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PHYS ICS

Topological transitions of the generalized
Pancharatnam-Berry phase
Manuel F. Ferrer-Garcia1, Kyrylo Snizhko2,3,4, Alessio D’Errico1*, Alessandro Romito5,
Yuval Gefen2, Ebrahim Karimi1

Distinct from the dynamical phase, in a cyclic evolution, a system’s state may acquire an additional component,
a.k.a. geometric phase. Recently, it has been demonstrated that geometric phases can be induced by a sequence
of generalized measurements implemented on a single qubit. Furthermore, it has been predicted that these
geometric phases may exhibit a topological transition as a function of the measurement strength. We demon-
strate and study this transition experimentally by using an optical platform where the qubit is represented by
the polarization of light and the weak measurement is performed by means of coupling with the spatial degree
of freedom. Our protocol can be interpreted in terms of environment-induced geometric phases, whose values
are topologically determined by the environment-system coupling strength. Our results show that the two limits
of geometric phase induced by sequences of either weak or projective measurements are topologically distinct.
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INTRODUCTION
When a quantum state undergoes a cyclic evolution, the phase ac-
quired is given by thewell-known dynamical component and an ad-
ditional contribution, associated with the geometrical features of
the path followed by the state. This additional contribution is
known as the geometric phase. The general framework for the emer-
gence of a geometric phase has been pointed out first by Berry (1) in
the context of adiabatic quantum evolution. A specific realization of
this phase had been earlier considered by Pancharatnam (2) in his
study of generalized interference theory. Pancharantnam’s theory
shows how geometric phases can be acquired in a nonadiabatic
cyclic evolution, noting that these are given by the area enclosed
by the respective trajectory of the system in the state space. The Pan-
charantnam phase can be observed following a sequence of running
projective measurements, each of a different observable, where the
last measurement projects on the initial state (3–5). Geometric
phases have found applications in several fields of physics (6), in
particular, in optics (7–10) and condensed matter physics (11–
15). The Berry phase is a key theme for understanding topological
phases of matter (15). For instance, the Berry phase plays the role of
a topological invariant in one-dimensional chiral symmetric
systems (16, 17) and serves as the fundamental building block in
the definition of other topological invariants, such as Chern
numbers (18). Going beyond Hamiltonian dynamics, the emer-
gence of geometric phases has been predicted and observed in the
context of non-Hermitian evolution (19–21); these phases were
further shown to emerge following a sequence of weak measure-
ments (22, 23). Further pursuing the latter theme, a major theoret-
ical development has revealed that dynamics comprising multiple
measurements may assign topological features to geometric
phases. In particular, the limits of weak and strong measurement

are topologically distinct (23–25). This prediction has recently
been confirmed using a superconducting qubit platform (26).
That study has implemented postselection on each individual mea-
surement. This aligns with the original theoretical proposal (23–25),
yet it leaves the question open: To what extent is the predicted to-
pological transition a feature of the specific laid-down protocol?

The experiment reported here not only uses a platform different
from that of (26) (namely, an optical platform) but also introduces a
conceptually different protocol: rather than exercising postselection
on each individual detector’s readout, here, we implement postse-
lection on a joint readout of all measurements of the run. We find
that a topological phase transition also takes place under such gen-
eralized conditions, with distinct values of the topological number
characterizing the respective limits of projective and infinitely weak
measurements. Our experimental procedure consists of a sequence
of measurements, each implemented by a set of optical elements.
The key optical element is a polarization-sensitive beam displacer
(BD), which is used to execute a weak measurement of the polari-
zation state of a laser beam. Using additional elements [quarter-
wave plates (QWPs) and compensating wave plates (CWPs)]
serves to tune the measurement to a specific observable. The
strength of the measurement is determined by the ratio of the
beam width and the difference of transverse displacements of or-
thogonal polarizations. The detector’s readout is, in fact, the polar-
ization degree of freedom of the photon, which, in turn, could be
viewed as the system, while the transverse position can be viewed
as the environment. Our protocol could then be interpreted as an
environment inducing a geometric phase, highlighting the dual
nature of detector/environment. Last, we investigate the robustness
of the observed topological properties with respect to setup
imperfections.

