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ABSTRACT 
 

Refractory architected ceramics constitute a class of highly porous media which gains in importance for 
enginnering high-temperatures applications. From a thermal modelling viewpoint, one of the main 
challenges, is to finely describe the transport of thermal radiation which plays a major role in the 
dtermination of their thermal performances. Such a consideration is today crucial for developing 
topology optimization processes in order to define the best 3D geometries for a given set of objectives. 
To conduct these methodologies, it is important to quickly solve the radiative transfer equation at the 
continuous scale while taking into account as accurately as possible the meso-texture desbribing the 3D 
solid network. This goes back to assume that the physical statements governing this equation are valid, 
the porous architectures having to behave as an equivalent Beerian medium. However, when non 
Beerian behaviour is highlighted, the latter framework needs to be revised. To go one step further with 
this issue, numerical 3D geometries with a regular arrangement of cubic cells are generated with an 
homemade software. The analysis of their extinction cumulative distribution function curves obtained 
with the Radiative Distribution Function Identification method allows us to check whether or not the 
attenuated thermal radiation follows a Beerian behaviour. The effects of the textural parameters will 
then be discussed. Finally, preliminary practical considerations will be given for describing their 
conductive radiative behaviour when they are enclosed between a hot and a cold plate through both a 
continuous and the discrete scale methodologies, using a stabilized vectorial Finite Element Method 
solver.  
 
KEY WORDS: Cellular lattices, Radiative Distribution Function Identification, non Beerian behaviour, 
conduction-radiation coupling.   
 
 

1. INTRODUCTION  
 

In the field of carbon-free heat generation, there is a growing interest in the design of compact and long-
life high temperature energy systems such as gas-to-gas heat exchangers [1], volumetric solar receivers 
[2] (VSR) and radiant tube inserts [3], among others. They are mostly based on architected refractory 
ceramics (p ∼75-95%, cell size ∼0.1-10 mm) which can be depicted by a continuous ligament network 
(the solid phase) delimiting open cells in which a fluid can flow. When silicon carbide (SiC) is used as 
the constitituve material [2, 4], the whole 3D architecture exhibits outstanding properties such as high 
specific surface area, good flow-mixing capacity, high thermal shock resistance and high resistance to 
chemical corrosion. The rapid development of additive manufacturing (AM) extends furthermore the 
possibilities to elaborate a large range of 3D geometries going from regular lattice structures with 
different types of unit cells, triply periodic minimal surface-based structures up to more classical 
irregular strut-based structures. In order to propose a topology optimization process aiming at the 
definition of the best 3D architectures for prescribed thermal objectives, the detailed modelling of their 
thermal behaviour is essential [3, 5]. In particular, one of the main challenges, is to be able to exactly 
describe the role of thermal and/or solar radiation in the heat balance of the system for both unsteady or 
steady regimes. To date, two main routes can be used to determine the temperature and/or heat flux 
fields within 3D structures [5-8]. The first class of methods, at the discrete mesoscopic scale, allows a 



 

 

