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Abstract – We present a new stochastic simulation method for determining the long-wavelength effective
dynamic bulk modulus of gases, such as ambient air, saturating porous media with relatively arbitrary
microgeometries, i.e., simple enough to warrant Biot’s simplification that the fluid and solid motions are
quasi-incompressible motions at the pore scale. The simulation method is based on the mathematical isomor-
phism between two different physical problems. One of them is the actual Fourier heat exchange problem
between gas and solid in the context of Biot theory. The other is a diffusion-disintegration-controlled problem
that considers Brownian motion of diffusing particles undergoing radioactive-type decay in the pore volume and
instant decay at the pore walls. By appropriately choosing the decay time and the diffusion coefficient, the
stochastic algorithm we develop to determine the average lifetime of the diffusing particles, directly gives
the effective apparent modulus of the saturating fluid. We show how it leads to purely geometric stochastic
constructions to determine a number of geometrical parameters. After validating the algorithm for cylindrical
circular pores, its power is illustrated for the case of fibrous materials of the type used in noise control. The
results agree well with a model of the effective modulus with three purely geometric parameters of the pore
space: static thermal permeability divided by porosity, static thermal tortuosity, and thermal characteristic
length.
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1 Introduction

One of the elements of Biot’s macroscopic linear theory
of sound propagation [1], as extended for air-saturated
porous materials by Attenborough [2] and Allard and
Atalla [3], is the complex effective modulus of air, Kf(x),
which accounts for heat exchange between the air and the
solid constituents taking place at the microscopic level [4]
in time harmonic regime. In case where the material can
have macroscopic gradients of properties due to inhomoge-
neous microstructure, a dependence on macroscopic
position x will also be present. The index f is for fluid, here
the air: recall that in Biot’s theory one has a solid and fluid
phase, each forming its own infinite cluster, resp. noted with
indexes s and f, and whose coupled macroscopic displace-
ment motions are followed separately [5]. This modulus is
of concern in many airborne noise control applications when
a precise prediction of sound reflection and transmission
versus frequency is needed [3, 4]. Let us define it as the
factor relating in harmonic regime e�ixt the excess macro-

scopic pressure P, to the mean condensation: P/Kf(x, x) =
hq0ip/q0, where hq0ip is the pore-scale-averaged excess density
in the air, and q0 is the air equilibrium density (q0 + q0 the
actual pore-scale variable air density q). See Appendix A
and discussion in Section 3 for the definition of total-volume
and pore-space-volume averages h�i and h�ip and the notion
of macroscopic pressure. In the time domain, this implies
an operator or integral relation of the form, P ðt; xÞ ¼
K̂f ½hq0ip=q0�ðt; xÞ¼

Z t

�1
Kf ðt�t0; xÞ ½hq0ip=q0�ðt0; xÞdt0, where,

using by analogy a language familiar in electromagnetism
[6–9], we see the presence of temporal dispersion effects
but no spatial dispersion (nonlocalities in time but not in
space). Actually, this absence indicates that some drastic
simplifications of principle have been made in the Biot
model. It is important to realize that the effective bulk
modulus kernel, or the operator itself, owes its existence
to these simplifications, as do other elements of the theory.
Here, we will clearly establish what these simplifications
are, and exploit them to devise a very simple method of
calculation of the bulk modulus kernel in its Fourier
Kf (x) or Laplace KL

f ðsÞ representation. A general theory*Corresponding author: denis.lafarge@univ-lemans.fr
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that would contradict conventional Biot’s theory would
have to deal with underlying non-local aspects and could
lead to very new quantities and operators1. As started in
[8, 9] we know that the construction and transition from
the spatially local Biot theory to a fully non-local general-
ized theory will not be simple and straightforward. It will
have to be the subject of further theoretical and experimen-
tal work.

Recall that Biot theory assumes that the acoustic
effective wavelengths in the material are large compared
to the dimension of averaging volumes. Less well-known
in the literature, it also makes restrictions on the geometries
that explain the absence of spatial dispersion. Only those
geometries that lead to the characteristic incompressibility
of fluid and solid motions, see Appendix A and Sections 2
and 3, are considered. At long wavelengths, as long as the
geometries are not too complicate to lead to resonances or
localized imbalances originating from other causes (e.g.
pressure diffusion process mentioned in Appendix A), the
framework of Biot theory will tend to apply and an effective
dynamic bulk modulus of the saturating air will tend to
exist in the sense of the definition sketched above and devel-
oped in Section 3. But as soon as the microgeometries are
sufficiently complex to lead to resonances or imbalances
incompatible with incompressibility, the macroscopic model
under consideration no longer works, and we enter into the
realm of the much more complicated non-local general
description involving both temporal dispersion and spatial
dispersion. In this paper, we restrict ourselves to the micro-
geometric limits of Biot theory when the condition of
incompressibility of fluid and solid is satisfied. The reader
should keep in mind, however, that there are scenarios
(e.g., with Helmholtz resonators [10], but not limited to),
which would require a complete redefinition of the treat-
ment as opposed to the simple analysis made here.

In a low-frequency limit heat exchange between the
air and the solid has time to fully establish itself (quasi-
stationary regime). Then, provided that the porous solid
structure is thermally inert enough to act as a thermostat
(i.e. essentially remain at ambient temperature), the air will
have to undergo quasi-isothermal expansion and compres-
sion [11]. Therefore in this limit Kf(x) will tend to the air
isothermal bulk modulus K0 (the atmospheric pressure).

Conversely, in a high-frequency limit, heat exchange
does not has time to occur, except in the immediate vicinity
of the pore walls (inside a so-called thermal boundary layer
of characteristic thickness (2m0/x)1/2, where m0 = j/q0cP is
the thermal diffusivity [4], j the thermal conductivity
and cP the specific heat coefficient at constant presssure,
of air). The air will undergo adiabatic expansion and com-
pression except in this ever-shrinking vicinity. In this limit
Kf(x) tends to the adiabatic bulk modulus Ka = cK0 (with
c = cP/cV � 1.4, the ratio of specific heat coefficients of air
at constant pressure or constant volume). In between, at
intermediate frequencies, a smooth relaxation transition is
observed, which connects the “relaxed” state (low-frequency
or “static” isothermal limit), to the “frozen” state (high-
frequency adiabatic limit), and is determined by the geom-
etry and dimensions of the pore space and the thermal
diffusivity m0 of air2.

More generally, within Biot theory and when the
saturating fluid is not air but any tri-variate fluid [12] with
c significantly departing from 1, meaning a gas as opposed
to a liquid, the effective fluid bulk modulus is in principle
entirely determined by the solution of a “Fourier”3 diffu-
sion-disintegration-controlled problem4, which can be sta-
ted and solved in the pore space – see Appendix in [9]
and the comprehensive presentation in Section 3, leading
to equations (33)–(37), equations (29)–(30) and equations
(42)–(43). In general, because of the complications in the
geometries, no closed-form analytic solution can be given,
and numerical simulations such as finite differences or finite
elements have been used to determine the precise solution.

In practice the geometries present random variations
and a given type of material can be best represented by
an ensemble of realizations. Thus, the numerical process
of obtaining an estimate of Kf(x) can become significantly
cumbersome: first, the local governing equations for the
Fourier diffusion-disintegration problem with appropriate
boundary conditions have to be solved using numerical
techniques such as mentioned; this will be repeated in an
ensemble of configurations; and then the results will be con-
figurationally averaged as the effective bulk modulus will
rely averaged fields5. As noted by Torquato and Kim [13]
in a larger context, this can be a wasteful calculation

1 A forthcoming first work, “Acoustic waves in air- or gas-
filled structured porous media: new asymptotic tortuosity/
compliability and characteristic-lengths derived from nonlocal
considerations”, will illustrate this by showing how nonlocalities
in suitably structured rigid-framed materials with smooth pore
walls and for propagation along a macroscopic symmetry axis,
can result in the high-frequency limit, or the small boundary-
layer limit, in a new complex ideal-fluid tortuosity, an entirely
new complex ideal-fluid “compliability”, and two new real viscous
and thermal characteristic lengths; the second work will show
how nonlocalities can lead, in the absence of particular symme-
tries of the material properties and of the type of field
considered, to the appearance of even more complex quantities,
the bulk modulus of the “effective medium” becoming, in
particular, an elastic tensor of the solid four-index type linking
tensors of stresses (see Appendix A and Footnote 13) and strains
with two indices.

2 Relaxed and Frozen are customary general vocables to
designate limits in which certain relaxational processes have
time, or not, to manifest themselves; here it refers to the thermal
relaxational processes associated with air-solid heat exchanges.
3 A Navier-Stokes-Fourier model is used for the microscopic
equations in the air, viscous-inertial effects involving the Navier-
Stokes equation and thermal effects the so-called Fourier
thermal diffusion equation (24).
4 The interpretation in terms of diffusion-disintegration comes
from the analysis in Sections 4 and 5.
5 Here, condensation significantly varies from point to point on
the pore scale in the transition regime, where it distributes from
isothermal regime values, b = p/K0, at the pore walls, to values
tending to the adiabatic regime, b = p/Ka, in the central pore
region. These need to be ensemble-averaged or volume-averaged,
into a so-called macroscopic coarse-grained variable, B = hbi, to
yield an effective bulk modulus in macroscopic relationship, B =
P/Kf(x).
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process as there is a significant amount of information that
is lost in passing from the local to the averaged fields. To
quote them: “such calculations can become exorbitant even
when performed on a supercomputer”.

In this paper, we present a meshless stochastic
numerical algorithm to perform the above operations and
compute – with a possible shunting of the local field determi-
nation step – the effective modulus Kf(x) that appears in
Biot theory. The idea of the algorithm directly inspired
by Torquato and Kim [13] is not new, see [14], but was
given in the latter Ref. with one faulty reasoning (and a
resulting faulty Eq. (9)). After due correction of the latter,
it was, through personal communications, applied by Perrot
et al. [15] to the description of thermal dissipation
properties of three-dimensional reconstructed unit cells of
aluminum foams saturated by the ambient air. Here we
describe precisely the Biot context of the effective fluid
bulk-modulus model and present in detail the (corrected)
calculation procedure6. We give a clear validation on cylin-
drical circular tubes and redo properly the simple illustra-
tion cases of Ref. [14].

The paper is organized as follows. First, we analyze in
Section 2 and Appendices A and B the physical position
of Biot theory. We highlight the role played by the fluid/
solid incompressibility characteristics, their relation to
hypotheses on microgeometry, and the nature of the conse-
quences. In Section 3, we analyze how the notions of
dynamic-viscous and dynamic-thermal tortuosities/
permeabilities response functions emerge within Biot’s sim-
plifications, and show how the thermal ones determine the
effective fluid bulk-modulus. In the remaining sections, we
then establish how efficiently these thermal response func-
tions can be calculated using the mean survival times of
particles undergoing Brownian motion with radioactive
decay in the volume and instantaneous absorption at the
pore walls. To this end, in Section 4 we generalize a series
of considerations of Lifson and Jackson [16], who develop
a method originally due to Pontrjagin et al. [17], leading
to a rigorous and simple derivation of the differential equa-
tion obeyed by the above survival times. In Section 5 we use
the results from Section 4 and derive the relevant statistical
properties of Brownian motion trajectories with radioactive
decay, which appear in the trajectory ensemble construc-
tion procedure proposed by Torquato and Kim [13]. It is
finally revealed in the proposed algorithm, which provides
a stochastic purely geometric way to obtain the Fourier
or Laplace dynamic thermal tortuosity/thermal permeabil-
ity and the dynamic bulk modulus. We obtain simple pure
geometric procedures to calculate some pure geometric
parameters embedded in these functions and appearing in
the low-frequency limit, such as static thermal permeability
and static thermal tortuosity. Higher order parameters
could be obtained sequentially. Also, we show how the
parameters appearing in the opposite high-frequency limit
can be computed in another recursive process taking a limit
x ?1. To validate our simulation method we calculate in

Section 6 the effective bulk modulus for the case of parallel
cylindrical circular pores for which there are well-known
closed-form analytical results (Zwikker and Kosten’s). The
power of the method is illustrated by deriving the effective
dynamic bulk modulus of ambient air saturating a, regular
or random, idealized simple fibrous material of the type
used in noise control applications. We show that in both
regular and random cases the results support a long-pro-
posed frequency-dependent model [18], recently re-exposed
([9], Appendix), that includes geometric parameters, in
addition to porosity /, called (static) thermal permeability
k00 (the inverse trapping constant [19], Lafarge [18]) (static)
thermal tortuosity a00 (Lafarge [18]), and thermal character-
istic length K0 (Allard 1991 [20]). Finally, we give conclu-
sions in Section 7.

2 Special physical position of Biot theory
and limited scope of the present work

Biot’s (1956) classical linear theory [1], complemented
to account for thermal effects [2, 3] and losses in the solid
[3], is a long-wavelength semi-empirical model allowing to
describe low-amplitude sound propagation in many differ-
ent porous elastic solids saturated with compressible
viscothermal fluids. For a long time, it was not clearly real-
ized that Biot theory relies on tacit limitations made on
microstructure, leading to the incompressibility of fluid
and solid motions on a small scale, i.e. in a representative
averaging-volume, or in other words, on a simplified view
of dispersion effects that completely ignores spatial disper-
sion and simplifies temporal dispersion.

The model was originally developed in the context of
geophysical applications where one is concerned with
porous media (rocks) saturated by heavy fluids (oil). This
model describes a situation where the fluid and the skeleton,
each forming its own infinite cluster connected through the
sample, move simultaneously at different macroscopic veloc-
ities, while microscopically their motions – significantly dis-
tributed at the pore scale for the fluid because of the
tortuous microgeometry, but not for the solid as it can-
not slide like a fluid – are nearly divergence-free due to
long wavelengths. To our knowledge, this hypothesis has only
recently been clearly identified as a constraint on the allowable
microgeometries in conventional Biot theory [8, 9].

In the late 1970s and in the 1980s, important works con-
tributed, if not a fully clarified understanding, at least a bet-
ter knowledge of Biot theory. It became established as a
relatively general theory of poroelastic fluid-saturated
media, which describes the coupled solid and fluid motions,
and expresses in coherent manner the inertial, viscous, and
elastic interactions between the two phases7. It was
extended and used by Attenborough [2], Allard and collab-
orators [20–26], and by others, e.g., Bolton and collabora-
tors [27], as the basis for a general description of sound

6 Which replaces the faulty (Eq. (9), [14]) by the present
equations (82).

7 For example let us mention Plona and Johnson establishing
the existence of Biot’s second compressional wave [56, 57], and
Burridge and Keller verifying Biot’s equations by applying a
two-scale method of homogenization [48] introduced by Sanchez-
Palencia [53].
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propagation in many common porous acoustic materials
saturated by ambient air (polyurethane foams, glass wool,
rock wool, etc.), used either singly or in multiple layers with
other materials to effectively absorb sound, in noise control
applications [3].

