � is the column vector of the vertices of �, interpreted as the combination of all �\, and where 401 k only depends on the vertices of .. Consequently,	null�k
, defined only from ., is the linear space 402 

of dimension Z composed of meshes whose Gauss map is .. 403 

4.4 GEOMETRIC INTERPRETATION 404 

The study of the reconstruction of meshes from a given Gauss map led to the definition of a linear 405 

space, described as the null space of a matrix. Therefore, the design of a Chebyshev net . on �� leads 406 

to the definition of a linear space of Voss surfaces, only dependent on .. Actually, the null space 407 null�k
, contains Voss nets that are all related by Combescure transforms. The elementary matrixes 408 k\ defined on the each face, help describing the space of quadrilateral face whose edges are parallel 409 

to directions given by the Gauss Map. Each null�k\
 is the linear space of quad faces related by 410 

Combescure transforms respecting the constraints on the edges. Combining the face matrixes in a 411 

single matrix B guarantees that the constraints on the faces are geometrically compatible with one 412 

another, making sure that null�k
 is not always reduced to zero. Therefore, null�k
 is the linear space 413 

of meshes whose edge directions are prescribed by the initial Chebyshev net . on the unit sphere. 414 

They are related by Combescure transforms. From a mathematical perspective, the space of 415 

Chebyshev nets on �� is in bijection with the quotient set of Voss surfaces under the equivalence 416 

relation of Combescure transformations. 417 

Importantly, null�k
 is never reduced to zero when the Chebyshev net is larger than a 2 ; 2 complex 418 

of faces. A planar quad mesh, realization of the given Gauss Map, always exists by definition of the 419 

Gauss map.  420 

Remarkably, the reconstruction of the linear space from a Gauss map presented above is very general. 421 

It can actually be applied for the characterization of general meshes with planar faces, since it mainly 422 

depends on the definition of the Gauss map as the projection on ��  of the normal of the face. 423 

Therefore, polygonal meshes with different types of faces can be studied in this way, as long as faces 424 

are planar. In our context, this approach proved to be particularly relevant since all and only defining 425 

constraints of discrete Voss surfaces are enclosed in their Gauss map. 426 



5 GENERATION OF VOSS SURFACES 427 

The design space for discrete Voss surfaces identified in section 4 is used for the generation of discrete 428 

Voss surfaces. Two different methods are presented. The first consists in exploring the linear space of 429 

discrete Voss surfaces (section 5.2). The second consists in a direct computation of the Voss net from 430 

two target boundary curves (section 5.3). Beforehand, section 5.1 exposes existing approaches to 431 

generate Chebyshev nets on surfaces. 432 

5.1 GENERATION OF CHEBYSHEV NET ON THE SPHERE 433 

The study of the space of Chebyshev nets on �� is a preliminary to the generation of discrete Voss 434 

surfaces and has already been addressed in the literature. 435 

Historically, Chebyshev introduced this variety of nets on smooth surfaces in 1878 for their capacity to 436 

approximate the behaviour of fabric around the human body. Such a net can be assembled initially as 437 

a flat two-way grid, and then its transformation approximates the behaviour of flexible but inextensible 438 

rods. Thus, Chebyshev nets can be found in various contexts, such as stylish furniture or medical stents. 439 

Its use for architectural venues, initiated by Frei Otto, resulted in the association of Chebyshev nets 440 

with the structural notion of elastic gridshells. 441 

Mathematically, Chebyshev nets on a surface are defined by hyperbolic equation and their generation  442 

involves the solution of  the Sine-Gordon equation [54]. The determination of such nets is therefore a 443 

problem of propagation. On this kind of problems, unique solutions are determined from the 444 

prescription of boundary conditions or from the propagation of an element. As exposed in section 1.1, 445 

the problem of mapping Chebyshev nets on given smooth surfaces has been addressed many times, 446 

geometrically and computationally. Unlike the case of elastic gridshells, where these nets directly 447 

model the support structures, Chebyshev nets are used here as a representation of Voss nets on the 448 

unit sphere. Thus, requirements on the net differ from usual applications, since smoothness is here 449 

not necessary. Still, similar generation methods can still be applied in our case, but the scope is reduced 450 

to the generation of Chebyshev nets on the unit sphere. 451 

A first choice of generation method consists two primal boundary curves as initial conditions [10]. This 452 

process corresponds to the so-called “compass method” introduced by Otto et al. [6]. Let 3̀ � �a	
	�o 453 

and 3p � b����q be two polylines, whose starting vertices coincide. Recalling that a Chebyshev net is 454 

defined by equal opposite lengths in each face, it is possible to rebuild iteratively the parallelograms 455 

by starting from the intersection of 3̀  and 3p , and by using the subdivisions of both polylines. 456 