treatment of the radiative heat exchange directly at the scale of the individual constituents (here the 
struts and walls constituting the basic cells). Several parallelized approaches have been developed for 
conducting these approaches : stabilized vectorial Finite Element schemes [5], cell centered Finite 
Volume models with ray tracing [9, 10], hybrid schemes combining motion of Brownian walkers in the 
solid opaque phase and ray tracing in the fluid phase [11], and Monte Carlo strategies based on integral 
formulations [12]. The second class of method, at the continuous macroscopic scale, requires to 
rigorously solve the radiative transfer equation as long as the assumptions (randomness, homogeneity 
and continuity) that govern its statement are valid. Let us clarify that an architected ceramic can be 
viewed as an equivalent domain absorbing, emitting and scattering the thermal radiation. These latter 
physical phenomena are, in fact, induced by the light-matter interaction at the scale of the ligaments. If 
the equivalent medium is optically thick, the radiative transfer equation can be reduced to a simpler 
diffusion equation by applying, for example, the spherical harmonics method at the order 1 (the P1 
approximation) or, even more crudely, the Rosseland approximation [6]. Whatever the precision sought, 
these approaches can only be applied if the volume radiative properties (extinction, absorption and 
scattering coefficients, scattering phase function) are identified from an equivalent semitransparent 
continuous Beerian medium. The term Beerian stands, here, for an extinction law characterised by an 
exponential function of the optical thickness. This statement changes when spatial correlations occur 
meaning that the equivalent semitransparent medium becomes not easily homogeneisable. In general, 
the samples are considered as Beerian media [3, 13, 14] without an in-depth investigation of their ability 
to extinct radiation being really carried out. By using the Radiative Distribution Function Identification 
method, Taine et al. have shown that a dispersion of overlapping transparent spheres in an opaque 
continuous hosting medium deviates from the Beerian behavior when its volume fraction, 𝑓𝑓𝑣𝑣, becomes 
important (𝑓𝑓𝑣𝑣 > 0.4) [15]. Such a synthetic medium can be used to represent a statistically isotropic foam. 
More recently, Ouchtout et al. have computed the temperatures fields within two SiC-based regular 
cubic lattices (𝑝𝑝 = 0.91, 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛= 0.16 mm, 𝐿𝐿 = 0.38 and 0.76 mm) by solving a conductive-radiative 
numerical scheme with stabilized vectorial finite element methodologies applied respectively at both 
the continuous scale and the discrete scale. Both the temperature profiles are closely identical [5]. Since 
the continuous approach assumes for the radiative part that the Beer law is valid, it can be concluded 
that this cubic lattice exhibits a Beerian behaviour. Such a survey indicates that a study investigating the 
radiative behavior of synthetic lattices as a function of variable textural features (spatial repartition, 
shape and size of cells, size of the computing domain) is still relevant. To go one step further with these 
issues, a set of virtual regular SiC-based cubic cell structures with prescribed textural features will be 
designed with the GenMat software (C++, Qt) [16]. Then, the Radiative Distribution Function 
Identification method will be applied to compute the extinction cumulative distribution functions of the 
whole set of numerical samples. This will allow us to provide preliminary practical criteria for defining 
the radiative behaviours (non Beerian or Beerian) of the samples. A set of extinction coefficients will 
be determined and their impacts on the modelling of the conductive-radiative behaviour of the cubic 
cells structures will be discussed.  
 

2. NUMERICAL METHODOLOGIES 
 
2.1 3D structures generation 
 
In this work, a homemade 3D structures generator, called GenMat (C++, Qt) [16], has been used to 
provide the whole set of numerical samples. The generator allows the numerical elaboration of regular 
and irregular 3D structures with prescribed textural features (porosity, nominal pore diameter). For the 
regular structures, a simplified four-steps process is applied. The centers of all cells are firstly created. 
Secondly, the nodes, edges, faces of all cells are defined, and a structuration loop adds solid voxels 
between each apex, forming a thin skeleton. Thirdly, as for irregular foams, the ligaments can be shaped 
with a spherical or a square structuring element. Lastly, the desired porosity is reached by creating a 
distance map converted in grey levels. Once the 3D binarized structures are generated, a robust marching 
cube process allows to mesh the fluid/solid interface. GenMat proposes an export module for recording 
surfacic meshes.The software also contains modules which provide the volume fraction of the void 
phase i.e. the porosity, 𝑝𝑝, and the volumetric surface, 𝐴𝐴 of each numerical sample.  



 

 

 2.2 Radiative Distribution Function Identification method 
 
In this work, the Radiative Distribution Function Identification (RDFI) method, originally proposed by 
Tancrez and Taine [17], will be applied to determine the volumetric radiative properties of the 3D 
architectures. This method has been implemented in the GenMat framework [18]. More precisely, the 
RDFI is a collision-based Monte Carlo Ray Tracing method assuming that for each local interaction 
between a ray and the solid matter, the geometrical optic approximation is valid. It means that the mean 
characteristic size of the ligaments and of the cells constituting the generated 3D structures must be 
much larger than the incident wavelength i.e. the Mie size parameter is greater than 1. The RDFI method 
consists in launching a huge number of rays from points 𝑀𝑀 that are uniformly distributed in the fluid 
phase surrounding the ligaments. Their directions are randomly chosen within the entire 4𝜋𝜋 steradian 
sphere. Once a ray hits a solid phase element at the point 𝐼𝐼, the latter is considered as totally extinguished 
and the path length to collision, 𝑠𝑠𝑒𝑒 = |𝑀𝑀𝐼𝐼| is computed [17]. For a large number of rays, 𝑁𝑁𝑅𝑅, a set of 
path length 𝑠𝑠𝑒𝑒,𝑗𝑗 values are obtained from which the corresponding normalized extinction distribution 
function, 𝐹𝐹𝑒𝑒(𝑠𝑠) is computed : 
 