Here, we wish to highlight the cornerstone impor-
tance, in Biot theory, of the simplification of “quasi-
incompressibility” (in a representative volume) mentioned
in Abstract and Section 1 (more shortly referred to as the
incompressibility hypothesis, or incompressibility, below).
Once again, it means quasi divergence-free motion for the
fluid and quasi uniform motion of the solid, at the pore
scale, i.e. in a representative averaging-volume.

As described by Johnson et al. [5, 28] in the geophysical
heavy fluid context, all the detailed physics of the system
microgeometry is hidden in a few parameters; Allard and
collaborators complete the list to describe the frequency-
dependent bulk modulus that arises from thermal
exchanges when the fluid is a gas. In the low-frequency limit
where Biot theory was first formulated, the important
parameters are porosity /, Darcy permeability k0

8, the
static tortuosity a0 [9, 18, 29], and the abstract Biot-Willis
elastic constants P, Q, R, N [5, 30]. The latter elastic
constants are identified through the three quasi-static
Biot-Willis Gedanken Experiments [30]. From the first
Gedanken Experiment where the material is subjected to
pure shear, N is identified as the shear modulus of the frame
itself unaffected by the presence of the viscous saturating
fluid (no restoring shear force arises between the frame
and the fluid when the latter is macroscopically sheared).
From the other two Gedanken Experiments – one in which
a representative volume, jacketed and drained with small
capillaries, is subjected to hydrostatic overpressure, and
one in which, without a jacket, it is directly subjected to
the same hydrostatic overpressure – the remaining macro-
scopic coefficients P, Q, R are expressed by the so-called
Biot-Willis relations in terms of: /, N, and Kb, Ks, Kf (see
e.g. Eqs. (2.11 a, b, c) in [5] or Eqs. (6.18, 19, 20) in [3]),
where Kb is the bulk modulus of the frame in vacuum, Ks

is the bulk modulus of the elastic solid from which the frame
is made, and Kf is the bulk modulus of the saturating fluid
itself.

Starting from the quasi-static limit, the theory directly
generalizes in arbitrary harmonic regime by using the
cornerstone incompressibility hypothesis: To our knowl-
edge, this has never been noted before in the literature,
however, it is through this hypothesis that one can consider
extending to arbitrary frequencies the quasi-static thought
experiments. The Biot-Willis relations, giving the elastic
Biot coefficients, remain valid in the harmonic regime by
using the complex values for the elastic constants arising

from the viscoelastic nature of the solid phase, and, when
the fluid is a gas, the heat exchanges. The effect of internal
friction in solids is accounted for by substituting simple fre-
quency-dependent values (in practice complex amplitude
values with so-called small loss angles that are approxi-
mately constant), for the original real coefficients N, Kb

and Ks. The effect of thermal exchanges between solid
and gas is accounted for by substituting the complex func-
tion Kf(x) for the original real Kf. The fact that the incom-
pressibility hypothesis is the reason for the transfer of the
static Biot-Willis experiments into the harmonic domain
with the above-mentioned substitutions makes the impor-
tance of this hypothesis clear.

At arbitrary frequencies it has been described how the
parameters k0 and a0 combine in a single notion, the
frequency-dependent dynamic permeability/tortuosity
function, k(x) and a(x) (see [18] and Appendix in [9]),
well-studied in Johnson et al.’s landmark works, e.g. [28]
(a(x) � m//(�ixk(x)), m = g/q0, with g dynamic viscosity,
m kinematic viscosity). In particular, Johnson et al., 1986,
clarified the high-frequency limit properties of these func-
tions which gave rise to the classical [31] notion of ideal fluid
tortuosity a1, and, when the pore wall surface is smooth, to
the important notion of characteristic viscous or electrical
length K [28, 32]. As explained in [28], the dynamic tortuos-
ity a(x) directly determines the various effective densities
(q11, q22, q12), that appear in Biot theory. It is a complex
frequency-dependent function to account in detail for the
inertial-viscous interaction between the solid and the fluid.
Explicitly, the densities verify, q11 + q12 = (1 � /)qs, q22 +
q12 = /q0, and, q12 = �(a(x) � 1)/q0, where qs is the
density of the elastic solid on which the frame is built;
q12 describes the inertial-viscous coupling coefficient for
the drag that the fluid exerts on the solid, and vice versa
by the principle of action and reaction. It arises as both fluid
and solid constituents are in different macroscopic motions,
one moving and accelerating with respect to the other,
which generates viscous and inertial reaction forces at the
pore walls. Johnson has explained how these functions
a(x) and k(x) are strongly constrained by the condition
that the fluid motion at the pore scale is divergence-free
to a first approximation in the long wavelength limit inher-
ent to Biot theory, and as a consequence, are very well rep-
resented in terms of a few low-frequency and high-frequency
geometric parameters (see Appendix A in [28] and also,
Appendix in [9]). Actually, the above relations on the Biot
effective densities q11, q12, q22, are obtained on the condi-
tion that, not only the fluid motion is divergence-free, but
also the solid moves entirely as a whole on the pore scale,
in first approximation. Thus, we have to say that all Biot
densities are defined and strongly constrained by the simul-
taneous conditions of fluid and solid incompressibility. It is
this simplification that solid and fluid motions are locally
divergence-free whether or not the frame oscillations char-
acteristic of Biot theory manifest themselves strongly,
which explains that there is a unique set of frequency-
dependent effective densities that must be considered in
the theory. They derive from the unique notion of the
dynamic permeability/tortuosity response function. The

8 For simplicity of discussion, we express ourselves here as if the
material is macroscopically isotropic and the quantities discussed
are scalar; the general anisotropic case has beenmade in Section 3.
For the heat exchange problem and the bulk modulus of the fluid
that interests us here, Kf(x), the quantities remain scalar in the
general anisotropic case. However, we should be aware that this
does not hold in the general case when spatial dispersion is
introduced (see Appendix A and Footnotes 1 and 13).
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latter can be studied for a rigid-frame motionless structure
of same microgeometry as the actual, undeformed, material.

Like the densities and for the same reasons the func-
tion Kf(x) is unique, whether the frame oscillations charac-
teristic of Biot theory manifest themselves or not. It can be
likewise studied for a rigid-frame motionless structure.
It needs to be considered only when the saturating fluid is
not a liquid, as in the original Biot considerations, but a
fluid with non-negligible thermal expansion. This is the case
of gases in general, such as air here. Gases have an
expansion- compression behavior well described by the
perfect gas law, and that means they have a coefficient of
thermal expansion, b0 � �[oq/(qoP)]P0, very close to
1/T0 (T0, absolute ambient temperature, P0, atmospheric
ambient pressure, q, the density). By the general thermody-
namic relation, c� 1 ¼ T 0b

2
0c

2
0=cP , (c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka=q0

p
, adia-

batic speed of sound), that can be found e.g. in Landau
and Lifshitz [33], it means that the factor c � 1 deviates
significantly from zero (general tri-variate fluid [12]). For
liquids, this is not the case because b0 is very small and,
as the thermodynamic relation shows, the deviation is a
quadratic effect on b0. Simple kinetic theory considerations
give: c – 1 = 2/nd, which is not small, where nd is the
number of excited degrees of freedom of a typical molecule
(for air, mainly composed of diatomic molecules, nd � 5 and
c � 1 � 0.4). In this case, the isothermal K0 and adiabatic
Ka = cK0 bulk moduli differ significantly and there is a
frequency dependence of the effective fluid bulk modulus
that must be taken into account as already explained in
the Introduction.

The frequency dependence of the effective fluid bulk
modulus is directly obtained through the introduction of
thermal dynamic permeability/tortuosity functions k0(x)
and a0(x), kind of thermal counterparts of the notions
of viscous dynamic permeability/tortuosity [4, 9, 18].
Johnson et al.’s entire analysis of the kind of frequency
dependence that appears in these functions [28] translates
directly for them, e.g. [4] (Appendix C) and [9] (Appendix).
It is the model ofKf(x) [9, 18] constructed using parameters
k00//, a00, K0, and based on these general considerations,
that will be checked in our numerical simulations in
Section 6.

Historically, the low-frequency limit was first clarified
for the case of heavy fluids (part I of Biot’s 1956 series of
two papers [1]), and the theory generalized in harmonic
regime with a description of inertial-viscous effects thanks
to the notion of dynamic viscous permeability/tortuosity
(Johnson et al. paper [28]). With the work of Allard and
collaborators and the consideration of additional loss
phenomena associated with internal friction in solids and
heat exchange between fluids and solids, the theory finally
extended its already tremendous predictive power, reported
in [5]. The theory was found to be particularly useful in
noise control applications, see [3].

This procedure allowed one to express consistently the
temporal dispersion that appears when the basic fluid/solid
incompressibility assumption of Biot theory is respected. In
the following, we will base the description of the function

Kf(x) directly on incompressibility, but we should not for-
get that this does not hold in the general case. We refer
to the Appendices A and B for additional comments on
the physical position of Biot theory and the present study.

3 Definition of the dynamic bulk-modulus
and related functions

For the class of materials well described by Biot theory,
the acoustic vibrations of the poroelastic structures have no
effect on the apparent bulk modulus Kf(x) of the saturation
fluid. In what follows, it is assumed without loss of general-
ity that the porous skeleton is sufficiently inert/rigid not to
be set in motion. When modeling the geometrically con-
strained effective bulk modulus of air in the context of
Biot’s “local theory”, this makes it possible to simplify the
considerations and calculations in a meaningful way.

We exclude microgeometries that would include struc-
tures such as Helmholtz resonators: Their resonances would
trigger the spatial dispersion phenomena that lie outside the
conventional Biot description (see [9], previous Section 2,
and Appendices A and B). If we were to perform a general
non-local homogenization that accounts for all types of
microgeometries and is thus able to account for the most
general spatial and temporal dispersion, we would have to
start at the pore scale with the full set of governing coupled
equations of sound propagation. In the present case of an
inert solid frame, these would be equations (7.1-6) from
Ref. [9]. In these equations, the zero velocity boundary con-
dition is set at the pore walls because the porous skeleton is
assumed to be immobile; the zero excess temperature
boundary condition is set because we also assume it to be
thermally inert [4] (Appendix B.3).

However, for the Biot description we are interested in
here, since we assume incompressibility of the fluid at the
pore scale, we must replace this set of coupled equations
for inertia, viscosity, elasticity and heat, with a simplified
set. This is a set of simpler and disconnected parts, one
describing the inertia and viscosity effects, leading to the
notion of dynamic viscous permeability and tortuosity,
one describing heat exchange, leading to the notion of
dynamic thermal permeability and tortuosity, and one
expressing only the equation of state from which the
relationship between the latter thermal terms and the effec-
tive bulk modulus of the fluid is derived. The principle of
this simplification has been studied, e.g. in [4] and [9]
(Appendix). We revisit it in detail here and take the oppor-
tunity to further elaborate on what was said earlier about
the basic assumption of incompressibility of the theory
and the relation that this assumption has with the rejection
of the description of spatial dispersion and a related part of
temporal dispersion. We think that this will be useful in
understanding the position of the Biot theory that we
stated in the Section 2 and the Appendices A and B.

First, we will examine the simplified equations, detached
from the other equations, that we can use to describe the
inertia/viscosity effects. Let us direct our attention to a
finite, coarse-grained spherical region centered at a certain
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position x within the material and whose radius is chosen
large enough to obtain smoothed spatial averages, but not
so large as to cancel the actual point-to-point changes that
can be meaningfully observed – see the general remarks of
Lorentz [34] pp. 133–134, §§ 113 and 114. That is, in addition
to a long-wavelength limit implying a scale separation
between the (small) radius of the averaging sphere and the
(large) characteristic distance over which the acoustic
macroscopic fields vary, we also assume a scale separation
between this homogenization radius and the characteristic
distance overwhich themacroscopic parameters of themate-
rial can vary9. Under these conditions, the internal structure
inside the sphere or averaging ball (b) (where “(b)” stands for
“ball” or “bounded”, since its important property is mainly its
bounded spatial extent10) can be considered as that of a
macroscopically homogeneous medium. We will approxi-
mate it as a finite part of a periodic or stationary random
medium representing the structure of the material around
the considered macroscopic position.

Let this solid-fluid averaging ball (b) be a bounded
spherical region with a connected pore space V ðbÞp (filled
by the fluid) and a solid-fluid pore wall surface SðbÞp . Under-
lying Biot’s local theoretical approach is the notion that the
fluid velocity pattern v(t, r) in this region of central position
x and thus its macroscopic mean hvi(t, x), which is the
quantity of interest to us, can be viewed as responding to
the history of macroscopic pressure gradients applied (in
the present and in the past) at this very position11.

Before proceeding, let us distinguish two possible mani-
festations of the spatial derivative operator, r ¼ x̂@=@xþ
ŷ@=@y þ ẑ@=@z, which is also written in a classical short-
hand notation, r = o/ox (e.g., Landau and Lifshitz,
Mechanics [35], § 5, The Lagrangian for a system of parti-
cles), where x ¼ xx̂þ yŷþ zẑ. For the sake of clarity we
adopt two different notations for a position vector x: r for
a microscopic position vector indicating a position in the
pore space, and x for a macroscopic position vector referring
to a macroscopic quantity. With this in mind, in what fol-
lows, r will mean o/or when acting on a microscopic vari-
able, and r = o/ox when acting on a coarse-grained
variable such as P or hvi, where x denotes the “central posi-
tion” of the averaging sphere that is used to define themacro-
scopic quantity in question (with, for the specific case of
macroscopic pressure in the fluid, either of the definitions
thatwementioned inAppendixA,/P= hpi or hpvi=Phvi).

Since the actual microscopic air motion in the spherical
spatial averaging region satisfies, at any time, the equation,

q0
ov
ot
¼ �rp þ g�v þ g

3
þ f

� �
r r � vð Þ; in V bð Þ

p ; ð1Þ

(which is one among the complete set of governing
coupled equations mentioned above (7.1-6) in [9], g and
f, first and second viscosities, and p a thermodynamic
variable as explained in [8]), with boundary conditions:

v ¼ 0; on S bð Þ
p ; ð2Þ

and since in Biot theory we apply a divergence-free simpli-
fication of the representation of air motion at the pore
scale, we must conclude that in this framework we are
considering only a situation in which the pattern of air
velocity occurring in the spherical averaging region must
very nearly satisfy equations having the following form,
which is drastically simplified:

q0
ov
ot
¼ �rp þ g�v; in V bð Þ

p ; ð3Þ

r � v ¼ 0; in V bð Þ
p ; ð4Þ

with boundary conditions:

v ¼ 0; on S bð Þ
p : ð5Þ

Because of the lack of definition of variable p in (3) (which
is not the same variable as p in (1), and in particular is no
longer a thermodynamic variable), and boundary condi-
tions on the remaining surfaces bounding the averaging
sphere in the fluid, these equations do not correspond to a
well-defined problem. However, a well-defined interpreta-
tion/solution of these equations that makes sense as a rep-
resentation of the velocity field pattern inside the sphere
and is consistent with the above view of a velocity pattern
that is a response to the time evolution of the applied
macroscopic pressure gradients can be achieved by complet-
ing the following.

