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22 Abstract

23 The North Anatolian Fault is the ~1200-km-long active continental transform boundary between 

24 Anatolia and Eurasia. This strike-slip system initiated around 10-12 Ma and experienced 

25 diachronous episodes of strain localization along its strike. The structural evolution of the ~350-

26 km-long fault segments crossing the North Aegean Sea remains to be accurately investigated. 

27 There, the modern North Anatolian Fault is localized along two main branches: the northern 

28 branch ends at the North Aegean Trough and the southern branch ends at the Edremit-Skyros 
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2

29 Trough. The Evia Basin is located in the North Aegean Domain between the North Anatolian Fault 

30 and the Corinth Rift. This study presents seismic reflection lines crossing the aforementioned 

31 structures of the North Aegean Domain, which document their subsurface structure and the 

32 sedimentary record of their activity since the Messinian. The seismic-reflection dataset is tied to 

33 regional-scale stratigraphic markers, which constrains the age of main tectonic events related to 

34 the formation of the North Anatolian Fault. The seismic-reflection lines show that the two main 

35 branches of the North Anatolian Fault became localized structures at 1.3-2 Ma, coevally with the 

36 formation of the Evia Basin. Since 2 Ma, the North Aegean Troughs developed as a series of 

37 horsetail basins propagating westwards at the termination of the branches of the North Anatolian 

38 Fault. On a regional scale, the wide and diffuse North Anatolian transtensive shear zone active 

39 from Serravalian to Late Pliocene turned into a narrower shear zone at the two main branches of 

40 the North Anatolian Fault since the Early Pleistocene. This abrupt episode of strain localization 

41 occurred in the frame of the major Early Pleistocene change in stress regime from NE-SW to N-

42 S extension, which has been observed throughout the Aegean Sea.

43

44 Keywords: Continental tectonics: strike-slip and transform; Transform faults; Normal faulting; 

45 Tectonics and landscape evolution; Europe; Crustal imaging. 

46

47 1- Introduction

48 Transform faults are major lithospheric-scale tectonic structures acting as plate boundaries (Woodcock, 

49 1986; Mann, 2007), along which relative plate motion occurs horizontally along the fault’s strike. The 

50 accumulated relative plate motion along transform boundaries juxtaposes sections of the lithosphere 

51 with different histories, ages, and hence, mechanical properties (Ben Zion & Sammis, 2003). The 

52 complex rheology of the continental domain results in both localized (e.g. the Dead Sea Fault; Garfunkel 

53 & Ben-Avraham, 1996) and diffuse continental transform systems (e.g. the Trans-Alboran Shear Zone; 

54 Lafosse et al., 2020). Some transform systems have also being shown to alternate localized and diffuse 

55 strain along their strike (e.g. the San Andreas Fault; Wesnousky, 2005; and the North Anatolian Fault; 

56 Sengör et al., 2019). 
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3

57 Field studies reveal that continental transforms initiate as several hundreds of kilometers-wide 

58 distributed areas of deformation, forming a shear zone that is composed of scattered oblique en-échelon 

59 strands (Tchalenko & Ambraseys, 1970; Sengör et al., 2005; Wesnousky, 2005; Mann, 2007; Sengör et 

60 al., 2014). During fault initiation, motion is distributed over several individual fault segments. As finite 

61 relative motion increases, fault strands progressively connect into continuous and localized strike-slip 

62 fault segments. The increased connection of fault strands shapes narrower shear zones (<100-km- wide) 

63 with local structural complexities in stepover (releasing or restraining bends). The localization of strike-

64 slip segments leaves some initial oblique strands deactivated. The timing of strain localization within 

65 the wide shear zone may differ from one fault segment to another. The lifetime of such shear systems in 

66 the continental setting is in the order of 107 yrs (Sengör et al., 2019). Analog models reproduce the 

67 transition from an initial diffuse shear zone composed of Riedel faults to a localized fault formed by the 

68 linkage of shear segments (Tchalenko, 1970; Dooley & Schreurs, 2012; Lefevre et al., 2020). 

69 The North Anatolian Fault system, located in the Eastern Mediterranean domain (Fig. 1, 2), is the 1200-

70 km-long dextral strike-slip boundary between the Anatolian and Eurasian tectonic plates (Fig. 1, 2), 

71 which connects the Anatolia-Arabia-Eurasia triple junction in the East (Hubert Ferrari et al., 2010) to 

72 the Hellenic Subduction Zone (Flerit et al., 2004; Sakellariou et al., 2018; Ferentinos et al., 2018). The 

73 North Anatolian Fault triggers frequent earthquakes above Mw ∼7 (e.g. Izmit and Duzce events in 1999; 

74 Hubert-Ferrari et al., 2000; Bulut et al., 2018) and its submarine segments are a potential source of 

75 tsunamis (Hébert et al., 2005; Reicherter et al., 2010; Janin et al., 2019). 

76 The North Anatolian Fault transects continental lithosphere with significant along-strike strength 

77 variations, inherited from the successive geological events that shaped the Hellenides mountain belt 

78 prior to its collapse. As such, the North Anatolian Fault is a relevant case-study of a post-orogenic 

79 transform fault (Le Pourhiet et al., 2014; Jolivet et al., 2021). 