𝐹𝐹𝑒𝑒(𝑠𝑠) = 1
𝑁𝑁𝑅𝑅
∑ 𝛿𝛿�𝑠𝑠 − 𝑠𝑠𝑒𝑒,𝑗𝑗 �𝑁𝑁𝑅𝑅
𝑗𝑗=1   (4) 

 
where 𝑠𝑠 is the path length variable and 𝛿𝛿 the Dirac delta distribution. The extinction cumulative 
distribution function 𝐺𝐺𝑒𝑒(𝑠𝑠) is then obtained by integrating 𝐹𝐹𝑒𝑒(𝑠𝑠) : 
 

𝐺𝐺𝑒𝑒(𝑠𝑠) = ∫ 𝐹𝐹𝑒𝑒(𝑠𝑠′)𝑑𝑑𝑠𝑠′𝑠𝑠
0   (5) 

 
To decide whether the extinguished ray is absorbed or scattered, a random number, 𝜂𝜂, uniformly 
distributed over [0,1] is selected and compared to the local reflectivity, 𝜌𝜌, that can be given  by the 
Fresnel law (if the interacting fluid/solid interface is considered as optically smooth). If 𝜂𝜂 > 𝜌𝜌 the ray 
is considered as absorbed and otherwise scattered. This allows to determine the absorption and the 
scattering cumulative probabilities with a similar numerical process as for 𝐺𝐺𝑒𝑒(𝑠𝑠). If the studied 
equivalent medium is Beerian, the quantity �1 − 𝐺𝐺𝑒𝑒(𝑠𝑠)� shows a typical Beer-Lambert exponential 
decay behaviour expressed by:  
 

1 − 𝐺𝐺𝑒𝑒(𝑠𝑠) = 𝑒𝑒−𝛽𝛽𝑠𝑠 = 𝐼𝐼(𝑠𝑠)
𝐼𝐼0

 (6) 
 

where 𝐼𝐼(𝑠𝑠) is the radiant intensity at the distance 𝑠𝑠 and 𝐼𝐼0 is the impinging intensity at 𝑠𝑠 = 0 from a 
collimated beam. In that situation, the extinction coefficient 𝛽𝛽 of the equivalent Beerian medium can be 
evaluated by a fit of the numerically evaluated �1 − 𝐺𝐺𝑒𝑒(𝑠𝑠)� function.  
 
2.3 Models of conductive radiative transfers 
 
Before describing the two approaches used in this work and described in [5], let us specify that the global 
computational domain is depicted by a cube sandwhiched, on two of its opposite faces, by a hot opaque 
wall maintened at 𝑇𝑇ℎ𝑛𝑛𝑜𝑜 (for 𝑥𝑥 = 𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛) and a cold opaque wall (for 𝑥𝑥 = 𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚) with 𝑇𝑇 =  𝑇𝑇𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.  
 
2.3.1 Continuous-scale coupled model 
 
For the continuous-scaled coupled model, the standard steady-state form of the radiative transfer 
equation, which describes the transport of the radiative intensity, 𝐼𝐼(𝒙𝒙, 𝒔𝒔), within a Beerian semi-
transparent medium is used :  
 