We will imagine that we extend the regions V ðbÞp and SðbÞp
into the space outside the sphere in an appropriately
defined “uniform manner”, as if the material were macro-
scopically homogeneous. Using the periodic or stationary-
random approximation seen above, we will think of the
periodic extension or stationary-random extension of the
internal structure over the entire space, which generates
the regions denoted below V ðubÞp and SðubÞp , where “(ub)”
stands for “unbounded”. When the material is macro-
scopically inhomogeneous, these regions should be called
V ðubÞp ðxÞ and SðubÞp ðxÞ because their construction refers
specifically to the macroscopic position x at which a certain
type of local structure of the material is assumed. By
construction, the regions V ðubÞp ðxÞ and SðubÞp ðxÞ are macro-
scopically homogeneous in nature12.

9 This leaves open the possibility that the material has small
gradients in its macroscopic properties.
10 To precise the meaning of “ball” or “bounded” see also the
signal theory refinement of Lorentz’s notion of averaging
brought by Russakoff [59].
11 This excludes spatial dispersion, which would imply some
dependence on the macroscopic pressure gradients applied at
neighboring positions, and this exclusion is constitutive of
conventional Biot theory, as we have stressed.

12 If the material is already macroscopically homogeneous and
unbounded, the extension is done ipso-facto: it consists in taking
for the V ðubÞp and SðubÞp the pore space Vp and the pore wall surface
Sp of the material itself. If not, we have to perform an extension
in the way indicated. This procedure reminds that used in
conventional two-scale asymptotic homogenization, which intro-
duces two set of space variables with extension of field quantities
from 3- to 6-dimensional space [48].
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Let �rP(t 0, x) for t 0 2 [�1, t] define the values that
the physical macroscopic pressure gradients have taken at
the x position, and recall that we can define these gradients
using either of the definitions of macroscopic pressure that
we mentioned in Appendix A. Stated and solved in the con-
struct unrestricted domains V ðubÞp ðxÞ and SðubÞp ðxÞ, the equa-
tions (3)–(5) have a unique abstract mathematical solution
for the velocity v(t, r), that will be a valid representation of
the physical velocities in a representative volume around x,
if we constrain the abstract pressure, p(t 0, r) = P + p, to be
split in a uniformly variable abstract macroscopic part P
defined from the values �rP(t 0, x) by: P(t 0, r) = (r � x) �
rP(t 0, x) + P(t 0, x) (note that the knowledge of �rP
(t 0, x) does not give that of P(t 0, x) but the latter value will
play no role here), and a deviatoric part, p(t 0, r), that will
automatically be stationary-random or periodic as a func-
tion of r, to be coherent with the spatial constancy of the
gradient of the above-defined abstract P(t 0, r), (�oP
(t 0, r)/or = �rP(t 0, x)), which constancy is itself the
result of the incompressibility of the considered motion.
Obviously this condition that pmust be stationary-random
or periodic must hold in same manner whether we take, on
the abstract field p or abstract fields p, v, the definition /P
= hpi or the definition Phvi = hpvi, to obtain our represen-
tative macroscopic pressure P. Finally, with one or the
other definition, we solve the same problem where the spa-
tially uniform, arbitrarily time variable forcing �rP, is
given by specified values. With one or the other definition,
the equations of the problem are at all times t 0 2 [�1, t]:

q0
ov
ot
¼ �rpþ g�v �rP ; in V ubð Þ

p ; ð6Þ
r � v ¼ 0; in V ubð Þ

p ; ð7Þ
p : stationary random=periodic; in V ubð Þ

p ; ð8Þ

with boundary conditions:

v ¼ 0; on S ubð Þ
p ; ð9Þ

with only the difference that the stationary-random
p(t 0, r) solution, that is unique up to an additive integra-
tion constant C(t 0), can be fixed in one or the other case
either with hpi = 0 or with hpvi = 0. However, as these
two ways to remove the additive constant are obviously
equivalent we must conclude that the same solution,
v(t 0, r), p(t 0, r), is obtained, and thus the same macro-
scopic pressure P is obtained, in both the direct and indi-
rect averaging-conceptions of Appendix A13. We note

also that, the spatial constancy of the considered macro-
scopic pressure gradient is a signature that there can be
no account of spatial dispersion in the description to be
developed. Since this constancy is directly related to the
incompressibility condition in the posed mathematical
problem, it shows the already mentioned connection
between the assumption of incompressibility at the pore
level and the rejection of spatial dispersion at macroscopic
level.

As for the time variations of the macroscopic pressure
gradient, they can be assumed to be arbitrary (as long as
this is compatible with the long wavelength considerations),
i.e., �rP ¼ f ðtÞêðtÞ, with arbitrary amplitude function f(t)
and arbitrary time-dependent orientation of the unit vector
ê, ê2 ¼ 1. It should be clear that, if we allow for arbitrary
time variation here, this in no way means that the effects
of temporal dispersion fully appear in the description.
Rather, as mentioned in Section 2, the allowed temporal
dispersion effect is very strictly limited. The use of the
incompressibility assumption not only precludes the occur-
rence of spatial dispersion effects, but also severely restricts
the temporal dispersion effects: as previously mentioned in
Section 2 it causes the zeros and singularities of the response
functions in the complex frequency plane to lie on the
imaginary half-axis [28] (Appendix A), as opposed to the
full half-plane that is allowed in pure causality con-
siderations [6, 36]. This becomes clear in Avellaneda and
Torquato’s, 1991, relaxation-times representation of the
viscous dynamical permeability [19]: their relaxation times
�n correspond to purely imaginary singular angular fre-
quencies, xn = �i/�n. It follows that these functions are
constructed with basis elements which have strictly mono-
tone behavior on the real frequency axis (see [18, 37] and
Appendix in [9]).

Note that, exactly the same response fields, v and p, will
appear in another abstract problem extended as above:

q0
ov
ot
¼ �rpþ g�v þ f ; in V ubð Þ

p ; ð10Þ

r � v ¼ 0; in V ubð Þ
p ; ð11Þ

p : stationary random=periodic; in V ubð Þ
p ; ð12Þ

with boundary conditions:

v ¼ 0; on S ubð Þ
p ; ð13Þ

and in which the imposed spatial constant vector f,
instead of representing a macroscopic pressure gradient,
now represents an imposed external, bulk, body force,
directly acting in the fluid. The same motion as before will
result when this spatial constant force will be taken, at
the different instants t 0 2 [�1, t], numerically equal to
the previously considered pressure gradient: f ðt 0Þ ¼
f ðt 0Þêðt 0Þ ¼ �rPðt 0; xÞ. In this second problem, the
quantity p, in a way, represents the pressure itself, which
appears in the fluid in the given nontrivial microgeometry,
in reaction to the imposed, past and present, forces f. In
the preceding problem, p, in a way, was the local deviation
to the macroscopic excess pressure. We say “in a way”,

13 In the general case of arbitrary microgeometry lying outside
the realm of Biot theory, we expect to see the notion of
macroscopic pressure to be replaced by the notion of a
macroscopic effective stress Hij, with an indirect definition,
�Hijhvjip = hpviip (see Appendix A). When the fluid motion is
almost incompressible, Hij reduces to a diagonal form �Pdij with
P = hpip and Phvi = hpvi, and this, whether the medium is
isotropic or not. This corresponds to the present equivalence of
two definitions. But when the microgeometry is such that the
fluid motion is not incompressible the equivalence is not
maintained. With arbitrary fields the nontrivial tensor character
of Hij will be created as a result of spatial dispersion even in
media that would be isotropic in the ordinary sense.
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because, in these mathematical problems, since the fluid is
viewed as completely incompressible which is a purely
mental view, the quantities that seem to act as actual
physical overpressures (p = P + p in the first problem,
p = p in the second) have only symbolic meaning, not
physical meaning (remember that the thermodynamic
meaning has been lost). We cannot expect these abstract
mathematical quantities to yield a truly quantitatively
meaningful representation of the physical excess pressure
in the actual physical problem of sound propagation.
Recall that the unphysical spatial uniformity of the source
terms, related to the divergence-free nature of the motion,
is an expression of the fact that the spatial dispersion
effects (intrinsically connected with the spatial variations
of source fields [6]), are, by force here, entirely left outside
the description framework. This is why the p, small,
abstract pressure variations, will necessarily be truncated
representations of the physical ones; they will be sufficient
for our purpose of accurately representing the velocity
pattern and computing its spatial average hvi in a repre-
sentative volume but we believe that they will not very
accurately capture the pattern of the pressure14.

With arbitrary time variations of the source terms (the
macroscopic pressure gradient or the external bulk force),
the solution is a general convolution of the elementary
solution of the impulse Stokes problem considered in [19]
(response of the viscous incompressible fluid to a temporal
Dirac-delta stirring force, set along a given direction ê in
the stationary random or periodic medium). Of course,
this solution exhibits the limitations indicated in [28]
(Appendix A), in that it is constructed with purely damped
normal modes15. By explicitly writing the convolution we
will learn that there are local “tortuosity” macroscopic oper-
ators âijðxÞ, or response factors aij(t, x), such that,

q0

ohviip
ot

tð Þ ¼ �â�1ij xð ÞrjP tð Þ

¼ �
Z t

�1
dt0 a�1ij t � t0; xð ÞrjP t0ð Þ; ð14Þ

or equivalently, local “permeability” macroscopic opera-
tors k̂ijðxÞ, or response factors kij(t, x), such that,

/ðxÞhviipðtÞ ¼ �
k̂ij xð Þ
g
rjP ðtÞ

¼ � 1
g

Z t

�1
dt0kijðt � t0; xÞrjP ðt0Þ; ð15Þ

(with symmetry on the exchange of i = 1, 2, 3 and j = 1,
2, 3, see below; the general case of an anisotropic medium
is considered, the indices i and j refer to a particular
arbitrary choice of three orthogonal coordinate axes; the
summation convention on repeated indices is used). The
above relations are written with hip performed in the aver-
aging-volume of central position x where the values
f ðtÞêðtÞ of the macroscopic pressure gradient were
recorded. Recall that this volume served to construct a
representative periodic or stationary random homoge-
neous medium, so that the values of the material param-
eters, porosity / and kernels aij or kij, depend on x if the
existing starting material has gradients of properties.

In harmonic regime the operator relations (14) and (15)
become multiplications with the hat quantities becom-
ing the usual frequency-dependent functions, dynamic
inertial/viscous tortuosity:

�ixq0aijðx; xÞhvjip ¼ �riP ; ð16Þ

and dynamic viscous/inertial permeability:

/ðxÞhviip ¼ �
kij x; xð Þ

g
rjP : ð17Þ

At each position they are computed by solving in the asso-
ciated unbounded (ub) homogeneous periodic or stationary
random medium the following problem:

�ixq0v ¼ �rpþ g�v �rP ; in V ubð Þ
p ; ð18Þ

r � v ¼ 0; in V ubð Þ
p ; ð19Þ

p : stationary random=periodic; in V ubð Þ
p ; ð20Þ

with boundary conditions:

v ¼ 0; on S ubð Þ
p ; ð21Þ

and �rP, a given spatial vector constant. From the three
different unique solutions v(l) associated with the source
term �rP ¼ � dP

d‘ ê
ðlÞ oriented along the three different

mutually orthogonal directions êðlÞ of the coordinate axes
(êðlÞi ¼ dil , Kronecker symbol; dP variation of pressure
along distance d‘ taken along êðlÞ), we get, after averaging
in the fluid and using the relations/definitions (16) and
(17) the values of the desired functions kij(x, x) or
a�1ij ðx; xÞ:

kijðx; xÞ ¼ � g/ xð Þ
dP=d‘

hv jð Þip � ê ið Þ;

a�1ij ðx; xÞ ¼ �
�ixq0ð Þ
dP=d‘

hv jð Þip � ê ið Þ:

ð22Þ

The obtained functions aij(x, x) or kij(x, x) are automati-
cally symmetric [38, 39], expressing an Onsager-Casimir
symmetry property, and they are related by:

kij x; xð Þ ¼ m/ xð Þ
�ix a�1ij x; xð Þ: ð23Þ

14 We are not aware that this point has been previously clearly
made. This would warrant verification and quantification, and is
related to the limited physical consistency we expect, of the
expansion principle used in conventional two-scale asymptotic
homogenization [48], see Appendix B.
15 Analogous characteristics and limitations will manifest them-
selves in the corresponding thermal functions to be introduced
next. They express the mentioned fact that within conventional
Biot theory, the temporal dispersion does not appear in its full
possible physical generality.
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The frequency-dependent dynamic permeability relation
(17) between the macroscopic flow velocity hvi = /hvip
and the macroscopic pressure gradient, is referred to as a
dynamic regime Darcy’s law. The other relation (16) is a
dynamic regime Newton’s law.

To introduce the analogous notions of “dynamic thermal
tortuosity and permeability”16, we now proceed in a some-
what parallel manner. For heat exchange, we are interested
in the description of the excess-temperature-pattern s in air,
appearing in the above finite coarse-graining-ball of volume
V ðbÞp and pore surface SðbÞp centered at x. It obeys the follow-
ing Fourier equation in V ðbÞp (which is one among the com-
plete set of governing coupled equations mentioned above
(7.1-6) [9]),

q0cP
os
ot
¼ b0T 0

op
ot
þ j�s; in V bð Þ

p ; ð24Þ

with boundary conditions:

s ¼ 0; on S bð Þ
p : ð25Þ

In the full set of equations of which (24) and (25) is an
excerpt, p is a thermodynamic variable; it will now lose this
status in the simplified way in which we will consider (24),
isolated from the rest. Since in Biot theory we apply a
divergence-free simplification of the representation of air
motion at the pore scale, we must note at this time that
we are considering only a situation where the pressure p
within the averaging-volume can be viewed as the sum of
a macroscopic partP (defined with /P= hpi or equivalently
hpvi = Phvi), which is uniformly variable (P(t, r) =
(r � x) � rP(t, x) + P(t, x), whererP(t, x) is a vector con-
stant – it has null derivative o/or), and a deviatoric part
p � P, with zero mean value (in either sense,
h(p � P)i = 0 or h(p � P)vi = 0).