RESULTS
Theoretical overview
We consider a class of processes where N measurements are per-
formed on a quantum system, as shown in Fig. 1A. Each step is a
postselected measurement associated with the polarization state
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∣θ, ϕ⟩, where θ and ϕ stand for the polar and azimuthal coordinates
on the Bloch sphere, respectively. We can define a sequence of mea-
surements (θ, ϕn) for a fixed value of θ ∈ [0, π] while the azimuth is
spanned in discrete steps ϕn = 2πn/(N + 1). Let us denote the
acquired geometric phase χη(θ), where η ∈ [0, ∞) is introduced
to indicate the strength of the measurement. It can be shown that
Δχη = χη(π) − χη(0) = 2πm, where m is an integer; see Supplemen-
tary Materials for more details.

As illustrated in Fig. 1B, for infinitely weak measurements, η →
0, the effect of each measurement is vanishingly small. Therefore, χ
(θ) = 0 for any value of θ, implying that Δχη→0 = 0. However, in the
limit of projective measurements, strong measurement, one ob-
serves that Δχη→∞ = 2π, as shown in Pancharatnam’s geometric-
phase theory (2). An example of the latter case, strong measurement
limit, is illustrated in Fig. 1C: When θ = 0, the measurement se-
quence does not change the projected state. Thus, the trajectory
on the Bloch sphere shrinks to a single point independently of the

measurement strength. In consequence, the enclosed area—and the
geometrical phase—is zero. For θ → 0, the state follows a loop close
to the initial projected state, acquiring a small geometric phase. As θ
→ π, the state follows a similar loop close to the south pole of the
Bloch sphere, thus the enclosed geometric phase is close to 2π. This
gives Δχη→∞ = 2π, as stated above. The distinction between Δχη→0 =
0 and Δχη→∞ = 2π suggests the existence of a transition in the be-
havior of the geometric phase, as the measurement strength η is
varied. Because Δχ = 2πm, the nature of the transition is topological.

The topological nature of this transition becomes evident when
plotting the function χ ∈ [0,2π) as a function of θ ∈ [0, π] (Fig. 1, D
to F). Because χ(0) = χ(π) = 0(mod 2π), this function can bemapped
onto a closed loop on the torus T = [0,2π) × [0, π), as shown in
Fig. 1F. For Δχ = 2π (sufficiently large η), one obtains a curve that
wraps once around the vertical cycle of the torus, while for Δχ = 0
(sufficiently small η), the corresponding curve can be continuously
deformed in the coordinate curve χ = 0. The two curves obtained in
the strong and weak measurement cases cannot be continuously de-
formed into each other. Therefore, the dependence of the geometric
phase on θ in the strong and weak measurement regimes is topolog-
ically distinct.

Note that the topological transition is not possible if the function
χ(θ) is always well defined and continuous. At the critical measure-
ment strength, ηcr, the function χcr(θ) is not well defined. The
studies in (23–25) predict that this happens via a vanishing interfer-
ence contrast at some θ at ηcr. Below, we confirm this in our
experiments.

Experimental setup
We demonstrate the existence of this topological transition in an
optical experiment where the qubit state is associated with the po-
larization of a coherent beam. As illustrated in Fig. 2A, the beam
goes through a series of N = 3 identical optical stages that emulate
the measurement steps. Each stage is composed of a quarter wave
plate (QWP), whose fast axis is oriented at angle α = θ/2 with
respect to the vertical, followed by a YVO4 beam displacer (BD)
and an additional compensation wave plate (CWP). The BD’s ordi-
nary and extraordinary axes are aligned along ŷ and x̂, respectively.
Therefore, the BD shifts the centroid of the horizontally polarized
component by a distance dx, keeping the vertically polarized contri-
bution unchanged. The BD essentially performs measurement on
the vertical/horizontal polarization basis, as the horizontally polar-
ized component of the beam is spatially displaced. If the beam waist
w0 is larger than dx, then the measurement is weak, because there is
no sharp separation between the two polarization components (see
Fig. 2B). If the waist is much smaller than the displacement, w0 ≪
dx, then this implements a projective measurement, as the two po-
larization components are completely separated. Therefore, we can
control the measurement strength by modifying w0. The CWP with
a vertically aligned fast axis is used to compensate for the phase dif-
ference between the two polarization components accumulated
while propagating inside the BD.