𝒔𝒔.∇𝐼𝐼(𝒙𝒙, 𝒔𝒔) + 𝛽𝛽(𝒙𝒙)𝐼𝐼(𝒙𝒙, 𝒔𝒔) − 𝜎𝜎(𝒙𝒙)∫ 𝐼𝐼(𝒙𝒙, 𝒔𝒔′)Φ(𝒔𝒔′, 𝒔𝒔)𝑑𝑑𝒔𝒔′4𝜋𝜋 − 𝜅𝜅(𝒙𝒙) 1
𝜋𝜋
𝜎𝜎𝐵𝐵𝑛𝑛2𝑇𝑇4 = 0 (7) 

 



 

 

Here, 𝒙𝒙 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ Ω where Ω is the spatial domain of interest, 𝒔𝒔 ∈ S2 is the direction of propagation 
where S is the solid angle space, 𝛽𝛽(𝒙𝒙) =  𝜅𝜅(𝒙𝒙) +  𝜎𝜎(𝒙𝒙) is the extinction coefficient with 𝜅𝜅(𝒙𝒙)the 
absorption coefficient and 𝜎𝜎(𝒙𝒙) the scattering coefficient, 𝜎𝜎𝐵𝐵 is the Stefan-Boltzmann constant, 𝑚𝑚 is the 
real part of the complex index of refraction of the medium and 𝑇𝑇 the temperature. Φ(𝒔𝒔, 𝒔𝒔′) is the 
scattering phase function which is depicted in this work by the Henyey-Greenstein function. In the 
present study, the spatial domain of interest Ω is a cube i.e. Ω =
{(𝑥𝑥,𝑦𝑦, 𝑧𝑧)|𝑥𝑥 ∈ [0, 𝐿𝐿],𝑦𝑦 ∈ [0, 𝐿𝐿], 𝑧𝑧 ∈ [0, 𝐿𝐿]}. To provide closure to the model, the following boundary 
conditions are used for inward directions 𝒔𝒔.𝒏𝒏 < 0:  
 

𝐼𝐼(𝒙𝒙, 𝒔𝒔) = 𝜀𝜀 1
𝜋𝜋
𝜎𝜎𝐵𝐵𝑛𝑛2𝑇𝑇4  ∀𝑥𝑥 = {𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛,𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚} (8) 

 
𝐼𝐼(𝒙𝒙, 𝒔𝒔) = (1 − 𝜀𝜀)𝐼𝐼(𝒙𝒙, 𝒔𝒔′)  ∀𝑥𝑥 = ]𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛,𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚[ (9) 
 

where 𝜀𝜀 is the total emissivity of the two emissive walls at 𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛 (fixed at 𝑇𝑇ℎ𝑛𝑛𝑜𝑜) and 𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚 (fixed at 
𝑇𝑇𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐). Furthemore 𝒔𝒔′ is deduced from 𝒔𝒔 by using the Householder rotation matrix. The Eq. (9) depicts 
periodic boundary conditions with specular reflection for the four other faces of the cube. The 
knowledge of 𝐼𝐼(𝒙𝒙, 𝒔𝒔) allows to compute the integrated intensity 𝐺𝐺(𝒙𝒙) defined by :  
 

𝐺𝐺(𝒙𝒙) = ∫ 𝐼𝐼(𝒙𝒙, 𝒔𝒔)𝑑𝑑𝒔𝒔4𝜋𝜋  (10) 
 
This latter quantity is injectetd in the steady-state heat energy balance which writes :   
 

∇. (−𝜆𝜆(𝒙𝒙)∇𝑇𝑇) +  𝜅𝜅(𝒙𝒙)4𝜋𝜋𝐼𝐼𝑏𝑏(𝑇𝑇)− 𝜅𝜅(𝒙𝒙)𝐺𝐺(𝒙𝒙) = 0  (11) 
 
with 𝐼𝐼𝑏𝑏(𝑇𝑇) = 1 𝜋𝜋⁄ 𝜎𝜎𝐵𝐵𝑛𝑛2𝑇𝑇4. The boundary conditions for solving Eq. (11)  are the following :  
 

𝑇𝑇 = 𝑇𝑇ℎ𝑛𝑛𝑜𝑜  ∀𝑥𝑥 = {𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛},  𝑇𝑇 = 𝑇𝑇𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐  ∀𝑥𝑥 = {𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚}, −∇𝑇𝑇.𝒏𝒏 = 0  ∀𝑥𝑥 = ]𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛,𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚[ (12) 
 