Parallel to what was said earlier for the velocity field,
we now claim that, underlying Biot’s local theoretical
approach is the notion that the excess temperature pat-
tern s(t, r) in the region of central position x and thus
its macroscopic mean hsi(t, x), which is the quantity of
interest to us, can be viewed as responding to the history
of macroscopic terms b0T0oP/ot applied (in the present
and in the past) at this very position. To define this
response, we first expand, as before, in a suitable “uniform
manner” (periodic or stationary random), the domains
V ðbÞp and SðbÞp so that they encompass the entire space out-
side the sphere, as if the material were macroscopically
homogeneous. Next, we assume that the excess temperature
pattern we seek, is approximately the same as that (periodic
or stationary random) determined in the following well-
posed problem:

q0cP
os
ot
¼ b0T 0

oP
ot
þ j�s; in V ubð Þ

p ; ð26Þ

P ¼ f tð Þ; in V ubð Þ
p ; ð27Þ

where f(t) is a spatial constant which represents the
history of the macroscopic pressure at the central position
x of the original averaging ball that served to construct
the abstract homogeneous unbounded medium represen-
tation (V ðubÞp and S ðubÞp , periodic or stationary random),
with boundary conditions:

s ¼ 0; on S ubð Þ
p : ð28Þ

We can justify the way this problem is written as follows.
Since P represents now the time variations of the macro-
scopic pressure at the central position x of the original aver-
aging sphere, the equation (26) is reminiscent of the Stokes
equation (6) or (10) used to define the velocity pattern after
incompressibility was introduced. It should be recalled that
the p field did not exactly mimic the deviatoric overpres-
sure, p � P, i.e. the pore-scale distribution of the physical
overpressure p around its macroscopic average, but this
was not important. The purpose of the plot was to provide
an estimate, which could be considered precise in suffi-
ciently simple geometries, of the relationship between the
velocities and their mean, and the course of the macroscopic
pressure gradients. Similarly here, by replacing the micro-
scopic variable p in (26) with the macroscopic average at
the original central sphere position, P, in (27), we do not
attempt to mimic the physical overpressure distribution.
The difference between the real overpressure p and the aver-
aged P is however very small within Biot theory framework
(see Appendix A) and moreover it will be of no consequence
at all in estimating the relationship between the excess tem-
perature s (and thus its macroscopic mean) in the original
sphere, and the course of the macroscopic term b0T0oP/ot
with the spatial constant P as the averaged central vari-
able17. Finally, the problem (24) and (25) becomes well-
posed if it is simplified and extended over the whole space
in the way indicated to give (26)–(28).

As for the time variations of the uniform excitation P,
they can be assumed to be arbitrary (as long as they are
compatible with long wavelengths), but again, this does
not mean that the intervening temporal dispersion will be
general. For arbitrary time variations, the solution is a con-
volution of the elementary solution of the impulse Fourier
problem considered in [18] (response to a Dirac delta heat
source in time). This solution has the constraints given in
Appendix C in [4], since it is constructed with purely

16 Let us note that, long before the introduction of these ideas by
one of us in [4, 18], Levy and Sanchez-Palencia in a work using
the two-scale homogenization [58], expressed the effective
compressibility of the saturating gas in terms of a dynamic
thermal function just proportional to our inverse dynamic
thermal tortuosity. This had been done without noting the
present parallel between viscous and thermal functions properly
defined.

17 One can check that it would be useless to consider a more
complete representation of the pressure in the starting equation
(24), such as obtained with, p(t, r) = p(t, r) + [(r � x) � rP(t, x)
+ P(t, x)]. It would give the same relation as that implied in the
problem (26)–(28), between the excess mean temperature, hsi(t),
and the excitations, b0T0[ohpi/ot](t 0), t 0 2 [�1, t]. Indeed, no
mean excess temperature is created by the deviatoric pressure
part p which is by construction of zero mean, hpi = 0, and the
same is true of the term (r � x) � rP(t, x).
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damped normal modes (Avellaneda and Torquato’s viscous
relaxation-times analysis is easily transposed in a thermal
relaxation-times analysis, see [18]).

By writing the convolution we will learn that there are
local macroscopic operators of “thermal tortuosity” â0ðxÞ,
associated with response, kernel factors a0(t, x), such that,

q0cP
ohsip
ot

tð Þ ¼ â0�1 xð Þb0T 0
oP
ot

tð Þ

¼
Z t

�1
dt0a0�1 t � t0; xð Þb0T 0

oP
ot

t0ð Þ; ð29Þ

or equivalently, local macroscopic operators of “thermal
permeability” k̂0ðxÞ, associated with response, kernel
factors k0(t, x), such that,

/ðxÞhsipðtÞ ¼
k̂0 xð Þ
j

b0T 0
oP
ot
ðtÞ

¼ 1
j

Z t

�1
dt0k0ðt � t0; xÞb0T 0

oP
ot
ðt0Þ: ð30Þ

The above relations are written with h ip performed in the
averaging-volume of the central position x where the f(t)
values of the macroscopic source term b0T0oP/ot have
been recorded. Recall that the values of the material
parameters, porosity / and kernels a0 and k0, depend on x
if there are gradients in macroscopic properties; note that
for shortness this argument x is omitted in the fields in
the equations ((14)–(15), (29)–(30)).

In harmonic regime the operator relations (29) and (30)
become multiplications with the hat quantities becoming
the usual frequency-dependent functions, dynamic thermal
tortuosity a0(x, x):

�ixq0cPa
0ðx; xÞhsip ¼ b0T 0

oP
ot

; ð31Þ

and dynamic thermal permeability k0(x, x):

/ðxÞhsip ¼
k0 x; xð Þ

j
b0T 0

oP
ot

: ð32Þ

At each position they are computed by solving in the asso-
ciated unbounded (ub) homogeneous periodic or stationary
random medium the following problem:

�ixq0cPs ¼ �ixb0T 0P þ j�s; in V ubð Þ
p ; ð33Þ

P ¼ a given spatial constant; in V ubð Þ
p ; ð34Þ

with boundary conditions:

s ¼ 0; on S ubð Þ
p : ð35Þ

From the unique solution s of this diffusion-controlled
Fourier problem, that will be automatically stationary ran-
dom or periodic, will derive, by averaging in the fluid and
by using the relations/definitions (31) and (32) the values
of the wanted functions a0(x, x) or k0(x, x):

k0ðx; xÞ ¼ j/ xð Þ
b0T 0oP=ot

hsip; a0�1ðx; xÞ ¼
�ixq0cPð Þ
b0T 0oP=ot

hsip;

ð36Þ

which are related by:

k0 x; xð Þ ¼ m0/ xð Þ
�ix a0�1 x; xð Þ: ð37Þ

The frequency-dependent dynamic thermal permeability
relation (32) between the macroscopic excess temperature
hsi = /hsip and the macroscopic source term, is referred to
as a dynamic regime “thermal Darcy’s law”. The other rela-
tion (31) may be referred to as a dynamic regime “thermal
Newton’s law”. It remains here to explain how these notions
of thermal dynamic permeability and tortuosity determine
the effective bulk modulus of the air. The link between ther-
mal dynamic permeability/tortuosity and effective bulk
modulus has been presented e.g. in [4, 9, 18]. For complete-
ness we briefly recall here the relation.

As derived in [8, 9], the thermodynamic equation of state
of the saturating fluid leads, after linearization, to the follow-
ing relation between excess pressure, condensation b� q0/q0
where q0 is the excess density, and excess temperature:

cv0p ¼ bþ b0s; in V bð Þ
p ; ð38Þ

where the notation v0 is employed for the adiabatic
compressibility 1/Ka (setting, s = 0, in (38), the resulting
relation, cv0p = b, must describe the isothermal excess
pressure-condensation relation, so that, obviously, cv0 =
1/K0). Taking the average and the time derivative it gives
the relation, since hpip = P,

cv0
oP
ot
¼ ohbip

ot
þ b0

ohsip
ot

: ð39Þ

In harmonic regime e�ixt and working with the complex
amplitudes we can use (31) to express the right-hand side
in (39). Using the general thermodynamic identity seen in
Section 2 and suppressing the common factor (�ix) this
gives after straightforward calculation the relation,

v0 c� c� 1
a0 x; xð Þ

� �
P ¼ hbip: ð40Þ

Therefore in harmonic regime we find a relation having the
form,

P ¼ Kf ðx; xÞhbip ¼ v�1f ðx; xÞhbip; ð41Þ

with

K�1f x; xð Þ ¼ vf x; xð Þ ¼ v0 c� c� 1
a0 x; xð Þ

� �
; ð42Þ

¼ v0 c� c� 1ð Þ�ix
m0/

k0 x; xð Þ
� �

: ð43Þ

It gives the Fourier coefficients of the kernel functions
v�1f ðt; xÞ or Kf(t, x) which appear in the arbitrary time-
variable-regime, operator or integral equation,

P ðt; xÞ ¼ v̂�1f hbipðt; xÞ ¼
Z t

�1
v�1f ðt � t0; xÞhbipðt0; xÞdt0;

ð44Þ
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¼ K̂f hbipðt; xÞ ¼
Z t

�1
Kf ðt � t0; xÞhbipðt0; xÞdt0: ð45Þ

We recognize here, the relation announced in Section 1. The
function vf(x, x), resp. its inverse Kf(x, x), represents a
local dynamic compressibility, resp. dynamic bulk modulus,
of the saturating fluid, that depends on frequency because
of the thermal exchanges between fluid and solid.

Finally, we note that it is customary to define a
normalized dynamic compressibility, b(x, x), such that, in
harmonic regime,

v0b x; xð Þ/ xð Þ oP
ot
¼ v0b x;xð Þ o ph i

ot
¼ o bh i

ot
¼ �r � vh i: ð46Þ

It is given by,

b x; xð Þ ¼ vf x; xð Þ
v0

¼ c� c� 1
a0 x; xð Þ : ð47Þ

Note that in (46) we have directly written that, ohbi/ot =
�r�hvi, using the identity hr � vi = r � hvi, which is
valid (with no indice p) even if the porosity varies spatially.
We refer the reader to [9] where the explanations are
given on how this identity is obtained (where in the left,
r = o/or, and in the right, r = o/ox).

4 Generalization of the method of Pontrjagin,
Andronow and Witt, in the presence of
radioactive decay of diffusing species

As will be seen in Section 5, there is a direct proportion-
ality between the distribution of excess temperature field
s(r) in thermal problem defined in (33)–(35) and the mean
survival time tðrÞ of a tiny particle released at position r,
moving and decaying under the combined action of thermal
agitation (Brownianmotion) and radioactive disintegration,
and instantly absorbed by reaching a specified boundary
(that of the pore walls). (The overbar designates the average
over realizations of the random walk in the limit of large
numbers). In this section, we will first study how to compute
the mean survival time tðrÞ of the particle with instant
absorption (instant decay), at the pore walls. In a paper
on the statistical treatment of dynamic systems, Pontrjagin
et al. [17], have discussed a general method, allowing in par-
ticular to establish a differential equation for the average
time it takes a Brownian motion particle moving under
the combined effect of thermal agitation and a stationary
field of force, to reach a defined boundary. Focusing on this
particular problem, an helpful detailed account of Pontr-
jagin, Andronow and Witt’s general method has been pre-
sented by Lifson and Jackson in [16]. Here, closely
following their exposition, we will establish a differential
equation for the average time it takes for a Brownian motion
particle to reach the pore walls, moving under the combined
effects of thermal agitation and superimposed radioactive
decay of the diffusing species. The method of calculation of

tðrÞ in a complex geometry will be based on the known solu-
tions of the differential equation in the most simple open
(disk and ball in 2D and 3D, see Eqs. (73) and (74)).

In their presentation, Lifson and Jakson [16], as in
the general considerations in [17], started with a closed
region V bounded by a surface S. Let us substitute for
volume V our pore spaceVp, occupied by air, and for enclos-
ing surface S, the pore wall surface Sp between air and
porous solid. Our pore space Vp is not a closed region but
this is not a significant difference. What is important is that
this space is only bounded by the surface Sp. If it happens in
our following reasonings that Vp and Sp are not macroscop-
ically homogeneous regions, we will understand to identify
them with the homogeneous domains we referred previously
by the notations V ðubÞp ðxÞ, SðubÞp ðxÞ, with the dependence (x)
not indicated, for simplicity. Then, with the substitution of
V ðubÞp , SðubÞp , for V, S, in [16], only minimal change in the con-
siderations will occur. This is why we take the liberty, in the
following, to paraphrase almost completely parts of Lifson
and Jakson’s exposition, mutatis mutandis only what is
necessary in the presence of the superimposed radioactive
decay of the diffusing particles.

As we will see, varying the radioactive decay time sb,
from 1 (no disintegration, low frequency limit) to 0
(instant disintegration, high frequency limit), will allow us
to explore the effective bulk-modulus function in its Laplace-
Transform variable representation, KL

f ðsÞ, from s = 0 to
s = 1, where s is related to x according to s = �ix using
the convention e�ixt. In [16], the conservative force field,
F(r), acts on the diffusing species and is required to be finite
everywhere in theVp region. For the sake of generality in this
section we retain it, though we need not consider it in the
sequel. We will later (Sect. 5) set, F(r) = 0.

We consider Brownian motion particles, moving, in
the region Vp, under the combined influence of thermal
agitation and the force F; the new element compared to
[16] is that each diffusing particle undergoes “radioactive
decay” with time characteristic sb in the volume Vp, i.e., if
present (in bulk) at time t the particle has probability
jb dt = dt/sb of being destroyed in the infinitesimal time
interval (t, t +dt).

“Disintegration” may refer to the particle itself that can
be removed e.g. by chemical reactions, or to some physical
excitation carried by the particle that can be deexcited by
interaction in the bulk. In all cases we speak of “the particle”
and of its disappearance. We are not concerned here with
the physical implementation but only with the posed math-
ematics of the diffusion-disintegration process which is
assumed to mimick Brownian motion and radioactive decay
laws. We define the cumulative probability function Dðr; tÞ
(replacing the Lifson and Jackson cumulative probability
function Wðr; tÞ), as the cumulative probability function
that a particle located at point r at time t = 0 will reach
the bounding surface Sp during the time interval (0, t), or
else, will disappear in the bulk Vp without reaching Sp
during the same interval.

