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Abstract
Fiber-matrix interface debonding in two-fiber specimens under remote tensile loading is studied
both experimentally and numerically by means of a coupled stress and energy criterion. Depend-
ing on its relative position, the neighboring fiber induces a perturbation of both stress and energy
fields at the reference fiber interface which results in asymmetrical debonding initiation and prop-
agation. The determination of the debonding initiation and propagation shape is addressed based
on either i) stress isocontours, ii) energy isocontours or iii) the Coupled Criterion (CC). It was
found that the debonding initiation configuration can be determined based on stress (respectively
energy) isocontours for small (respectively large) enough interface brittleness number. For in-
termediate brittleness number, the debonding initiation configuration cannot be obtained using
neither the stress nor the energy isocontours, but requires a coupling of both aspects. Despite
different initiation debonding configurations, the corresponding initiation remote stresses do not
differ much, which results in similar debonding configurations after unstable crack propagation
following initiation.

Keywords: Fiber-matrix debonding, Finite Fracture Mechanics, Coupled Criterion, Linear
Elastic Fracture Mechanics, Neighboring fiber

1. Introduction

Interface fracture is a challenging problem to address from both experimental and numerical
points of view. First, the very definition of an interface may not be straightforward. In numerical
models, it is generally defined either as a zero-thickness surface that links two different materials
or possibly considering a finite thickness when its dimension is comparable or not negligible with
respect to the other material dimensions. Depending on the materials involved and the manufac-
turing process, the transition from one material to another might not be just a surface separating
two homogeneous and uniform materials, but a transition zone of a finite thickness may also be
present [1, 2, 3]. Then, interface fracture is another challenge as it is generally described in models
as the separation of the two lips of the surface between both materials, including or not a process
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zone. In experiments, either adhesive, cohesive, or a combined adhesive-cohesive cracking may be
encountered depending on the interface bonds and homogeneity (possible presence of local defects
for instance). As a consequence, the viewpoint of interface fracture modeling can be regarded as
a homogenized vision that gathers all these mechanisms. The direct consequence is that interface
fracture properties (e.g., strength, fracture toughness) may not be straightforward. Nevertheless,
numerical interface fracture models such as, e.g., Cohesive Zone Models (CZM) [4, 5] or the Cou-
pled Criterion (CC) [6] are useful tools to describe material behavior observed experimentally.
For instance, the CC enables assessing debonding initiation at the fiber-matrix interface. This
approach was introduced by Leguillon [6] to extend Linear Elastic Fracture Mechanics (LEFM) [7]
to crack initiation.

Mantič [8] first applied the CC to assess debonding at the interface of a circular inclusion
embedded within an elastic matrix subjected to a far field tensile loading. The Hutchinson and
Suo [9] relation was used to describe the interface mode mixity leading to the initiation of debonding
triggered either by both stress and energy conditions or by the energy condition exclusively. García
et al. [10] extended the embedded inclusion problem to symmetric debonding at the two opposite
poles and showed that non-symmetric initiation was more favorable than symmetric crack initiation
due to a larger energy released per crack surface unit. Several extensions of this approach were
then proposed for bi-axial loading, for instance, by Mantič and García [11] and Muñoz-Reja et al.
[12] as well as comparison with other numerical approaches such as Cohesive Zone Model (CZM)
[13, 14, 15]. Besides, the CC can be an efficient method to perform an inverse identification of
the interface properties, as demonstrated by Doitrand et al. [16]. A range of interface shear and
opening critical energy release rates and strengths were also determined by Girard et al. [17] for
a sample with a single glass fiber embedded into an epoxy matrix.

Previous studies have mainly focused on a single fiber in an infinite matrix. However, a more
realistic composite microstructure involves numerous fibers with varying relative positions (which
can be for instance quantified by inter-center distances and angles with respect to the loading
direction). Several authors have investigated the influence of neighboring fibers on the debonding
process. Muñoz-Reja et al. [12, 18] assessed debonding initiation in a two-fiber configuration
under tensile loading, varying the inter-center distance between 2.25 and 2.5 times the fiber radius
and compared two different inter-center angles. Asymmetric debonding locations with respect
to the loading direction were obtained. It was shown that the smaller the inter-center distance,
the smaller the remote tensile load required for the debonding to initiate. Sandino et al. [19]
studied the influence of angle and distance between fibers center on debonding propagation. Inter-
center angle influenced the debonding arrest angle and remote loading required for propagation.
Moreover, the influence of the nearby fiber vanishes after a certain distance. Within the same
framework, Velasco et al. [20] and Zhuang et al. [21] proposed a similar analysis in the presence
of a pre-existing debonding and found that the debonding of another fiber may either be delayed
or favored by the pre-existing debonding depending on its location. It was also found that the
debonding kink into the matrix was affected by the neighboring fiber and was either damped or
reinforced depending on whether there was a pre-existing debonding. Kushch et al. [22] used
CZM for the prediction of debonding initiation with a two-fiber configuration and focused on
interface stresses and debonding locations that vary with the inter-center angle, either at the top
or bottom poles. However, most of the aforementioned studies do not focus on a configuration that
is asymmetric with respect to the loading direction, so that the debonding location and propagation
remain symmetric. Besides, there is a lack of experimental confrontation to validate the numerical
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approach employed.
The asymmetric debonding shape leads to some difficulties in the implementation of the CC

which requires the a priori definition of the crack shape. Such shape of the debonding can be
prescribed symmetric in the case of a single inclusion [8, 23]. However, multi-fiber configurations
induce a perturbation of the fields at the interface and the debonding no longer remains symmetric
with respect to the loading direction [18, 22]. To overcome this shape identification problem, some
authors estimated the crack shape based on stress isocontours [24, 25, 26]. This solution led to an
efficient way of determining the crack shape. However, it does not take into account any energy
aspects which, in some cases, can drive the initiation of debonding [8, 17, 27, 28]. In this regard,
García et al. [29] and Doitrand et al. [27] proposed an iterative approach by comparing the
CC solution based on a parameterized crack geometry in the vicinity of the stress concentration
which, therefore, considers the energy aspects. The two above-mentioned approaches for crack
shape determination do not consider all possible crack geometries. As a consequence, it is yet not
established which initiation crack shape among all possible crack shapes is the most favorable, i.e.
results in the minimum imposed loading at initiation.

