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Abstract. We consider the following variants of the classical minimum
dominating set problem in graphs: locating-dominating set, locating total-
dominating set and open locating-dominating set. All these problems are
known to be hard for general graphs. A typical line of attack, therefore,
is to either determine the minimum cardinalities of such sets in general
or to establish bounds on these minimum cardinalities in special graph
classes. In this paper, we study the minimum cardinalities of these vari-
ants of the dominating set under a graph operation de�ned by Mycielski
in [22] and is called the Mycielski construction. We provide some general
lower and upper bounds on the minimum sizes of the studied sets under
the Mycielski construction. We apply the Mycielski construction to stars,
paths and cycles in particular, and provide lower and upper bounds on
the minimum cardinalities of such sets in these graph classes. Our results
either improve or attain the general known upper bounds.

Keywords: Locating-dominating set · Open locating-dominating set ·

Locating total-dominating set · Mycielski construction.

1 Introduction

For a graph modeling a facility, the placement of monitoring devices, for ex-
ample, �re detectors or surveillance cameras, motivates the study of various
location-domination type problems in graphs. The problem of placing monitor-
ing devices so that every site of a facility is visible from a monitor leads to a
domination problem. In addition, the position of a �re, a thief, or a saboteur
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Agency as part of the �Investissements d'Avenir� through the IMobS3 Laboratory of
Excellence (ANR-10-LABX-0016) and the IDEX-ISITE initiative CAP 20-25 (ANR-
16-IDEX-0001).
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in the facility can be uniquely located by a speci�c subset of the monitoring
devices which leads to location problems. During the last decades, several com-
bined location-domination problems of this type have been actively studied, see,
for example, the bibliography maintained by Lobstein and Jean [20]. In this
work, we study three di�erent location-domination type problems under a graph
operation known as the Mycielski construction and de�ned by Mycielski himself
in [22].

All graphs in this paper are �nite, simple and connected. Given a graph
G = (V,E), the (open) neighborhood of a vertex u ∈ V is the set N(u) = NG(u)
of all vertices of G adjacent to u, and N [u] = NG[u] = {u} ∪ N(u) is the
closed neighborhood of u. A subset C ⊆ V is dominating (respectively, total-
dominating) if the set N [u] ∩ C (respectively, N(u) ∩ C) is non-empty for all
u ∈ V . In addition, a subset C ⊆ V separates (respectively, total-separates) a
pair u, v ∈ V if N [u]∩C ̸= N [v]∩C (respectively, N(u)∩C ̸= N(v)∩C). In such
a case, we also say that u, v ∈ V are separated by C (respectively, total-separated
by C). A subset C ⊆ V is called

� a locating-dominating set [26] (or LD-set for short) of G if it is a dominating
set of G that separates all pairs of distinct vertices outside of C, that is,
N(u) ∩ C ̸= N(v) ∩ C, for all distinct u, v ∈ V − C;

� a locating total-dominating set [16] (or LTD-set for short) of G if it is a
total-dominating set of G that separates all pairs of distinct vertices outside
of C, that is, N(u) ∩ C ̸= N(v) ∩ C, for all distinct u, v ∈ V − C;

� an open locating-dominating set [24] (or OLD-set for short) of G if it is a
total-dominating set of G that total-separates all pairs of distinct vertices of
the graph, that is, N(u) ∩ C ̸= N(v) ∩ C, for all distinct u, v ∈ V .

Two distinct vertices u, v of a graph G = (V,E) are called false twins if
N(u) = N(v), see [24]. Similarly, any two vertices u, v ∈ V with N [u] = N [v]
are called true twins. Now, for X ∈ {LD,LTD,OLD}, the X-problem on G is
the problem of �nding an X-set of minimum size in G. The size of such a set
is called the X-number of G and is denoted by γX(G). Note that a graph G
without isolated vertices admits an OLD-set if there are no false twins in G. On
the other hand, LD-sets and LTD-sets are admitted by all graphs.

From the de�nitions themselves, the following relations hold for any graph
G admitting any two X-sets for X ∈ {LD,LTD,OLD}:

γLD(G) ≤ γLTD(G) ≤ γOLD(G). (1)

It has been shown that determining γX(G) is in general NP-hard for all
X ∈ {LD,LTD,OLD}. Apart from determining γLD(G) being NP-hard in gen-
eral [24], it remains so for bipartite graphs [9] and some subclasses of chordal
graphs like split graphs and interval graphs [14]. This result is also extended to
planar bipartite unit disk graphs in [21] and intersection graphs in [13]. Closed
formulas for the exact values of γLD(G) have so far been found for restricted
graph families, for example, for paths [26], cycles [6], stars, complete multipar-
tite graphs, some subclasses of split graphs and thin suns [1,4]. Bounds for the
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LD-number of trees were provided in [7]. A linear-time algorithm to determine
γLD(G) for G being a tree was provided by Slater in [27] and has been ex-
tended to block graphs (graphs which generalize the concept of trees in that
any 2-connected subgraph in a block graph is complete) in [2]. Moreover, in
connection to block graphs and hence, trees, tight upper and lower bounds for
LD-numbers of block graphs and twin-free block graphs have been established
in [8].