The “D” – for “Disappearance” (or “Decay”, “Disintegra-
tion”, “Delete” or Death”) – qualification for this probability
is appropriate if any particle touching the surface Sp, or the
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excitation it carries, is instantly removed; Dðr; tÞ only dif-
fers from Wðr; tÞ in [16] in that the superimposed radioac-
tive decay (of diffusing particles or their excitation),
provides an additional spontaneous means of removal (in
bulk). A number of simple properties previously listed for
Wðr; tÞ in [16], still hold for Dðr; tÞ. Evidently, for a point
s on the surface Sp, Dðs; tÞ ¼ 1 for all t. For an interior
point we have Dðr;1Þ ¼ 1, while Dðr; 0Þ ¼ 0. A difference
with [16] is that the condition,

lim
s!0

W r; sð Þ=s½ � ¼ 0; ð48Þ

now becomes, after accounting for the finite rate of
radioactive decay,

lim
s!0

D r; sð Þ=s½ � ¼ 1
sb
¼ jb: ð49Þ

To see this, recall that Dðr; sÞ is the probability that a
particle (or its excitation), starting from r at t = 0, dies
before t = s, either by touching Sp, or by sponta-
neously decaying in the bulk. So to calculate D, we launch
N ?1 particles at r at t = 0, and, after a time interval s,
we see N00 paths of particles that have not touched Sp or
died in the bulk. The remaining N0 = N � N00 paths, are
dead paths, either stopped in the bulk when particles died
spontaneously, or stopped at the boundary Sp where instant
decay occurs. Then, Dðr; sÞ ¼ limN!1ðN 0=NÞ. When s? 0
there is not enough time to reach Sp, so the non-dead path
amounts to N00 predicted on the only basis of mass “radioac-
tive” absorption: N00 = N(1 � jbs); consequently N0 = Njbs
and D ¼ jbs, as stated in (49).

We can now relate (as Lifson and Jackson did for prob-
ability W) the probability D at time s, to its value at the
next time t + s. For this purpose we define the function
i(r, t, q), such that, i(r, t, q)dq, is the transition probability
for a particle, to go from point r, in Vp, at time t = 0, to a
volume element dq about another point, q, in Vp, at time t,
without having touched the surface Sp during the time
interval (0, t). This is not the same as t(r, t, q)dq in [16],
because, as our particle now decays in a manner typical
of radioactive decay, i is therefore reduced compared to
its counterpart t without radioactive decay:

i r; s; qð Þ ¼ e�s=sbt r; s; qð Þ: ð50Þ
We may call Lðr; tÞ �

Z
V p

iðr; t; qÞdq the “Life expectancy”

from going to r, at t = 0, to anywhere else in the pore space,
at time t. As a particle must be counted as either deceased
or living, the function i(r, t, q) is normalized in the sense
that,

L r; tð Þ �
Z
V p

i r; t; qð Þdq ¼ 1�D r; tð Þ: ð51Þ

From (51) and (49) we also note that,

lim
s!0

Z
V p

i r; s;qð Þdq ¼ 1� jbsþ . . . ð52Þ

It is now clear that the following integral equation holds:

D r; t þ sð Þ ¼ D r; sð Þ þ
Z
V p

i r; s; qð ÞD q; tð Þdq: ð53Þ

The meaning of the above equation is as follows: If a parti-
cle has reached the surface Sp during the time interval
(0, t + s) or has died in the volume Vp during this time
interval without touching it, then, either it has reached Sp
or died in Vp during the time interval (0, s), or else, it gets
to the point q at time s without touching the surface Sp or
decaying in Vp, and then, reaches from this point the sur-
face Sp or decays in Vp without touching it, in the time
interval (s, s + t)18.

We now recall known results for the successive moments
of the ordinary transition probability t0(r, t, q) in an infi-
nite medium, which will immediately translate into identi-
cal results for the successive moments of i(r, t, q). For
Brownian motion without disintegration in an infinite med-
ium in the presence of a field of force, the particle has an
average velocity at a point, proportional to the force, i.e.,
the following limit exists:

lim
s!0

qi � rih i
s

¼ F i

f
¼ lim

s!0
s�1
Z
V p

qi � rið Þt0 r; s; qð Þdq;

ð54Þ
where f is the hydrodynamic friction coefficient and
t0(r, s, q) the transition probability in the infinite med-
ium. Furthermore, the diffusion coefficient, D = kT/f, is
related to the second moment of the displacement, accord-
ing to,

lim
s!0

qi � rið Þ qj � rj
� �	 

s

¼ 2Ddij; ð55Þ

¼ lim
s!0

s�1
Z
V p

qi � rið Þ qj � rj
� �

t0 r; s; qð Þdq: ð56Þ

To see this we note that the effect of the, force-driven, con-
stant drift velocity Fi/f, which brings in (qi � ri) a term
sFi/f which superposes to a random, non-driven one, will
bring a cross term, s�1(FiFj)s

2/f 2, which does not con-
tribute in the limit s ? 0, and two non-cross-terms, that
disappear by the absence of direction of the random non-
driven motion. Thus, no force-driven effect appears in the
second moment, and the transition probability t0(r, t, q)
can be replaced by the one without force, Gaussian in each
direction, ¼ e�jq�rj

2=2dDt=ð2pdDtÞ, where d is the dimension.
The result then expresses Einstein’s translational Brownian
motion formula, qi � rið Þ qj � rj

� � ¼ 2Dsdij. For all higher
moments it can be checked that,

lim
s!0

s�1 qi � rið Þl qj � rj
� �m

qk � rkð Þn
D E

¼ 0; ð57Þ

¼ lim
s!0

s�1
Z
V p

qi � rið Þl qj � rj
� �m

qk � rkð Þnt0 r; s; qð Þdq;

ð58Þ
18 Recall that in all reasonings we can imagine replacing the
actual Vp, Sp, by the V ðbÞp , SðbÞp , or more precisely, the V ðubÞp , SðubÞp .
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lþ mþ nð Þ > 2: ð59Þ
Now, in view of the fact that the function i(r, t, q) must
approach the ordinary (i.e. infinite medium) transition
probability as s approaches to zero, the moments of
i(r, t, q) must approach the moments of the ordinary tran-
sition probability. We then have, from equations (54), (55),
and (57),

lim
s!0

qi � rih i
s

¼ F i

f
¼ lim

s!0
s�1
Z
V p

qi � rið Þi r; s; qð Þdq; ð60Þ

2Ddij ¼ lim
s!0

s�1
Z
V p

qi � rið Þ qj � rj
� �

i r; s; qð Þdq; ð61Þ

0 ¼ lim
s!0

s�1
Z
V p

qi � rið Þl qj � rj
� �m

qk � rkð Þni r; s; qð Þdq;

lþ mþ nð Þ > 2: ð62Þ
We now use the integral equation for Dðr; tÞ (Eq. (53)), to
derive a partial differential equation. Expanding Dðq; tÞ
about the point r we have

oD r; tð Þ
ot

¼ lim
s!0

s�1 D r; t þ sð Þ �D r; tð Þ½ �; ð63Þ

¼ lim
s!0

s�1
�
�Dðr; tÞ þDðr; sÞ

þ
Z
V p

dqiðr; s; qÞ
�
Dðr; tÞ þ

X
i

ðqi � riÞ oDori

þ 1
2!

X
i;j

qi � rið Þ qj � rj
� � o2D

oriorj
þ 1
3!

X
i;j;k

qi � rið Þ qj � rj
� �

�ðqk � rkÞ o3D
oriorjork

þ . . .

��
: ð64Þ

Utilizing the various limiting properties of i and D pre-
sented in (49), (52), (60), (61), (62), we get a differential
equation for the cumulative probability Dðr; tÞ that a par-
ticle launched at r inVp at t= 0, vanishes before t, either by
touching Sp or decaying in the bulk:

oD
ot
¼ f �1F � rDþ D�D� jbDþ jb: ð65Þ

This interprets as the result obtained for W in Lifson and
Jackson [16] equation (9), modified by the presence of a
term �jbL added in the left-hand side to account for an
additional rate of change coming from the radioactive
disintegration.

Now observe that the equation, Dðr; t þ dtÞ ¼
Dðr; tÞ þ dtoDðr; tÞ=ot; should be interpreted as follows:
If a particle starting from r at t = 0 vanishes during the
time interval (0, t + dt) (either by reaching Sp or decaying

in the bulk Vp), then, either it vanishes during the time
interval (0, t) (by reaching Sp or decaying in the bulk
Vp), or it is still alive at t, and then, during the time interval
(t, t + dt), reaches for the first time Sp or vanishes in the
bulk. This shows that dtoDðr; tÞ=ot is the probability of a
particle to vanish (reach for the first time Sp or vanish in
the bulk) during (t, t + dt), when starting from r at time
t = 0. Therefore, the average survival time for a particle is:

t rð Þ ¼
Z 1

0
t
oD
ot

r; tð Þdt: ð66Þ

From this we finally obtain the following desired differential
equation satisfied by tðrÞ:

1=fð ÞF � rt þ D�t � jbt ¼ �1; in V p; ð67Þ
with boundary condition:

t ¼ 0; on Sp: ð68Þ
When the field F is zero one may directly write the solutions
for a line, cylinder, and sphere. One has, with notation
la � a

ffiffiffiffiffiffiffiffiffiffiffi
jb=D

p
,

One dimensional case: length of line 2L, x 2 [�L, L],

t xð Þ ¼ sb 1� cosh ðlxÞ
cosh ðlLÞ

� �
; ð69Þ

Two-dimensional case: radius of cylinder R, r 2 [0, R],

t rð Þ ¼ sb 1� I0 lrð Þ
I0ðlRÞ

� �
; ð70Þ

Three-dimensional case: radius of sphere R, r 2 [0, R],

t rð Þ ¼ sb 1� lR sinh ðlrÞ
lr sinh ðlRÞ

� �
: ð71Þ

5 Efficient algorithm to compute Kf ðxÞ and
other functions and intervening parameters

With F = 0 we can directly compare the average sur-
vival time problem (67)–(68) with the excess temperature
pattern problem (33)–(34). Examination of both shows that
the following quantities, with the same dimensions, can be
put into correspondence:

t ! 1

�ix b0T 0
q0cP

P
s; ð72Þ

D ! j
q0cP

� m0; ð73Þ

jb � 1
sb
 !� ix: ð74Þ

Therefore, when we have solved the mean survival
time problem, we have solved the thermal problem. For
example we can compute the thermal dynamic permeability
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by, first, writing the relation (e.g. combine (32) with the
correspondence (72)–(74)):

k0 xð Þ ¼ /D th i; ð75Þ
and next, substituting in the calculations that are made to
evaluate the product Dhti, the values D = m0 and jb = �ix
of the coefficients D and jb.

Likewise, we can compute the bulk modulus Kf(x) by,
first, writing the relation (e.g. combine (43) with (75) and
the correspondence (72)–(74)):

K�1f xð Þ ¼ K�1a c� c� 1ð Þjb th i½ �; ð76Þ

and next, substituting the above values of D and jb in the
expressions obtained for the product jbhti. In fact, it
means that in the Laplace-variable representation of the
kernel Kf(t) of the bulk modulus operator K̂ f , (45)

19, we
simply have, KL

f

� ��1
ðsÞ ¼ K�1a c� ðc� 1Þjbhti½ �, with this

time, D = m0 and jb = s: The problem of mean survival
time, most naturally translates in the description of ther-
mal response factors expressed in Laplace representation.

Having established the connection between the mean
survival time problem and the thermal problem, let us
now focus on the former and show, how a simple geometric
construction of the Brownian random motion path consid-
ered in Torquato and Kim [13], see Figure 1, leads us to a
simple geometric algorithm to calculate the mean survival
time t and its average hti over position or over configuration
(see in Appendix A, the respective viewpoints of Lorentz
and Gibbs).

For the sake of simplicity of Figure 1 and the discussion
here we take our material to be an air-saturated array of
parallel fibers with identical radii. Thus only the simulation
of diffusion reactions in a medium with static identical
circular cylindrical traps in 2D needs to be performed; the
generalization to arbitrary microgeometries and 3D is obvi-
ous and poses no difficulty in principle. The algorithm to
calculate the mean survival time tðrÞ of random walkers
released in one configuration at a given place, or to calculate
its average hti either viewed as a volume average (in a given
configuration) when walkers are released at any place with
equal probability (Lorentz viewpoint), or as an ensemble
average when they are released at the same position but
the configuration is varied appropriately (Gibbs viewpoint),
is now described.

Let r1 be one arbitrary initial position of the random
walker. As observed by Zheng and Chiew [40] and Torquato

and Kim [13] the zig-zag motion of the random walker need
not be simulated step by step. Instead, one constructs the
largest concentric circle/sphere of radius R1 which does
not overlap any solid trap. As the random motion estab-
lishes no preference on the directions, the next position r1
of the walker is chosen at random on this circle/sphere. In
this way, Brownian motion paths, r1, r2, ..., rn, are gener-
ated (see Fig. 1), which can be stopped when rn is within
� of a solid trap (Rn < �), with � taken small enough to
ensure that in the problem at hand, the truncation results
in insignificant errors.

We nowmake the necessary modifications to the scheme
utilized by the above authors to account for the “radioactive
decay” of our random walkers. (These authors utilized the
Brownian motion path construction to compute the trap-
ping constant, which is the inverse of the static thermal
permeability, whereas we will use it to compute the
dynamic thermal permeability or even more directly, the
associated relaxation function, Eq. (90)).

Consider diffusion in one of the circular 2D regions of
radius Ri defined in the above construction. With R the
radius of one such region, we define a hitting probability
p(R) that a random walker initially at the center, survives
until reaching the boundary. We will start by evaluating
this probability, which is unity in the absence of “radioac-
tive decay” (the diffusing walker goes to infinity in an
unbounded medium), and smaller than 1 if it exists (not
all walkers survive to reach the boundary).

For a random walker starting at the origin O of
the region, there are two types of outcomes to the
random walk with decay, see Figure 2: (i) the decay does
not occur before reaching the boundary of radius R, the
associated probability is that we want to determine, p(R),
and we know that the corresponding mean time (tðsÞR , s for

Figure 1. Schematic representation of the construction of
Brownian motion paths r1, r2, . . ., rn with succession of
characteristic radii [R1, R2, . . ., Rn].