80 The objective of this study is to constrain the structural evolution of the ~350-km-long segment of the 

81 North Anatolian Fault crossing the North Aegean Sea (Fig. 3, 4), on the basis of a set of multibeam data 

82 (Ypother cruises, 2013-2016; Sakellariou et al., 2018) and seismic-reflection profiles (NAFAS cruise, 

83 2017; Rodriguez et al., 2018; vintage seismic lines published in Beniest et al., 2016).
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4

84 The present dataset covers some of the major tectonic structures encountered in the North Aegean 

85 Domain, namely the North Aegean Trough, the Edremit-Skyros Trough and the Evia Basin (Fig. 2-4). 

86 There, the different steps of formation of the North Anatolian Fault remained poorly constrained due to 

87 the lack of seismic-reflection and stratigraphic data (Krijgsman et al., 2022). We define some regional 

88 stratigraphic markers for the period spanning the Messinian to the present-day (Laigle et al., 2000; 

89 Beniest et al., 2016; Ferentinos et al., 2018) to reach a precision in the ages of tectonic events 

90 comparable to the segments of the North Anatolian Fault observed in the Marmara Sea (Le Pichon et 

91 al., 2014). Finally, we provide structural maps of the post-Messinian evolution of the North Aegean 

92 Domain, from the Yeniçaga Fork east of Marmara to the Evia Basin in Greece (Fig. 2). Overall, our 

93 structural reconstructions of the North Anatolian Fault document the strain localization within a post-

94 orogenic continental shear zone and the time of effective formation of such tectonic plates. 

95

96 2- Geological Background

97 2-1-Present-day configuration of the North Anatolian Fault in the North Aegean Domain

98 The North Anatolian Fault is the plate boundary between Anatolia and Eurasia, with a current dextral 

99 strike-slip rate of 23 mm.yr-1 (Le Pichon et al., 2003; Reilinger et al., 2006; Le Pichon & Kreemer, 2010; 

100 Pérouse et al., 2012; Müller et al., 2013). The finite amount of dextral motion along the North Anatolian 

101 Fault is estimated to 85±5 km, with some ambiguities in areas where slip is distributed over several fault 

102 strands (Sengör et al., 2005). The finite offset results from strike-slip rates that grew from ~3 mm.yr-1 

103 in the earliest stages of formation of the fault system to near-current slip rates since the Early Pleistocene 

104 (Hubert Ferrari et al., 2010).

105 In this study, the North Aegean Domain is defined as the area bounded to the south by the North Cycladic 

106 Detachment System, to the north by the Rhodope Detachment System, to the west by the Vardar Suture 

107 Zone and to the East by the Yeniçağa fork (Fig. 1, 2). The total amount of slip-rate along the North 

108 Anatolian Fault is accommodated by its northern and southern branches in the North Aegean Domain 

109 (Fig. 1, 2; Le Pichon et al., 2003).

110 The northern branch of the North Anatolian Fault crosses the Marmara Sea (i.e. the Main Marmara 

111 Fault; Le Pichon et al., 2001), then runs along the Gelibolu Peninsula and the Gulf of Saros until it 
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112 connects the North Aegean Trough (Fig. 2). The North Anatolian Fault makes a ~30° bend at the 

113 connection between the Saros Gulf and the North Aegean Trough (Roussos & Lyssimachou, 1991; 

114 Koukouvelas & Aydin, 2002). The strike-slip rate of relative motion along the northern branch decreases 

115 from 21.2 mm yr−1 at the Gulf of Saros to ~5 mm yr−1 at the Sporadhes archipelago (Müller et al., 2013). 

116 The southern branch of the North Anatolian Fault crosses the Biga Peninsula and connects the Edremit-

117 Skyros Trough in the Aegean Sea (Fig. 2). The strain distribution of the southern branch of the North 

118 Anatolian Fault (Fig. 2-4) is diffuse onland in Turkey (Sümer et al., 2018), whereas it is expressed as a 

119 localized structure offshore (Papanikolaou et al., 2019). The strike-slip rate along the southern branch 

120 is on the order of 10 mm.yr-1 (Müller et al., 2013). 

121 Both the North Aegean and the Edremit-Skyros Troughs reveal horsetail structures (Fig. 3-4). Horsetail 

122 structures are commonly observed at the termination of strike-slip faults (Basile & Brun, 1999): they 

123 consist in numerous oblique splays rooting on the main strike-slip faults and isolating a series of 

124 transtensive basins. On one hand, the North Aegean Trough is ~150-km-long, up to 80-km-wide and 

125 1600-m-deep (Brooks & Ferentinos, 1980; Papanikolaou et al., 2002; Sakellariou et al., 2018; 

126 Ferentinos et al., 2018), running from the Lemnos Deep to the Sporadhes archipelago (Fig. 3, 4). On the 

127 other hand, the Edremit-Skyros Trough is 70-km-long, up to 50-km-wide, and 1050-m-deep (Fig. 3, 4; 

128 Papanikolaou et al., 2019). There, the southern branch of the North Anatolian Fault acts as a marginal 

129 structure, which bounds the southern flank of the trough over its entire length and splits into two 45 to 

130 66-km-long oblique splays isolating sub-basins. 

131

132 2-2- Tectonic configuration of the North Anatolian Fault in the North Aegean Domain since the 

133 Middle Miocene

134 The formation of the North Anatolian Fault results from the influence of several geodynamic drivers, 

135 including Arabia-Eurasia collision, the dynamics of the Hellenic trench retreat and the resulting 

136 differential in gravitational potential between the Anatolian plateau and the Aegean Sea (Jolivet & 

137 Faccenna, 2000; Faccenna et al., 2006; Brun & Faccenna, 2008; Le Pourhiet et al., 2012; Jolivet et al., 

138 2015; Brun et al., 2016; England et al., 2016). 
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6

139 Most of the constraints on the history of the North Anatolian Fault in the North Aegean Domain are 

140 based on the study of the Marmara Sea and its surroundings. At least three successive major strike-slip 

141 systems, evolving into a continuous frame of shearing of the continental lithosphere, have been 

142 identified on the basis of seismic data tied to industrial wells (Sengör et al., 2014; Le Pichon et al., 2014; 

143 2015). 