Determining γOLD(G) is NP-hard not only in general [24] but also on other
graph classes like perfect elimination bipartite graphs [23], interval graphs [14]
and is APX-hard on chordal graphs of maximum degree 4 [23]. Closed formulas
for the exact value of γOLD(G) have so far been found only for restricted graph
families such as cliques and paths [24], some subclasses of split graphs and thin
suns [1]. Tight lower and upper bounds for OLD-numbers certain classes of
graphs like trees [24], block graphs [8], lower bounds for interval graphs, permu-
tation graphs and cographs [13] and upper bounds for cubic graphs [18] have
been established. Lastly, some algorithmic aspects of the problem have been
discussed in [2,23].

Concerning LTD-sets, it can be checked that it is as hard as the OLD-
problem by using the same arguments as in [24]. Bounds for the LTD-number
of trees are given in [16,17]. In addition, the LTD-number in special families of
graphs, including cubic graphs, grid graphs, complete multipartite graphs, some
subclasses of split graphs and thin suns is investigated in [1,17].

In fact, giving bounds for the X-numbers in special graphs is a popular way
to tackle the problems. In this work, we study the behavior of the three X-sets of
graphs under the following graph operation de�ned by Mycielski in [22]. Given
a graph G = (V,E) with V = {v1, . . . , vn}, a new graph M(G) is constructed as
follows: for every vertex vi of G, add a new vertex ui and make ui adjacent to
all vertices in NG(vi). Finally add a vertex u which is adjacent to all ui. Let the
set containing all the vertices ui's be called U , that is, U = {u1, u2, . . . , un}.

Originally, Mycielski introduced this construction in the context of graph
coloring and used it to generate graphsM(G) whose chromatic number increases
by one compared to the chromatic number of G. In [12], it is proved that the
application of the Mycielski construction also increases the dominating number
by one. In this paper, we show that the same holds for total domination and
study the X-numbers of the graphs M(G), where G is a star K1,n, a path Pn

and a cycle Cn (see Fig. 1, Fig. 2 and Fig. 3, respectively, for examples of their
illustrations). As far as previous works on such variants of the dominating sets of
Mycielski constructions is concerned, we know of only one such, namely, in [25]
where the authors �nd tight upper bounds of ID-numbers of M(G) for G being
an identi�able graph (that is, a graph without true twins). The ID-number of
an identi�able graph G is the minimum cardinality of a dominating set C of G
such that N [u]∩C ̸= N [v]∩C for all distinct pairs u, v of vertices of G (see [19]).

In Section 2, we show that the application of the Mycielski construction
increases the total-dominating number by at least one and give a general lower
bound on the studied X-numbers of the graphs M(G) in terms of γX(G) when
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Fig. 1. The star K1,3 and the resulting graph M(K1,3)

Fig. 2. The path P4 and the resulting graph M(P4)

G is either a path or a cycle. We then combine this bound with previously
known results on γX(Pn) (respectively, on γX(Cn)) to obtain lower bounds on
the X-numbers of M(Pn) (respectively, of M(Cn)).

In Section 3, we give a general upper bound on the X-numbers of the graphs
M(G). We also show that this bound is attained when G is a star and improve
the bound for the cases when G is a path or cycle.

We note that there are some particularities in applying the Mycielski con-
struction to paths and cycles with a small number of vertices. In fact, we have
M(P2) = C5. While we have γLD(P2) = 1 and γLTD(P2) = γOLD(P2) = 2, it is
easy to see that γLD(C5) = 2, γLTD(C5) = 3, and γOLD(C5) = 4 hold. More-
over, P3 and C4 have false twins, and so do M(P3) and M(C4). Hence, there
exist no OLD-sets of these graphs. However, we have γX(P3) = γX(C4) = 2 and
γX(M(P3)) = γX(M(C4)) = 4 for X ∈ {LD,LTD}. Hence, in the rest of what
follows, we study paths Pn and cycles Cn with larger values of n.

We close with some concluding remarks and open problems for future re-
search.