The present study aims at determining the CC solution in the case of an asymmetric debonding
by simultaneously considering all possible crack shape configurations. The configuration under
investigation and related experiments are presented in Section 2. The remote loading required
for a debonding to initiate is therefore evaluated with nearby two-fiber specimens having different
inter-center angles and distances, as detailed in Section 3. In the following, the CC solution is
compared to the stress- and energy-based debonding shape solutions to quantify the accuracy of the
stress isocontours assumption in terms of debonding angles and remote loading. The CC solutions
are then confronted to experimental observations [30] in Section 4. In details, the location and
size of the debonding are compared, as well as the remote loading required for the debonding to
initiate.

2. Experiments

2.1. Sample geometries and testing protocol
Two-fiber specimens under uniaxial tensile loading are considered to study the influence of a

nearby fiber on fiber-matrix debonding initiation and propagation. Experimental results are taken
from [30, 31]. Figure 1 describes specimen geometry and dimensions, sized accordingly to ASTM
D638 with a sample thickness of 6 mm. Thirty samples are subjected to uniaxial tensile loading
along the (Oy) direction, leading to a far-field stress (σ∞). The inter-center angle (α) from the
(Ox) direction and distance (d) are varied in the range 0, 30, 45, 60 and 90 degrees and 2.5r, 4r and
5r, respectively, with r the fiber radius equal to 1 mm. It is worth noting that both fiber absolute
positions do change between the configurations as they are rotated with respect to the inter-center
midpoint. Samples are manufactured by embedding two glass macro-fibers in a room temperature
curable thermoset epoxy resin whose isotropic elastic properties are detailed in Table 1.

In the following, the fibers are referred to as respectively reference and neighboring fibers and all
quantities will be referring to the reference fiber in the sequel (see Figure 1). The angular position
at the interface of the reference fiber is denoted θf . In order to study the field perturbation near the
fiber and the debonding process, a speckle pattern was applied on the samples surfaces to enable
performing 2D Digital Image Correlation (DIC). A camera equipped with a high magnification
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Property Epoxy Glass Fiber
Young Modulus [GPa] 2.36 ± 0.10 63

Poisson’s ratio [-] 0.40 ± 0.04 0.30

Table 1: Linear elastic properties of the epoxy matrix and glass fiber. Fiber properties are provided by the
manufacturer and matrix properties are based on 3 in-house measurements from [30].

lens was used to capture debonding initiation and propagation in situ. The camera recording was
synchronized with the load cell for a similar extraction time.
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Figure 1: Specimen geometry and dimensions including two fibers (radius r), where d is the inter-center distance
and α is the angle between the (Ox) axis and the direction passing through both fiber centers. The reference fiber
interface is divided into a top half circle (T) and a bottom half circle (B) where θf denotes the angular position.

2.2. Experimental measurements
The numerical simulation of fiber-matrix debonding initiation and propagation presented in

the following enables determining the following physical quantities:

• Debonding initiation location (top half circle, bottom half circle or both fiber half circles);

• Range of debonding initiation angles along the interface (θd);

• Remote applied stress (σ∞) associated with debonding initiation.
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On the one hand, the extraction of the debonding locations and angles is based on DIC residuals
[32]. The debonding leads to the appearance of a new black area at the fiber-matrix interface. Since
the emerging black pixel area was not present in the reference image, high correlation residuals
can be detected and thus related to the debonding location and size. On the other hand, the
determination of the debonding initiation loading is based on previous work by Livingston et
al. [30] and Girard et al. [31] where virtual gauges are placed across the fiber-matrix interface
for local displacement and strain measurements. The DIC solution is used to extract the gauge
length variation as a function of the applied loading. Debonding initiation thus results in a sudden
change in slope which allows the determination of the far-field load (and stress by simply dividing
the load by the pristine transverse cross section area). All the experimental results obtained for
each configuration are detailed in Section 4.

3. Debonding shape prediction

3.1. Coupled Criterion implementation
The initiation of debonding is predicted using the CC. A 2D plane strain Finite Element (FE)

model is implemented under the assumption of linear elasticity and small deformations. As a
consequence, the stress is proportional to the applied load whereas the elastic strain energy is
proportional to the square applied load. In the sequel, the calculations were performed with a
σ∞ = 6.85 MPa remote stress. The FE model consists of two 2 mm diameter fibers embedded
in the matrix. The material properties presented in Table 1 are assigned to each component. A
0.02 mm mesh size is chosen at the fiber-matrix interface, which ensures that the influence on the
stress and elastic strain energy is smaller than 1% for a finer mesh. The geometry of the model
is limited to 50 mm and 13 mm along the longitudinal (Oy) and transverse (Ox) directions with
limited nodal displacements so that the configuration is close to the experimental setup.

Debonding initiation is assessed using the CC, which combines two conditions to provide the
initiation loading and debonding angle range. On one hand, the stress condition must be satisfied
at any location over the entire debonding path Γ before initiation. As a consequence, the stress
requirement is not a point stress but a nonlocal condition since it must be fulfilled all over the
debonding path before initiation. It can thus be employed even in the case of a nonuniform stress
field. On the other hand, the Incremental Energy Release Rate (IERR) must be larger than the
interface average critical Energy Release Rate (ERR). These two conditions are summarized in
Equation (1). {

σeq =
√
σ2
nn +

1
µ2 τ 2nt ≥ σc ∀ ~x ∈ Γ,

Ginc(θd, σ
∞) ≥ Gc(θd).

(1)

The parameter µ denotes the τc to σc ratio, which are respectively the shear and tensile
strengths. The IERR is denoted by Ginc and Gc is the average critical ERR. The normal and
shear stresses of the interface are σnn and τnt, respectively. The calculation of all these quanti-
ties is detailed in the sequel. Contrary to the CC application to single-fiber configuration where
the initiation debonding location is a priori known and symmetric with respect to (Oy) direction
[8, 10, 17], the initiation debonding configuration may now depend on the nearby fiber (inter-
center distance and angle, see Figure 1). As a consequence, solving the CC requires to determine
not only the remote imposed stress causing debonding initiation but also the initiation debonding
configuration, which is addressed in next sections.
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3.2. Methodology
Previous studies have shown that for multi-fiber samples, the interface stress fields are influ-

enced by their respective neighboring fibers [19, 20, 22]. They affect both the stress level at the
interface and the elastic strain energy released during debonding initiation. Consequently, the
debonding trajectory can no longer be considered symmetric with respect to the loading configu-
ration and must now be determined.