144 A first diffuse strike-slip system emplaced in Late Serravalian-Tortonian (12-10 Ma), in the area that is 

145 now enclosed between the Thrace basin and the Sakarya suture (Fig. 1, 2). A part of this first strike-slip 

146 system is still active as the southern branch of the North Anatolian Fault, where the pattern of drainage 

147 networks recorded a structural reorganization around 0.5-1.3 Ma (Demoulin et al., 2013).

148 A second strike-slip system is evidenced at the South Marmara Fault and the Ganos segment, both 

149 corresponding to positive flower structures formed at a restraining bend (Fig. 2; Le Pichon et al., 2014; 

150 2015; Karakas et al., 2018). These structures record the beginning of the localization of the North 

151 Anatolian Shear System in the Pliocene (Armijo et al., 1999; Le Pichon et al., 2014; 2015). The South 

152 Marmara Fault goes extinct around 3.5 Ma, while the Ganos segment is still active and forms a well-

153 localized, >130-km-long dextral strike-slip fault (Armijo et al., 1999). 

154 The third, localized strike-slip system corresponds to the northern branch of the North Anatolian Fault, 

155 expressed as the Main Marmara Fault in the Marmara Sea (Le Pichon et al., 2001; 2003; Carton et al., 

156 2007). Estimates of the age of the Main Marmara Fault range between 0.5 and 2.5 Ma (Rangin et al., 

157 2004; Grall et al., 2012, 2013; Le Pichon et al., 2015). The Main Marmara Fault crosses the Gelibolu 

158 Peninsula and connects the Gulf of Saros at the entrance of the Aegean Sea through the Ganos strike-

159 slip segment (Fig. 2; McNeill et al., 2004).

160 The age of formation of the North Aegean Trough and the Skyros-Edremit Trough is roughly 

161 constrained in the Late Pliocene-Early Pleistocene (Laigle et al., 2000; Beniest et al., 2016), a period 

162 which encompasses several stages of evolution of the North Anatolian Fault. 

163 Onland, a series of sedimentary basins (Fig. 2; namely the Strymon, Orfanos, Prinos, Drama, Sandanski, 

164 Mygdonia basins and grabens) formed in the Serravalian segmenting the Rhodope Metamorphic Core 

165 Complex until the Early Pliocene (Brun & Sokoutis, 2018). Traces of Late Miocene extension and 
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166 differential subsidence are further observed in the Gulf of Thermaïkos and offshore the Chalkidiki 

167 peninsula (Varesis & Anastasakis, 2021). 

168

169 2-3- Structure of the lithosphere in the North Aegean Domain

170 In the North Aegean Domain, the continental lithosphere keeps the record of a complex geological 

171 history, from the closure of Mesozoic Oceans (i.e. the Vardar and Pindos Oceans, Schettino & Turco, 

172 2011; Okay & Tüysuz, 1999) to the building of the Hellenides Mountain Belt and its subsequent collapse 

173 in the wake of the Early Cenozoic collision between Adria and Pelagonia domains (Handy et al., 2010).  

174 A series of metamorphic core complexes emplaced in the North Aegean Domain from the Late Eocene 

175 to the Middle Miocene (Rhodope Core complex, 45-Myrs-old; North Cycladic Detachment System, 15-

176 20 Myrs-old; Jolivet & Brun, 2010; Le Pourhiet et al., 2012; Jolivet et al., 2013).

177 As a result, the North Aegean lithosphere displays an unusual layering, with a shallow brittle ductile 

178 transition (<10 km, Brun & Sokoutis, 2018) and a thinned lithospheric mantle. The Moho depth ranges 

179 between 20 and 30 km (Sodoudi et al., 2006). Rayleigh wave anisotropy reveals the existence of a 

180 thermal anomaly located right in between the two segments of the North Anatolian Fault in the North 

181 Aegean domain, within the lower crust and the lithospheric mantle (Endrun et al., 2011). 

182

183 3- Material and Methods

184 3-1- Topography & seafloor bathymetry 

185 The Digital Elevation Model used for the maps of the North Aegean Domain (Fig. 1-4) combines data 

186 from the Shuttle Radar Topography Mission (SRTM) at 3 seconds and the multibeam dataset acquired 

187 during the Ypother oceanographic cruises between 2013-2016 (Sakellariou et al., 2018), here gridded 

188 at 25 m. 

189

190 3-2- Seismic profiles

191 In this study, we present a new seismic-reflection dataset collected during the NAFAS (North Anatolian 

192 Fault in the North Aegean Sea) expedition in summer 2017, onboard the R/V Tethys II. The expedition 

193 focused on the North Aegean Trough, the Edremit-Skyros Trough and the Evia Basin. The NAFAS 
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8

194 dataset is complementary documented by a set of vintage seismic-reflection dataset collected in the 70’s 

195 and partly explored in Beniest et al. (2016). All the seismic-reflection profiles are displayed on the 

196 figures with a vertical exaggeration of 14, with their related simplified cross-section at 1:1 scale. 

197 Seismic reflection profiles were shot using a GI airgun and a 24-trace streamer with 400-m maximum 

198 offset. The GI gun was triggered in harmonic mode (2 x 24 cubic inches) every 6s, with an acquisition 

199 speed of 4.1 knots, leading to a shot interval of 12.5 m. The trace record length is 5500 ms with a 1-ms 

200 sample interval. Only 8 out of 24 traces were working with a maximum offset of 200-m and a maximum 

201 CDP (Common Depth Point) fold of 4. The depth of penetration of the signal reaches about 3 seconds 

202 two-way travel time (TWT). The processing workflow consists in geometry setting, water-velocity 

203 normal move-out, stacking, deconvolution and Kirchhoff finite difference post-stack migration. 