The role of the QWPs is to implement the desired sequence of
measurement directions (θ, ϕn) on the Bloch sphere. The rotation
by angle α enables controlling the polar angle θ of the measurement
axis. The sequence of measurements induced by the setup in Fig. 2A
corresponds to the directions (θ, ϕn) rotated by an angle θ = 2α
around the y axis of the Bloch sphere; cf. Fig. 2C. The details of
this correspondence are explained in the “Simplifying the

Fig. 1. Measurement-induced phase and its topological transition. (A) The
state trajectory of a system is determined by a series of N measurements along
different directions (θ, ϕ). (B and C) The state trajectory on the Bloch sphere for
a sequence of three measurements with strength η = 0.2 (B) and η = 0.7. (C)
Different rows represent different values of θ. The black dashed line corresponds
to θ, at which the measurements are performed. The black points connected by
red arrows denote the system state trajectory, as induced by the measurements.
The colored portion of the Bloch sphere is the solid angle subtended by the re-
spective trajectory. The accumulated geometric phase on each trajectory is
plotted in (D and E) as a function of θ. At both points θ = 0 and π, χ mod 2π =
0, making these values of θ equivalent. Hence, the curves can be mapped onto
a torus (F), which highlights the topological distinction between the cases η =
0.2 and η = 0.7.
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experimental setup” section. Given the geometric nature of the
induced phase, the expected topological transition remains unaf-
fected by this rotation, both qualitatively and quantitatively.
Lastly, to complete the cyclic evolution, the polarization state is pro-
jected onto the initial state using a polarizer. Our aim is to investi-
gate the geometrical phase acquired by the undeflected beam
(corresponding to the measurement postselected to yield a null
outcome). This is done by interfering the final state with the refer-
ence beam, which only experiences a controllable phase shift δ in-
troduced by a variable phase plate. The output power at the
interferometer exit is recorded as a function of δ. The shift of this
curve corresponds to the acquired geometric phase. The input beam
is generated by means of a spatial light modulator that displays a
hologram allowing to tailor the beam waist through the technique
introduced in (27). We set the input beam’s polarization state to be

vertical (ŷ), corresponding to the initial state in the direction (θ, ϕ0)
in the theoretical protocol. On the basis of this setup, the measure-
ment protocol to unveil the hidden topological transition is given as
follows. The strength of our intermediate N = 3 measurements is
regulated by varying the waist parameter of the input beam: The
value of w0 is inversely proportional to the measurement strength
η = dx/w0 (see Fig. 2C). For a fixed waist parameter, we proceed to
get power readouts as a function of the reference arm phase shift δ ∈
[0, 2π], while α = θ/2 is kept constant. From here, it is possible to
retrieve the accumulated geometrical phase χη(θ = 2α) for a given
orientation of QWPs, α, by proper curve fitting. By varying the
QWP orientation, it is possible to reconstruct the behavior of χη(θ
= 2α) for all α for a given measurement strength.