19 By definition the Laplace variable representation is,

Kf ðt; xÞ ¼
Z cþi:1

c�i:1

ds
2pi

estKL
f ðs; xÞ, KL

f ðs; xÞ ¼
Z 1
0

Kf ðt; xÞe�stdt,

whereas the Fourier representation is, Kf ðt; xÞ ¼Z þ1
�1

dx
2p

Kf ðx; xÞe�ixt, Kf ðx; xÞ ¼
Z 1
�1

Kf ðt; xÞeixtdt; note that

in the text here, to lighten the notation we do not make apparent
the possible dependence on x, e.g. k0ðx; xÞ ¼ /ðxÞDhtiðxÞ, that
would correspond to interpreting the Vp, Sp, in Section 4, as the
V ðubÞp ðxÞ, SðubÞp ðxÞ, in Section 3.
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surface), to reach R, will be given by the inverse of
Einstein’s relation, i.e.20,

t sð Þ
R ¼

R2

4D
; 2Dð Þ; t sð Þ

R ¼
R2

6D
; 3Dð Þ; ð77Þ

(ii) the decay occurs before radius R is reached, the asso-
ciated probability is 1 � p(R) and we assume that these
aborted random walks are performed in an average time
tðbÞR (b for bulk). Note that tðbÞ1 is the average survival time
sb of the walker in the infinite medium.

Let tR be the mean survival time of the random walker
starting at the origin, when the latter is instantly absorbed
at the radius R, and subject to the radioactive decay in the
bulk. We had it determined in Section 4 by equation (70)
(at r = 0) in 2D and by equation (71) (at r = 0) in 3D:

tR ¼ sb 1� 1
I0 lRð Þ

� �
; 2Dð Þ; tR ¼ sb 1� lR

sinhðlRÞ
� �

; 3Dð Þ:

ð78Þ
The above two types of outcomes allow us to write it, also,
in the following form:

tR ¼ 1� p Rð Þ½ �t bð Þ
R þ p Rð Þt sð Þ

R : ð79Þ
To get another relationship between the same two, but yet
unknown quantities, p(R) and tðbÞR , let us now imagine that
the boundary at radius R is fictitious and drawn in an infi-
nite medium. Let us again follow the particles released in
the center O. We know that on average they live the time
sb. A proportion 1 � p(R) of them do not reach radius R
and live the average time tðbÞR . The remaining proportion
p(R) reach R and then will later disappear at some instant.
The latter particles therefore live first the average time tðsÞR

to reach R, and then take the additional average time sb
to disappear. Thus, we have the obvious relation,

sb ¼ 1� p Rð Þ½ �t bð Þ
R þ p Rð Þ t sð Þ

R þ sb
h i

: ð80Þ

Combined with the preceding, it reads, sb ¼ tR þ pðRÞsb
(irrespective of the dimension 2 or 3), that is:

tR ¼ sb 1� p Rð Þ½ �: ð81Þ
Inserting in (81) the mean survival time expressions (78) we
therefore find for the hitting probability p(R) the following
expressions in the 2D and 3D cases:

p Rð Þ ¼ 1
I0 lRð Þ

; 2Dð Þ; p Rð Þ ¼ lR

sinhðlRÞ
; 3Dð Þ;

lR � R

ffiffiffiffiffi
jb

D

r
:

ð82Þ

Having determined the probability p(R) (for having sur-
vived till crossing for the first time the radius r = R, after
having started at the center r = 0) and on the other hand
the mean time tR (for crossing for the first time the radius
r = R or decaying before touching it, after having started
at r = 0) we now can write the following simple expression:

t r1; r2; . . . ; rnð Þ ¼ tR1 þ p R1ð ÞtR2 þ p R1ð Þp R2ð ÞtR3 þ . . .

. . .þ pðR1Þ . . . pðRn�1ÞtRn ;

ð83Þ
for the mean time for trapping, associated with the path
construction, r1, r2, . . ., rn, with Ri = |ri+1 � ri|.
Trapping means here, spontaneously decaying in bulk,
or else, instantly decaying by reaching the solid or repre-
sentative end point of the construction, after having
started at r1 at t = 0. Finally, by inserting in (83) the
expression (81) of times tRi , a systematic two by two
cancellation of all intermediate terms occurs, leaving only
the two ends, and giving a result in simpler form:

t r1; r2; . . . ; rnð Þ ¼ sb 1� p R1ð Þp R2ð Þ . . . p Rnð Þ½ �: ð84Þ

Figure 2. Possible outcomes of the random walk with disintegration, associated probabilities and survival times.

20 Einstein’s relation gives the average of the square of the
displacement associated with a given diffusion time. The inverse
relation gives the average of the diffusion time required to reach
a given displacement for the first time. That it has the inverse
form of Einstein’s relation was demonstrated by Fürth (1917),
see Klein [60].
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The exact result without truncation will be with
Q1

i¼1pðRiÞ,
for the probability product.

In a given realization of the medium, the final mean sur-
vival time tr1 at position r1, will be obtained by repeating
the path constructions and taking the average of the above
mean trapping times, over all these constructions:

tr1 ¼ lim
N!1

P
t r1; r2; . . . ; rnð Þ

N
: ð85Þ

The sum corresponds to the systematic repetition of the
constructions and N is the number of times the construc-
tions are repeated. The r2, . . ., rn including the final index
value n vary from one construction to another. Likewise in
the vectors [R1, R2, . . ., Rn] specifying one construction,
only the first value R1 repeats itself, all the others,
R2, . . ., Rn, vary, including the vector dimension n if � is
fixed. The exact result without any truncation would be,
where the overline on the right is the average over an infi-
nite set of constructions:

tr1 ¼ sb 1�
Y1
i¼1

p Rið Þ
" #

: ð86Þ

The microscopic excess temperature field at position r1,

s r1ð Þ ¼ �ix b0T 0=q0cPð ÞPtr1 ; ð87Þ
(see Eq. (72)), will be directly obtained geometrically from
the construction of N ? 1 vectors [R1, R2, . . ., Rn] by
applying (84) and (85), and using the expression (82) of
the hitting probability p(R). This determination will cor-
respond to launching N random walkers at r1 and making
the N different constructions for the given same sample of
material. In the limit N ? 1 the mean survival time or
equivalently the microscopic field s at this position is
determined.

To determine the dynamic thermal permeability we
only need to have a macroscopic average hsi(x). To have
it we can for example proceed as follows.

First consider Lorentz’s conception of the average. We
work with one sample of the material and must consider
the result of an average in a representative volume. To cal-
culate this volume average hsi(x), where x is the cental
position of the representative volume, we can randomly
select an initial position r1, accept it and increment the
number of trials N if it lies in the fluid part of this volume,
then perform the construction, [R1, R2, . . ., Rn], apply our
formula (84), and take the average on repetition of this pro-
cess. Convergence towards the sought macroscopic average
will automatically occur as the number N of initial positions
r1 increases, without pre-determination of the microscopic
field. Of course, as the number of walkers increases and
the result converges (in 1=

ffiffiffiffi
N
p

), the microscopic field is also
automatically extracted at any point with increasing accu-
racy; but this is an output, not an input, in the averaging
process.

With a Gibbs’ conception of the average, the initial posi-
tion x is fixed and we can randomly select, each time, a new
configuration of the traps. We accept it and increment the

number of trials N if x lies in the fluid, each time giving rise
to one single new construction [R1, R2, . . ., Rn]. The sought
average is given by the same formula (84), averaged by
repeating the process. Convergence will automatically occur
as N increases indefinitely, without any pre-determination
in any configuration, of the microscopic field. In both these
Lorentz and Gibbs cases, as we are dealing with stochastic
processes, we know that the convergence will be slow, in
1=

ffiffiffiffi
N
p

, with N the used number of constructions. Before
moving on to validation and method examples, it is useful
now to restate, further detail, and summarize our findings.

Let us return to the macroscopic average mean life time
of diffusing radioactive species that are directly absorbed in
the pore wall. We can consider it in the Lorentz conception
when it is calculated in a single sample by means of con-
structions derived from random points of a representative
fluid volume, or in the Gibbs conception when the point
of origin is invariable and the construction each time is
carried out in a new configuration including certain random
variations. (Also, mixed conceptions that make partial use
of both ways of averaging are possible). By indicating
symbolically in all cases, with an overline (which must be
interpreted appropriately), the exact way in which the
average is performed, one can always designate the mean
survival time in question t as used in equation (86)21:

t ¼ sb 1�
Y1
i¼1

p Rið Þ
" #

: ð88Þ

The important thing is that whatever conception is consid-
ered, for the overline it will correspond to a certain vision of
the macroscopic medium and a definite procedure to gener-
ate the construction [R1, R2, . . ., Rn,. . .] and calculate the
average

Q1
i¼1pðRiÞ.

Now recall the correspondence (75)–(77). There follows
immediately from it and the equations (91) and (78) that
the dynamic thermal permeability is given by:

k0 xð Þ ¼ m0/
�ix 1�

Y1
i¼1

p Rið Þ
" #

: ð89Þ

In general, whatever the geometry tortuous or not,
the high-frequency limit a

0
1 of a0(x) is automatically equal

to 1. It is customary to express the dynamic thermal tortu-
osity a0(x) in terms of its high-frequency limit, 1, and a vis-
cous relaxation-function, v0(x), taking a value of 1 when the
thermal effects are in relaxed state (isothermal motions
originating from the pore walls having time to fully pene-
trate the fluid during the cycle time), and a value of 0 when
they are in frozen state (isothermal motions having no time
to penetrate the fluid during the cycle time):

1
a0 xð Þ ¼ 1� v0 xð Þ: ð90Þ

21 Note that if the material is inhomogeneous, there is a
dependence on x which comes from the fact that the whole
collection of vectors [R1, R2, . . ., Rn, . . .] will be dependent on x.
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A comparison of this definition (90) with (89) and (37),
immediately shows us that the averaged infinite product,Q1

i¼1pðRiÞ, is nothing but this thermal relaxation function:

v0 xð Þ ¼
Y1
i¼1

p Rið Þ: ð91Þ

Once the relaxation function is conveniently directly deter-
mined through the average (91), the other thermal func-
tions derive immediately. The effective bulk modulus, in
particular, is given by

K�1f xð Þ ¼ K�1a 1þ c� 1ð Þv0 xð Þ½ �: ð92Þ

In the low frequency limit, it is a known result [9, 41], that
a0(x) can be expanded in the following Laurent series:

a0 xð Þ ¼ m0/
�ixk00

þ a00 þ a021
ixk00
m0/
þ a032

ixk00
m0/

 �2

þ . . . ; ð93Þ

where k
0
0 is the static thermal permeability or inverse trap-

ping constant, a
0
0 is the static thermal tortuosity, and a

0
1,

a
0
2, etc., are some higher order purely geometrical dimen-

sionless parameters. Comparing this expansion with the
expansions that follow from using equations (91) and
(82) with lR ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ix=m0p
, as given by (73) and (74),

and the known small argument expansion of the function
I0 or sinh, it is easy to derive explicit geometric expres-
sions for the above geometric parameters. For example
in 2D, we find for k

0
0 and a

0
0 the following purely geometric

expressions:

k00=/ ¼
1
4

X1
i¼1

R2
i ; ð94Þ

and,

k00
2a00
/2 ¼

3
64

X1
i¼1

R4
i þ

1
16

X1
i¼1

X1
j¼i

R2
i R

2
j : ð95Þ

We let the reader derive higher-order expressions for higher-
order geometric parameters.

With respect to the high-frequency limit, we know that
we have an expansion in terms of successive powers of the
small thermal skin depth (as long as the pore walls are
smooth and are therefore considered as locally flat surfaces
at the boundary layer level) [42],

v0 xð Þ ¼ m0

�ix
 �1=2 2

K0
þ m0

�ix
1
R0
þ m0

�ix
 �3=2 1

4V 0
þ . . . ;

ð96Þ
with thermal characteristic length K0, given by, 2/K0 =
Sp/Vp, where Sp and Vp are pore wall surface and pore vol-
ume. (The numerical factors have been chosen so that for
cylindrical circular pores of radius R, one finds, K0 = R,
R0 = R2 and V0 = R3). To our knowledge there are
no known general expressions for the higher order
parameters, R0, V0, etc., which have surface, volume,

etc., dimensions. In this limit the expression (91) cannot
be expanded because for the first large radii in the product
we are in the large argument limit, but for the last very
small ones near the pore wall we are in the small argu-
ment limit. Nevertheless, given the HF data of the func-
tion v0(x) calculated using (91), we will have the means
to estimate, sequentially, the values of the high frequency
parameters, considering the x ? 1 limits, e.g. for K0, R0

and V0:

2
K0
¼ lim

x!1
�ix
m0

 �1=2Y1
i¼1

p Rið Þ; ð97Þ

1
R0
¼ lim

x!1
�ix
m0

Y1
i¼1

p Rið Þ � m0

�ix
 �1=2 2

K0

" #
; ð98Þ

and,

1
4V 0
¼ lim

x!1
�ix
m0

 �3=2 Y1
i¼1

p Rið Þ � m0

�ix
 �1=2 2

K0
� m0

�ix
1
R0

" #
;

ð99Þ
etc., where the frequency-dependent complete expressions
of the p(Ri) are left. Provided the statistics is sufficient to
accurately estimate the averaged infinite productQ1

i¼1pðRiÞ the above high-frequency parameters, K0, R0,
V0, etc., will be directly computable by the simulations
from estimation of the above recursive limits.

6 Validation and examples of computation

We can now first validate our algorithm (Sect. 5) by
considering a simple case where we have a known analytical
solution within the Biot framework of the simplifications
made. In particular, and for the special case where the
material has air-filled pores aligned in identical cylinders,
we can choose a situation where the cross-section has a very
simple shape such as a slit, a disk, or equilateral triangle, so
that we can figure out the analytical formula. To fix our
ideas, consider an aligned cylindrical circular pore of radius
R. For long wavelength sound propagation along the z-axis
of the tube, and coherent with the incompressible simplifi-
cation in Biot theory, the complete set of viscothermal
differential equations governing fluid motion in a single
tube, that normally is expressed in Kirchhoff’s theory [43]
and leads to an exact22 non-local macroscopic description
[44], can be simplified in a local theory in the manner done
by Zwikker and Kosten [45], which is reexpressed below.
Based on the simplification of the typical fluid incompress-
ibility inherent in Biot theory, everything happens as if the
following simplified governing equations can be combined:

22 Note that as an exact non-local description it is not limited to
long-wavelength, see [44]. In complex materials susceptible to be
treated in statistical sense with a Gibbs statistical averaging, an
exact statistical non-local description could also appear in
principle that would not be limited to long-wavelengths, see in
this connection [8, 9, 61].
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(i) equations determining the velocity pattern v(x, y) =
v(r):

q0
@v
@t
¼ � @P

@z
þ g

@2

@x2
þ @2

@y2

 �
v; cross-sectionð Þ; ð100Þ

v ¼ 0; pore-wallð Þ; ð101Þ
where oP/oz is a given constant over the cross-section,

(ii) equations determining the excess temperature pat-
tern s(x, y) = s(r):

q0cP
@s
@t
¼ b0T 0

@P
@t
þ jð @

2

@x2
þ @2

@y2
Þs; cross-sectionð Þ; ð102Þ

s ¼ 0; pore-wallð Þ; ð103Þ
where b0T0oP/ot is again a spatial constant over the
cross-section, which will be combined with the following
additional relations:

(iii) equation of continuity:

@b
@t
þ @v

@z
¼ 1

q0

@q0

@t
þ @v

@z
¼ 0; cross-sectionð Þ; ð104Þ

and,

(iv) thermodynamic equation of state:

cv0P ¼ bþ b0s; cross-sectionð Þ: ð105Þ
In harmonic regime e�ixt the solution fields v(r) and s(r) are
of the following form:

v ¼ m
�ix � oP

goz

� �
1�

I0
ffiffiffiffiffiffi
�ix
m

q
r

� �
I0ð

ffiffiffiffiffiffi
�ix
m

q
R
Þ

2
64

3
75;

s ¼ m0

�ix b0T 0
oP
jot

� �
1�

I0
ffiffiffiffiffiffi
�ix
m0

q
r

� �
I0ð

ffiffiffiffiffiffi
�ix
m0

q
RÞ

2
64

3
75: ð106Þ

For the case of other cross-sectional shapes of cylindrical
tubes, the same differential equations and boundary condi-
tions will apply, but must be solved taking into account the
particular shape of the geometry. With h i denoting the
average at the cross-section of the tube, we can define
macroscopic variables such as average axial velocity hvi,
average excess temperature hsi, average over-density hq0i,
or average condensation B = hbi = hq0i/q0.