Based on the CC, debonding can initiate provided the stress and energy criteria given in
Equation 1 are fulfilled. As a consequence, it is likely that the potential debonding configurations
do not lie far from the ones maximizing either the equivalent stress or the elastic strain energy
variation.

Figure 2 shows the variation of the equivalent stress (σeq) and elastic strain energy variation
(−∆W ) computed as a function of the angular position along the fiber-matrix interface (θf). The
equivalent stress variation as a function of θf is obtained based on a calculation without debonding.
The evaluation of −∆W is performed by releasing one interface node at a given angular position θf .
A constant mesh size along the interface is used to ensure that the angular location maximizing
−∆W also maximizes the IERR. For a single-fiber configuration under remote tensile loading,
the equivalent stress and −∆W profiles are symmetric and both their maxima are attained for
the same angle (90 deg. angular position, see Figure 2a). Asymmetry in the equivalent stress
and elastic strain energy variation nevertheless occurs for a two-fiber configuration, as shown in
Figure 2b in a case where α = 45 deg. and d = 2.5r. More precisely, asymmetric fields prevail
and both quantities reach a maximum at a similar 100 deg. angular position, different from the
single fiber configuration. In the following θi is used to defines the angular position θf maximizing
the stress or the elastic strain energy variation, where debonding could most likely initiate from.
Table 2 lists the angles maximizing the strain energy released (θ−∆W

i ) or the equivalent stress
criterion (θσeq/σc

i ) for different inter-center angles at a fixed inter-center distance of 2.5r, distance
for which the fields are most affected. The ratio between the two angles are presented in Table 2.
All ratios remain close to 1 whatever the configuration meaning that both angles are close to each
other, even for highly perturbed configurations.
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Figure 2: Equivalent stress and elastic strain energy variation as a function of the angular position along the fiber-
matrix interface for (a) single-fiber configuration (b) two-fiber configuration for a constant µ = 1.5.

6



α [deg.] 0 30 45 60 90
θ
σeq/σc

i [deg.] 87 93 98 63 90
θ−∆W
i [deg.] 89 95 102 60 90

θ−∆W
i /θ

σeq/σc

i [-] 1.02 1.00 1.03 0.96 1.02

Table 2: θi variation for various inter-center angles where d = 2.5r and µ = 1.5, evaluated at the reference fiber top
half circle. The upperscripts refer to the energy or stress conditions used for the angular position determination.
Ratio between the two angles are added to highlight the small discrepancy between the two approaches.

Figure 3 illustrates the field perturbation by pointing out the equivalent stress maximum lo-
cation |θi| for several fiber inter-center distances and angles. This angle is calculated at both top
and bottom half circles of the reference fiber. The larger the difference from 90 degrees, the higher
the perturbation of the fields with respect to the single fiber configuration. Noticeably, the stress
fields at the fiber bottom half circle are only slightly influenced since the angles remain within the
90 deg. vicinity (+ or - 3%) whatever the inter-center distance. On the contrary, at the top half
circle of the fiber, the smaller the inter-center distance, the larger the perturbation. Additionally,
θi differs the most from 90 degrees for an inter-center angle close to 60 degrees. This configuration
may thus result in strongly asymmetric crack initiation. In contrast, θi reverts to 90 deg. when
α = 90 deg. as the direction through the two fiber centers is parallel to the load direction.
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↘ d
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eg
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d = 2.5r T d = 3r T
d = 3.5r T d = 4r T
Single fiber

Figure 3: Angle θi for which the maximum equivalent stress is attained at the top and bottom fiber half circles (T
and B respectively) as a function of the fiber inter-center distance and angle for µ = ∞.

Starting from an initiation debonding angular position θi, the debonding shape can then be
described by increments of angles on each side of this initial location, denoted by ∆θ+ and ∆θ−,
as detailed in Figure 4. The sum of these two debonding increments corresponds to the total
debonding angle θd. In the sequel, we evaluate different approaches to determine the possible
initiation debonding configurations, based on stress, energy or both stress and energy.

3.3. Debonding configuration based on stress criterion
A convenient crack shape determination approach consists in defining the possible crack config-

urations based on the stress isocontours [24, 25, 26]. The stress isocontour-based crack definition
consists in considering areas which strictly fulfill the stress criterion for a given imposed loading
and specified interface strengths. As a consequence, it reverts to determining the debonding con-
figuration described by θi, ∆θ+ and ∆θ− for which the stress criterion is fulfilled before initiation
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Figure 4: Schematic of the debonding shape including the initiation debonding angular position θi and debonding
increments ∆θ+ and ∆θ− on each side of the initiation location at the reference fiber top interface. The sum of
both debonding increments correspond to the total debonding angle θd.

(see Figure 4). The two debonding tips respectively correspond to angles θi +∆θ+ and θi −∆θ−.
The advantage of this approach is that, for given shear and tensile strengths, the possible crack
surfaces can be determined based on a single calculation without crack and that the stress crite-
rion is strictly fulfilled for each possible crack. Figure 5 shows an example of the variation of the
equivalent stress along the fiber-matrix interface at the reference fiber top half circle for a given
sample geometry and varying strength ratios. Two configurations can be encountered depending
on the tensile and shear strength magnitudes (that is a variation in the µ ratio):

• Tension-induced crack initiation leading to one equivalent stress maximum per half circle;

• Shear-induced crack initiation leading to two equivalent stress maxima per half circle.

More precisely, for µ larger than 1.5, the equivalent stress decreases monotonically from the
maximum peak, inducing a single initiation site. On the contrary, for µ smaller than 1.5, the
equivalent stress exhibits two local yet uneven maxima thus corresponding to two possible (yet
non equiprobable) initiation sites. It is worth mentioning that experimental observations often
show a single initiation site at one or both half circles of the fiber, which could indicate tension
induced debonding initiation for the studied fiber-matrix interface. Nevertheless, we remind that
without a high speed camera that would enable capturing either tension- or shear-induced crack
initiation, it is not possible to draw a clear conclusion on this statement. Additionally, the many
stochastic effects resulting from imperfections or heterogeneity could also influence debonding
location. As a consequence, configurations with smaller µ, and thus shear-induced crack initiation,
are also studied for comparison purposes.