204

205 3-3-Multibeam and interpretation of geological structures on seismic-reflection profiles

206 The geological mapping of tectonic structures is based on the seafloor signature of the structure on the 

207 multibeam data and the expression of these features on the seismic-reflection lines (Fig. 5). The offshore 

208 structural maps provided in this study (Fig. 4-5) are slightly modified from Papanikolaou et al. (2002; 

209 2019) and Sakellariou et al. (2018), considering our new seismic dataset. 

210 The North Aegean Domain is dominated by a large variety of strike-slip structures (Fig. 5):

211 -Negative flower structures: Most of the sub-basins isolated by the oblique splays within the horsetail 

212 terminations correspond to negative flower structures. The negative flower structures are bounded by 

213 normal faults of opposite dip and connect into a single strike-slip fault at depth. 

214 -Transpressive structures: They correspond to positive flower structures and push-up structures, formed 

215 by a set of strike-slip faults with a reverse component. 

216 Tectonic processes control the distribution of clastic sedimentary deposits in the study area (Fig. 6). 

217 Prior to the onset of the North Anatolian Fault, scattered distal deltaic rivers flood the area, marked by 

218 moderate incision along the thalweg. Since the onset of tectonic subsidence, the rivers form channel-

219 levee systems close to the slope break and evolve downslope into canyons with V-shape morphologies 

220 (Fig. 6a). The complex distribution of faults and basins within the North Aegean Trough results in a 

221 scattered distribution of submarine landslides, identified according to their multibeam signature (arcuate 
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222 scar and block falls at the edge of the slope, fig. 6c) and their related mass transport deposits (marked a 

223 chaotic-to-transparent seismic facies). Some of the steepest slopes display undulated seafloor (fig. 6b), 

224 underlain by a series of wavy reflectors, which could be interpreted as sediment waves resulting from 

225 creeping of sediments in interaction with bottom-current controlled deposition (Faugères et al., 2002; 

226 Shillington et al., 2012). The tectonic structures also influence the circulation of oceanic bottom-

227 currents. Where the current intensity is strong, the axis of the current is associated with a rough seafloor, 

228 which is an indicator of the strong sediment sorting. The attenuation of the intensity of the oceanic 

229 currents promotes the building of a series of fault-controlled contourite drifts (sensu Rebesco et al., 

230 2014). The architecture of these contourite drifts display typical sigmoid to mounded configurations 

231 (Fig. 6e), characterized by important lateral thickness variations of the sedimentary layers, with pinched-

232 out reflectors close to the current axis and thicker deposits away from it. Fluid escape features are 

233 commonly observed close to the main faults and on the extrados of the main rollover structures (Fig. 4). 

234 Fluid escape features are expressed as dense networks of conduits leading to small offsets of the 

235 sedimentary layers or undulated to chaotic series of reflectors on the seismic dataset (Fig. 6d). At the 

236 seafloor, the area of fluid escape form fields of coalescing circular depressions (Fig. 5e, Papatheodorou 

237 et al., 1993). 

238 The clastic input to the North Aegean Sea implies that most of the structures related to the North 

239 Anatolian Fault are growth structures. The timing of formation of the strike-slip structures is constrained 

240 from the age of onset of the fanning of the sediments. Although many second-order unconformities 

241 linked to periodic sea-level and climatic variations are encountered in the study area (Lykousis, 2009; 

242 Piper & Anastasakis, 2013), we here focus on the major unconformities corresponding to the main 

243 tectonic episodes related to the evolution of the North Anatolian Shear Zone, i.e. the unconformities 

244 corresponding to a significant tilt of the seafloor. 

245

246 4- Stratigraphy of the North Aegean Domain

247 4.1. The pre-Messinian period and the Messinian Event

248 Field studies in the Thermaïkos, Thrace and Saros Basins document two Eocene to Oligocene silici-

249 clastic units ontop of the metamorphic basement (Turgut & Eseller, 2000; Siyako & Huvaz, 2007; 
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250 Islamoglu et al., 2008). Seismic profiles tied to wells evidence the continuity of these units offshore in 

251 the North Aegean Domain, with a major angular unconformity at the Oligocene-Miocene boundary 

252 (Beniest et al., 2016; Varesis & Anastasakis, 2021). Industrial wells located in the Prinos Basin 

253 (Proedrou & Papaconstantinou, 2004) provide precise constraints on the ages of the geological events 

254 related to the Messinian Salinity Crisis, with the salt mobile unit dated between 5.97 and 5.33 Ma, and 

255 earliest traces of the Messinian stage dated around 7.15 Ma (Karakitsios et al., 2017). 

256 We identify on the seismic dataset the contact between the Late Miocene Unit and the Messinian Event 

257 according to the following criteria:

258 -Late Miocene Unit: During the Miocene, fluvial and floodplain deposits cover the North Aegean 

259 Domain (Melinte-Dobrinescu et al., 2009; Suc et al., 2015). Drilling sites in the Prinos Basin that reach 

260 Tortonian layers document an alternation of marine shales and turbidites in a distal marine environment, 

261 followed by sandstone with marl and coal intercalations (Karakitsios et al., 2017; Varesis & Anastasakis, 

262 2021). On seismic data, the Late Miocene Unit is expressed by a series of interbedded channel systems 

263 (Fig. 7).

264 -Messinian Event: The Messinian is dominantly expressed as an erosive surface in the North Aegean 

265 Domain (Fig. 7), with a few evaporitic units scattered in some basins (e.g. Prinos; Mascle & Martin, 

266 1990; Proedrou & Sidiropoulos, 1992; Proedrou & Papaconstantinou, 2004). Offshore Thermaïkos, the 

267 thickness of the Messinian Unit displays important lateral variations, culminating at 0.8 s TWT (Varesis 

268 & Anastasakis, 2021). 