Therefore, comparing the above simplified governing
equations (possibly written in the general cylindrical case)
with those discussed in Section 3, we see that in the har-
monic regime we have, at the macroscopic, averaged level,
a viscous, dynamic Darcy law, stating that:

vh i ¼ � k xð Þ
g

oP
oz

; ð107Þ

where k(x) can be directly computed by using this defini-
tion and the average at the cross-section, of the harmonic
regime solution v(x, y). For the cylindrical circular tube, v
(x, y) = v(r) which is given by (106), and a straightfor-
ward integration shows that:

k xð Þ ¼ m
�ix 1� 2

I1
ffiffiffiffiffiffi
�ix
m

q
R

� �
ffiffiffiffiffiffi
�ix
m

q
R

� �
I0

ffiffiffiffiffiffi
�ix
m

q
R

� �
2
64

3
75: ð108Þ

The bracket is just the inverse dynamic viscous tortuosity
function 1/a(x). In general, when the geometry is not triv-
ial like here in cylindrical tubes, but tortuous, it is conve-
nient to express the dynamic viscous tortuosity in terms
of its high-frequency nontrivial limit, a1, and a viscous
relaxation-function, v(x), taking a value of 1 when the vis-
cous effects are in relaxed state (vortical motions originat-
ing from the pore walls having time to fully penetrate the
fluid during the cycle time), and a value of 0 when they
are in frozen state (vortical motions having no time to pen-
etrate the fluid during the cycle time):

1
a xð Þ ¼

1
a1

1� v xð Þ½ �: ð109Þ

For all cylindrical tubes (whatever the form of the perimeter
including fractal) a1 is trivially equal to 1. Here, for cylin-
drical circular tubes of fixed radius, we see, comparing (108)
and (109), that the complex expression in the brackets
(108) is just the above relaxation-function v(x) for this
cylindrical circular case.

In the same way, the comparison of the above simplified
governing equations with those of Section 3, also leads us to
the analogous thermal and dynamic “Darcy” law, which
states that:

sh i ¼ k0 xð Þ
j

b0T 0
oP
ot

; ð110Þ

where k0(x) can be directly computed by using this defini-
tion and the average at the cross-section, of the harmonic
regime solution s(x, y). For cylindrical circular tubes of
fixed radius R, s(x, y) = s(r) is given by (106), and the
integration shows that:

k0 xð Þ ¼ m0

�ix 1� 2
I1

ffiffiffiffiffiffi
�ix
m0

q
R

� �
ffiffiffiffiffiffi
�ix
m0

q
R

� �
I0

ffiffiffiffiffiffi
�ix
m0

q
R

� �
2
64

3
75: ð111Þ

The bracket is just the inverse of the so-called dynamic
thermal tortuosity function 1/a0(x), for this cylindrical cir-
cular case. Comparing (111) and (90) we see that the com-
plex expression in the brackets (111) is just the thermal
relaxation function for the case of cylindrical circular tubes
of radius R:

v0circ xð Þ ¼ 2
I1

ffiffiffiffiffiffi
�ix
m0

q
R

� �
ffiffiffiffiffiffi
�ix
m0

q
R

� �
I0

ffiffiffiffiffiffi
�ix
m0

q
R

� � : ð112Þ
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Note that for the special geometry of aligned cylindrical
tubes having any type of cross-section, the viscous and
thermal problems are essentially the same and the fre-
quency-dependences make appear essentially one and the
same function. In this case, viscous and thermal functions
are directly transformed in one another by the scaling rela-
tions illustrated in the above example, namely, v0(x) =
v(xPr), or, k(x) = k0(x/Pr), or a(x) = a0(x/Pr), where
Pr � m/m0 � gcP/j is the Prandtl number. In arbitrary
geometries, on the contrary, there is no general relationship
between the viscous and thermal response functions.

Recalling the general identification (91) of the thermal
relaxation function, we see that, to validate our simulation
technique in the case of a cylindrical circular tube, we only
need to check the following. When we randomly launch the
initial position of a random walker inside a disk of radius R,
then construct and average the probability product over a
large number of trials, it should be observed that:

Y1
i¼1

p Rið Þ ¼ v0circ xð Þ: ð113Þ

In Figure 3 we present an Argand plot of this relaxation
function, as given by the theoretical closed form solution
(112), and as estimated with N = 105 walkers by our ran-
dom motion simulation technique. For our programming
in Matlab here, Lorentz volume averaging was used, where
the position of the circular section is considered fixed, while
the initial position of the walker is uniformly random within
it. The consecutive absolute positions ri are dummy except
for their differences, that define the construction steps Ri =
|ri+1 � ri|. To ensure uniform filling of the section required
for volume averaging, it is sufficient to define the first radius
R1 directly by line code, R(:, 1) = R0*(1 � sqrt(rand
(N, 1))), where N is the number of constructs and R0 is
the pore radius. Constructions reach the limit (pore-wall
at radius R0) relatively quickly, most often no more than
thirty steps. By systematically taking 100 steps in one con-
struction (without testing the final radius) we are almost
sure of the success of the operation, rendering the matlab
programming trivial. Obviously the conception of Gibbs
averaging can be used equivalently, systematically start-
ing the path construction at the coordinate origin and

Figure 3. Relaxation Function of cylindrical circular tubes: Theory, Random motion simulation with N = 105 walkers, and
Modeling.
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randomly distributing the distance L of the disk region
center to the origin, with suitable probability ditribution,
namely, L(:, 1) = R0*sqrt(rand(N, 1)), which reproduces
the previous uniform filling. It corresponds to making all
purely random translations of the section that let the origin
lie inside the section.

All calculations were performed for 51 reduced frequen-
cies23, spanning the low, intermediate, and high frequencies.
Asmentioned, a convergence in 1=

ffiffiffiffi
N
p

is slow.WithN= 105

walkers as in Figure 2, the eye can see without difficulty,
that, in the transition region, some of the red circle dots indi-
cating the Brownian motion simulation are still not fully

centered on the black crosses indicating the theoretical val-
ues. WithN= 107 walkers not shown, the eye no longer per-
ceives the differences. Indeed, with N = 107 walkers, the
equations (93) and (95) were found to give respectively
the value, 0.1249996R2, for the parameter k00 ¼ k0, whose
theoretical value is, R2/8 = 0.125R2, and the value,
1.3336, for the parameter a00 ¼ a0, whose theoretical value
is, 4/3 = 1.33333. . ..

Also plotted in the Figure 3, are the values (for the pre-
sent case) of the following two general models applicable in
arbitrary geometries.

Model 1, was derived by Lafarge [4, 18], in clarification
of previous work by Allard and Champoux [20]. It is the
thermal pure counterpart of Johnson et al. general model
[28] of the viscous dynamic tortuosity-permeability. For
the effective bulk modulus it reads:

Figure 4. Real part of Kf(x) versus Reduced frequency X = xR2/8m0: Theory, Random motion simulation, and Modeling.

23 Note that a single ensemble of construct Ri can be loaded,
that will allow the determination of as many frequencies as we
wish, without changing it, which is a significant advantage
compared to meshing methods.
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Ka

Kf xð Þ ¼ c� c� 1ð Þ 1þ m0/
�ixk00

1� 4ixk020
m0K0

2
/2

 !1=2
2
4

3
5
�1

:

ð114Þ
The thermal permeability k00 and thermal characteristic
length K0 are independent parameters. However, the follow-
ing dimensionless ratio

M 0 ¼ 8k00
/K0

2 ; ð115Þ

is generally found to depart from unity by less than one
order of magnitude. For the circular tubes here, M is
exactly equal to 1, as it is known results that,
k 00 ¼ R2=8/, and, K0 = R. The expression (114) simplifies

and happens to coincide with the so-called Allard-Cham-
poux simpler model [20]:

Ka

Kf xð Þ ¼ c� c� 1ð Þ 1þ 8m0

�ixK02
1� ixK0

2

16m0

 !1=2
2
4

3
5
�1

:

ð116Þ
Thus here, Model 1 is not different from the usual
widely used Allard-Champoux model that considers the
approximation, k00 ¼ /K0

2
=8. Making apparent the ratio

M0 in (114) it can be seen that the magnitude of k00, or
K0

2, determines a rollover frequency where a transi-
tion occurs between low- and high-frequencies. The
shape of this transition is affected by the value of the “form
factor” M0.

Figure 5. Imaginary part of Kf(x) versus Reduced frequency X = xR2/8m0: Theory, Random motion simulation, and Modeling.
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Model 2, is a refined model, also derived by Lafarge
[9, 18] in clarification of previous work by Pride et al.
[46]. It essentially gives an improved definition of the shape
of the transition frequency region, by adding the informa-
tion provided by the thermal static tortuosity parameter
a00, which determines an additional form factor,

m0 ¼ M 0

4 a00 � 1ð Þ : ð117Þ

The refined model replaces the square root in (114) by the
expression:

1� m0 þ m0 1þ M 0

2m02
�ix
m0

k00
/

 �1=2

: ð118Þ

In doing so it is capable to retrieve the exact two first terms
in (93). For an understanding of these models we refer to
[4, 18, 28, 42], and more recently [9] (Appendix).

As we can see, Model 2 performs better than Model 1,
however, small discrepancies subsist. The discrepancies
are magnified in the Argand Plot representation, which
particularly emphasizes the transition region. A direct
look at the quantity of interest, the effective dynamic
apparent modulus as a function of frequency, is given in
Figures 4 and 5 where we plot the real and imaginary parts
of the normalized bulk modulus versus reduced frequency
X ¼ xK0

2
=8m0. (This choice of the reduced frequency is

because of the next illustration, see below). On these figures
the number of walkers is N = 107 and the Brownian motion

simulation cannot be distinguished from the theoretical
values.

What we can conclude from these figures and the
numerical findings on k00 and a00 is that the Brownian
motion method is validated. When the number of random
walkers is not too high, it is possible to have very fast but
not very precise estimates. The results presented above
are prepared for the cylindrical circular pores, which is a
very simple shape. One could check similarly that for other
or more complex shapes for which we have the analytical
solution, such as slit-like pores or triangular equilateral
pores, a similar perfect matching is also found between
the simulations and the analytical formulae.

We now further illustrate the proposed algorithm
by calculating the dynamic bulk modulus of air in two dif-
ferent 2D arrays of fibers surrounded by air (see Fig. 6): a
regular square array and a “random” array, both at porosity
/ = 0.97. We put random into quotes because the fibers
positions were not completely random as the fibers were
impenetrable. As illustrated on the Figure 6, we based
our random geometry on a 21 L � 21 L square region in
which 441 fibers of radius R0 ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� /Þ=pp
were

accomodated.
The 441 fibers were successively randomly introduced in

the region (right part, “Random” array). When a fiber
overlapped a preceding one, or when it overlapped the
origin of the walkers random motion (central position of
the region, and origin of the construction of the ray suite,
[R1, R2, . . ., Rn, . . .] as sketched in Fig. 6), the position

Figure 6. The two different, regular and “random”, arrangements of cylinders. There are 21 � 21 = 441 fibers in our representative
cell. Each walker is released at the origin, where no fiber is present, and sees a new configuration – see the text for detail. N = 107 trials
have been taken.
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was rejected. A new random position was selected, and so
on. In the regular case (square array), to save time, we
adapt the same general programming scheme, using 441
regularly spaced fibers but performing Gibbs random
positioning of the whole square configuration (not shown),
only avoiding overlap of the same central origin with
the displaced central fiber (which remains in the central
L � L square). In this manner the programming for the
regular configuration was adapted in trivial manner from
that done for the random configuration.

In both geometries the paths [0, r2, . . ., rn, . . .] were
found to never go outside the 21 L � 21 L region, with

typical drift, before reaching the pore walls, observed to
be on the order of L. Very rarely, a drift as large as 8 L
was observed in the random geometry. Note that the
drift values give an idea of the representative cell dimen-
sions of the material’s microstructure. Note also that, by
eliminating the overlap between fibers, we automatically
ensure that the porosity / and the thermal characteristic
length K0 in both geometries, random and regular, are the
same (for instance K0 is here automatically R//(1 � /)).
Thus, using the reduced frequency, X ¼ xK

0 2
=8m

0
, we

know that we should get the exact same frequency depen-
dence for both geometries in the HF asymptotic limit.

Figure 7. Real part of the normalized bulk modulus Kf(x)/Ka versus reduced frequency X ¼ xK
0 2
=8m

0
for the two different regular

and “random” arrangements of cylinders. Brownian motion method is applied here with N = 107 walkers, both for the computation of
RKf ðxÞ, and the estimation of parameters k

0
0=/ and a

0
0 to plot the Model 1 and Model 2.
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All calculations are done for the same 51 reduced frequen-
cies as before.

It will be shown in this illustration that the irregular
position of the fibers in real glass wool has a direct influ-
ence on the thermal relaxation of the effective bulk
modulus, i.e. the way of moving from a relaxed isothermal
state to a frozen adiabatic state. Note that due to the
large density of glass compared to air, a porosity as high
as / = 0.97 is still a safe value to ensure that the fibers
essentially remain at ambient temperature, justifying the
assumed boundary conditions (28). The real part of the
dynamic bulk modulus for the regular and “random”

settings at porosity / = 0.97 is plotted in Figure 7 versus
the reduced frequency. The corresponding imaginary part
is plotted in Figure 8. The predictions of Model 1 and
Model 2 are also indicated, using as input parameters for
k00 and a00 the values inferred from the random walk
algorithm, that were calculated beforehand with the same
number of trials, N = 107, using (94) and (95).