Parallelograms are computed line by line, or diagonally. The process stops when the �A , 1
�s , 1
 457 

quadrilateral faces are mapped.  458 



 459 

Figure 11: Chebyshev nets generated from two primal boundary conditions. 460 

Figure 11 illustrates two examples of Chebyshev nets on the unit sphere generated from two primal 461 

boundary conditions. The primal conditions are the discretized lines, depicted by thicker lines. The 462 

parallelograms are successively computed from the intersection of the two lines to the opposite corner 463 

of the mesh. The situation on the right sphere is a degenerate case where one of the two lines is 464 

reduced to a point. Thus, the resulting Chebyshev net is curve. The underlying Voss net is in fact a 465 

developable net, mapped by a conjugate geodesic network. This is a well-known fact of differential 466 

geometry: all developable surfaces are indeed Voss surfaces. 467 

A second choice consists in generating Chebyshev nets from secondary conditions denoted as “initial 468 

zigzag” [36,51]. This method relies on the initial prescription of the diagonal parallelograms of the 469 

Chebyshev net. Secondary conditions correspond to the vertices on a diagonal and to the next or 470 

previous diagonal line, which is equivalent to a zigzag (Figure 12). Similarly, the parallelograms are then 471 

computed diagonally, on one side and the other.  472 

 473 

Figure 12: Chebyshev nets on the unit sphere generated from secondary conditions. Open (left) and closed (middle) polylines 474 
on �� are used. The rosette condition (left) is a degenerate case. 475 

Figure 12 shows three applications of this second generation method where the secondary conditions 476 

are represented with dotted lines. Open (left) and closed (middle) polylines are used as support for 477 

the secondary conditions, resulting respectively in an open and closed looping Chebyshev net on ��. 478 

The degenerate situations where one of the secondary curves is reduced to a point is also illustrated 479 

(right). 480 

A third choice consists in mixing the two aforementioned boundary conditions (Figure 13 left).  481 



 482 

Figure 13: Examples of a mixed condition (left) and of patches of Chebyshev nets generated from primal (center) or dual 483 
(right) curves. 484 

Masson studied the notion of patches or junction between Chebyshev nets [10]. The bounding 485 

polylines of a given Chebyshev net are seen as potential input curves for the generation of attached 486 

Chebyshev nets. This allows the mapping of surfaces that could not be approximated by a single 487 

Chebyshev net by defining several nets compatible with one another, in the sense that they match at 488 

their common polyline.  489 

Figure 13 illustrates the patch of primal (center) and secondary (right) conditions. In the first case, the 490 

compatibility of the generated Chebyshev nets results from the use of a common boundary polyline. 491 

Regarding the patch of secondary conditions, only one secondary polyline is required to create the 492 

second Chebyshev net (on the right). The generation of this second net can also be seen as a mixed 493 

generation which uses the new boundary of the first Chebyshev net as a primal polyline. 494 

The generation methods presented above always lead to a Chebyshev net. Depending on the situation 495 

addressed, one condition may be more relevant than another, in a similar way as for partial differential 496 

equations where the resolution is eased by the use of adapted initial conditions. The methods differ 497 

by their initial inputs for resolution. Depending on the problem addressed, one boundary condition 498 

may prove to be more relevant than another. For the generation of Voss nets, an arrangement of the 499 

grid on the boundary can turn out to be technically or architecturally more interesting. A methodology 500 

to compute the spherical parallelograms of Chebyshev nets on �� by means of unit quaternions is 501 

presented in the Appendix: Computation of a Chebyshev net tu.  502 

5.2 EXPLORATION OF DISCRETE VOSS SURFACES 503 

As exposed in the previous section, a number of options exists to generate Chebyshev nets, supporting 504 

the choice made for a reduced design space for Voss surfaces. Following results from sections 4.3 and 505 