269

270 4.2. Plio-Pleistocene Period

271 The Pleistocene stratigraphy has mainly been constrained on the basis of sequence stratigraphy studies, 

272 investigating the influence of sea level variations and oceanic current activity using the architecture of 

273 sedimentary bodies (Sakellariou & Galanidou, 2017; Tripsanas et al., 2016). In the North Aegean 

274 Domain, sequence stratigraphy studies in the Thermaïkos Gulf (Lykousis, 2009) and offshore the Biga 

275 Peninsula (Isler et al., 2008) identified the reflectors corresponding to MIS (Marine Isotopic Stage) 2 

276 (18 ka) to MIS 12 (430 ka). Additional stratigraphic constraints are obtained from the study of contourite 

277 drifts in the Southern Aegean Domain since MIS 11 (420 ka), with an increased current intensity, and 
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278 hence, erosive events during interglacial periods (Tripsanas et al., 2016). In the vicinity of the North 

279 Aegean Trough, some coring document pro-delta formations during the Late Quaternary (last ~150 kyrs; 

280 Piper & Perissoratis, 1991; Lykousis et al., 2002). 

281 Unfortunately, the published reports of the Prinos wells (Proedrou & Papaconstantinou, 2004) do not 

282 provide stratigraphic details for the detritic Plio-Pleistocene sequence.

283 The only available stratigraphic constraints in the offshore Aegean Domain prior MIS12 are located at 

284 the Myrtoon Basin (Anastasakis & Piper, 2005; Anastasakis et al., 2006), which is about 250-km away 

285 from our study area (Fig. 1). There, the age of the sedimentary layers is fairly well constrained as far as 

286 2.8 Ma on the basis of correlation with DSDP Site 378 in the nearby Cretan Basin (Hsu et al., 1978) and 

287 the age of volcanic layers coming from Milos Island (Fytikas et al., 1976, 1986; Anastasakis & Piper, 

288 2005; Calvo et al., 2012). This set of reflectors is also observed offshore the Evoïkos Gulf (about 100 

289 to 150 km away from our study area, Fig. 1) and their age is confirmed at 2 Ma upon the base of the sea-

290 level dependance of progradational packages of fluvial deposits (Anastasakis & Piper, 2013). However, 

291 the Cycladic Plateau (Fig. 1, 7) has isolated the Myrtoon and Evoïkos area (Fig. 1) from the North 

292 Aegean Domain at various periods of sea-level lowstands (Sakellariou & Galanidou, 2017). 

293 In order to investigate whether the stratigraphic constraints obtained at the Myrtoon Basin can be 

294 correlated as far north as the North Aegean Domain, we compare a seismic-reflection profile collected 

295 in the Myrtoon Basin (from Anastasakis & Piper, 2005) with a profile collected at the southern 

296 termination of the Evia Basin, i.e. north of the Cycladic Plateau, here considered as the key feature of 

297 the boundary between the north and south Aegean domains (Fig. 7). Despite a difference of resolution 

298 between the two datasets, both profiles share similarities with respect to the seismic facies of the 

299 Pliocene series up to a key reflector datesd at 1.3 Ma (Fig.7). 

300 Based on sequence stratigraphy studies and correlation with the Myrtoon Basin, we consider that four 

301 Plio-Pleistocene key reflectors, corresponding to regional volcanic deposits and sapropel events 

302 (Anastasakis & Piper, 2005), can be defined in the North Aegean Domain (fig. 7), separating four main 

303 seismic units: 

304 - Reflector D (2.8 Ma): In the wake of the Messinian event, numerous Gilbert deltas developed in the 

305 surroundings of the Aegean Domain, followed by marine clastic sediments throughout the Pliocene, 

Page 12 of 57Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

306 characterized by distal channel systems (Proedrou & Papaconstantinou, 2004; Anastasakis & Piper, 

307 2005). Anastasakis & Piper (2006) show the regional transition from terrestrial to full marine facies 

308 occurred regionally at the boundary between the middle and upper Pliocene. A key reflector, labeled D, 

309 seals the seismic unit interpreted as the episode of delta fan supply in the Aegean Sea (Fig. 7; Anastasakis 

310 & Piper, 2005). This seismic unit is characterized by the signature of distal channel-levee systems, 

311 marked by an alternation of minor downlap and onlap that reflects their successive avulsions. Reflector 

312 D is the top reflector of a series of three high-amplitude reflectors sealing the systems of delta fans. The 

313 reflector D is dated at ~2.8 Ma from Milos volcanics (Anastasakis & Piper, 2005).

314 - Reflector C (~2 Ma): Reflector C corresponds to an erosive surface, dated between 1.6 and 2.1 Ma 

315 from the volcanic deposits related to the Oros eruption (Pe-Piper et al., 1983; Dietrich et al., 1988). 

316 Sequence stratigraphy studies in the Evoikos Gulf suggest the age of reflector C to be closer to 2 Ma 

317 than 1.6 Ma (a reflector distinct from C being dated at 1.6 Ma, Piper & Anastasakis, 2013). 

318 -Reflector B (~1.3 Ma): Reflector B marks the onset of progradational wedges in the Aegean Sea, dated 

319 around 1-1.4 Ma with lava flows (Anastasakis & Piper, 2005). The age has been refined at 1.3-1.4 Ma 

320 from sequence stratigraphy studies in the Evoikos Gulf (Piper & Anastasakis, 2013).