2.3.2 Discrete-scale coupled model 
 
The discrete-scale coupled model consists in considering a solid phase domain, Ω𝑠𝑠, immersed in a fluid 
phase domain, Ω𝑓𝑓. Ω𝑠𝑠 ∪ Ω𝑓𝑓 forms the whole computational domain Ω. This description corresponds well 
to domains defined from the 3D architectures given by GenMat. The solid (resp. fluid) phase boundary 
is given by ∂Ω𝑠𝑠 (resp. ∂Ω𝑓𝑓) and the solid-fluid interface is denoted by Γ = ∂Ω𝑠𝑠 ∩ ∂Ω𝑓𝑓. Let us define 𝒏𝒏𝒔𝒔 
(resp. 𝒏𝒏𝒇𝒇) the outward unit vector normal to the solid (resp. fluid) phase. The approach has already been 
detailed elsewhere [5, 19] and is now decribed briefly. First the steady-state heat conduction equation is 
solved in the solid phase which must be optically thick. The energy transfer between the solid phase and 
the void phase occurs at the boundary only. The conduction problem consists in searching a scalar 
function 𝑇𝑇𝑠𝑠 verifying :  
 

∇. (−𝜆𝜆𝑠𝑠∇𝑇𝑇𝑠𝑠) = 0  ∀𝑥𝑥 ∈ Ω𝑠𝑠  (13) 
 

where 𝜆𝜆𝑠𝑠 is the thermal conductivity of the solid phase. Similarly to the continuous-scale model, the 
temperature is prescribed on the opposite parts of the solid phase.  
 

𝑇𝑇𝑠𝑠 = 𝑇𝑇ℎ𝑛𝑛𝑜𝑜 on ∂Ω𝑠𝑠,𝐷𝐷,− ⊂ Γ with ∂Ω𝑠𝑠,𝐷𝐷,− = {𝑥𝑥 ∈ ∂Ω𝑠𝑠, 𝒙𝒙 < 𝛿𝛿 + 𝑚𝑚𝑚𝑚𝑛𝑛Ω𝑠𝑠𝒙𝒙′} (14) 
 

𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 on ∂Ω𝑠𝑠,𝐷𝐷,+ ⊂ Γ with ∂Ω𝑠𝑠,𝐷𝐷,+ = {𝑥𝑥 ∈ ∂Ω𝑠𝑠,𝒙𝒙 < 𝛿𝛿 + 𝑚𝑚𝑚𝑚𝑥𝑥Ω𝑠𝑠𝒙𝒙′} (15) 
 
In these relationships, the subscript 𝐷𝐷 stands for Dirichlet and 𝛿𝛿 is a sufficiently small positive parameter 
so that the Dirichlet condition is applied on a boundary of sufficiently large enough area. The boundary 



 

 

condition over Γ are flux continuity relations taking into account both the emission loss and the incoming 
flux radiation: 

−𝜆𝜆𝑠𝑠∇𝑇𝑇𝑠𝑠.𝒏𝒏𝒔𝒔 =  𝜀𝜀𝑠𝑠𝜎𝜎𝐵𝐵𝑛𝑛𝑠𝑠2𝑇𝑇𝑠𝑠4 − 𝜀𝜀𝑠𝑠 ∫ 𝐼𝐼𝑓𝑓𝒔𝒔.𝒏𝒏𝒇𝒇>0
𝒔𝒔.𝒏𝒏𝒇𝒇𝑑𝑑𝒔𝒔 (16) 

 
where 𝑛𝑛𝑠𝑠is the index of refraction of the solid phase and 𝑇𝑇𝑠𝑠 the temperature on Γ. Furthermore the 
radiation problem is only solved in the fluid phase (considered here as purely transparent) where the 
steady state radiative transfer equation is reduced to :  
 

𝒔𝒔.∇𝐼𝐼𝑓𝑓 = 0  ∀𝑥𝑥 ∈ Ω𝑓𝑓 (17) 
 

Since thermal exchanges can occur on Γ, an inlet boundary condition is defined (the “ � ” symbol stands 
for inlet condition):  