4.4, once a Chebyshev net . is computed on ��, the matrix k is calculated upon the vertices of ., and 506 

the linear space of null�k
 is to explore. 507 

Contrary to usual approaches, the starting point is not an initial mesh but its Gauss map, which is 508 

topologically dual. Therefore, best-fit algorithms comparing trial shapes with a target surface cannot 509 



be directly be implemented in this context. Instead, the objective is to identify a basis of the linear 510 

space null�k
 which allows its smooth and informed description. 511 

EIGENSHAPES 512 

Poranne et al. [49] suggested the use of eigenshapes to generate initial smooth meshes and transform 513 

them. Eigenshapes are defined as the eigenvectors of the Laplacian L of the mesh, a quadratic function. 514 

For each vertex v , the Laplacian gives a direction for the smoothing of the mesh, based on the 515 

neighbour vertices v	  of v: 516 

v�v
 � v , 1?w v	b
	x�  517 

Eigenshapes, or eigenvectors of the Laplacian v constrained on null�k
, form a special basis of the 518 

space null�k
. Unlike a random basis of this linear space, each eigenshape corresponds to a smooth 519 

Voss surface. Alternatively, eigenshapes can also be seen as transformation modes if they are added 520 

to a realization of this space. Therefore, in the present case, eigenshapes serve for the generation of 521 

an initial Voss surface of null�k
 and then for the transformation of this element. The best candidates 522 

for the initial realization are found by minimizing the Rayleigh quotient: 523 

min�	y	bz]]�k
�� ∙ v ∙ ��� ∙ �  524 

Since we are interested in applying transformations and thus in exploring the whole linear space 525 

described by null�k
, the minimization problem is indirectly solved by finding the eigenvectors of v. 526 

To account for the constraints of k ∙ {	 � 	| , an orthonormal basis }  of null�k
  is computed by 527 

running a Singular Value Decomposition (SVD) on k. Thus, every vector of null�k
 can be written as 528 } ∙~  for some column vector ~. This also has the effect of reducing drastically the number of 529 

unknowns to Z , the exact dimension of null�k
  given earlier as the dimension of the space of 530 

Combescure transforms: 531 

min�	y	bz]]�k
�� ∙ v ∙ ��� ∙ � 	⇔	min~ ~� ∙ }� ∙ v ∙ } ∙ ~~� ∙ ~  532 

The eigenshapes are then given by computing an eigenvalue decomposition of the matrix }� ∙ v ∙ } 533 

and taking the eigenvectors of the resulting matrix. Consequently, the smoothest meshes of the linear 534 

space null�k
 are the eigenshapes of }� ∙ v ∙ } with the lowest eigenvalues. In the present case, this 535 

allows to define a smooth initial discrete Voss surface �, whose Gauss map is the Chebyshev net . 536 

which was used to compute k.  537 

MINIMAL INFLUENCE MODES 538 



Interpreting null�k
 as a space of transformation modes for Voss nets, an alternative solution for the 539 

exploration of the linear space is to create a basis of modes with minimal influence on the overall 540 

geometry. 541 

The formulation of such basis derives from the observation that given a planar mesh � , the 542 

Combescure transformations of � sorts the edges of the mesh into groups of co-dependent edges. 543 

Thus, if an edge is stretched or shortened under a Combescure transformation, then all the other edges 544 

from its group are also modified. Combescure transformation form an equivalence relation on the edge 545 

of � and the number of equivalence class is Z , 3, living out the three global translations in space. 546 

For example, considering the simple case depicted on Figure 9, the equivalence class would be �T�� �547 �T�, T�, T�� , �T�� � �T�, T�, T��, �T�� � �T�, T�, T�� , �T��� � �T��, T��, T���. Taking one representative 548 

edge by equivalence class, the aforementioned basis of null�k
 is composed of transformation modes 549 

which alter one of the representative while leaving the length of all the other selected edges 550 

unchanged. 551 

The research of the modes is achieved on a reduced space }�������  of size �3�Lacz�ac� ; Z , 3% 552 

obtained from } � null�k
, of size �3�� ; Z%, by filtering the three global translations and then by 553 

keeping the line of the matrix correspond to the vertices involved at the start or the end of the 554 

representative edges. With � the matrix computing the edge vectors of the representatives from their 555 

start and end vertex coordinate in }�������, the problem of finding the basis is equivalent to solving: 556 