Fig. 2. Optical implementation of a sequence ofweak polarizationmeasurements. (A) Experimental setup used to detect the geometrical phase acquired because of
a sequence of polarizationmeasurements. A 632.9-nm laser emits a vertically polarized Gaussian beam that impinges on a spatial light modulator (SLM) to obtain a beam
with a certain width w0. The beam is split into two paths: in one is subjected to a sequence of transformations, while a spatially uniform phase δ is applied to the other
path. Each stage is composed of a QWP, whose fast axis is oriented at angle α with respect to the vertical, a BD, and a QWP for 808 nm acting as the compensation wave
plate (CWP). Lastly, the output power of the interference is recorded after the recombined beam passes through a vertical polarizer. BS, beam splitter. (B) The measure-
ment strength η = dx/w0 is controlled by varying the waist parameter w0 of the input beam. When w0 is much larger than the beam displacement dx, the displacement is
ineffectual, corresponding to aweakmeasurement. Forw0 < dx, the two polarizations become twowell-separated beams, leading to a projectivemeasurement in the limit
w0 → 0. (C) In contrast to the examples exhibited in Fig. 1 (B and C), the sequence of measurements produced by this setup corresponds to a circle of θ = 2α, which is
additionally rotated by 2α around the x axis of the Bloch sphere. This does not affect the subtended area and, consequently, the accumulated geometric phase.
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Experimental results
Here, we discuss the experimental results and their relation to the
theoretical predictions. Because the postselection in our experiment
goes beyond the original theoretical proposal, we have modeled the
experiment to confirm the presence of a topological transition the-
oretically (see the “Optical implementation of the null-weak mea-
surement” section). Figure 3A shows that when w0 is sufficiently
small, i.e., strong measurement regime, the simulation predicts Δχ
= χ(α = π/2) − χ(α = 0) = 2π, while for the case of weak measure-
ments (w0 < dx), Δχ = 0. A sharp transition occurs at w0 = 0.85 mm,
where the interference contrast vanishes for α ≈ π/4, enabling the
abrupt change of the phase behavior. The experiment was carried
on by performing measurements for w0 between 0.6 and 2.5 mm.
The experimental results, shown in Fig. 3B, clearly exhibit a
similar transition between Δχ = 2π for small w0 and Δχ = 0 for
large w0, as well as the vanishing contrast at the transition.

The difference Δχ = χ(π/2) − χ(0) in the observations is not
strictly equal to 0 or 2π but can slightly deviate from these values.
This is seen most prominently for w0 = 0.6 mm.We attribute this to
the stability of the Mach-Zehnder interferometer, in particular to a
small drift in the phase between the two arms during the measure-
ment process (which was performed in 45 min). We emphasize that
this does not violate the topological quantization of Δχ but intro-
duces an error in its extraction. In all the cases, the extracted Δχ

is close to either 0 or 2π, making the determination of the topolog-
ical index m straightforward. The vanishing contrast at the transi-
tion also confirms the expected phenomenology of the topological
transition.

We note that the waistw�0 at which the transition happens clearly
deviates from the theory predictions: w�0 = 0.85 mm in the simula-
tion, while w�0 = 1.2 mm in the experiment. We attribute this devia-
tion to the fact that the surfaces of the BDs are parallel within a few
tens of arc seconds, as stated by the manufacturer and verified by us
independently. This tiny angle between the two surfaces induces a
small transverse wave vector difference between the two compo-
nents. We have incorporated this effect into our theoretical model-
ing, the results of which are presented in Fig. 3C. With this, we are
able to reproduce the change in the transition location. A detailed
analysis of these imperfections and the enhanced modeling can be
found in section S2.

Theoretical studies have predicted (24, 25) that the topological
transition only exists if the dynamical phases are compensated ac-
curately enough. In our work, this condition is satisfied. In Fig. 4 we
explored theoretically the topological phase diagram considering
the additional parameter γ corresponding to the optical retardation
of the CWP. The results show that there is a range of values of γ
where the topological transition can be observed, both in the
ideal scenario and in the case of imperfect optical elements.

Fig. 3. Experimentally measured and theoretically simulated geometric phase. Topological transition in the measurement-induced geometric phase χ(α = θ/2): (A)
theoretical modeling, (B) experimental results, and (C) modeling incorporating the imperfection of the birefringent crystals. The plots show the phase χ(α) and the
interference contrast A. The left column corresponds to a narrow beam (small w0, strong measurement) and features Δχ = 2π. The right column corresponds to a
large beam width (weak measurement) and exhibits Δχ = 0. The middle column represents a point close to the transition: The phase χ(α) exhibits a sharp change
near α = π/4. The sharp change of the phase coincides with the vanishing of the interference contrast, which renders χ(α) ill-defined and enables the topological
transition.
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DISCUSSION
We have demonstrated that measurement-induced geometric
phases in optical systems exhibit a topological transition. In partic-
ular, we consider a family of processes parameterized by a variable α
and a measurement strength η. We demonstrated that the geomet-
rical phase, with respect to η and α, exhibits a nontrivial topology.
More precisely, the variation Δχ in the geometrical phase as a func-
tion of α undergoes a sharp transition of 2π as η is varied. The pa-
rameter η can be viewed as the coupling strength with an
environment, here represented by the light’s spatial degree of
freedom. In this framework, our observations can be interpreted
as topological transitions induced by the coupling to an external en-
vironment. The topological transition is robust to amending the
protocol and the imperfections in the measurement process. The
location of the topological transition depends on specific details
of the system (quality of BDs, retardation of the compensating
wave plates, etc.). This sensitivity of the transition location may
be useful for characterizing optical elements or for sensing. We
leave this, however, to future investigations.

