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Hyperquaternions and physics

The paper develops, within a new representation of Clifford algebras in terms of tensor products of quaternions called hyperquaternions, several applications. The first application is a quaternion 2D representation in contradistinction to the frequently used 3D one. The second one is a new representation of the conformal group in (1+2) space (signature + --) within the Dirac algebra C 5 (2, 3) ≃ ⊗ ⊗ subalgebra of ⊗ ⊗ . A numerical example and a canonical decomposition into simple planes are given. The third application is a classification of all hyperquaternion algebras into four types, providing the general formulas of the signatures and relating them to the symmetry groups of physics.

Introduction

A new hyperquaternionic representation of Clifford algebras [START_REF] Anglès | Conformal groups in geometry and spin structures[END_REF][START_REF] Rausch De Traubenberg | Clifford algebras in physics[END_REF] has been introduced recently [START_REF] Panga | Hyperquaternionic representations of conic sections[END_REF][START_REF] Girard | Hyperquaternion conformal groups[END_REF][START_REF] Girard | Dual hyperquaternion Poincaré groups[END_REF][START_REF] Girard | Hyperquaternions: An efficient mathematical formalism for geometry[END_REF][START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF], hyperquaternion algebras being defined as tensor products of quaternion algebras (or subalgebra thereof). This paper develops several hyperquaternionic applications.

Throughout this paper, ⊗m will denote the tensor product of m quaternion algebras, i.e. ⊗m = ⊗ ⊗ • • • ⊗ (m terms). The structure of the paper is as follows.

In the preliminaries, the historical origins and basic concepts of hyperquaternion Clifford algebras are examined. In the third section, a quaternion 2D representation is proposed in contradistinction to a widely used 3D representation. In the fourth section, the conformal group of the (1 + 2) space (signature +--) is developed within the Dirac algebra C 5 (2, 3) ≃ ⊗ ⊗2 considered as a subalgebra of ⊗3 ≃ C 6 [START_REF] Rausch De Traubenberg | Clifford algebras in physics[END_REF][START_REF] Girard | Hyperquaternion conformal groups[END_REF] . The choice of the (1 + 2) space is motivated by its use in quantum gravity [START_REF] Carlip | Quantum gravity in 2 + 1 dimensions[END_REF]. A numerical example together with a canonical decomposition into simple planes is provided. Finally, the fifth section gives a classification of all hyperquaternion algebras into four types with general formulas of the signatures and associated symmetry groups of physics.

Preliminaries: Clifford algebras and hyperquaternions

Quaternions and biquaternions

The quaternion group [START_REF] Girard | Quaternions, Clifford algebras and relativistic physics[END_REF][START_REF] Girard | Quaternions, algèbre de Clifford et physique relativiste[END_REF] was discovered in 1843 by W. R. Hamilton and is constituted by the elements (±1, ±i, ± j, ±k) satisfying the formula

i 2 = j 2 = k 2 = i jk = -1 . ( 1 
)
The quaternion algebra is defined as a set of four real numbers q i , called quaternions q = q 0 + q 1 i + q 2 j + q 3 k. The conjugate q c of q is defined by q c = q 0 -q 1 iq 2 jq 3 k. Hamilton was to give a 3D (if not 4D) interpretation of quaternions which was to lead to the classical vector calculus still in use today. He also introduced complex quaternions which he named biquaternions.

Clifford algebras and hyperquaternions

Clifford in 1878, introduced his algebras as tensor products of quaternion algebras [START_REF] Clifford | Applications of Grassmann's extensive algebra[END_REF]. He proved the following theorem

C 2m ≃ ⊗m , C 2m-1 ≃ ⊗ ⊗m-1 .
(

) 2 
Lipschitz in 1880, derived the rotation formula of nD Euclidean spaces [START_REF] Lipschitz | Principes d'un calcul algébrique qui contient comme espèces particulières le calcul des quantitiés imaginaires et des quaternions[END_REF] x

′ = a x a -1 , a ∈ C + . ( 3 
)
He thereby rediscovered the (even) Clifford algebras. In 1922, Moore [START_REF] Moore | Hyperquaternions[END_REF] was to call Lipschitz's algebras: hyperquaternions, a term which we shall extend to all Clifford algebras. A major success of Clifford algebras in physics was the Dirac algebra and the spinor calculus. Recent developments in Clifford algebras seem to have somewhat neglected if not totally ignored the hyperquaternionic filiation.