∀G, 1 ≤ G ≤ Z , 3, � ∙ }������� ∙ { � 	��, �ℎTHT	�� �	 �0	⋯ 	1	⋯0�		�>?�?G�>�		557 																																																																																																												#T�=�H0	��	��5�. 558 

Finally, the Z , 3  solution vectors {  are each multiplied by }�� ¡����  in which the three global 559 

translations were previously filtered. This produces basis vectors on the whole space and not on the 560 

reduced one. 561 

Compared with the eigenshapes, this alternative method to explore	null�k
 proved more intuitive for 562 

the transformation of already computed Voss net. The ability to only have local modifications revealed 563 

useful for the design of Voss nets as well as for patching them together. 564 



 565 

Figure 14: Process for the exploration of linear spaces of discrete Voss surfaces. 566 

Thus, the entirety of null�k
 can be explored by adding either eigenshapes or minimal influence 567 

modes to � . The effect is the transformation of the mesh while keeping the Gauss map of � 568 

unchanged.  These approaches give very satisfying solutions for closed and open meshes and allows to 569 

have relevant transformation modes (Figure 14), which is not the case when simply using an 570 

orthonormal basis of null�k
. 571 

5.3 DIRECT GENERATION OF DISCRETE VOSS SURFACES 572 

The methodology exposed in the previous section explores linear spaces of Voss surfaces, i.e. produces 573 

a variety of shapes. However, in some cases, one can be interested in a more explicit approach, i.e. in 574 

directly computing a discrete Voss surface from initial constraints expressed in the Euclidean space 575 

and not on the Gauss map. Therefore, a direct generation method is presented, which uses two 576 

boundary curves as input. 577 

Let 3̀  and 3p  be two polylines whose first vertices are coincident. These curves correspond to the 578 

boundary coordinate-lines of the Voss net to generate. Given that 3̀  and 3p are not degenerated, the 579 

Frenet frame at each internal vertex is computable. This is equivalent to interpreting the curves 3̀  and 580 3p as discrete geodesic lines on a surface. The Frenet frames give the normal vector at each internal 581 

vertex, which corresponds to the centre of each spherical parallelograms of the Gauss map. With this 582 

information only, there are some degrees of freedom left for the design of the Chebyshev net on ��. 583 

The missing information is to be found at the intersection of the input curves. Since 3̀  and 3p are the 584 



boundary curves, their vertices a� � b� , a�  and b�  are contained in the same planar facets at the 585 

starting corner. Therefore, the first vertices of the polylines give the normal vector of the initial facet. 586 

The Chebyshev net is then generated from the first face normal and the set of vertex normals (Figure 587 

15). 588 

 589 

Figure 15: Process for the direct computation of discrete Voss surfaces 590 

The Chebyshev net computed on the unit sphere gives access to the direction of each edge of the 591 

discrete Voss net to be constructed from the boundary curves. In relation with the previous generation 592 

method, a possible technique to construct the Voss net from there would be to compute the matrix k 593 

and the eigenshapes of the Laplacian, to describe null�k
. Then, to find the unique solution that fits 594 

with the vertices of the boundary curves 3̀  and 3p , an additional linear system would have to be 595 

solved. Instead, a more straightforward approach is adopted. In order to reduce significantly 596 

computational time, constraints are solved locally, at the scale of the face and not globally on the mesh 597 

[56]. Considering v`, vp, v� and vc the vertices of a planar quad face of �, and ¢�, ¢�, ¢� and ¢� the 598 

direction of the edge given by the Gauss map (Figure 16), if the length of two edges is known then it is 599 

possible to know the length of the two others by solving:  600 

£�� , �� ∙ cos	�(
�� ∙ sin	�(
 ¦ � £cos	�)
 ,cos	�( 9 §
sin	�)
 sin	�( 9 §
 ¦	£����¦ 601 



 602 

Figure 16: Computation of the last vertex of a planar face from two edge length. 603 

Thus, the Voss net is given by iteratively computing the faces, starting at the intersection of the 604 

boundary discrete geodesic coordinate-line, in a similar way than for the Chebyshev net. In conclusion, 605 

the direct generation of the discrete Voss net is permitted by the extensive use of the different 606 

interpretations and analyses of the Gauss map presented in the preceding sections. 607 