321 -Reflector A (~430-480 ka):  Reflector A is defined by a set of sequence stratigraphic constraints 

322 available in the North Aegean Domain. It corresponds to MIS 12 (~430-480 ka). Our picking and spatial 

323 correlation of reflector A in the North Aegean Trough agrees with the work of Ferentinos et al. (2018).

324

325 5- RESULTS

326 5-1- Structure of the North Aegean Trough (Northern Branch of the North Anatolian Fault)

327 5-1-1- The connection between the Gulf of Saros and the North Aegean Trough

328 At the northeastern entrance of the North Aegean Trough, the Main Splay of the North Anatolian fault 

329 makes a bend, which is expressed on the seafloor by a series of push-up ridges (Fig. 3-4). The Main 

330 Splay forms a steep, ~5 to 10° slope, which is covered by an undulated seafloor. There, a set of secondary 

331 fault splays connects along the main fault. A 15-km-long ridge, referred to as the Medusa High (Mascle 

332 & Martin, 1990; Sakellariou et al., 2018), runs parallel to the North Anatolian Fault in the area of 
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333 bending (Fig. 3-4). A second splay, referred to as the Athos Splay, runs at 40° with respect to the North 

334 Anatolian Fault and terminates at the tip of the Athos Peninsula (Fig. 3-4). 

335 Seismic line 701 is perpendicular to the Athos splay (Fig. 8) and seismic line 702 crosses the area 

336 between the main splay and the Medusa High (Fig. 9). The Main Splay runs across an area of chaotic 

337 reflectors and forms a flower structure. The Athos Splay is an apparent normal fault dipping at 55° 

338 southward, consistent with focal mechanisms at this location (Kiratzi & Louvari, 2003). The footwall 

339 reveals a buried tilted block (Fig. 8). A dense network of normal faults, most of them being blind on the 

340 seafloor, connects into a set of three flower structures in the basin, located at the footwall of the Athos 

341 Splay (Fig. 8). The Medusa High (Fig. 9) corresponds to an elongated push-up structure (Mascle & 

342 Martin, 1990; Sakellariou et al., 2018). 

343

344 5-1-2- The central segment of the North Aegean Trough offshore the Chalkidiki Peninsula

345 The Main Splay of the North Anatolian Fault runs within a 40-km-long, 15-km-wide, asymmetric 

346 spindle-shaped trough (Fig. 3-4). Focal mechanisms confirm the strike-slip motion along the strike of 

347 the Main Splay and suggest a minor component of transtension locally (Kiratzi & Louvari, 2003; 

348 Kourouklas et al., 2022). The Main Splay is sub-vertical and blind on the seafloor due to mass-wasting 

349 sedimentation rates higher than its vertical slip-rate (~0.4-s TWT -thick package of mass transport 

350 deposits on Line 603; Fig. 11). It forms a growth-synform structure on Line 602 (Fig. 10) and promotes 

351 the uplift of the basement on line 603 (Fig. 11). The sedimentary cover of both flanks of the spindle-

352 shape basin displays an undulated configuration upslope, which becomes more chaotic downslope. 

353 The Sithonia Splay is a second strike-slip faut trending 60°NE. To the west, a network of normal faults, 

354 dipping 20° to the North, roots diagonally to the Sithonia Splay and forms a horsetail structure offshore 

355 the Kassandra Peninsula, where focal mechanisms indicate normal faulting (Kourouklas et al., 2022). 

356 The multibeam map reveals two sedimentary basins along the Sithonia Splay: a first one, located on the 

357 southern flank of the eastern segment of the fault and a second one, located on the northern flank of the 

358 western segment of the fault (Fig. 5). The Sithonia Splay is subvertical in its central part, forming a 

359 short-wavelength, symmetric growth-synform structure on Line 602 (Fig. 10). Line 603 indicates a 

360 strong component of subsidence with a well-marked fanning of the sediments on the northern side of 
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361 the Sithonia Splay (Fig. 11). The westward increase of the subsidence corresponds to the transition 

362 toward the transtensional regime of the horsetail termination (Fig. 5).

363 The Main Splay of the North Anatolian Fault and the Sithonia Splay are separated by a Central Structural 

364 High (Fig. 3-4). The Central Structural High is a ~50-km-long elongated feature, with two highs 

365 culminating at 700-m and 550-m depth.  The Central Structural High appears as an antiform structure, 

366 with undulations in the sedimentary cover (Fig. 10-11). The part of the antiform which is still exposed 

367 at the seafloor corresponds to a basement high. A field of apparent normal faults with short and uneven 

368 offsets is observed between the Central Structural High and the Sithonia Splay (Fig.10-11). 

369

370 5-1-3- Termination of the horsetail in the Thermaïkos-Skopelos area

371 Offshore Skopelos, the geometry of the Main Splay of the North Anatolian Fault changes from a strike-

372 slip fault to a low-angle normal fault (Fig. 3-4), which runs along Pelion and the Thermaïkos Gulf 

373 (Laigle et al., 2000). The seismic reflection profile 103 (Fig. 12) crosses all the splays from Skopelos 

374 Island to Kassandra Peninsula. We observe a large-scale rollover structure in the hanging wall of the 

375 North Anatolian Fault, bending along the Main Splay, acting here as a north-dipping low-angle (~20°) 

376 normal fault. Focal mechanisms however indicate pure strike-slip motion in this area (Kourouklas et al., 

377 2022), which suggests that the normal fault is turning into a strike-slip fault. The configuration of the 

378 low-angle normal fault isolates a 20-km long, 10-km-wide trough along the Main Splay, filled-in by 

379 mass transport deposits (Fig. 12). The hinge of the rollover is dissected by numerous synthetic and 

380 antithetic normal faults. These fault systems cross a field of coalescing circular depressions spreading 

381 over ~200-km², which corresponds to a series of short-wavelength undulated reflectors on the seismic, 

382 focused on the uppermost ~0.4 s TWT (Fig. 12). The field of circular depressions is interpreted as the 

383 result of fluid escape (Fig. 3-4).