3.3.1. Tension-induced crack initiation
In case of tension-induced crack initiation (µ > 1.5), the equivalent stress reaches a single

maximum, which leads to a straightforward definition of the possible debonding configurations
based on equivalent stress isocontours. Figure 6a shows equivalent stress to normal strength over
the debonding angle corresponding to θi + ∆θ+ and θi − ∆θ− according to the stress condition
introduced by Leguillon [6]. This curve is obtained as the minimum stress attained over the
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Figure 5: Equivalent stress to tensile strength ratio variation as a function of the angular position along the reference
fiber top interface for various µ values.

whole crack path prior to debonding. The equivalent stress to tensile strength ratio decreases
with increasing both angle increments from θi. The possible initiation debonding configurations
based on the stress isocontours are depicted by the red line in Figure 6. The admissible initiation
debonding angles correspond to configurations where σeq is larger than σc. Figure 6b shows the
debonding shape based on the stress criterion isocontours for several values of µ larger than or equal
to 1.5. ∆θ+TC indicates the transition angle between the areas undergoing tension or compression.
Note that the range of µ presented in Figure 6b results in θi differences smaller than 3 degrees.
The debonding shape is thus slightly influenced by the interface shear to tensile strength ratio.
Ultimately, the increase of µ results in a debonding shape close to that obtained with a normal
stress criterion (corresponding to µ = ∞).

The average difference between the shapes for a normal stress criterion and the equivalent
stress criterion for various µ values is evaluated. By comparing for fixed ∆θ+, the difference in
∆θ− between debonding shapes obtained using the equivalent stress (∆θ−σeq

) or the normal stress
criterion (∆θ−σnn

) is evaluated using Equation 2.

diff =

 1

∆θ+TC

∫ ∆θ+TC

0

∣∣∣∆θ−σeq
−∆θ−σnn

∣∣∣
∆θ−σnn

× 100 (2)

For all the configurations covered, the average difference turns out to be no larger than 6%.
Only debonding angles located in the tensile zone are considered because a crack is considered
not to initiate under compressive stress. All in all, whatever the shear to tensile strength ratio,
the normal stress-based debonding configuration provides a good estimate of the stress-based
debonding shape obtained based on the equivalent stress criterion. Importantly, the advantage of
using the debonding shape based on the normal stress rather than on the equivalent stress is that
it allows defining possible initiation configurations that do not depend on fracture properties. As
a consequence, it is numerically more efficient for inverse identification approach for instance. The
same study is performed for several angles and inter-center distances to ensure that this observation
is valid for any fiber inter-center distances and angles and the maximum differences never exceeded
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Figure 6: (a) Equivalent stress to tensile strength variation as a function of angle increments (b) Stress isocontours
for several values of µ where tension zone (σnn > 0) and compression zone (σnn < 0) are highlighted. The dashed
lightgray line corresponds to symmetric configuration.

10%. It is worth mentioning that the difference vanishes for a symmetric configuration, i.e. inter-
center angle equal to 90 degrees.

3.3.2. Shear-induced crack initiation
For µ smaller than 1.5, the equivalent stress shows two local maxima (Figure 5). This config-

uration could then lead to various initiation scenarios:

• Single debonding initiation at one stress maximum;

• Two debonding initiations at both maxima.

García et al. [10] showed that two simultaneous debonding initiations at both half circles of a single
fiber were not favorable compared to a single initiation site. Similar approach is employed here to
compare the IERR of a single or double initiation located on the same half circle of the fiber. The
same isovalues are determined based on each stress maximum and the nodes are released on the
corresponding angles. Table 3 summarizes the IERR obtained for a randomly selected isovalue for
µ = 0.5 where α = 45 deg. and d = 2.5r.

Both maxima θf ' 40 deg. maximum θf ' 132 deg. maximum
Ginc [N/mm] 3.97 · 10−3 4.13 · 10−3 3.7 · 10−3

Table 3: IERR for a given initiation configuration considering single initiation site separately or both sites.

The debonding configuration maximizing the IERR can be considered as the favorable initiation
site. Thus, a single initiation site is energetically more favorable. Interestingly, it corresponds to
the location where the equivalent stress is maximum (see Figure 5). Finally, in case of shear-
induced crack initiation, possible debonding configurations can be determined following stress
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isocontours by considering only one debonding location that corresponds to the global equivalent
stress maximum.

3.4. Debonding configuration based on energy criterion
The second approach consists in determining the debonding shape based on the configurations

maximizing the IERR. To this end, nodes at the fiber-matrix interface are successively released on
both sides of θi in increments of ∆θ to compute the IERR for a given debonding angle (θd) using
Equation 3, where W denotes the elastic strain energy of the model and r the fiber radius:

Ginc(θd, σ
∞) =

W (0, σ∞)−W (∆θ+ +∆θ−, σ∞)

r(∆θ− +∆θ+)
(3)

The local critical ERR is evaluated at both crack tips by means of the Hutchinson and Suo
relation [9]. This relation links the interface opening (GIC) and shear (GIIC) critical energy release
rates to the local critical ERR (Gc) using the mode mixity defined as ψ(θ) = arctan(|τnt| /σnn)
(Equation 4). The mode mixity is assessed at a distance of 0.015 mm from the two crack tips for
each configuration according to [8] and the maximum of the two Gc is retained.

Gc(ψ(θd)) = GIC

[
1 + tan2 [(1− λ)ψ(θd)]

]
(4)

The parameter λ is linked to the ratio between GIC and GIIC. The average interface criti-
cal ERR, Gc, corresponds to the average of the local interface critical ERR over the complete
debonding shape, corresponding to θd (Equation 5).

Gc =
1

θd

∫ θi+∆θ+

θi−∆θ−
Gc(ψ(θd))dθd (5)

Figure 7a shows the IERR to critical ERR ratio as a function of debonding increments on
each side of the debonding initiation location. For a small debonding angle, the energy released
is too small to satisfy the criterion. By increasing the debonding angle, the criterion is fulfilled
and the surface exhibits a maximum, corresponding to an optimal angle maximizing the criterion.
Therefore, this maximum corresponds to the favorable condition for the debonding to initiate,
meaning that the loading to apply in order to fulfill the energy criterion is minimal. The debonding
shape can be evaluated by maximizing the surface gradient until the maximum is reached, denoted
by the blue marker in Figure 7.