In terms of generators, the Clifford algebra C n (p, q) has n = p + q generators e i such that e i e j + e j e i = 0 (i ̸ = j), e 2 i = +1 (p generators) and e 2 i = -1 (q generators). The total number of elements is 2 n . The algebra contains scalars (S), vectors (V ) e i , bivectors (B) e i e j (i ̸ = j), etc. C + is the (even) subalgebra constituted by products of an even number of e i . It is to be noticed that the hyperquaternion product is independent of the choice of the generators whereas the multivector structure depends on it.

Examples of hyperquaternion Clifford algebras are: quaternions (e 1 = i, e 2 = j), biquaternions ⊗ (e 1 = i I, e 2 = jI, e 3 = kI, I = 1⊗i), ⊗ (e 0 = j, e 1 = kI, e 2 = kJ, e 3 = kK) with (I, J, K) = 1⊗ (i, j, k).

Quaternion 2D representation

In contradistinction to Hamilton who gave a 3D interpretation of quaternions which is still widely used today, we shall provide a 2D plane representation below since quaternions constitute a Clifford algebra with only two generators

e 1 = i , e 2 = j , e 1 e 2 = k e 2 1 = e 2 2 = -1 . ( 4 
)
Interior and exterior products can be defined with

x = x 1 i + x 2 j ∈ V, B = bk bivector (b ∈ ) by x. y = -(x y + y x) /2 = x 1 y 1 + x 2 y 2 ∈ S , (5) 
x

∧ y = (x y -y x) /2 = (x 1 y 2 -x 2 y 1 ) k ∈ B , (6) 
x

.B = -(x B -B x) /2 = b (-x 2 i + x 1 j) ∈ V , (7) 
x

∧ B = (x B + B x) /2 = 0 . (8) 
The rotation group SO( 2) is expressed by

x ′ = r x r c = (x 1 cos θ -x 2 sin θ ) i + (x 1 sin θ + x 2 cos θ ) j , (9) 
with r = e kθ /2 = (cos θ /2

+ k sin θ /2) ∈ B . ( 10 
)
The modeling of an Euclidean 3D space can be realized similarly with biquaternions [START_REF] Girard | Differential geometry revisited by biquaternion Clifford algebra[END_REF].

Hyperquaternionic conformal group in (1+2) space

The conformal group of the (1 + 3) space has been examined within the algebra ⊗3 ≃ C 6 [START_REF] Rausch De Traubenberg | Clifford algebras in physics[END_REF][START_REF] Girard | Hyperquaternion conformal groups[END_REF] in [START_REF] Girard | Hyperquaternion conformal groups[END_REF]. Here, we consider the (1 + 2) subspace within the subalgebra C 5 (2, 3) ≃ ⊗ ⊗2 ≃ (4) isomorphic to the Dirac algebra. This space has received much attention in particular with respect to quantum gravity [START_REF] Carlip | Quantum gravity in 2 + 1 dimensions[END_REF]. We first introduce the algebraic structure, then the restricted conformal group and a numerical example including a canonical decomposition into simple planes.

Algebraic structure

As generators of the subalgebra C 5 (2, 3) ≃ ⊗ ⊗2 , we take

e a = kI , e 0 = kJ , e 1 = kK l , e 2 = kK m , e b = j , ( 11 
)
with ⊗3 = (i, j, k) ⊗ (I, J, K) ⊗ (l, m, n) , (12) 
and (l, m, n) = 1 ⊗ 1 ⊗ (i, j, k). A general element A of ⊗3 can be viewed as a set of 16 quaternions

[q i ] = a i + b i l + c i m + d i n A = [q 1 ] + I [q 2 ] + J [q 3 ] + K q 4 + i [q 5 ] + i I [q 6 ] + iJ q 7 + iK [q 8 ] + j q 9 + j I [q 10 ] + jJ [q 11 ] + jK [q 12 ] + k [q 13 ] + kI q 14 + kJ [q 15 ] + kK [q 16 ] . ( 13 
)
The explicit multivector structure of

C 5 (2, 3) is given in Appendix [A]
. The algebra has 2 5 = 32 elements with 10 parameters for the bivectors. The product is implemented in http://www.notebookarchive.org/2021-08-6z1zbda/.

Restricted conformal group

The restricted conformal group in (1 + 2) space is obtained via the procedure described in [START_REF] Anglès | Conformal groups in geometry and spin structures[END_REF].