384 The Central Splay (Fig. 3-4), roots on the Central Structural High, then bends across the extrados of the 

385 rollover into a 25-km-long, 15-km-wide, 1450-m-deep trough, formed by a system of normal faults. The 

386 normal fault scarps reach 350-m-high at the seafloor along the slope of the Gulf of Thermaïkos and 

387 localize a system of slope-apron canyons.  
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388 The seismic line 201 (Fig. 13) crosses the area between the major low-angle (~35° dip) normal fault 

389 where the North Anatolian Fault ends and the termination of the Sithonia Splay. The hanging wall forms 

390 a syncline basin, filled-in by sediments characterized by the short-wavelength undulated facies formed 

391 by fluid escape. The system of normal faults crossing the slope of the Gulf of Thermaïkos forms a series 

392 of horst and graben (Fig. 13). The termination of the Sithonia Splay is a set of two sub-parallel listric 

393 faults, dipping 20° to 30° to the north, with their associated rollover structures dissected by synthetic 

394 and antithetic normal faults (Fig. 13), consistent with the focal mechanisms at this location (Kourouklas 

395 et al., 2022).

396

397 5-2-Structure of the Edremit-Skyros Trough (Southern Branch of the North Anatolian Fault)

398 The structure of the Edremit-Skyros horsetail is described in details in Papanikoalou et al. (2019). In 

399 this study, we present three new seismic profiles, which cross all the key structures of the Edremit-

400 Skyros Trough. 

401 The seismic profile 801 (Fig. 14) crosses the Venus plateau, an oblique splay of the horsetail, the deepest 

402 basin of the trough, here expressed as a growth syncline, and the main system of sub-parallel low-angle 

403 (~25° dip) normal faults bounding the Skyros Island, which isolates a half-graben. The seismic line 802 

404 (Fig 15) crosses the southern branch of the North Anatolian Fault and the southern edge of the Edremit-

405 Skyros Trough. It reveals a series of angular unconformities associated to tilted blocks. On the seismic 

406 profile 803 (Fig. 16), the oblique splays of the horsetail appear as normal faults isolating either half-

407 grabens or growth synclines, dominantly filled-in by mass transport deposits. The subsidence increases 

408 towards the Skyros Island. Normal faults segment the bulge of the growth-synclines. In this area, 

409 sedimentation rates exceed the vertical slip-rate at the faults, resulting in their smooth aspect on the 

410 seafloor.

411

412 5-3- Structure of the Evia Basin 

413 The Evia basin consists in a 90-km-long series of three subsiding basins, up to 1000-m deep, separated 

414 by structural highs (Fig 3-4). On the seismic lines (Fig 17), all the Evia sub-basins appear as a series of 

415 tilted half grabens bounded by a major normal fault on their SW flank. The maximum thickness of the 
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416 post-Messinian sediments reaches ~1 s (TWT). The series emplaced before the formation of the structure 

417 display seismic facies typical of distal detritic sedimentation, while the syn-tectonic series display a 

418 fanning configuration recording the progressive subsidence of the structure. Only minor Mass Transport 

419 Deposits are observed within the growth structures, which results from the ~20° steep slope formed by 

420 the main normal fault that does not allow the storage of sediments. The structural thresholds appear as 

421 positive flower structures in line with the trend of the North Anatolian Fault, with uplifted segments of 

422 the basement and a dense pattern of faults on their flanks. 

423

424 5-4- A diffuse fault system buried in the offshore North Aegean Domain

425 The seismic lines collected during the NAFAS cruise in 2017 together with the compilation of vintage 

426 seismic lines (Mascle & Martin, 1990; Beniest et al., 2016) reveal fossil structures buried under the 

427 sediments of the North Aegean Domain and locally crosscut by the horsetail structures. 

428 The first structure is encountered in the area of the connection between the Saros Gulf and the North 

429 Aegean Trough, at the -W-E trending Athos splay (Fig 3-4). There, the seismic line 701 (Fig 8) reveals 

430 a buried tilted block sealed by a series of onlap terminations of the sedimentary layers. 

431 The second structure also corresponds to a tilted graben, located at the plateau isolated between the 

432 North Aegean Trough and the Edremit-Skyros Trough (Fig. 18).  This graben is referred to as the Venus 

433 graben. 

434

435 5-5- Chronology of tectonic events in the North Aegean Sea

436 The series of angular unconformities labeled from A to D records the main tectonic events that shaped 

437 the North Aegean Domain since the Messinian (Fig 7). 

438 5-5-1. The North Aegean Trough

439 Unconformity D, dated at 2.8 Ma, records the end of the tectonic episode expressed by the series of 

440 tilted blocks composed of the Athos (Fig. 8) and Venus (Fig. 18) grabens. This unconformity also marks 

441 the deactivation of a series of push-up structures located in the area of the Central Structural High (line 

442 603, Fig 11). At the termination of the Sithonia Splay (line 201, Fig 13) offshore Kassandra Peninsula, 
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443 this unconformity marks the onset of a fanning configuration of the sediments and, therefore, the onset 

444 of the tilt of the graben. 

445 The second key angular unconformity C, dated at 2 Ma, is well identified by onlap terminations over 

446 the underlying, tilted deposits in the North Aegean Trough (e.g. in the vicinity of Skopelos at line 103, 

447 Fig 12). This unconformity marks the onset of the fanning configuration of the sediments observed all 

448 along the Sithonia Splay (line 201, Fig 13; line 602-603, Fig 10-11), and hence, the formation of this 

449 still-active splay within the North Aegean Trough. The amplitude of slope incision features remains 

450 poorly disturbed by this tectonic episode (e.g. at the edge of the Thermaïkos Gulf, line 201, Fig 13), 

451 which indicates a still rather low subsidence rate. 