The GIIC to GIC ratio, related to the parameter λ, influences the shape of the debonding as
well as the configuration maximizing Ginc/Gc. Figure 7b shows the shapes obtained from three
different values of λ for the studied configuration. The debonding initiation angle remains the same
for a fixed value of λ. Setting λ = 1 results in GIC = GIIC and a smaller value of λ corresponds
to GIC < GIIC. Decreasing λ leads to an increase in the critical ERR and GIIC for a fixed GIC and
mode mixity. Therefore, no shape change is observed for a fixed value of λ as the ratio between
GIC and GIIC remains the same.

3.5. Coupled stress and energy criterion
Coupling both stress and energy conditions allows the determination of the minimum loading

to apply in order to initiate a debonding as well as the corresponding debonding angle. When both
conditions are involved, the initiation debonding is sought as the angle for which both criteria are
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Figure 7: (a) IERR to critical ERR variation. (b) Debonding shape for several values of λ and the dashed lightgray
line corresponds to symmetric opening around θi.

fulfilled for a minimum applied loading. As a consequence, it is likely that the initiation debonding
configuration lies between the debonding shapes determined based on either the stress isocontours
or maximizing the IERR. Figure 8 shows the applied remote stress required to fulfill both conditions
(σ∞

req) for a range of angle increments. The loading required to fulfill the equivalent stress condition
increases monotonically with increasing debonding angle whereas the one required to fulfill the
energy condition reaches a minimum. Combining both criteria thus results in determining the
debonding configurations and corresponding applied stress for which the CC is fulfilled. Among
these debonding configurations, the initiation debonding configuration is determined as the one
minimizing the applied stress.

The debonding configuration for which both criteria are fulfilled for a minimum loading (i.e.
the initiation debonding configuration) is highlighted on Figure 8a and 8b with a green marker.
The same approach is employed to determine the minimum required remote stress that follows
either the stress-based or energy-based debonding configurations, also highlighted in Figure 8a
and 8b. These minima differ slightly from the CC solution, both in terms of the required remote
stress and debonding angle.

For given λ and µ, the debonding configuration minimizing the loading required to fulfill the
CC actually depends on the interface brittleness number γ which was introduced by Mantič [8] as
follow (Equation 6):

γ =
1

σc

√
GICE∗

r
(6)

Each marker in Figure 8b corresponds to the CC solution with a different γ, where E∗ de-
notes the harmonic mean of the effective elastic moduli of the two constituents. For small enough
γ, the debonding configuration obtained using the CC is close to the debonding shape predicted
based on stress isocontours, which is also close the one determined by maximizing Ginc/Gc. How-
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Figure 8: (a) Required loading to satisfy stress or energy conditions where solid lines indicate the configurations cor-
responding to either stress-based or energy-based possible debonding shapes and circles indicates the corresponding
initiation configurations minimizing the imposed loading. (b) Isocontours of the loading required to fulfill the CC
emphasizing the minimum indicated in Fig. 8a and minima obtained for various other properties range, the smaller
the gray intensity, the higher γ is. Visualization of θi ' 100 deg. and associated debonding angle at initiation,
before any potential unstable growth, taken from Fig. 8b for several values of γ, (c) γ = 0.66 with θd = 33 deg.
(yellow circle), (d) γ = 1.16 with θd = 85 deg. (green marker) and (e) γ = 1.45 with θd = 102 deg. (orange circle).

ever, for large enough γ the debonding configuration retrieves the debonding shape determined by
maximizing Ginc/Gc. Whatever the interface brittleness number, the debonding initiation config-
uration actually lies between the debonding shapes determined based on either stress isocontours
or maximizing Ginc/Gc.

Figure 9 shows the stress-based, energy-based and CC-based debonding configurations obtained
for inter-center angles of 90, 60 and 0 degrees with d = 2.5r. For the 90 degrees inter-center angle, a
symmetric configuration is observed with respect to the loading direction. The stress-based, energy-
based and CC-based debonding shapes are similar since there is no asymmetric perturbation of
the fields. Similarly to the previous example, for inter-center fiber angles different from 90 degrees
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(Fig. 9b and Fig. 9c), the debonding configuration predicted using the CC always lies between the
stress-based and energy-based debonding configurations. Moreover, it is also consistent with the
stress-based debonding shape for small γ and with the energy-based debonding shape for large
γ. For intermediate γ, there is a transition zone for which the debonding configuration does not
correspond to neither shapes. Figure 9b shows the predicted debonding configurations for a 60
deg. inter-center angle for which the transition from stress-based to energy-based occurs abruptly,
i.e. all debonding configurations predicted by the CC are close either to the stress-based or the
energy-based debonding configuration whatever γ. On the contrary, Figure 9c shows a smoother
transition, where the debonding configuration predicted by the CC does not correspond to stress-
based or energy-based debonding configuration for a significant range of γ (from 0.96 to 1.36).
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Figure 9: Comparison between debonding shapes for configuration where d = 2.5r and (a) α = 90 deg. (b) α = 60
deg. and (c) α = 0 degrees. The markers denotes the CC solutions for various γ values and dashed lightgray lines
correspond to symmetric openings on both sides from θi whose values are given in Table 2.

It is noteworthy that even in the case of a strongly influenced initiation location (when θi is
much larger or smaller than 90 deg.), the debonding initiation angle tends to recover a symmetric
configuration with respect to the loading direction. Figure 9b highlights this last observation with
a α = 60 deg. then the increment of angle ∆θ− is small compared to the increment of angle
∆θ+ tending towards an initiation angle centered at about 90 degrees. The same observation was
obtained by Mantič et al. who numerically [33] found that, wherever debonding initiation might
occur, propagation will tend towards the loading direction as the amount of available elastic strain
energy is larger.