 
𝐼𝐼(𝒙𝒙, 𝒔𝒔) = 𝜀𝜀𝑠𝑠

1
𝜋𝜋
𝜎𝜎𝐵𝐵𝑛𝑛2𝑇𝑇4 + (1 − 𝜀𝜀𝑠𝑠) 𝐼𝐼(𝒙𝒙, 𝒔𝒔′) on Γ with 𝒔𝒔.𝒏𝒏𝒇𝒇 < 0 (18) 

 
The problem is closed by considering on the two ends of Ω𝑓𝑓, the two hot and cold prescribed 
temperatures, yielding the relationship:  
 

𝐼𝐼(𝒙𝒙, 𝒔𝒔) = 𝜀𝜀 1
𝜋𝜋
𝜎𝜎𝐵𝐵𝑛𝑛2�𝑇𝑇ℎ𝑛𝑛𝑜𝑜�

4  ∀𝑥𝑥 = {𝑥𝑥𝑛𝑛𝑚𝑚𝑛𝑛} and 𝐼𝐼(𝒙𝒙, 𝒔𝒔) = 𝜀𝜀 1
𝜋𝜋
𝜎𝜎𝐵𝐵𝑛𝑛2�𝑇𝑇𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐�

4  ∀𝑥𝑥 = {𝑥𝑥𝑛𝑛𝑚𝑚𝑚𝑚}  (19) 
  

 
3. RESULTS AND DISCUSSION 

 
In the following, the room-temperature complex refractive index of silicon carbide at the wavelength of 
4 µm, is affected to the solid skeleton of each numerical 3D structure [21]. It ensures that their ligaments 
can be considered as optically thick, their lowest diameter being fixed at 30 µm. For the sake of clarity, 
the acronym CCS means cubic cell structures. To complete their denomination, one adds an information 
regarding the nominal pore diameter, 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛, the number of cells, 𝑁𝑁𝑐𝑐, and the size of the domain, 𝐿𝐿. 
CCS_160_1_380 corresponds therefore to a cubic cell structure with 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = 160 µm, 𝑁𝑁𝑐𝑐= 1 and 𝐿𝐿 = 
380 µm.  
 
3.1 Influence of the textural parameters of  cubic cell structures on their extinction 
behaviour  
 
Five cubic cell structures with a growing cell number (𝑁𝑁𝑐𝑐= 13, 33, 53, 73, 93) with same size (𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = 160 
µm) are firstly created with GenMat. Table 1 gives their respective porosity and volumetric surface after 
having performed the final porosity tuning process as explained in section 2.1. The numerical samples 
are described in Fig.1  
 
Table 1  Textural and radiative parameters 

Samples 𝑝𝑝 𝐿𝐿 (µm) 𝐴𝐴 (m-1) 𝛽𝛽𝑛𝑛𝑛𝑛(m-1) a b (m-1) 
CCS_160_1_380 0.91    380 8755.6 2405.4 1.53 4424.8 
CCS_160_27_760 0.91     760 8580.4 2357.1 3.57 1295.3 

CCS_160_125_1040 0.91 1040 8521.2 2341.0 6.21 642.7 
CCS_160_343_1330 0.91 1520 8698.0 2389.6 6.24 595.2 
CCS_160_729_1710 0.91 1900 8716.2 2394.6 10.58 351.5 

 
The analysis of their two-point autocorrelation functions indicate that the influence of the lattice 
periodicity weakens when the size of the computational domain becomes important. Fig. 2) shows their 
extinction cumulative distribution functions 𝑙𝑙𝑛𝑛�1 − 𝐺𝐺𝑒𝑒(𝑠𝑠)� as a function of 𝑠𝑠, obtained for 𝑁𝑁𝑅𝑅 = 106. 