2 Lower bounds on X-numbers of graphs M(G)

To start with, observe the following fact that, for every graph G,

1. two vertices vi and vj are false twins in G if and only if the vertices vi, vj
and ui, uj are pairs of false twins in M(G); and

2. M(G) has no true twins.
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Fig. 3. The cycle C3 and the resulting graph M(C3)

In [12], it is proved that, for every graph G, the equality γ(M(G)) = γ(G)+1
holds, where γ(G) is the dominating number of G. Analogously, for the total-
dominating number γt(M(G)), we can prove:

Lemma 1. For every graph G without isolated vertices, we have γt(M(G)) =
γt(G) + 1.

Proof (sketch). Let C ⊆ V be a total-dominating set of G and let ui ∈ U . We
de�ne Ci = C ∪{ui}. As G has no isolated vertices, every vertex in V (M(G)) is
adjacent to a vertex in Ci and so, γt(M(G)) ≤ γt(G) + 1.

Now, let CM be a total-dominating set of M(G) of cardinality γt(M(G)).
Every vertex in V is adjacent to a vertex in CM . Let us de�ne the sets CV =
CM∩V and CU = CM∩U . Then it can be veri�ed that the set CV ∪{vi : ui ∈ CU}
is a total-dominating set of G and |CV | ≤ |CM − {u}|. Thus, if u ∈ CM , we are
done. Therefore, let us assume that u /∈ CM . Then, there exists uj ∈ CM in
order for CM to total-dominate u. Now, for every vertex ui ∈ CU , any neighbor
vk (∈ V ) of ui also has a neighbor in CV (the same vertex in CV that is a
neighbor of uk). This implies tat CM −CU is a total-dominating set of V . Since,
uj ∈ CU , we have |CU | ≥ 1 and hence, the result follows. ⊓⊔

This motivates us to study the parameter γX(M(G)) in terms of γX(G). In
doing so, we now establish a general lower bound on theX-numbers of the graphs
M(G), where G is either a path Pn or a cycle Cn and X ∈ {LD,LTD,OLD}.

Theorem 1. Let X ∈ {LD,LTD,OLD}. For a graph G that is either a path
Pn or a cycle Cn admitting an X-set, we have

γX(M(G)) ≥ γX(G) + 1.

Proof (sketch). As a proof sketch, we provide here the proof of the theorem only
for the case that X = LD. The proof in the other cases when X ∈ {LTD,OLD}
follows with similar proof techniques. To begin with, let us assume that G is
any graph (not necessarily a path or a cycle) and that CM is a minimum LD-
set of M(G). Let CV = CM ∩ V and CU = CM ∩ U . Then de�ne the set
C = CV ∪ {vi : ui ∈ CU}.
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Claim. C is an LD-set of G.

Proof of Claim. Firstly, since CM is a dominating set of M(G), one can verify
that the set C is also a dominating set of G. We now show that C is also a
separating set of G. Let vi, vj ∈ V be any pair of arbitrary vertices such that
vi, vj /∈ C. Then we show that vi, vj are separated by C in G. Let wk ∈ CM with
k /∈ {i, j} separate vi and vj in M(G), where wk ∈ {uk, vk}. If wk = vk, then C
clearly separates vi, vj . So, let wk = uk and that uk is a neighbour of vi and not
of vj in M(G). Now, if k = j, then vj ∈ C and is trivially separated from every
other vertex of G by the de�nitions of LD�sets. So, let k ̸= j. Then again, vk is
a neighbour of vi and not of vj in G and thus C separates vi, vj . This establishes
the claim. ⊓⊔

Thus we have,

γLD(M(G)) ≥ |CM − {u}| ≥ |C| ≥ γLD(G). (2)

So, if u ∈ CM , then γLD(M(G)) > |CM | and hence, the statement of the theorem
holds. So, let us assume that u /∈ CM , in which case, we have γLD(M(G)) ≥
γLD(G). Toward contradiction, let us assume that γLD(M(G)) = γLD(G). Then,
by the assumed equalities in (2), C must be a minimum LD-set of G. This in
turn implies that for each i, we have |{ui, vi} ∩ CM | ≤ 1. In other words, if
ui ∈ CM , then vi /∈ CM and vice-versa.

For the rest of the proof sketch, let us assume that G is either a path Pn

or a cycle Cn. First of all, we observe that if any three consecutive vertices
vi, vi+1, vi+2 ∈ C, then C cannot be a minimum LD-set of G, as one can discard
vi+1 from C and the latter still remains an LD-set. Similarly, for some i, if
vi, vi+1, vi+3, vi+4 ∈ C, then again C cannot be a minimum LD-set of G, as one
can discard vi+1, vi+3 and include vi+2 in C and the latter still remains an LD-
set of G. With those observations, let us �rst assume that some vertex ui ∈ CM

in order to dominate u. If one of its neighbours in G, say vi+1, without loss of
generality, belongs to CM , then we must also have vi+2 ∈ CM in order for CM