We note that we have at our disposal prior determina-
tions of the parameters k00 and a0, in Cortis’ PhD thesis
[47], for the regular square setting at porosity / = 0.97.
They were made by using FreeFM finite elements. Here,
with N = 107 random walkers and by systematically taking

Figure 8. Imaginary part of the normalized bulk modulus Kf(x)/Ka versus reduced frequency X ¼ xK
0 2
=8m

0
for the two different

regular and “random” arrangements of cylinders. Brownian motion method is applied here with N = 107 walkers, both for the
computation of IKf ðxÞ, and the estimation of parameters k

0
0=/ and a

0
0 to plot the Model 1 and Model 2.
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150 steps for one construction (rare events were observed
where the previous value of 100 steps was insufficient to
reach the boundary), our values are, k00=/ ¼ 0:17141L2

and a00 ¼ 1:0660. Those of Cortis were, k00=/ ¼ 0:17144L2

and a00 ¼ 1:0654. The differences concern digits that are
not significant within the given FreeFM finite elements
calculations.

In the random case the value of the static thermal per-
mability is found to be approximately two times (1.87) that
of the regular arrangement (namely 0.3197 L2 versus
0.1714 L2). Thus the transition frequency is shifted to lower
frequencies. The transition is steeper in the regular case, cor-
responding to a geometry where microscopic scales are less
distributed than in the random case. This effect is clearly
better described by an enhanced model where a second form
factor (117) allows accounting for the broadening of the
transition. Indeed, it can be noted that the value of the ther-
mal tortuosity a00 which is ameasure of disorder (we have the
known formula [18] and Appendix in [9], a00 ¼ hs20ip=hs0i2p,
where s0 is the relaxed excess-temperature pattern),
increases significantly in the random case (1.3833 versus
1.0660), leading to a rather small value of the shape factor
m0 (0.1671 versus 0.5205). This is why model 1, which
assumes m0 = 1, is significantly less precise in the random
case. Model 2 is also less precise, but to a much lesser extent.
The introduction of the low-frequency information a00 leads
to an improvement of the description of the relaxation tran-
sition. Clearly, the proposed random walk method provides
an efficient way to numerically calculate quasi-exactly the
dynamic bulk modulus in a given geometry. Model 2 was
found to be very close to the exact result.

7 Conclusion

A very simple simulation technique utilizing the known
properties of Brownian motion with radioactive decay has
been proposed to estimate, within the framework of Biot
theory, the dynamic bulk modulus of a gas filling a porous
medium. This technique has been validated on the simplest
case of a cylindrical circular tube, and shown to provide a
convenient way to calculate thermal relaxation in arbitrary
geometries. The case of regular and random parallel fiber
arrangement is considered because it corresponds to two
extreme cases of glass wool microgeometry. The results of
the quasi exact Brownian motion determination of the
relaxation pattern of the function Kf(x) highlight a simple
relaxation function model ([9], Appendix) in terms of the
following three pore space geometric parameters: static
thermal permeability k00 divided by porosity /, thermal
tortuosity a00, and thermal characteristic length K0. They
show how the fiber arrangement is reflected on the shape
of the relaxation transition.

The proposed simulation technique can provide useful
clues on questions relative to the notion of macroscopic
averaging. It is easy to implement and can be directly
applied to all problems related to diffusion-controlled reac-
tions between sinks, where the diffusing species are added

in volume by using a spatially uniform, arbitrarily time-
variable, source.

In upcoming work, we will demonstrate the performance
of this mesh-free method by quickly determining the ther-
mal functions in pores with fractal boundaries. In this case,
the high-frequency limit (96) is no longer valid because the
surface of the pore walls is not smooth, and a revision of
the relaxation function model will be necessary. Whereas
the present model corresponds to a special Curie-von-
Schweidler law with exponent 1/2 (see Appendix in [9]),
the revised model will correspond to a general Curie-von-
Schweidler law with exponent that will depend on the frac-
tal dimension of the pore walls.

In conclusion, we note that given the very general con-
siderations in the original seminal work of Pontrjagin et al.
[17], on which this paper is based, and the analogy we have
presented between the thermal and viscous/inertial dynam-
ical problems, there might be a question of generalizing the
method to viscous/inertial dynamic problems, which, by
combining an ideal nonviscous divergence-free flow motion
with a Brownian motion with disintegration, would be able
to describe the viscous/inertial relaxation. This could be an
advance in solving the incompressible dynamic linearized
Stokes equations.
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Appendix A
Additional comments on incompressibility, pressure,
mean pressure, and averages

As we are concerned here only with rigid-framed mate-
rials and motion in the air, we introduce a macroscopic
averaging operation h i(x) in the air, as a total–volume

coarse graining average, h�iðxÞ ¼ 1
V

Z
V p

� dV p, given by

the local air–phase integral of the considered quantities,
divided by the corresponding total (air–phase + solid–
phase) volume, where Vp(x) is the pore-space volume (the
fluid volume) and V the total volume, in the representative
volume (averaging sphere) of central position x. An averag-
ing with normalization taken with respect to air-volume Vp

instead of total-volume V, say h�ipðxÞ ¼
1

V pðxÞ
Z
V p

� dV p,

where index p over h i is for pore-space, may be preferable
when willing to have averaged values representative of the
values in the fluid phase only. (Note that by abuse of
language we use the same notation for the fluid domain
Vp(x) and its corresponding volume; See also the two para-
graphs before equation (1) for more details, and our two dif-
ferent notations of microscopic (r) and macroscopic (x)
positions: The fluid volume element dVp is d3r whereas x
is reserved for the central position of an averaging sphere).

As we assume that Biot theory is a relevant description
of the actual physics, the fluid and solid motions are, as
insisted in the text, long-wavelength quasi-incompressible
motions at the pore scale (i.e. in an averaging sphere). In
particular it means here that, the microscopic excess-
pressure acoustic field in the saturating fluid (the ambient
air, here), p, is very nearly time-variable pore-scale con-
stant. No important difference is, quantitatively, to be
made between the microscopic, p, and spatial averaged
macroscopic, P, excess-pressure. The quantitative double-
scale asymptotic homogenization-theory justification for
this [4, 48–50] is pertinent but not fully exact as explained
in Sections 2 and 3. The latter sections provide qualitative
justification of the incompressibility and approximate
correspondence between p and P (not rp and rP!), as
mere consequences of the absence of very different pore
sizes (which excludes local resonance and pressure diffusion
process [51]); see also the discussion around equations
(7.160)–(7.161) in [9] (Appendix). The very small variations
p � P that occur genuinely at the pore scale are removed in
the macroscopic average P. Not explicitly mentioned in
literature, within Biot’s theory the latter can be synony-
mously defined as: (i) the local direct coarse-grained aver-
age, P = hpip (here local refers to making the average
around a chosen central position x and is not to be confused
with the notion of local and non-local theory), or, (ii) the
local indirect coarse-grained average given by, hpvii =
Phvii, where vi is the ith component of the microscopic
velocity in the fluid, i.e. this time, the Heaviside-Poynting
or Umov averaged pressure (see Refs. [8, 9]) that can also
be termed as a lumped pressure (see [52]). In this indirect
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definition of P the average is made indifferently with total-
volume normalization, h i, or with air-phase normalization,
h ip (both give same result for P, as we have the general
identity, h�i(x) = /(x)h�ip(x), with /(x) = Vp(x)/V the
porosity). Here and in the text, for shortness, we some-
times omit to mention “excess” or “over” before “pressure”
for p or P, simply called pressures. We assert that as long
as Biot theory remains relevant, i.e. the fluid/solid incom-
pressibility applies, both definitions of macroscopic pressure
P(x), direct and indirect, are completely equivalent and
indistinguishable. We note that, in what has been said
above we have interpreted our averages h i(x) or h ip(x)
as volume averages performed at some central position x
in a given sample (the so-called Lorentz point of view
expressed in Refs. [8, 9]). The discussions in Section 3 are
conducted using this point of view. In another poweful
point of view that can be used in place of the preceding if
ergodicity applies (the so-called Gibbs point of view in Refs.
[8, 9]), the averages h i(x) or h ip(x) are more simply viewed
as the expectation value of the considered quantity at the
position x, in an ensemble of realizations of the macroscopic
medium; the first is when the quantities are extended to
zero in the solid and all realizations are taken into consider-
ation, obtaining a total volume normalization, the second is
when we discard realizations with x lying in the solid,
obtaining a fluid-volume normalization. Our reasonings on
quantities such as the effective bulk modulus or the thermal
permeability/tortuosity, will be the same whether our aver-
ages h i, h ip, are conceived in terms of volume average,
ensemble average, or a mixture of the two. We note also
that the averaging-volume utilized to perform the macro-
scopic averages can be replaced by an averaging surface
(see e.g. Sect. 2 in [28]). Finally, let us mention that,
whereas the above direct and indirect definitions of the
macroscopic pressure are both possible and equivalent in
the context of Biot theory which is a local theory neglecting
spatial dispersion, see Sections 1–3, the indirect definition is
actually deeper. We anticipate that it is the latter, suitably
generalized as: �hpvii = Hijhvji, that will provide a relevant
general definition of a macroscopic symmetric stress field Hij

in the fluid, in the case of non-local theory capable to
describe arbitrary microgeometries. This last comment
refers to the mentioned general theory non-local in time
and space that still has to be developed in its full details
as recalled in Sections 1 and 2.

Appendix B
Additional comments on the constraints of Biot’s theory

Loosing sight of the semi-empirical origin of Biot theory
it is sometimes written (e.g. [48]) that this theory is rigor-
ously derived from the microscopic equations by the
method of two-scale asymptotic homogenization devel-
oped and studied by Sanchez-Palencia [53], Keller [54],
Bensoussan et al. [55], and others. However, this view is a
misinterpretation of the character of this homogenization
method, which automatically introduces the assumption of
fluid/solid incompressibility as a result of its own procedure

that hypothesizes the existence of one characteristic pore
size, in microgeometry. The two-scale homogenization
method does not derive Biot theory from microscopic equa-
tions only, but from the microgeometric constraints on
which it is based.

Biot theory, as shown by the previously mentioned
absence of spatial dispersion, and the related crucial role
played by the incompressibility hypothesis, is not general
in some potentially important aspects, such as the defini-
tions with which it can be expressed (like the systematic
assimilation of macroscopic values with direct volume
averages, see comments in Appendix A), and the quantities
involved. It constitutes a special (though widely applicable)
simplified limit (non-local in time but local in space) of a
much more general theory (applicable to much wider
classes of microgeometries) non-local in both time and
space. This more general theory will possibly lead, in other
simplified limits, to more general local (local in space)
descriptions. The fully general non-local theory or its more
general local simplifications would not satisfy the character-
istic assumption of fluid/solid incompressibility24 and
would lead to much richer behavior than conventional
Biot theory allows.

The characteristic reduction in the possibility of tempo-
ral dispersion in Biot model is seen in the fact highlighted
by Johnson [28] (Appendix A) and Lafarge [18] and [4]
(Appendix C), that the singularities of the response func-
tions a(x), k(x), a0(x), k0(x), in the complex x-plane, lie
only on the imaginary half-axis, as opposed to the full
half-plane allowed by the general causality principle; this,
also, expresses in the monotonic behaviors mentioned in
Section 3. Using a divergence-free representation of all fluid
displacements combined with a uniform representation of
all solid displacements, at the pore scale, Biot’s model
cannot account for spatial dispersion, at all. The latter
remains entirely outside its framework. With spatial disper-
sion present as soon as significant divergent motions appear
at pore scale [9], the usual simple basis for the definition of
local response factors (that is detailed in Sect. 3), simply
vanishes. In these circumstances the operators and field
quantities must be thoroughly generalized, possibly enhanc-
ing even their tensor rank (see Appendix A and Footnotes 1
and 16). In a forthcoming work (the first mentioned in
Footnote 1), we will illustrate how an imbalanced divergent
fluid motion at the small scale can generate a much more
general temporal dispersion in connection with underlying
presence of spatial dispersion.

In general it is the relatively good satisfaction of the
incompressibility of solid and fluid motion at long wave-
lengths in a variety of microgeometries that explains the
large scope and experimental success of Biot theory. These
simplifications are expected to hold true in the real propa-
gation problem and to justify Biot theory, not only when

24 Note that, given a microgeometry, we can have a feeling
whether or not it will fulfill the characteristic incompressibility
assumption – such as not involving structures susceptible to
resonate or lead to phenomena such as pressure diffusion [51].
But, in an intermediate situation, it may not be easy to make a
quantitative estimate of this.
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there is a well-defined pore size, but more generally as long
as the complications in the geometries do not lead to locally
resonant structures [8, 9] or other effects related to fluid
flow divergence, such as pressure diffusion [51]. In all these
cases, both the long-wavelength spatial dispersion (related
to the non-uniform or divergent parts of the solid or the
fluid motions on the pore scale) and the mentioned addi-
tional temporal dispersion (also triggered by these motions)
are practically absent. This is an expression of the fact that,
compared to the nearly uniform (solid) or non-divergent
(fluid) motions on the pore scale in Biot theory, the actual
non-uniform/divergent distributed motions of the solid/
fluid on the pore scale usually have a very weak amplitude.
Their complete absence in Biot theory is usually not a prob-
lem, but a reasonable simplification.

Therefore, instead of assuming a very well-defined pore
size, as is the case with two-scale asymptotic homogeniza-
tion, it would be more appropriate to characterize the
physical position of Biot theory by recognizing that it
corresponds to situations in which one can neglect the

long- wavelength spatial dispersion phenomena and a corre-
sponding part of the temporal dispersion, which allows
considerable simplifications. We note that the fact that
the asymptotic two-scale homogenization method automat-
ically preserves, to a first approximation, the incompressibil-
ity of the solid and fluid motion at the pore scale is an
indication that this method is not suitable to describe the
spatial dispersion and part of the temporal dispersion. For
this reason, the higher order terms in this method do not
accurately describe the onset of the spatial dispersion correc-
tions that occur at decreasing wavelengths, regardless of the
microgeometries, simple or complex, and the part of the
temporal dispersion effects associated with this onset. This
indicates the limited physical consistency of the expansion
principle used in this method. Without the unnecessary
detour via this method, as made in [4], we can base our
description of the function Kf(x, x) directly on the incom-
pressibility of fluid and solid motion, which we introduce
here as an explicit hypothesis/simplification justified by
the type of geometry considered.
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