MATERIALS AND METHODS
Optical implementation of the null-weak measurement
In our optical implementation of the measurements, the detectors
are two-state systems with possible readouts r = ±. We use the
photon spatial degree of freedom, i.e., its location in the xy plane
(transverse to the propagation direction). The formal description
of this is as follows. The incident photon’s electric field can be de-
scribed as

E0ðx; yÞ ¼
E0y
E0x

� � ffiffiffiffiffiffiffiffi
2

πw2
0

s

e� ðx
2þy2Þ=w2

0eikz ð1Þ

The measurement is implemented via a BD (see Fig. 2B) that shifts

the x-polarized component in space

Eðx; yÞ/
eiknyLyE0ye� ðx

2þy2Þ=w2
0

eiknxLxE0xe� ð½x� dx�
2
þy2Þ=w2

0

 !

eikz ð2Þ

where normalizing factors are not shown. Apart from the displace-
ment, the phases associated with propagation in the BD, knxLx and
knyLy, are imprinted onto the polarization components. The overall
phase is not important, whereas the difference γ = knxLx − knyLy
may lead to observable consequences; cf. Fig. 4. In our protocol,
we compensate for this phase difference; see below. Therefore,
here we put, for simplicity, knxLx = knyLy = 0.

If, after experiencing the BD, the beam were to interfere with the
original beam, then the interference term would be

ð

dx dy E�0ðx; yÞEðx; yÞ ¼ jE0y j
2
þ jE0x j

2e
� d2

2w20 ð3Þ

¼
E0y
E0x

� �y

M�
E0y
E0x

� �

ð4Þ

where M−, in analogy with the notation in the Supplementary
Materials, is the diagonal matrix diagð1;

ffiffiffiffiffiffiffiffiffiffi
1 � ζ
p

Þ, with
ffiffiffiffiffiffiffiffiffiffi
1 � ζ
p

¼ e� d
2
x=ð2w2

0Þ. Therefore, a BD implements a postselected
null weak measurement in the photon’s polarization space. The
measurement strength η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð1 � ζÞ

p
¼ dx=w0, as defined in

the section "Experimental setup." The limit of projective
measurement corresponds to η → ∞, while the infinitely weak mea-
surement corresponds to η → 0.

Note that in our actual setup (cf. Fig. 2A), the interference
happens after three beam displacements have been performed.
Therefore, the postselection is implemented not on the readout of
each individual measurement but on the combined “readout” of all
measurements. This constitutes an important conceptual difference

Fig. 4. Topological phase dependence on compensating waveplates. The phase diagram (theoretical) depicting the topological properties of the measurement-
induced phase as a function of beam waist w0 and the compensation phase γ. We present the results of a theory simulation without (left) and including (right) the
experimental imperfections of the birefringent crystals. Note that the trivial phase with (Δχ = 0) exists only in a narrow interval of the phase compensation parameter
The vertical line indicates the parameters used in our experiment. The imperfections of birefringent crystals clearly make the trivial region shrink yet do not eliminate the
topological transition.
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compared to the original definition of the measurement-induced
phase and its topological transition, detailed in the Supplementary
Materials. Observation of the topological transition in our work,
thus, underlines that the transition is not a feature of a specific
narrow protocol but a more general phenomenon.
Phase difference compensation
To compensate for the unwanted phase difference γ = knxLx −
knyLy, one can use a phase plate

PðφÞ ¼ eiφ=2 0
0 e� iφ=2

� �

ð5Þ

Choosing ϕ = γ and placing the phase plate after the BD leads to

PðγÞ BD E0ðx; yÞ ¼
ffiffiffiffiffiffi
2

πw2
0

q
eikðnxLxþnyLyÞ=2eikz

�
E0ye� ðx

2þy2Þ=w2
0

E0xe� ð½x� dx�
2
þy2Þ=w2

0

 !
ð6Þ

leaving one only with an unimportant overall phase. The overall
phase is unimportant because it does not depend on the incoming
polarization and thus can be calibrated away.