to dominate ui+1 (note that vi /∈ CM ). Thus, vi, vi+1, vi+2 ∈ C, a contradiction
to the minimality of C by our earlier observation. Hence, let us assume that for
all ui ∈ CM , none of its neighbours in G, that is, vi−1 and vi+1, belong to CM .
So, �x one such ui ∈ CM . Then vi /∈ CM . Therefore, without loss of generality,
let ui+1 ∈ CM in order for the latter to dominate vi. If any of ui−1, vi−1 ∈ CM ,
then again we would have three consecutive vertices of G in C, a contradiction.
So, let us assume that ui−1, vi−1 /∈ CM . In order for vi−1, vi+1 to be separated,
we must have either wi−2 ∈ CM or wi+2 ∈ CM , where wi−2 ∈ {ui−2, vi−2} and
wi+2 ∈ {ui+2, vi+2}. However, we cannot have wi+2 ∈ CM , as otherwise, we
would have vi, vi+1, vi+2 ∈ C, the same contradiction as before. Hence, wi−2 ∈
CM . If wi−2 = vi−2, then ui−2 /∈ CM . This implies that vi−3 ∈ CM for CM

to dominate ui−2. This implies that vi−3, vi−2, vi, vi+1 ∈ C, a contradiction by
our earlier observation. Moreover, if wi−2 = ui−2, then vi−2 /∈ C and hence,
wi−3 ∈ CM for vi−2 to be dominated by CM , where wi−3 ∈ {ui−3, vi−3}. Here
again, we have vi−3, vi−2, vi, vi+1 ∈ C, the same contradiction.
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This proves that our assumption of γLD(M(G)) = γLD(G) is wrong which,
in turn, proves the theorem for the case that X = LD. The other cases when
X ∈ {LTD,OLD} follow with similar proof techniques. ⊓⊔

Note that this lower bound in Theorem 1 is tight:

� for X ∈ {LD,LTD}, we have γX(C3) = 2 as {v1, v2} is a minimum X-set,
and γX(M(C3)) = 3 as {v1, v2, u} is a minimum X-set (see Figure 3 for C3

and M(C3)),
� for X = OLD, no tight examples are yet known in this case.

We deduce lower bounds for γX(M(Pn)) and γX(M(Cn)) from the respective
values of γX(Pn) and γX(Cn). Theorem 1 together with the results from [6] on
γLD(Pn) and γLD(Cn) yield:

Corollary 1. If G equals Pn or Cn for n ≥ 3, we have as lower bound:

γLD(M(G)) ≥
⌈
2n

5

⌉
+ 1.

The exact OLD-numbers of path and cycles are studied in [24] and [3], respec-
tively. However, the latter result for cycles of even order needed to be corrected
and as such, we state and prove the result in its entirety as follows.

Theorem 2. For any cycle Cn on n vertices such that n ≥ 3 and n ̸= 4, we
have

γOLD(Cn) =

{ ⌈
2n
3

⌉
, for odd n,

2
⌈
n
3

⌉
, for even n.

Proof. We prove the theorem by �rst showing that
⌈
2n
3

⌉
for odd n and 2

⌈
n
3

⌉
for

even n is a lower bound on γOLD(Cn) and then providing an OLD-set of Cn of
exactly the same cardinality as the lower bound. We start with establishing the
lower bound �rst.

Seo and Slater showed in [24] that if G is a regular graph on n vertices, of
regular-degree r and with no open twins, then we have γOLD(G) ≥ 2

1+rn. Using

this result in [24] for the cycle Cn, therefore, we have γOLD(Cn) ≥ 2
3n, that is,

γOLD(Cn) ≥
⌈
2
3n

⌉
. Now, for n ̸= 6k+4 for any non-negative integer k, we have⌈

2n

3

⌉
=

{ ⌈
2n
3

⌉
, for odd n,

2
⌈
n
3

⌉
, for even n.

Thus, the only case left to prove is the following claim.

Claim. For n = 6k + 4 with k ≥ 1, we have γOLD(Cn) ≥ 2
⌈
n
3

⌉
= 4k + 4.

Proof (of Claim). The proof of the last claim is by induction on k with the base
case being for k = 1, that is, when Cn is a cycle on n = 10 vertices. We �srt
show the result for n = 10.
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Subclaim. γOLD(C10) ≥ 8.