Stress isocontours allow efficient numerical prediction of the debonding shape because they can
be derived from a purely linear elastic calculation without node release. The difference induced by
the stress-based debonding shape from the favorable configuration can be evaluated. The stress-
based solution is determined by locating the minimum on surface σ∞

req/σ
∞ (Fig. 8a) that follows the

stress-based debonding shape and directly comparing it to surface global minimum, corresponding
to the favorable CC configuration. Figure 10a shows the variation of the relative difference in
terms of remote loading between the two solutions as a function of γ for inter-center angles of
60 and 0 degrees. The relative difference shows increasing trends with γ. The maximum relative
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difference remains smaller than 5.1 % and the maximum is reached for the largest values of γ
(γ = 1.54) when the configuration tends towards energy-based debonding shape. It is noticeable
that the difference induced by the stress remains small and arguably not worth the computation
time cost it requires. Therefore, basing the crack shape on the stress isocontours could be a good
compromise to determine the debonding initiation remote loading. Figure 10b shows the location
of the debonding based on the CC and the stress at initiation for α = 60 deg. and γ = 1.54. The
debonding angles at initiation predicted by the two shapes are identical, but their locations differ
slightly with respect to θi. The location of the debonding based on the CC solution is equivalent
to the energy solution in this case, tending to maximize the energy released by being symmetric
with respect to the loading direction.
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Figure 10: (a) Relative difference between CC and stress-based debonding shape solution as a function of γ. (b)
Schematic comparison of the debonding location and angle at initiation predicted based on both stress (θd ' 100
deg.) and CC (θd ' 97 deg.) shapes with θi ' 60 degrees.

3.6. Unstable crack propagation
After debonding initiation, it is possible to assess its propagation based on Griffith’s criterion

G(θd) = −dW/dθd ≥ Gc(ψ(θd)). The ERR G can actually be obtained from Ginc based on the
following relation (Equation 7), where S denotes the debonding surface i.e. rθd or r (∆θ+ +∆θ−):

G(θd) = Ginc(θd) + S × dGinc

dS
(7)

WhenGinc/Gc maximum is reached, d(Ginc/Gc)/dS = 0 so thatGinc/Gc = G/Gc (see Appendix
A). Therefore, two configurations can be encountered after the initiation of debonding. On the one
hand, if d(Ginc/Gc)/dS ≥ 0, then G/Gc is larger than 1 which implies further unstable debonding
phase without increasing the applied load until G/Gc = 1. On the other hand, d(Ginc/Gc)/dS = 0
for the initiation debonding configuration so that Ginc/Gc = G/Gc = 1, resulting in no further
propagation of debonding after initiation, as d/dS(G/Gc) < 0 (see Appendix B).

The debonding has two different crack ends, which may separately or simultaneously propagate.
One approach to identify the unstable debonding shape is to consider the direction that maximizes
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the ERR to critical ERR ratio. This enables the determination of the arrest angle corresponding
to an angle for which G/Gc becomes smaller than 1.

Figure 11a shows the unstable propagation phase of the crack in the configuration driven by
both stress and energy for γ = 1.1. The debonding propagates in an unstable manner from the
debonding angle solution, at initiation, obtained using the CC to the angle where G/Gc becomes
smaller than 1, after unstable propagation phase. Figure 11b shows the unstable propagation
shape of the debonding for several values of γ. Higher values of γ result in an energy-driven
configuration where no further propagation of the debonding is possible after initiation (γ = 1.5).
On the opposite, a large unstable debonding phase is encountered when γ decreases, leading to a
larger arrest debonding angle (γ = 1). Although the initiation debonding angle differs from the
location maximizing G/Gc, the unstable debonding retrieves an identical shape regardless of the
interface properties.
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Figure 11: (a) ERR to critical ERR variation. (b) Isocontours of the critical ERR (Gc) and unstable debonding
shapes obtained for several values of γ.

Configuration with 0 deg. inter-center angle highlights a transition zone where neither stress-
based nor energy-based debonding shapes describe the CC solution (see Figure 9c). By computing
the favorable solution that minimizes the loading necessary for initiation based on either stress,
energy or CC shape, several starting angles can be used to assess the unstable debonding phase.
Figure 12 shows the three corresponding debonding shapes. As the required remote loadings for
the three solutions have relative differences smaller than 1%, the ERR to critical ERR ratio surface
presented is based on the CC solution for illustration purposes. However, the ERR calculation
differs because the three solutions have different initiation remote loadings, so that the shape could
be slightly different. All cases provide a similar debonding arrest angle with the same location
regarding θi even with a slightly different initiation remote loading. Moreover, all shapes retrieve
the same trajectory that maximizes the ERR to critical ERR ratio. Regardless of the type of
shape used (stress, energy, CC), a configuration driven by both stress and energy will propagate to
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approximately the same debonding arrest angle, as the remote loading required for both solutions
are close. Some limitations exist for energy-driven configuration, where a stress-based debonding
shape solution could lead to an unstable propagation phase while the energy-based solution leads
to a stable propagation. However, the final solution can be obtained using the local ERR released
for each configuration, that is computationally expensive to determine.
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Figure 12: Unstable debonding shape obtained from the stress-based, energy-based and CC-based initiation debond-
ing angle. Table shows the associated debonding initiation angle and arrest angle obtained after unstable propaga-
tion phase.

4. Nearby fiber influence on debonding initiation

Perturbation induced by the neighboring fiber influences the debonding location along the
matrix-fiber interface. However, fields intensity are also influenced by the neighboring fiber, both
in terms of stress and energy, depending on the geometrical parameters d and α. Stress fields
at the fiber-matrix interface are therefore either intensified or damped and the same observation
can be made concerning the elastic strain energy released by the debonding initiation. For similar
interface properties, debonding initiation location (top or bottom) and debonding angle range vary
as a function of both inter-center angle and distance.

