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ABSTRACT

We have studied the effect of Heþ irradiation on the dynamics of chiral domain walls in Pt/Co/AlOx trilayers in the creep regime.
Irradiation leads to a strong decrease in the depinning field and a non-monotonous change of the effective pinning barriers. The variations
of domain wall dynamics result essentially from the strong decrease in the effective anisotropy constant, which increases the domain wall
width. The latter is found to present a perfect scaling with the length-scale of the interaction between domain wall and disorder, n. On the
other hand, the strength of the domain wall–disorder interaction, fpin, is weakly impacted by the irradiation, suggesting that the length-scales
of the disorder fluctuation remain smaller than the domain wall width.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143422

One of the most critical technological issues that hinders the
application of magnetic textures, such as domain walls (DWs) and sky-
rmions, to high performance spintronic devices is their interaction with
defects. Material inhomogeneities act as pinning sites for magnetic tex-
tures, limiting their velocities for small driving torques (i.e., for fields or
currents below the depinning threshold, in the so-called creep regime)
and preventing reproducible displacement events. To control the
motion of magnetic textures, a better understanding of their interaction
with the pinning disorder would be particularly welcome.

In this frame, ion irradiation is an interesting tool since it allows
both tuning the magnetic properties of ultrathin films1–8 and modify-
ing DW dynamics.9,10 Early studies on Pt/Co/Pt multilayers showed
that Heþ ions with energy in the 30 keV range provoke short-range
(0.2–0.5 nm) atomic displacements through low energy collisions.1,2,11

The resulting Co/Pt intermixing gradually evolves with increasing flu-
ences, therefore tuning the interfacial perpendicular magnetic anisot-
ropy (PMA).12 Although ion irradiation has been observed to change
the DW dynamics of several ultrathin films in the creep regime,9,10 the

microscopic origin of these effects remains an open issue, as ion
irradiation may modify both the pinning disorder and the DW
magnetic texture (via the film PMA) and, thus, the DW-disorder
interaction.

Recent developments in the understanding of pinning dependent
dynamics of DWs driven by a magnetic field13,14 and an electrical cur-
rent (via the spin transfer torque)15 provide quantitative assessments
on DW–disorder interactions. The pinning dependent dynamics of
DWs results from the interplay among DW elasticity, weak pinning,
thermal activation, and a driving force.16 The thermally activated creep
regime13 and depinning14 regime observed below and just above the
depinning threshold present well studied universal behaviors, which
are in agreement with predictions for the quenched Edwards–
Wilkinson universality class.17 Combining a self-consistent description
of the creep and depinning regimes and a scaling model of DW depin-
ning, the analysis of domain wall dynamics allows extracting the
parameters characterizing the interaction between domain walls and
weak pinning disorder.18
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In this work, we analyze the evolution with Heþ fluence of
micromagnetic parameters and DW dynamics in a series of Pt/Co/
AlOx ultrathin films presenting the same initial disorder. We evidence
a perfect scaling between DW width parameter and DW-disorder
interaction length scale, directly reflecting the strong decrease in the
PMA. On the other hand, the strong correlation between the pinning
strength and DW energy is compatible with negligible effect of Heþ

irradiation on the pinning disorder.
Ta(4)/Pt(4)/Co(1.1)/Al(2) magnetic stacks (thicknesses in nm)

were deposited by magnetron sputtering on Si/SiO2 wafers; the Al
layer was consequently oxidized with an oxygen plasma. The film was
diced into small samples: one of them was kept in the pristine state,
while the others were irradiated at room temperature with 15 kV He�

ions, with fluence ranging from 4� 1014 to 1.5� 1015 Heþ/cm2. The
measured magnetic parameters are presented in Table I. The sponta-
neous magnetizationMs and the anisotropy field l0Hk were measured
by superconducting quantum interference vibrating sample magne-
tometry. All the samples present an out-of-plane easy magnetization
axis. The in-plane saturation field strongly decreases as the Heþ flu-
ence increases, while the spontaneous magnetization is, within the
uncertainty of the measurement, unchanged.