Proof (of Subclaim). Let V (C10) = {v1, v2, . . . , v10} and S be a minimum open
OLD-set of C10. Then, |S| < 10 by a charaterization result by Foucaud et
al. [11] on the extremal graphs G for which γOLD(G) = |V (G)|. Hence, there
exists a vertex v1 (without loss of generality) such that v1 /∈ S. We consider
the induced 5-paths P1 : v1v2v3v4v5 and P2 : v1v10v9v8v7. Then, from the
path P1, the vertex v3 ∈ S for the latter to total-dominate v2 and the ver-
tex v5 ∈ S for the latter to separate the pair v2, v4. By the same argument,
from path P2, the vertices v9, v7 ∈ S. Moreover, at least one vertex from each
of the pairs (v2, v4), (v4, v6), (v6, v8), (v8, v10), (v10, v2) must belong to S for the
latter to total-dominate v3, v5, v7, v9, v1, respectively. Hence, the result follows
from counting. ⊓⊔

Thus, the result holds for the base case of the induction hypothesis. We,
therefore, assume k ≥ 2 and that γOLD(Cm) ≥ 4q + 4 for all cycles Cm with
|V (Cm)| = 6q+4 and q ∈ {1, 2, . . . , k− 1}. Toward contradiction, let us assume
that γOLD(Cn) < 4k+4. Moreover, let V (Cn) = {v1, v2, . . . , vn}. Then again, by
the charaterization result in [11], we have γOLD(Cn) < n. This implies that, for
any minimum OLD-set S of Cn, there exists a pair (vn−6, vn−5) (by a possible
renaming of vertices) such that vn−6 ∈ S and vn−5 /∈ S. Let C ′

n−6 be the
cycle on n − 6 vertices formed by adding the edge v1vn−6 in the graph Cn −
{vn−5, vn−4, . . . , vn}. Note that |V (C ′

n−6)| = 6(k−1)+4 and hence, the induction
hypothesis applies to it to give

γOLD(C ′
n−6) ≥ 4(k − 1) + 4 = 4k. (3)

Now, let S′ = S − {vn−5, vn−4, . . . , vn}.

Subclaim. S′ is an OLD-set of C ′
n−6.

Proof (of Subclaim). To show that S′, �rst of all, is a total-dominating set of
C ′

n−6, we notice that the vertices v1, v5 /∈ S. Therefore, all vertices in the set
{v2, v3, . . . , vn−6} remain total-dominated by S′. Moreover, S′ total-dominates
v1 by virtue of vn−6 ∈ S′. This proves that S′ is a total-dominating set of C ′

n−6.
We now show that S′ is also a total-separating set of C ′

n−6. To that end,
since vn−5 /∈ S, if now the vertex vn /∈ S as well, then S′ clearly total-separates
every pair of vertices in C ′

n−6 and hence, is an OLD-set. If however, vn ∈ S
and total-separates a pair of vertices in C ′

n−6, the pair can either be (v1, v2) or
(v1, v3). Since n ≥ 16, we have 3 < n − 6 and hence, vn−6 ∈ S′ total-separates
the pairs (v1, v2) and (v1, v3) in C ′

n−6. Therefore, S
′ is an OLD-set of C ′

n−6. ⊓⊔

Subclaim. |S ∩ {vn−5, vn−4, . . . , vn}| ≥ 4.

Proof (of Subclaim). Since vn−6 /∈ S, it implies that vn−3 ∈ S in order for the
latter to total-dominate the vertex vn−4. Moreover, we also have vn−1 ∈ S in
order for S to total-separate the pair (vn−2, vn−4). Furthermore, we must have at
least one vertex each from the pairs (vn−4, vn−2) and (vn−2, vn) belonging to S in
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order for the latter to total-dominate the vertices vn−3 and vn−1, respectively.
Finally, at least one vertex from the pair (vn−4, vn) must also belong to S in
order for S to total-separate the pair (vn−3, vn−1). This proves that the result
holds. ⊓⊔

Recall that |S| = γOLD(Cn) < 4k + 4, by assumption. Thus, we have

γOLD(C ′
n−6) ≤ |S′| = |S| − |S ∩ {vn−5, vn−4, . . . , vn}| < 4k + 4− 4 = 4k,

a contradiction to the Inequality (3). This proves the claim and establishes the
lower bound on γOLD(Cn). ⊓⊔

The theorem is, therefore, proved by providing an OLD-set S of Cn of the
exact same cardinality as the lower bound, that is,

|S| =
{ ⌈

2n
3

⌉
, for odd n,

2
⌈
n
3

⌉
, for even n.

(4)

Let = V (Cn) = {v1, v2, . . . , vn} and that n = 6k + r, where r ∈ {0, 1, 2, 3, 4, 5}.
For k = 0, that is, Cn being either a 3-cycle or a 5-cycle, it can be checked
that the sets {v1, v2} and {v1, v2, v3, v4} are the respective OLD-sets. Thus, the
result holds in this case. For the rest of this proof, therefore, we assume that
n ≥ 6, that is, k ≥ 1. We now construct a vertex subset S of Cn by including in
S the vertices

1. v6i−4, v6i−3, v6i−1, v6i for all i ∈ {1, 2, . . . , k} if r = 0, 3. In this case, we have
|S| = 4k for r = 0 and |S| = 4k + 2 for r = 3.