First, one constructs an affine space within C 5 (2, 3). Let X be a five dimensional vector

X = x 2 -1 2 e a + x + x 2 + 1 2 e b = x 2 ϵ 1 + x + ϵ 2 , (14) 
with x = x 0 e 0 + x 1 e 1 + x 2 e 2 ∈ E 3 , X 2 = 0 and

ϵ 1 = e a + e b 2 , ϵ 2 = e b -e a 2 , ϵ 2 1 = ϵ 2 2 = 0 . (15) 
The restricted conformal group is then expressed by the transformations

X ′ = aX a c (aa c = 1 , a ∈ C + 5 (2, 3)) . (16) 
They are composed of

• spatial rotations a = e n θ 2 ,

• boosts a = e B θ 2 , B ∈ (I l, I m) ,

• translations a = e

ϵ 1 u = 1 + ϵ 1 u (u ∈ E 3 ) , • transversions a = e ϵ 2 v = 1 + ϵ 2 v (v ∈ E 3 ) , • dilations a = e e a e b ϕ 2 = e -i I ϕ 2 = cosh ϕ 2 -i I sinh ϕ 2 .
The total number of parameters is

(n+2)(n+1) 2 
= 10 (n = 3) . Through combinations, one obtains the general transformations

X ′ = f X f c ( f f c = 1 , f ∈ C + 5 (2, 3)) . ( 17 
)
The Lie algebra is given in [START_REF] Girard | Hyperquaternion conformal groups[END_REF] 

Numerical example

Here, we present a numerical example consisting of a set of transformations together with a canonical decomposition thereof.

As transformation X ′ = f X f c we shall consider a dilation (e -ϕ = 1/3) followed by a unit translation (u = e 1 ) and a rotation ( θ = π/2 in the plane e 12 = n). The combination of these transforms yields the hyperquaternion f ∈ C + f = e n θ 2 e ϵ 1 u e -i I ϕ 2 (18)

= (cos θ /2 + n sin θ /2) (1 + ϵ 1 u) (cosh ϕ/2 -i I sinh ϕ/2) (19) = 1 2 + n 1 2 1 + (kI + j) 2 kK l 2 3 -i I 1 3 (20) = 2 3 - 1 
6 i I (1 + n) + 1 2 2 3 (J + iK) (l + m) , ( 21 
)
with tan θ 2 = 1, tanh ϕ 2 = 1 2 e ϕ = 1+thϕ/2 1-thϕ/2 = 3/2
1/2 = 3 . The bivector part B of f generating the transformation, divided by the scalar 2 3 is

B = n - iJ 2 + 3 4 (J + iK) (l + m) . ( 22 
)
The canonical decomposition [START_REF] Girard | Hyperquaternion conformal groups[END_REF] of B and f into simple, orthogonal and commuting planes

(B 1 , B 2 ) with b 1 = tan Φ 1 2 = 1, b 2 = tanh Φ 2 2 = 1 2 leads to B = b 1 B 1 + b 2 B 2 , f = e Φ 1 2 B 1 e Φ 2 2 B 2 , (23) 
with

B 1 = n + 3 10 (J + iK) (3l + m) , B 2 1 = -1 , ( 24 
)
B 2 = 3 10 (J + iK) (-l + 3m) -I K , B 2 2 = 1 . ( 25 
)
The two invariants of the transformation are

S 1 = B.B = - 3 4 , S 2 = [(B ∧ B) .B] .B = -1 . ( 26 
)
The conformal transformation with X = e a + e 1 + e b (x 0 = 0,

x 1 = 1, x 2 = 0) is obtained either directly e 1 D → e 1 /3 T → (1/3 + 1) e 1 = (4/3) e 1 R → (4/3) e 2 , (27) 
or by computation:

X ′ = f X f c = x ′ a e a + x ′ + x ′ b e b (28) = - 25 6 e a + 4e 2 - 7 6 e b , ( 29 
)
yielding the final transform

x → y(x) = x ′ x ′ b -x ′ a = 4 3 e 2 . ( 30 
)

Classification of hyperquaternion algebras

Table 1 lists a few hyperquaternion algebras and their signature (p, q) obtained via the generators given in [START_REF] Girard | Hyperquaternions: A new tool for physics[END_REF]. The table shows the importance of the parameter s = pq [2, 15]. It

030.5

reveals four classes of hyperquaternions: the algebras ⊗r (r even or odd) and the subalgebras C + . From (n, s) one deduces p = (n + s) /2, q = (ns) /2 yielding the general formulas for m integer (m ⩾ 1)

⊗2m ≃ C 4m (2m + 1, 2m -1) , (s = 2) , ⊗ ⊗(2m-1) ≃ C 4m-1 (2m + 1, 2m -2) , (s = 3) , ⊗(2m-1) ≃ C 4m-2 (2m -2, 2m) , (s = -2) , ⊗ ⊗(2m-2) ≃ C 4m-3 (2m -2, 2m -1) 
, (s = -1) .