Figure 13a shows the variation of the maximum normal to far field stress ratio evaluated at
both top and bottom half circles of the reference fiber as a function of the neighboring fiber position
(varying d and α). The bottom half circle is less affected than the top half circle. The latter is more
affected by the neighboring fiber, highlighting a larger variation in the stress field. Also, with the
distance between the top half circle and the neighboring fiber reduces, larger stress perturbations
occur. The stress intensification reaches a maximum for 90 deg. configuration. For a configuration
close to 45 deg., the top half circle stress decreases, resulting in a higher stress at the bottom
half circle. Figure 13b shows the variation of the maximum IERR to critical ERR ratio which is
influenced similarly to the stress fields. The latter is obtained by releasing debonding based on
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the tensile stress isocontours. Higher IERR to critical ERR ratio is observed for angles close to
90 degrees, where the stress intensity is maximum. However, for inter-center angle range from 20
to 60 degrees, IERR to critical ERR ratio appears to be higher at the bottom half circle. Based
on the latest observations, it is more likely that debonding would occur at the top half circle for
inter-center distances close to 90 degrees at a lower imposed loading. The smaller the distance
between the centers, the smaller the load required for debonding to initiate. Conversely, for an
inter-center angle close to 45 degrees, debonding could most likely occur at the bottom half circle.
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Figure 13: (a) Maximum normal to far-field stress ratio variation and (b) maximum IERR to average critical ERR
ratio variation as a function of the inter-center angle and distance, for an arbitrary remote loading.

The perturbation of the stress and energy fields at the fiber-matrix interface therefore has a
significant influence on:

• The debonding initiation location;

• The required loading for debonding to initiate.

In the following, the CC solution is compared to experimental observations for different geometrical
configurations.

4.1. Comparison with experimental observations
The interface properties of a single fiber sample made of the same constituents were previously

determined by inverse identification [17]. The normal and shear strengths were selected within a
range of acceptable strengths. Table 4 summarizes the identified interface fracture properties. An
application of the CC for all configurations is carried out in the following. The debonding initiation
stresses at the top and bottom fiber half circles obtained using the CC and debonding shapes based
on stress isocontours are compared with experimental measurements. Furthermore, considering
the relevance of the CC, the comparisons will allow to challenge or validate the accuracy of the
interface properties determined previously [17].

The debonding initiation sites (reference fiber top or bottom half circle) are compared with
the experimental observations in Table 5. For various geometrical configurations, debondings that

18



GIC [N/mm] GIIC [N/mm] λ σc [MPa] τc [MPa]
0.0037 0.09 0.13 3.0 5.0

Table 4: Fiber-matrix interface properties from [17].

d
α 0 deg. 30 deg. 45 deg. 60 deg. 90 deg.

2.5r T or B
T

B
T

B
T

B
T

T
B

4r T or B
B

T
T

T or B
B

B
T

T or B
B

5r T or B
T

T
B

T or B
T or B

B
B

T or B
B

Table 5: Debonding location (T for top and B for bottom) for several inter-center distances (columns) and angles
(lines). Within a single cell, the upper right term corresponds to the experimental result and the lower left value
to the computed CC one.

are found to be favorable at the top half circle are denoted as “T” and at the bottom half circle
as “B”. Concerning the simulations, when the difference between the top and bottom half circles
is less than 1% relative error, the location of the debonding is designated as “T or B” since the
position of the debonding may take place at either half circle. The debonding locations show no
particular trend as a function of the angle and distance inter-center. The experimental results
show poor agreement with the CC solution, especially for an inter-center angle of 90 degrees. The
difference observed may be associated with the idealized loading employed numerically whereas the
experimental loading can differ from a simplified far-fields loading. Additionally, 2D DIC allows
one single free edge to be observed at a time, while the initiation of debonding may occur on the
other side due to geometric imperfections for instance.

Figure 14 shows the load required to initiate debonding as a function of the inter-center an-
gles. These values are evaluated experimentally and using the CC for three different inter-center
distances. Uncertainties of the experimental results are obtained by tracking a sudden change
of slope in the extension of the virtual gauges located at each fiber pole [31]. Two samples per
configuration are studied, resulting in 8 different values. The results of each pole are averaged and
the two extremes are then used for the estimation of the uncertainties.

For all angles and inter-center distances, the CC solutions are indicated by round and square
markers for the top and bottom position, respectively. The CC solution that requires a minimum
load is the favorable configuration. The latter depends on the inter-center angle. For angles close
to 0 degrees, both the top or bottom locations are favorable (difference smaller than 1%). For
angles between 30 and 60 degrees, the favorable initiation site is located at the bottom half circle.
Finally, for angles close to 90 degrees, the top half circle seems to be the most favorable initiation
site. The higher the inter-center distance, the smaller the difference between the top and bottom
solutions, due to lower field perturbation, see Figures 13 and 14.

The overall comparison leads to a good agreement between the CC solution and the experimen-
tal observation. This observation attests to the accuracy of the interface properties determined
previously. However, a larger difference is observed for an inter-center angle of 90 degrees for all
three inter-center distances, possibly due to the aforementioned difficulties in the identification of
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the debonding locations.

0 15 30 45 60 75 90

3

4

5

6

Inter-center angle (α) [deg.]

σ
∞ re
q

[M
Pa

]

d = 2.5r

(a)

0 15 30 45 60 75 90

3

4

5

6

7

Inter-center angle (α) [deg.]

σ
∞ re
q

[M
Pa

]

d = 4r

(b)

0 15 30 45 60 75 90

3.5

4

4.5

5

5.5

Inter-center angle (α) [deg.]

σ
∞ re
q

[M
Pa

]

d = 5r

(c)

Bottom Top Experiment

Figure 14: Loading required for debonding initiation as a function of the inter-center angle for (a) d = 2.5r (b)
d = 4r (c) d = 5r. The scatter bars associated with the experimental data points represent variations between
several independent tests.

The experimental determination of the debonding angle at initiation after the potential unstable
propagation is relatively difficult. The main difficulty lies in the identification of the locations of
the two crack tips, possibly masked by the DIC speckles or considered as a process zone. Moreover,
experimental capture of the unstable propagation phase remains impossible without the use of a
rapid camera. In the sequel, experimental debonding angles are therefore compared to arrest
angles obtained numerically. The CC solutions provide an almost identical debonding angle after
initiation, close to 77 degrees, whatever the inter-center angle and distance. Figure 15a shows
the variation of the debonding angles as a function of the inter-center angles. The experimental
values correspond to the debonding angles averaged and their standard deviation observed at
initiation for all inter-center distances with fixed inter-center angle. Only small variations are
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seen and the experimental angles are close to 62 degrees. The latter is close to the averaged CC
solution, with 24% relative difference, as the CC solutions slightly overestimate the experimental
observations. Figure 15b shows the location and size of the debonding angles predicted by the CC
using the stress isocontours and the corresponding experimental results, for the smallest distance
(d = 2.5r), extracted from a half circle of one of the two samples. The CC solution accurately
describes the location of the debonding by providing an upper limit to the experimental angle as
observed on the overall trend (Figure 15a). The CC solution and the experimental angle locations
and sizes are in good agreement, endorsing the stress isocontour as an effective approximation
to describe the debonding shape. Moreover, even in the presence of the neighboring fiber, the
experimental debonding is approximately centered at 90 degrees. The same result is obtained with
the CC solution which validates the previous numerical observation (see Section 3.5) concerning
the debonding initiation angle obtained with a strongly influenced θi.