2. v6i−4, v6i−3, v6i−2, v6i−1 for all i ∈ {1, 2, . . . , k} if r ̸= 0; with
(a) the vertices v6k, v6k+1, . . . , v6k+r−1 if r = 1, 2, 4. In this case, we have

|S| = 4k + r; and
(b) the vertices v6k+1, v6k+2, v6k+3, v6k+4 if r = 5. In this case, we have

|S| = 4k + 4.

It can be checked that the constructed set S is, indeed, an OLD-set of Cn

and of the cardinality as in Equation (4). This proves the result. ⊓⊔
Combining Theorem 1 with results on γOLD(Pn) in [24] and on γOLD(Cn) in
Theorem 2, we deduce:

Corollary 2. Consider Pn with n = 6k + r for k ≥ 1 and r ∈ {0, . . . , 5}, then
we have:

γOLD(M(Pn)) ≥
{
4k + r + 1 if r ∈ {0, . . . , 4},
4k + 5 if r = 5;

and for n ≥ 3 and n ̸= 4, we have

γOLD(M(Cn)) ≥
{ ⌈

2n
3

⌉
+ 1, for odd n,

2
⌈
n
3

⌉
+ 1, for even n.

Theorem 1 together with the results from [16] on γLTD(Pn) and from [17] on
γLTD(Cn) imply:

Corollary 3. If G equals Pn or Cn for n ≥ 3, we have as lower bound:

γLTD(M(G)) ≥
⌊n
2

⌋
−

⌊n
4

⌋
+
⌈n
4

⌉
+ 1.
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3 Upper bounds on X-numbers of graphs M(G)

We �rst establish a general upper bound on X-numbers of graphsM(G) in terms
of γX(G).

Theorem 3. Let X ∈ {LD,LTD,OLD}. For a graph G admitting an X-set,
we have

γX(M(G)) ≤ 2γX(G).

Proof (sketch). Let C be a minimum X-set of G. Then, we construct a new set
C ′ = C ∪ {ui : vi ∈ C}. It can be checked that if C is a dominating (respec-
tively, total-dominating) set of G, then so is it of M(G). For any x ∈ V (M(G)),
let NM (x) (respectively, NM [x]) denote the neighborhood (respectively, closed
neighborhood) of x in M(G). If C is a total-separating set of G, then for any
x ∈ V (M(G)), we have

� C ′ ∩NM (u) = {ui : vi ∈ C}
� C ′ ∩NM (uj) = (C ∪ {ui : vi ∈ C}) ∩NM (uj) = C ∩N(vj)
� C ′ ∩NM (vj) = (C ∪ {ui : vi ∈ C}) ∩NM (vi) = {vk, uk : vk ∈ N(vj) ∩ C}

As is evident, the set C ′ ∩NM (x) is unique for each x ∈ V (M(G)). Thus, C ′

is also a total-separating set of M(G). Moreover, |C ′| = 2|C|. This proves the
result. ⊓⊔

Based on results from [4,15,17] on X-numbers of stars and the relation (1),
we can show that the bound given in Theorem 3 is tight for stars (see Fig. 4 for
illustration):

Theorem 4. For stars K1,n with n ≥ 3, we have γX(K1,n) = n and

γX(M(K1,n)) = 2n

whenever X ∈ {LD,LTD}.

Note that stars K1,n have false twins and, therefore, so doesM(K1,n). Hence,
M(K1,n) does not admit anOLD-set. Fig. 5 provides an example for γX(M(G)) =
2γX(G) when X = OLD. For OLD-sets, we can further prove the following.

Theorem 5. Let G be a graph without isolated vertices and false twins. Then
γOLD(M(G)) ≤ γOLD(G) + 2.

Proof (sketch). Let C ⊂ V be an OLD-set of G and let ui ∈ U . We de�ne
Ci = C ∪ {u, ui}. As G has no isolated vertices, every vertex in V (M(G)) is
adjacent to a vertex in Ci. This implies that Ci is a total-dominating set of
M(G). Moreover, by the fact that C is a total-separating set of G, it can be
checked that each of the following sets is unique.