6 APPLICATIONS 608 

The methodologies presented in the previous section are applied for the computation of doubly-609 

curved shapes, all based on discrete Voss surfaces.  610 

6.1 FORMAL EXPLORATION 611 

The framework proposed gives access to a large variety of complex geometries. The design of discrete 612 

Voss surfaces with positive, negative or sign-changing Gaussian curvature is possible, although the 613 

design space, the unit sphere, has a constant positive Gaussian curvature.  614 

The first methodology, based on the computation of a linear space, provides enough freedom to 615 

investigate diverse shapes and to alter them quickly. Interestingly, new shapes can be found from 616 

linear combinations of realizations, since the Voss nets are parts of the same linear space. Because the 617 

generation of Voss nets is done through an abstract representation, it requires a certain intuition to 618 

manipulate the Gauss Map. On the other hand, the determination of discrete Voss surfaces from two 619 

boundary curves reveals more intuitive. With this second method, the designer has an explicit and 620 

prompt way to build Voss nets.  621 

Resorting to Chebyshev patches permits the concatenation of discrete Voss surfaces while ensuring 622 

continuity between them. In a similar fashion as for Chebyshev nets, using patches provides a mean to 623 

insert and manage singularities in the discrete Voss nets. Examples of constructions are compiled on 624 

Figure 17, where the separation between patches is denoted by thick black lines. 625 



 626 

Figure 17: Discrete Voss surfaces generated from Chebyshev patches. Left: Geodesic gridshell inspired by the gridshell of 627 
Downland [3]. Center: Geodesic gridshell canopy which can be repeated in both directions. Right: Twisting periodic Voss net.  628 

6.2 TRANSFORMATIONS 629 

ISOMETRIC TRANSFROMATIONS 630 

Isometric transformations are distance preserving transformations. As an extension of developable 631 

surfaces, discrete Voss nets admit a one-parameter family of isometric transformations. During such 632 

transformations, the shape of each face is kept identical, while their orientation varies in space. 633 

Consequently, given an initial Voss net, a family of meshes with same faces is deduced by prescribing 634 

one parameter for the transformation.  635 

Figure 18 shows examples of discrete Voss surfaces related by isometric transformations. The different 636 

cases have been obtained by choosing the dihedral angle between two consecutives faces. The Gauss 637 

Map is then deformed accordingly. 638 



 639 

Figure 18: Discrete Voss surfaces related by isometric transformations. 640 

COMBESCURE TRANSFORMATIONS 641 

Furthermore, Combescure transformations also preserve the defining properties of discrete Voss 642 

surfaces. Here, they are applied to alter the geometry of Voss and explore the shape space. In Figure 643 

19, the initial discrete surface with a positive Gaussian curvature (left) is transformed into a net with 644 

negative Gaussian curvature (right). 645 

 646 

Figure 19: Voss surfaces with positive Gaussian curvature (left) and negative Gaussian curvature (right) both related by a 647 
Combescure transform. 648 

6.3 SHAPE FITTING WITH VOSS NETS 649 

The framework developed in this paper ensure that the surfaces drawn do not have approximate but 650 

the exact properties. This guideline led to the formulation of Voss nets as linear space but has evaded 651 

options such as ruled-based optimization, heavily used for fitting target shapes. However, the goal of 652 

fitting a target surface is not inherently incompatible with the work presented. In this subsection, 653 

illustrating the potential of our methodology, the fitting of a translational surface is studied (Figure 20 654 

– left). The surface considered originates from an example given by Schober and Schlaich [22] and is 655 

obtained by translating a parabola along another orthogonal parabola. By cutting this surface with a 656 

circle, Schober and Schlaich were able to obtain a doubly curved dome that can be covered with flat 657 



panels only, and which could have been implement in projects such as the Neckarsulm swimming pool 658 

cover.  659 

For the shape-fitting optimization on this target surface ¨, an adapted linear space of Voss nets is first 660 

defined. Knowing the surface ¨, its Gauss map	' is retrieved by projecting the normal vectors on the 661 

unit sphere. To ensure a complete covering of the Voss net � on the target ¨, the Gauss map . of � 662 

has to be greater than '. In the case of the translational surface, a simple bi-symmetrical Chebyshev 663 

net . has been designed on  �� (Figure 20 – top). From this initial guess ., the linear space null�k
 664 

and then the minimal influence modes were computed. For a mesh � of  17 ; 17 faces, it resulted in 665 