All signatures of hyperquaternion algebras can be derived from the first four ones via the formula

C n+4 (p + 2, q + 2) = C n (p, q) ⊗ ⊗2 ,
resulting from the double application of the general formula

C n+2 (p + 1, q + 1) = C n (p, q) ⊗C 2 (1, 1) , together with C 2 (1, 1) ≃ (2) , (2) ⊗ (2) ≃ (4) ≃ ⊗2 . Furthermore, since ⊗2 ≃ (4) , ⊗ ⊗2 ≃ (4) , ⊗3 ≃ (4) ,
one obtains all square real, complex and quaternionic matrices. Concerning the matrix representation of hyperquaternion algebras, which is beyond the scope of this paper, the above isomorphisms show that ⊗2 can be represented either by a reducible real matrix (16) (real 16 × 16 matrix) or by an irreducible (4) matrix ( being represented by an irreducible (4) matrix). Similarly, ⊗3 and its subalgebra ⊗ ⊗2 can be represented either by a reducible matrix (64) or by an irreducible matrix [START_REF] Okubo | Real representations of finite Clifford algebras. I. Classification[END_REF] . A classification of real irreducible representations of quaternionic Clifford algebras can be found in [START_REF] Okubo | Real representations of finite Clifford algebras. I. Classification[END_REF][START_REF] Carrion | Quaternionic and octonionic spinors. A classification[END_REF].

A hyperconjugation defined as

A H = (i c , j c , k c ) ⊗ (I c , J c , K c ) ⊗ (l c , m c , n c ) ,
yields the matrix transposition, adjunction and transpose quaternion conjugate. Finally, writing ω = e 1 • • • e n , one obtains for all hyperquaternion algebras with the above values of s and Table 1: Hyperquaternion algebras (SR: special relativity, RQM: relativistic quantum mechanics, usp: unitary symplectic physics, sm: standard model).

C n (p, q) n p q s = pq G r oup Ph ysics the classical derivation (developing n = p + q and using (-1) pq = (-1) -pq )

1 0 1 -1 U(1) 1D 2 0 2 -2 US p(1) 2D ⊗ 3 3 0 3 SU(2) 3D ⊗2 ≃ (4) 4 3 1 2 SO(3, 1) SR ⊗ ⊗2 ≃ (4) 5 2 3 -1 SU(4) RQM ⊗3 ≃ (4) 6 
ω 2 = (-1) n(n-1) 2 e 2 1 .
..e 2 n = (-1)

n(n-1) 2 +q = (-1)

s(s-1) 2

= -1 .

Though hyperquaternion algebras have been neglected in the past, recent algebraic software like Mathematica and numerical computing have opened perspectives for the hyperquaternion calculus. An advantage of the hyperquaternion representation of Clifford algebras, is that the product is defined independently of the choice of the generators. Furthermore, hyperquaternion algebras single out specific Clifford algebras which seem to be closely related to symmetry group of physics as indicated in the table above. Thus they might constitute a step towards a greater unification as proposed in [START_REF] Tegmark | Our mathematical Universe: My quest for the ultimate nature of reality[END_REF].

Conclusion

The paper has developed applications of a new hyperquaternionic representation of Clifford algebras in terms of tensor products of quaternion algebras. One advantage of hyperquaternion algebras is a uniquely defined product, independent of the choice of generators. Though, hyperquaternions have been somewhat neglected so far, they have become more accessible due to the introduction of algebraic and numerical computing. As applications, the paper has examined the quaternion 2D representation, the conformal group in (1 + 2) space together with a numerical example and implementation. Finally, a classification of all hyperquaternion algebras into four types has been given, with general formulas of the signatures and the associated symmetry groups. We hope to have shown that the hyperquaternion algebras might constitute a useful unifying tool for physics.

A Multivector structure of C 5 (2, 3)

(e 012 = e 0 e 1 e 2 , etc..) 

                           1 

  = e 10b j I m = e b20 0 0 jJ l = e a1b jJ m = e a2b 0 jK = e 0a b 0 0 jK n = e 0a12b 0 kl = e a01 km = e a02 0 kI = e a 0 0 kI n = e a12 kJ = e 0 0 0 kJ n = e 012 0 kK l = e 1 kK m = e
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