 

 

 
Fig.1 3D images of (1)  CCS_160_1_380 (2) CCS_160_27_760, (3) CCS_160_125_1040 (4) 
CCS_160_343_1330 (5) CCS_160_729_1710 
 
Special cares have been taken to define a suitable shooting zone for computing 𝑙𝑙𝑛𝑛�1 − 𝐺𝐺𝑒𝑒(𝑠𝑠)� i.e., not 
too small to be representative, and not too large to limit outgoing rays. The curves clearly deviate from 
what is expected for a Beerian behaviour (a perfect linear profile is expected in this case). It is noted 
that the deviations are all the less proncunced when the size of the computational domain become large. 
To go one step further, each extinction cumulative distribution function curve has been nicely 
reproduced using the Levengberg-Marquardt scheme by the following expression:  
 

𝑦𝑦(𝑠𝑠) = −𝑚𝑚�𝑒𝑒𝑏𝑏𝑠𝑠 − 1� (20) 
 
The results of the fitting process are shown for for CCS_160_1_380 and CCS_160_27_760 in Fig2b). 
In Gomez-Garcia et al, the authors proposed a quite similar expression for analysing the radiation 
propagation within a stack of SiC-based square grids [20]. Table 1 lists the values of 𝑚𝑚 and 𝑏𝑏 for the five 
numerical samples. Going from CCS_160_1_380 up to CCS_160_729_1710, it can be evidenced that 
the lowest value of 𝑏𝑏 are required to confer a Beerian behaviour to the set of  numerical 3D architectures. 
It is worth of notify that if 𝑏𝑏𝑠𝑠 is lower than 1, 𝑦𝑦(𝑠𝑠)~ − 𝑚𝑚𝑏𝑏𝑠𝑠 and then the extinction curve becomes 
Beerian. 

 
Fig2 a) Extinction cumulative distribution function: (1)  CCS_160_1_380 (2) CCS_160_27_760, 
CCS_160_125_1040 (4) CCS_160_343_1330 (5) CCS_160_729_1710 b) (1)  Extinction cumulative 
distribution function for CCS_160_1_380 (2) Fitted curve with Eq. 20 for CCS_160_1_380 (3) –𝛽𝛽𝑚𝑚𝑠𝑠𝑠𝑠  
for CCS_160_1_380 (4)  Extinction cumulative distribution function for CCS_160_27_760 (5) Fitted 
curve with Eq. 20 for CCS_160_27_760 (6) –𝛽𝛽𝑚𝑚𝑠𝑠𝑠𝑠 for CCS_160_27_760 (7) –𝛽𝛽𝑛𝑛𝑛𝑛𝑠𝑠 for 
CCS_160_27_760 
 
By using Eq. (6) and Eq. (20), one can deduce the following relationship 𝛽𝛽(𝑠𝑠) = 𝑦𝑦(𝑠𝑠) 𝑠𝑠⁄ . For small 
values of 𝑠𝑠, the exponential term can be approximated by its Taylor expansion and in this case, 𝛽𝛽𝑚𝑚𝑠𝑠 ∼𝑚𝑚𝑏𝑏. 
Here, 𝛽𝛽𝑚𝑚𝑠𝑠 represents the asymptotic value of 𝛽𝛽(𝑠𝑠). This latter quantity is different from 𝛽𝛽𝑛𝑛𝑛𝑛 = 𝐴𝐴 4𝑝𝑝⁄   
which is the value of the extinction coefficient for a pure beerian medium at the optically thin limit. 
With GenMat, one can also check by fixing  𝐿𝐿,  and by progressively increasing 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛, that the deviation 
to the Beerian behaviour become more accentuated. On the other side, by keeping 𝑁𝑁𝑐𝑐 constant and 
decreasing 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 so that 𝐿𝐿 is homothetically reduced, the deviation to the Beerian behaviour appears 
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more and more important. In conclusion, it can be highligted that for regular cubic cell architectures 
constituted of an opque solid network a large value of  𝐿𝐿 combined with a low value of 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 must 
exhibit an extinction feature closed to the one that can be expected from a Beerian medium.  
 
3.2 Influence of the textural parameters of cubic cell structures on their conductive-
radiative behaviour 
 
In this last part, the different extinction coefficients reported in Table 1 for CCS_160_1_380 and  
CCS_160_27_760 are used when the continuous-scale (CS) coupled approach described in section 2.3. 
is applied. Let us recall that this work is focused on solid opaque phases (SiC-based consolidated 
networks) immersed within a transparent fluid phase. This suggests that their corresponding 
homogeneized extinction coefficients must be equal to those corresponding to their fluid phase (here 
𝛽𝛽(𝑥𝑥) and 𝛽𝛽𝑚𝑚𝑠𝑠) as demonstrated Baillis et al. in Ref. [21] for metallic foams constituted of opaque 
skeletons immersed in air.  