5. Conclusion

Debonding initiation and propagation were assessed using both the CC and Griffith criterion on
a two-fiber sample subjected to remote uniaxial tensile loading. The debonding shape was predicted
on the basis of stress- and energy-based isocontours compared to the CC solution. Finally, the
results of the CC solution were compared with the corresponding experimental results.

Using normal stress-based or equivalent stress-based debonding configurations lead to an almost
identical initiation configuration. Normal stress-based debonding configurations can be efficiently
extracted without introducing any fracture properties and therefore appear as a relevant compro-
mise to describe the stress-based debonding configurations.

The debonding angle size and location predicted by the CC lies between possible debonding
configurations based on energy or stress isocontours. Depending on the interface properties, e.g.
the interface brittleness number γ, three different configurations can be encountered:

• Small γ: the stress-based debonding prediction provides a reasonable approximation for the
possible initiation debonding shapes;

• Intermediate γ: the possible initiation debonding shapes lie in-between the stress-based and
energy-based debonding predictions;

• Large γ: the energy-based debonding prediction provides a good approximation, as the
solution tends to be energy driven.

Despite the difference observed between the three possibilities, similar initiation remote loadings
are obtained using either the stress-based, the energy-based or the CC-based debonding config-
urations. The stress-based debonding configurations therefore appear to be a good compromise
as it is numerically much more efficient since it can be extracted based on a single calculation
without crack. However, it is not possible to accurately describe the unstable debonding phase
based on stress isocontours because the stress-based and energy-based debonding configurations
may differ widely for some configurations. Therefore, the final location of the angle described by
the two shapes could be slightly different. However, basing the debonding configuration on stress
isocontours and assessing the unstable debonding phase on energy isocontours leads to the same
debonding arrest angle, but is computationally more expensive.

21



0 15 30 45 60 75 90

60

80

100

Inter-center angle (α) [deg.]

D
eb

on
di

ng
an

gl
e

(θ
d
)

[d
eg

.]

CC
Experiment

(a)

α = 60 deg.α = 60 deg.

α = 30 deg.

α = 90 deg.

α = 45 deg.α = 0 deg.

Exp θd CC θd

(b)

Figure 15: (a) Experimental and numerical (CC) debonding arrest angles as a function of the inter-center angles.
(b) Representation of the debonding angle and location predicted by the CC and obtained experimentally with
d = 2.5r from a half circle of one of the two samples. The corresponding DIC residual is shown for α = 60 deg. to
illustrate the experimental angle extraction process, more details can be found in [31].

Blind application of the CC and comparison with experimental results showed good overall
agreement both in terms of required remote load and debonding angle after propagation using pre-
viously identified interfacial shear and tensile strengths and critical opening ERR. The debonding
angle after initiation is slightly overestimated by the CC, which could be explained by an un-
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derestimation of the critical shear ERR that strongly influences the debonding arrest angle. The
CC results obtained for a 90 degree inter-center configuration differ from the experimental results,
which could be explained by the idealized loading applied numerically or by an experimental inter-
center angle slightly different from 90 degrees. It is also important to mention that the properties
used were determined using a 2D simulation without considering the singularity acting at the free
edge. Therefore, the 3D simulation could allow a better modeling of the problem, especially of
the 90 deg. geometrical configuration where the CC fails to accurately reproduce the experimental
results.

Appendix A. Proof of equality G/Gc = Ginc/Gc when d/dS(Ginc/Gc) = 0

Recalling that Ginc, Gc, G and Gc are depending on the debonding surface S. When, a debond-
ing initiates for a debonding surface maximizing Ginc/Gc:

d

dS

Ginc

Gc

= 0 (A.1)

Recalling A.1:
d

dS

Ginc

Gc

=
dGinc

dS
Gc − dGc

dS
Ginc

Gc
2 (A.2)

It derives from the right part:
dGinc

dS
Gc =

dGc

dS
Ginc (A.3)

The IERR can be expressed as:
Ginc = G− S

dGinc

dS
(A.4)

Integrating A.4 into A.3:
dGinc

dS
Gc =

dGc

dS

(
G− S

dGinc

dS

)
(A.5)

dGinc

dS
Gc =

dGc

dS
G− S

dGc

dS

dGinc

dS
(A.6)

dGinc

dS
Gc + S

dGc

dS

dGinc

dS
=

dGc

dS
G (A.7)

dGinc

dS

(
Gc + S

dGc

dS

)
=

dGc

dS
G (A.8)

The local critical ERR can be expressed as:

Gc = Gc + S
dGc

dS
(A.9)

Replacing into A.8:
dGinc

dS
Gc =

dGc

dS
G (A.10)
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dGinc

dS
=

dGc

dS

G

Gc

(A.11)

Remembering that:
d

dS

Ginc

Gc

= 0 (A.12)

So it can be stated that:
dGinc

dS
=

dGc

dS

Ginc

Gc

(A.13)

Finally, the following equality is obtained by replacing A.13 into A.11:

Ginc

Gc

=
G

Gc

(A.14)

Appendix B. Proof of inequality d/dS(G/Gc) < 0 when S = Smin

Recalling that Smin denotes the debonding surface for which d/dS(Ginc/Gc) = 0.

d

dS

G

Gc

=
dG
dS
Gc − dGc

dS
G

Gc
2 (B.1)

As G = Gc for S = Smin:

d

dS

G

Gc

=
dG
dS
Gc − dGc

dS
G

Gc

1

Gc

=

(
dG

dS
− dGc

dS

)
1

Gc

(B.2)

As demonstrated by Mantič [8], dG
dS

< dGc

dS
for S = Smin, so the following equality is obtained:

d

dS

G

Gc

=

(
dG

dS
− dGc

dS

)
1

Gc

< 0 (B.3)
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