Ci ∩NM (u) = {ui};
Ci ∩NM (vj) = (C ∩N(vj)) ∪ {ui} for vj ∈ N(ui);
Ci ∩NM (vj) = C ∩N(vj) for vj /∈ N(ui); and
Ci ∩NM (uj) = (C ∩N(vj)) ∪ {u} for uj ∈ U.
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Fig. 4. K1,n and M(K1,n) (black vertices form a minimum X-set when X ∈
{LD,LTD})

This proves that Ci is an OLD-set of M(G) and since, |Ci| = |C|+2, the result
follows. ⊓⊔

The bound given in Theorem 5 is tight, as M(P2) and M(C3) (in Figure 5)
show. In addition, it enables us to prove the following for γOLD(M(Pn)) and
γOLD(M(Cn)).

Theorem 6. For all n ≥ 2 and n ̸= 3, we have

γOLD(M(Pn)) = γOLD(Pn) + 2

and for all n ≥ 3, we have

γOLD(Cn) + 1 ≤ γOLD(M(Cn)) ≤ γOLD(Cn) + 2.

Proof (sketch). The result for cycles follows directly from Theorems 1 and 5.
For paths, again using Theorem 5, we only need to show that γOLD(Pn) ≥
γOLD(Pn)+2 for all n ≥ 2 and n ̸= 3. As far as small paths a concerned, it can be
checked that γOLD(P2) = 2, γOLD(P4) = γOLD(P5) = 4; and γOLD(M(P2)) = 4,

Fig. 5. C3 and M(C3) (black vertices form a minimum OLD-set)
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γOLD(M(P4)) = γOLD(M(P5)) = 6. Thus, the result holds for these small paths.
Therefore, we assume that n = 6k + r with k ≥ 1, where r ∈ {0, 1, . . . , 5}.
If V (P ) = {v1, v2, . . . , vn}, the proof follows by partitioning the vertex set of
M(Pn) into ⌈n

6 ⌉ parts, the �rst ⌊
n
6 ⌋ of which are given by Bi = {vj , uj : 6i−5 ≤

j ≤ 6i} for all 1 ≤ i ≤ ⌊n
6 ⌋; and the last (if exists, that is, if r ̸= 0) part

Bl = {vj , uj : 6k + 1 ≤ j ≤ r}. Further analysis of any block Bi for 1 ≤ i ≤ ⌊n
6 ⌋

shows that any OLD-set C of M(Pn) must contain at least 4 vertices from
Bi. Moreover, we would have |C ∩ U | ≥ 2. This gives the total count for the
cardinality of C to be 4k + 2 and thus proves the theorem for r = 0. Moreover,
each other case for r ∈ {1, 2, 3, 4, 5} is dealt with separately where it can be
shown that, for r ∈ {1, 2, 3, 4}, exactly r vertices and, for r = 5, exactly 4
vertices need to be included in C. This proves the theorem by comparison to the
results for γOLD(Pn) in [24]. ⊓⊔

Concerning LD-numbers, we note that γLD(M(P2)) = 2 and γLD(M(P3)) =
γLD(M(P4)) = γLD(M(P5)) = 4 holds. We can improve the general upper
bounds for γLD(M(Pn)) and γLD(M(Cn)) as follows:

Theorem 7. Consider Pn with n = 3k + r for k ≥ 2, r ∈ {0, 1, 2} and Cn with
n ≥ 3, then we have:

γLD(M(Pn)) ≤
{
2k + 1 if r = 0
2k + 2 if r ∈ {1, 2}

and

γLD(M(Cn)) ≤
{
n−

⌊
n
3

⌋
+ 1 if n is odd

n− 2
⌊
n
6

⌋
+ 1 if n is even

Proof (sketch). We provide the proof sktech for paths to illustrate the proof
technique. The proof for cycles follows with similar techniques. Let n ≥ 6, n =
3k + r with k ≥ 2 and r ∈ {0, 1, 2}. Then, according to three possible values of
r, we de�ne the following sets.

� If r = 0, we de�ne C = {v2} ∪ {vi, vi+1 : i = 3ℓ + 1, ℓ ∈ {1, . . . , k − 1}} ∪
{u3k, u}. In this case, we have |C| = 2k + 1.

� If r = 1, we de�ne C1 = (C − {u3k})∪ {v3k+1, u3k+1}. Here we have, |C1| =
2k + 2

� If r = 2, we de�ne C2 = (C − {u6k}) ∪ {v6k+1, v6k+2}. In this case, we have
|C2| = 2k + 2

Further analysis of the above sets C, C1 and C2 shows that in each of the
above three cases, the sets are LD-sets of M(Pn). The result then follows by the
cardinalities of the sets in the above three cases. ⊓⊔

We observe that the upper bounds are tight for M(Pn) with 6 ≤ n ≤ 8
and for M(Cn) with n ∈ {3, 6, 7}, but are not tight for M(C4) and M(C5), for
example. There are no examples yet known where the upper bounds are not
tight for M(Pn).
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The next theorem provides an upper bound for the LTD-numbers of M(Pn)
and M(Cn). However, before coming to it, as far as small graphs of these graph
classes are concerned, we note that γLTD(M(P2)) = 3, γLTD(M(P3)) = 4 and
γLTD(M(P4)) = γLTD(M(P5)) = 5. The next result improves the general upper
bounds for γLTD(M(Pn)) and γLTD(M(Cn)) as follows.