.  
Fig 3  a) Average temperature along the axis of propagation with (1) the DM approach (2) the CS 
approach with 𝛽𝛽𝑛𝑛𝑛𝑛 (3) the CS approach with 𝛽𝛽𝑚𝑚𝑠𝑠 (4) the CS approach with 𝛽𝛽(𝑥𝑥) for CCS_160_1_380  
b) Average temperature along the axis of propagation with (1) the DM approach (2) the CS approach 
with 𝛽𝛽𝑛𝑛𝑛𝑛 (3) the CS approach with 𝛽𝛽𝑚𝑚𝑠𝑠 (4) the CS approach with 𝛽𝛽(𝑥𝑥) for CCS_160_27_76 
 
In addition to the CS approach, the discrete-scale (DM) coupled approach, also exposed in section 2.3, 
is directly used with the two 3D structures. Concerning the stabilized vectorial Finite Element Method 
framework required to solve the set of equations for the two approaches and the post-processing method  
developed for extracting the temperature profiles, full details are given in Ref [5, 19]. As previsouly 
evoked, we solve the conductive-raditive problem pionneringly defined by Grosh and Vistankta for a 
1D geometry where a semi-transparent medium is sandwhiched between two isothermal parallel opaque 
plates with different temperatures (𝑇𝑇ℎ𝑛𝑛𝑜𝑜 = 2222 K and 𝑇𝑇𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 =  1111 K) [22]. Let us explain that for 
the DM approach, 𝜀𝜀𝑠𝑠 = 0.9 and 𝜆𝜆𝑠𝑠= 30 W.m-1.K-1. In this work, the curves given by the DM method are 
considered as the reference data (see curves 1 in Fig. 3a and Fig. 3b). For the two numerical samples, 
the injection of 𝛽𝛽𝑛𝑛𝑛𝑛 in Eq. (7) gives temperature profiles pretty closed to those computed through the 
DM approach. However, when 𝛽𝛽𝑚𝑚𝑠𝑠 and 𝛽𝛽(𝑥𝑥) are used in the CS approach for CCS_160_1_380 and  
CCS_160_27_760, it can be emphasised that the temperature profiles present stronger differences. 
Indeed, the injection of 𝛽𝛽𝑚𝑚𝑠𝑠 and 𝛽𝛽(𝑥𝑥) in the Eq. (7) tends to increase the conduction-to-radiation 
parameter (i.e. the Planck number) which results in an unexpected conductive behaviour. The 
differences with the reference profiles (∆𝑇𝑇𝑛𝑛𝑚𝑚𝑚𝑚 ∼ 300 K in CCS_160_1_380) are the most important at 
more than three quarters of the propagation of the radiation in the two porous structures. Moreover, the 
use of  𝛽𝛽(𝑥𝑥) tends to accentuate the conductive transfer and to decrease the radiative one.   
 

4. CONCLUSION 
 
This work combines the numerical generation of cubic lattices constituted of SiC, the determination of 
their extinction cumulative distribution functions and the computation of the their conductive-radiative 
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behaviour respectively with a FEM-based continuous-scale and a discrete scale approaches. All the 
numerical samples can be considered as non-Beerian and their extinction cumulative distribution 
functions can be described with an exponential growth law as a function of the variable path length. It 
can be underlined that the injection of the exctintion coefficient, obtained at the optically thin limit in 
the framework of the Radiative Distribution Function Identification method, in the continuous scale 
approach give results quite similar to what one can be directly computed on the 3D images through the 
discrete scale approach. For regular macroporous 3D architectures, more works are required to finely 
connect their extinction coefficients (and their possible spatial variation) for each considered phase 
(fluid and solid) with the exact corresponding effective extinction coefficient required to solve the 
radiative transfer equations at the macroscopic scale.  
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