In our setup (cf. Fig. 2A), the required phase compensation is
implemented with a QWP for a wavelength distinct from that of
the laser we use. We denote it as CWP.
Measuring different observables
The measurement procedure described above leads to the back
action matrix M−, i.e., to measuring σz. To implement measure-
ments of different observables n · σ, corresponding to n =
(sinθcosϕ, sinθsinϕ, cosθ), one needs to be able to (i) discriminate
different linear polarizations (not only horizontal and vertical) with
a BD and (ii) convert elliptical polarizations to linear and back, so
that they can be discriminated by the BD.

(i) can be implemented by rotating the BD in the xy plane

BDðθ=2Þ ¼ Rðθ=2Þ BD Rð� θ=2Þ ð7Þ

with the rotation matrix

Rðθ=2Þ ¼ cosθ=2 � sinθ=2
sinθ=2 cosθ=2

� �

ð8Þ

(ii) can be implemented by placing phase plates P(± ϕ) before
and after the BD.

Therefore, a measurement of n · σ can be implemented via a se-
quence of elements that involves a rotated BD and CWP, as well as
two phase plates

Mðθ;ϕÞ ¼ Pð� ϕÞRðθ=2ÞPðγÞ BD Rð� θ=2ÞPðϕÞ ð9Þ

Note that to rotate the measurement axis by θ, one needs to perform
real space rotations by α = θ/2.

This sequence uses four elements per measurement, whereas our
setup in Fig. 2 features only three optical elements per measure-
ment. We describe how this is achieved in the next section.

Simplifying the experimental setup
The protocol for observing the topological transition requires
sending in a laser beam with polarization

Ein ¼
E0y
E0x

� �

¼
cosθ=2
sinθ=2

� �

¼ Rðθ=2Þ 1
0

� �

ð10Þ

and using N measurements M(θ, ϕj), where the measurement
stages are defined in Eq. 9 and ϕj = 2πj/(N + 1). The number of re-
quired optical elements can be reduced. To do this, one needs two
observations.

First, consider the incoming polarization and the first measure-
ment

Mðθ;ϕ1Þ
cosθ=2
sinθ=2

� �

¼ Pð� ϕ1ÞRðθ=2ÞPðγÞ BD

� Rð� θ=2ÞPðϕ1ÞRðθ=2Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
0

� � ð11Þ

The block R(−θ/2)P(ϕ1)R(θ/2) can be interpreted as a phase
plate rotated by the angle α = θ/2, P(ϕ1, α).

Second, consider two sequential measurements

Mðθ;ϕjþ1ÞMðθ;ϕjÞ ¼ Pð� ϕjþ1ÞRðθ=2ÞPðγÞ BD
� Rð� θ=2ÞPðϕjþ1ÞPð� ϕjÞRðθ=2Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� PðγÞ BD Rð� θ=2ÞPðϕjÞ

ð12Þ

The block R(−θ/2)P(ϕj+1)P(−ϕj)R(θ/2) can be replaced with a
single rotated phase plate P(ϕj+1 − ϕj, α) = P(2π/(N + 1), α) = P
(ϕ1, α).

Therefore, instead of having a rotated incoming polarization and
rotated BDs, one can have vertical incoming polarization and
rotated phase plate P(ϕ1, α) before the BDs. Note that this setup sim-
plification involves replacing all phase plates P(ϕj) with their rotated
versions R(−θ/2)P(ϕj)R(θ/2) and the input polarization R(θ/2)(1
0)T with ð1 0ÞT. The simplified setup is related to the original pro-
tocol by rotating all the measurement axes nj by angle θ around the y
axis of the Bloch sphere. For our choice of N = 3, we have ϕ1 = π/2,
making the required phase plates P(ϕ1, α) QWPs and leading to the
setup in Fig. 2A.
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