The field-driven domain wall dynamics was measured using
polar magneto-optical Kerr microscopy. For the lowest DW velocities,
out-of-plane magnetic field pulses were applied using an electromag-
net (maximum pulse amplitude l0Hz ¼ 25mT, minimum duration
20ms). For the higher velocities, pulses of maximum amplitude
l0Hz ¼ 200mT and minimum duration 30ns were delivered by a
200lm-diameter microcoil associated with a fast pulse current genera-
tor.19 The film magnetization was first saturated in the out-of-plane
direction. An opposite magnetic field pulse was then applied to nucle-
ate a reverse domain. The velocity of DWs was deduced from their
displacement observed after the magnetic field pulse and corresponds
to the ratio between the displacement and the pulse duration. The
presence of left-handed homochiral N�eel walls20 associated with the
presence of Dzyaloshinskii–Moriya interaction (DMI)21,22 was con-
firmed by the non-isotropic displacement of the DWs in the presence
of a static in-plane magnetic field l0Hx (not shown). The strength
of the DMI interaction was obtained from the DW saturation
velocity at large Bz fields vsat ¼ cpD=ð2MsÞ, using the experimental
values ofMs.

19,23

The domain wall velocities driven by out-of-plane magnetic fields
up to 200mT are reported in Fig. 1 for the samples in the pristine state
and after irradiation. As it can be observed, the strongest trend is a

shift of the curves toward low field values with increasing irradiation
fluence. More quantitative insight into the DW dynamics can be
deduced from the self-consistent description of the creep and depin-
ning regimes proposed in Refs. 13, 14, and 24

TABLE I. Micromagnetic parameters measured for the Pt/Co/AlOx film in the pristine state and after irradiation with Heþ ions. For each sample, the table indicates the Heþ irradi-
ation fluence, the spontaneous magnetization Ms, the anisotropy field l0HK , the anisotropy constant Keff ¼ l0HKMs=2, the DW width parameter D ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
A=Keff

p
, the DW satura-

tion velocity vsat obtained for high magnetic fields, the interfacial DMI constant D obtained using D ¼ 2Msvsat=ðcpÞ, and the DW energy r ¼ 4
ffiffiffiffiffiffiffiffiffiffi
AKeff

p
� pD using A¼ 16 pJ/m.

Sample Heþfluence (ions/cm2) Ms (MA/m) l0HK (T) Keff (10
5 J/m3) vsat (m/s) D (nm) D (mJ/m2) r (mJ/m2)

Pristine 0 1.136 0.03 7856 40 4.446 0.25 2606 15 6.06 0.2 1.066 0.08 7.326 0.6
F1 4.0 � 1014 1.136 0.03 7276 40 4.116 0.24 2706 15 6.36 0.2 1.106 0.08 6.786 0.6
F2 1.0 � 1015 1.166 0.03 4466 25 2.596 0.15 2706 15 7.96 0.2 1.136 0.08 4.586 0.6
F3 1.5 � 1015 1.176 0.03 3056 16 1.786 0.10 2706 15 9.56 0.2 1.146 0.08 3.176 0.6

FIG. 1. Effect of Heþ ion irradiation on domain wall dynamics: (a) domain wall
velocity vs out of plane field pulse amplitude l0Hz for different irradiation fluences;
(b) the same curves plotted in the semi-log scale as a function of ðl0HzÞ�1=4 show-
ing the linear trend expected for the creep regime. The solid and dashed lines cor-
respond to fits of Eqs. (1) for the creep and depinning regime, respectively.
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(1)
where l ¼ 1=4; b ¼ 0:25, and w ¼ 0:15 are universal critical expo-
nents and x0 ¼ 0:65 is a universal constant.14,25 In Eqs. (1), the three
adjustable parameters depend on the film magnetic and pinning prop-
erties: the depinning temperature Td characterizing the height of the
effective pinning barrier, the depinning field Hd, and the velocity
vðHdÞ, corresponding to the coordinates of the crossover between
creep and depinning. Good agreement between the experimental
curves and the fit using Eqs. (1) [Figs. 1(a) and 1(b)] indicates the
crossover between the creep and depinning regimes. The evolution of
the depinning parameters with the irradiation fluence is reported in
Fig. 2. The irradiation has no effect on the depinning velocity vðHdÞ,
which remains rather constant. Td varies slightly with a non-
monotonous trend. In contrast, Hd decreases by a factor �2 with the
irradiation fluence (from around 80mT for the pristine sample down
to 40mT for 1.5� 1015 Heþ/cm2). As a consequence, in the irradiated
samples, the DWs can reach the largest velocities for lower applied

magnetic fields. Note that our results are not compatible with the
assumption r � TdH