34 transformation modes of �, to combine with the three global translation. 666 

For practical reasons, the optimization method used is an implementation of the genetic algorithm 667 

called Galapagos [57]. The genotype is composed the 37 modes of transformation. The fitness function 668 

is composed of three parts: the first one sums the distance of each vertices of � to the target surface 669 ¨ to ensure closeness; the second enforces symmetricity on � by summing the length discrepancies 670 

among symmetrical edges , and the last energy aligns the meshes by weighting the distance between 671 

the in-plane projection of their barycentre. The respective weights of the parts are 1.0, 20 and 20. 672 

 673 

Figure 20: Step of the fitting optimization of a translational surface with a Voss net. On the right, the Voss net resulting from 674 
the optimization with the exceeding portions of target surface in dotted lines 675 

After optimization, a first convincing result was obtained. The maximal and mean distances of the 676 

vertices of � to the target geometry are respectively about 2.5 % and 0.7% of the surface diameter. 677 

However the pattern of the Voss net looks uneven due to the fact that the Gauss map . was a regular 678 

Chebyshev net. To smoothen the division pattern of the net �, edge length of the Chebyshev net could 679 

have been added in the genotype. This option assumes that the linear space has to be computed again 680 



after each generation which is time consuming. Therefore, the Gauss map of � was altered manually 681 

to a weak Chebyshev and after few iterations, another conclusive Voss net was found (Figure 20 – 682 

bottom). On this result, the mean and max distances are similar with respectively 2.8% and 0.78% of 683 

the target surface diameter. 684 

The advantage of using a linear space is that the optimization ran on only 37 parameters, while it would 685 

have been done on 3 ; � � 972 values corresponding to the coordinate in space of each vertices of 686 �. On the other hand, the Voss nets resulting from the optimization fit the target geometry only 687 

approximately. The fact that the Gauss map has to be a Chebyshev net limits the shapes accessible to 688 

Voss nets. 689 

6.4 CONSTRUCTIVE INTERPRETATION 690 

In this section, the relation between Voss nets and their constructability as geodesic gridshells is 691 

illustrated through two examples. For such interpretation, the edges of the meshes represent discrete 692 

geodesic lines and are thus approximations of the path taken by rectangular cross-section beams. 693 

Similarly, the faces of the mesh correspond exactly to flat panels used for the covering of the support 694 

structure. 695 

The first example is based on a Voss net with a positive Gaussian curvature (Figure 21 – top right). The 696 

simplicity of the geometry (Figure 21 – top right) allows to grasp the transition leading to the simulated 697 

layout of the rectangular cross section beams (Figure 21 – top middle) and then to a real mock-up 698 

(Figure 21 – top right). The real mock-up is made of organic glass beams with 1.5mm by 8mm 699 

rectangular cross sections, assembled together with earing connectors to enforce tangency of 700 

intersecting members. The overall geometry of the grid took form progressively while assembling the 701 

beams on by one. 702 

The second case study comprises an arrangement of several Voss nets (Figure 21 – bottom left). The 703 

central net itself is a composition of Voss nets which generate a singularity at the top. Then, three 704 

identical branches are patched on the sides. To display the feasibility of the geometry, a model of the 705 

pavilion with a beam layout and panel thickness is exposed (Figure 21 – bottom right). The panel 706 

thickness is set to 100 mm to emphasise on the capacity of Voss net to adapt large thickness. After a 707 

preliminary sizing of the bent members based on their curvature, 8mm by 80mm rectangular cross-708 

section laths are used in the gridshells. The beams at free borders of the branches are double in place 709 

to fix their geometry while the supports are better fixed than hinged. This guarantees the proximity of 710 

the surface model with the relaxed configuration of the gridshell, thus reducing the tolerances and 711 

improving the capacity to fix the rigid panels over the support structure. 712 



 713 

Figure 21: A composition of Voss surfaces with a singularity at the centre (top - left) along with its constructive 714 
interpretation which includes the flexible beam layout and the thickness of the covering panels (top - left); A simple Voss 715 

surface (bottom - left), with the expected beam layout (bottom - middle) and the built mock-up (bottom - right). 716 

