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In short

Variational Data Assimilation requires the optimization of a high-dimensional function. This is usually done by linearizing the problem, and then inverting the Gauss-Newton matrix

¿ Can we build a state-dependent preconditioner which would help for the inversion of the linear system ?

Variational Data Assimilation

x ∈ Rn: state

M : Rn→ Rn: time propagator

H : Rn→ Rm: observation operator

y ∈ Rm: observations

xt−1 xf
t

yt
Compare

yt and G(xt−1)

Get analysed state

t ← t + 1

HM

G composes the forward model and the observation operator, to compare with the

available observation

G : X ⊆ Rn −→ X −→ Rm

x 7−→ M(x) 7−→ (H ◦M)(x) = G(x) (1)

The cost function to optimize to get the analysis is

J4D(x) = 1
2
‖G(x)− y‖2

R−1 + 1
2
‖x− xb‖2

B−1 (2)

and

xa
t−1 = arg min

x∈X
J4D(x) (3)

Incremental 4DVar

Outer and Inner loops: Minimization as a sequence of Linear Systems

Linearize J around x (Linear Inverse Problem):

Jincr(x, δx) = 1
2
‖Gxδx + (G(x)− y)︸ ︷︷ ︸

−dx

‖2
R−1 + 1

2
‖δx + x− xb‖2

B−1 (4)

The optimal increment solves(
GT

x R−1Gx + B−1)︸ ︷︷ ︸
Ax

δx = −GT
x R−1dx −B−1 (x− xb

)︸ ︷︷ ︸
bx

(5)

where Ax Gauss-Newton Matrix ⇐⇒ Inverse of the posterior error cov matrix

Ax = GT
x R−1Gx + B−1 ∈ Rn×n symmetric and spd (6)

Compute linearization Gxg

Guess: xg

Compute departures dxg

Solve iteratively Axgδx = bxg

xg ← xg + δx

Outer
Inner

In the Inner Loop

Ax is spd, so Conjugate Gradient can be used

Convergence rate depends on the spectrum of Ax ie

Condition number: κ(Ax) = σmax/σmin = ‖Ax‖ · ‖A−1
x ‖

Clustering of eigenvalues at 1

State Dependent Preconditioner

Preconditioning

Instead of solving Axδx = bx, solve (LTAxL)z = LTb and δx = Lz

H = LLT symmetric, positive definite, cheap to compute and to apply

H should be close to A−1
x

1 ≤ κ(HAx) ≤ κ(Ax)

”One-fits-all” preconditioner do not exist, most include information on spectrum of Ax,

which depends on x

State-dependent preconditioner

We propose to construct a mapping

x 7−→ H(x) (7)

where H(x) is a preconditioner well-suited for the linear system Axδx = bx

Challenges

H(x) ∈ Rn×n is spd (ie n(n + 1)/2 ”free” parameters)

Ax is not stored explicitly (only accessible as TL(x, z) = Axz) and high-dimensional

Independence with respect to the observations (thus to bx)

H(x) should contain spectral information of Ax

ML framework

Objective

Construct a preconditioner using DNN, which requires no call to Ax when in use

No access to A−1
x during the training, no explicit construction of Ax

Low-rank approximation

Let Uθ ∈ Rn×r whose columns are orthonormal vectors, and Λθ = diag(λ1, . . . , λr) ∈
Rr×r

+
Ãθ(x) = UθΛθU

T
θ (8)

Low-rank approximation is optimal wrt to the Frobenius norm

min
θ
‖Ax − Ãθ(x)‖2

F (9)

but Ax cannot be explicitely constructed in practice: estimation of F-norm

L̂(θ, xi) = 1
nz

nz∑
j=1
‖Axi

zj − Ãθ(xi)zj‖2
2 with zj

i.i.d.∼ N (0, In) (10)

Possibility of online training:

Only Axzj needed instead of constructing and storing Ax explicitely

When trained, we can construct the preconditioner as ([5])

Lθ = Uθ

(
Λ

1
2
θ − Ir

)
UT

θ + In, sp(Hθ) =
(
1, . . . , 1, λ−1

r , . . . , λ−1
1
)

(11)

Numerical Results

SW assimilation system, n ≈ 12000, UNet-like architecture: η, u, v as features

Conclusion and furtherwork

We propose to use DNN in order to build a preconditioner for inverting the

Gauss-Newton matrix, which is state-dependent (or parametrized spd matrices in

general)

Make use of spectral information

Use this information for dimension reduction (with Bayesian inverse problem point of

view) [3]

Appropriate ML architecture to output large numbers of eigenvectors ?

How to deal with changing observation operator ?
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