1=4
d proposed by Je et al.26 The slope of the creep

law in Fig. 1(b) (/ TdH
1=4
d ) does not vary with the Heþ fluence. The

DW energy is defined20 by r ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
AKeff

p
� pD, where A is the

exchange stiffness, Keff is the effective anisotropy constant, and D is
the DMI constant. Using the measured Keff and D and setting A¼ 16
pJ/m (the value we estimated for similar Pt/Co/AlOx trilayers in Ref.
19), we find, on the other hand, that the DW energy varies by more
than a factor 2 (see Table I).

In order to discuss the evolution of the interaction between DWs
and disorder as a function of the irradiation fluence, we use the scaling
model developed in Ref. 18. This model allows us to link the character-
istic length scale n and the force fpin of the interaction between DW
and disorder to the measured depinning field Hd, the temperature Td,
and the micromagnetic parameters, i.e., the DW energy r and the
spontaneous magnetizationMs,

n � ðkBTdÞ2=ð2l0HdMsrt
2Þ

� �1=3
; (2)

fpin �
b
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0HdMstkBTd

p
: (3)

In the above equations, kB is the Boltzmann constant, t is the magnetic
film thickness, and b is the characteristic distance between pinning
sites. Figure 3(a) compares the evolution of n and of the DW parame-
ter D as a function of the irradiation fluence. As it can be observed,
rescaling n with a single adjustable parameter (D � 2:9n) leads to a
superposition with the values of D. This almost perfect scaling strongly
suggests that the characteristic distance between pinning sites b is
smaller than D, so that the latter fixes the length-scale of the DW-
disorder interaction.18,27 As a consequence, the predicted short-range
atomic displacements produced by Heþ ions irradiation2,3 have no
impact on the characteristic length of DW-pinning interaction n. The
observed variation of n only reflects the strong decrease in the effective
anisotropy constant with the increasing irradiation fluence.

Figure 3(b) compares the evolution of the pinning force fpin and
the DW energy per unit length rt. In this case, we assumed a common
distance between pinning sites b¼ 1nm, and we used a single scaling
parameter (¼9) to superimpose the data points corresponding to the
pristine film. fpin and rt are observed to follow a similar decreasing
trend with irradiation fluence. Note that a similar phenomenon was
already observed for Pt/Co/Pt, Pt/Co/Au, and Au/Co/Pt trilayers in
Ref. 18. In that work, the samples had a fixed disorder, and the DW
width and energy were controlled by an in-plane magnetic field.18 In
the present case, as the samples share initially the same pinning disor-
der, the observed close trend of fpin and rt suggests a weak change of
the disorder by irradiation. Assuming a perfect scaling between fpin
and rt [i.e., adjusting the value of b to perfectly superimpose the data
points in Fig. 3(b)] leads a rough estimate of the maximum variation
of b�� 15%. These insights suggest that the Heþ irradiation has little
impact on the pinning disorder, and the variation of the strength DW-
disorder interaction fpin essentially reflects the decrease in the effective
anisotropy constant with irradiation fluence.

In conclusion, light Heþ irradiation in Pt/Co/AlOx ultrathin
films causes a strong reduction in the depinning field, leading to an
increase the DW mobility at low magnetic fields. Through a self-
consistent description of the creep and pinning dynamics completed
by a scaling model of DW depinning (relating DW pinning properties

FIG. 2. Effect of Heþ ion irradiation on the depinning parameters: (a) depinning
field l0Hd , (b) depinning temperature Td, and (c) depinning velocity vðHdÞ.
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to depinning and micromagnetic parameters), we reveal an excel-
lent scaling between the variations of the DW-disorder interaction
length scale n and the DW width parameter. This scaling strongly
suggests that the modifications of the DW pinning are essentially
dominated by the variations of the DW magnetic texture (via the
variation of the film anisotropy) while the short range atomic dis-
placements produced by the irradiation have a weak impact on the
pinning disorder.
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