CONCLUSIONS 717 

This paper addresses the design of geodesic gridshells, a family of shells that can be built from initially-718 

straight beams arranged in a layout which avoids sideways bending, and that can be covered with flat 719 

quadrilateral panels only. These unique beneficial construction features are made possible by using 720 

discrete Voss surfaces and their unique geometrical properties.  721 

A generation process is presented, which starts with the creation of a Chebyshev net . on the unit 722 

sphere, and interprets it as the Gauss map of Voss surfaces. The vertices of the Gauss map are used to 723 

compute edge directions and create a matrix, whose null space is a linear space containing all 724 

corresponding Voss surfaces. Smooth realizations of this space are obtained after computing a special 725 

basis of the null space, called eigenshapes, the best candidate being the eigenshapes associated with 726 

the lowest eigenvalue. The exploration of other realizations associated with the same Gauss map . is 727 

achieved at no computational cost by employing other eigenvectors or with minimal influence modes. 728 

In addition, a process to directly compute Voss surfaces from two boundary curves is presented. It uses 729 

the normal at the vertices of the mesh and generates the unique underlying Voss surface in linear time. 730 

Finally, applications comprise the generation of the best-fit discrete surface to a target mesh. The 731 

fitting is tackled from the Gauss map since it reduces the number of degrees of freedom for the 732 

optimisation process. Additional geometries are presented, including the model of a pavilion. 733 



Further developments should address the mapping of a Chebyshev net on complex Gauss maps. 734 

Although several methods already deal with the approximation of surfaces with Chebyshev nets  735 

(section 1.1), Gauss maps often presents singularities and cusps, a problem that is not systematically 736 

addressed in the past proposed methodologies. In addition, the described generation strategies do not 737 

apply to the exploration of the developable surfaces subfamily, since the gauss map is reduced to a 738 

curve. Alternative methods can be formulated with more information than solely the Gauss map. 739 

Following the research presented in this article, focused on the theoretical framework, a pavilion has 740 

been designed and built. Thus, the constructive details, the mechanical study of Voss nets, and the 741 

built structure will be presented in an upcoming article. 742 
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APPENDIX: COMPUTATION OF A CHEBYSHEV NET tu  
913 

Literature is filled with strategies for generating Chebyshev nets on general surfaces. They are based 914 

on geometrical considerations or optimisation principles, which are computationally heavy. In [38] a 915 

specific method is explained to generate Chebyshev nets on the unit sphere using unit quaternions. 916 

The embedding in the 4D space of quaternions allows to build the Chebyshev net from simple addition 917 

and multiplication. 918 

Considering v`, vp, v� and vc the vertices of a spherical parallelogram contained in a hemisphere of 919 

the unit sphere �� (Figure 22), the following relation holds: 920 �v` 9 v�
 ; �vp 9 vc
 � 0, 921 

which is equivalent to stating that the rotation about the axis �v` 9 v�
 or �vp 9 vc
 of an angle of +, 922 

transforms the spherical parallelogram to itself. The position of the vertices v` and v�, and vp and vc 923 

are inverted. Thus, if the vertices v`, vp and vc are known, v� can be computed from v` by rotation of 924 

an angle + around the axis �vp 9 vc
. 925 

The space of unit quaternions is then used to compute this rotation in a straightforward way. Let’s 926 

consider the rotation of a point p � �« , «!, «"
 around the unitized axis d � �¢ , ¢!, ¢"
 of an angle 927 (. The unit rotation quaternion is defined by: 928 

q � 	 @��0 @�C , 0G?	 @�C ∙ ¢ , 0G?	 @�C ∙ ¢!, 0G?	 @�C ∙ ¢"C. 929 

Using the identification between the Euclidean space ℝ� � ��®, ¯, °
; ®, ¯, °	I	ℝ	� and the space of 930 

imaginary quaternions ² � ��0, ®, ¯, °
; ®, ¯, °	I	ℝ	�, the resulting point of the rotation is computed 931 

as: 932 r � q	 ∙ 	p	 ∙ q5�. 933 

Using this formula with:  934 

p � v` , d � vp 9 vc‖vp 9 vc‖ , ( � +, 935 

the resulting r, or more precisely its imaginary, is the position of v�. 936 

 937 

Figure 22: Spherical parallelogram and the rotation axis mapping the quad to itself through a rotation of an angle π 938 