Theorem 8. Consider Pn with n = 6k + r for k ≥ 1, r ∈ {0, . . . , 5} and Cn

with n ≥ 3, then we have:

γLTD(M(Pn)) ≤

4k + 2 if r = 0
4k + r + 1 if r ∈ {1, 2, 3}
4k + r if r ∈ {4, 5}

and

γLTD(M(Cn)) ≤
{
n−

⌊
n
3

⌋
+ 2 if n is odd

n− 2
⌊
n
6

⌋
+ 2 if n is even

Proof (sketch). The upper bound on the LTD-number of M(Pn) follows by the
fact that γLTD(M(Pn)) ≤ γOLD(M(Pn)) = γOLD(Pn) + 2 (by Theorem 6) and
by the known exact values of γOLD(Pn) from [24].

For the upper bound on the LTD-number of M(Cn), we consider the fol-
lowing two graphs G and G′. Let G = (V,E) be the graph such that V =
{v1, v2, . . . , vn} and E = {{vi, vi+2}, {vi, vi+4}, {vi, vi+3} : i ∈ {1, . . . , n}} (where
the sum of the indices is taken modulo n). Renaming the vertices of V in such a
way that wi = v1+2i for i ∈ {0, . . . , n−1}, we consider the second graph G′ with
vertex set {wi : i ∈ {0, . . . , n − 1}} and edge set {{wi, wi+1}, {wi, wi+2} : i ∈
{0, . . . , n−1}}. We then look at the graph G′ with vertex set V (Cn), and denote
by CG′ its minimum vertex cover. Then, it is easy to check that CG′ ∪ {ui, u}
for some i ∈ {1, . . . , n} is an LTD-set of M(Cn). The theorem for Cn therefore
follows by the use of another result proven separately that the size of a minimum
vertex cover of G is

� n−
⌊
n
3

⌋
when n odd and not a multiple of 3,

� n−
⌊
n
4

⌋
when n is odd and multiple of 3,

� n− 2
⌊
n
6

⌋
when n is even.

⊓⊔

We observe that for γLTD(M(Cn)), there are values of n where the upper
bound is attained (for example, n ∈ {6, 9}), but also where this is not the case
(for example, n ∈ {3, 4, 5, 7, 8}). There are no examples yet known where the
upper bounds are not tight for M(Pn).

4 Concluding remarks

To summarize, we studied three location-domination type problems under the
Mycielski construction. In Section 2, we showed that γX(G)+1 is a general lower
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bound of γX(M(G)) for all paths and cycles and all X ∈ {LD,LTD,OLD}. Us-
ing results on γX(Pn) (respectively, on γX(Cn)) from [3,6,10,16,24], this allowed
us to deduce the appropriate lower bounds on the X-numbers of M(Pn) (respec-
tively, of M(Cn)) for X ∈ {LD,LTD,OLD}. As a related extension of one of
the main focuses of this paper, namely, the OLD-numbers of M(Cn), we also
establish the exact OLD-numbers for cycles.

In Section 3, we �rstly provided two general upper bounds on X-numbers
of the graphs M(G). We showed that the upper bound of 2γX(G) is attained
when G is a star for X ∈ {LD,LTD}. For OLD-numbers of M(G), we could
further establish the general upper bound of γOLD(G) + 2. We showed that this
bound is attained for γOLD(M(Pn)) and, combining our results on the lower
and upper bound of the OLD-numbers, we obtained a Vizing-type result for
M(Cn), namely, γOLD(Cn)+1 ≤ γOLD(M(Cn)) ≤ γOLD(Cn)+2. For the other
X-problems with X ∈ {LD,LTD}, we could improve the general upper bounds
for the X-numbers of both M(Pn) and M(Cn).

For the studied X-numbers, there are examples where the upper bounds are
attained (and, therefore, cannot be improved any further). On the other hand,
there are also examples where the upper bounds are not tight. Therefore, our
future research includes �nding these exact values. In view of the fact that lower
bounds were obtained by considering the domination aspect only, we expect
that the true values are closer to the upper bounds. This applies particularly to
γLD(M(Pn)) and to γLTD(M(Pn)) where no examples are yet known where the
upper bound is not tight.

Moreover, it would be interesting to study similar questions for other locating-
dominating type problems, for example, di�erentiating total-dominating sets (de-
�ned as total-dominating sets that separate all vertices of the graph).
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