452 These unconformities D and C record the Late Pliocene-Early Pleistocene change in the pattern of strain 

453 localization within the North Anatolian Shear Zone. These unconformities also pre-date the first stage 

454 of the formation of the North Aegean horsetail structure, with the activation of the Sithonia Splay. 

455 The third angular unconformity B, dated at ~1.3 Ma, records the formation of the termination of the 

456 central splay (observed at line 103, Fig 12). Across the edge of the Thermaïkos Gulf, the 1.3 Myrs-old 

457 unconformity corresponds to an increase in the amplitude of the slope incisions features (line 201, Fig 

458 13), which indicates a major increase in the overall subsidence, the channels digging deeper to catch 

459 their equilibrium line. The Mass Transport Deposits associated to this episode are the thickest (~0.2-0.3 

460 s TWT) encountered within the North Aegean Domain since the Messinian. At the connection between 

461 the North Aegean Trough and the Saros Gulf, the 1.3 Myrs-old unconformity records the formation of 

462 the Athos Splay and the main uplift of the Medusa High (Fig 8-9). There, the mean vertical slip-rate of 

463 the Athos normal fault increased from a 0.13 mm.yr-1 during the 2-1.3 Ma interval to 0.22 mm.yr-1 since 

464 1.3 Ma. Overall, this set of observations indicates a major structural reorganization of the northern 

465 branch of the North Anatolian Fault at 1.3 Ma, marked by a drastic increase in subsidence rates within 

466 the sub-basins of the North Aegean Trough. 

467 Finally, unconformity A, dated at ~0.5 Ma, records the onset of the Main Splay of the North Anatolian 

468 Fault all across the North Aegean Trough (Ferentinos et al., 2018). The formation of the Main Splay is 

469 best recorded offshore Skopelos (line 103, Fig 12), the segment of the fault running at the edge of the 

470 Central High being affected by current and gravity-driven erosion (line 602, Fig 10). The activation of 
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471 the Main Splay induced a change in the activity of the Sithonia Fault, with an increase of the vertical 

472 slip-rate from 0.16 mm.yr-1 during the 1.3-0.48 Ma interval to 0.3 mm.yr-1 since 0.48 Ma. However, the 

473 vertical slip-rate of the faults related to the Central Splay remained steady.

474

475 5-5-2. The Skyros-Edremit Trough

476 The unconformity C (2 Ma) is onlapped by a tilted series of reflectors on the southern edge of the trough 

477 (line 803, Fig. 16). This unconformity marks the first stages of the formation of the Southern branch of 

478 the North Anatolian Fault offshore Skyros. Unconformity B (1.3 Ma) corresponds to the increase in the 

479 subsidence rate (up to 0.45 mm.yr-1) at the hanging wall of the normal fault system running along Skyros 

480 Island (Fig. 14, 15, 16). Unconformity A (~0.5 Ma) is well expressed close to the oblique splay 1 and 

481 marks an increase in subsidence at the hanging wall of this splay (Fig. 15). Unconformity A therefore 

482 records the formation of the oblique splay 1 (Fig. 16). 

483

484 5-5-3. The Evia basin

485 The onset of subsidence within the Evia Basin is dated between 2 and 1.3 Ma based on unconformities 

486 B and C (Fig. 17). This marks the base of the fanning configuration of the sedimentary infill. The main 

487 formation episode of the Evia Basins is therefore coeval with the increase in subsidence at Corinth and 

488 the first step of strain localization at both the northern and southern branches of the North Anatolian 

489 Fault. 

490

491 6- Discussion

492 The present-day configuration of the North Aegean Domain shows the gradual kinematic transition from 

493 the strike-slip deformation that dominates in the northeastern Aegean Domain to the dip-slip 

494 deformation encountered in the Northwest Aegean Domain (Mouslopoulou et al., 2007a,b). Our new 

495 set of geological constraints allows us to refine the framework of strain localization of the North 

496 Anatolian Shear Zone in the North Aegean Domain and highlights the westward propagation of the 

497 strike-slip dominated area since the Late Miocene. The new geological constraints obtained from the 
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498 seismic-reflection dataset are summarized in Figure 19 and integrated to the previously available 

499 constraints on the geological events of the area.

500

501 6-1. Mode of formation of horsetail structures: the North Aegean and Edremit-Skyros Troughs

502 The formation of the horsetail terminations of both the northern and southern branches of the North 

503 Anatolian Fault occurs in the frame of the westward propagation of the North Anatolian Fault within 

504 the prevailing NNE-SSW to N-S extensional conditions of the western North Aegean Domain. The 

505 horsetail configuration emplaces where the strike-slip fault connects a system of low-angle normal faults 

506 inherited from the extensive stage.

507 The North Aegean and the Edremit-Skyros Troughs are horsetail terminations that are currently at 

508 different steps of their development. Although the formation of both structures initiated at the same age 

509 (~2 Ma), the lower slip rate along the southern branch of the North Anatolian Fault leads the Edremit-

510 Skyros to be structurally less mature. This differential stage of horsetail structural evolution allows us 

511 to investigate the tectonic and sedimentary processes at their origin.

512 On one hand, the Edremit-Skyros Trough corresponds to the evolution of a single horsetail structure. 

513 The oblique splays of the Edremit-Skyros Trough formed first along the main detachment fault, then 

514 migrated eastwards (oblique splay 1 formed at 0.5 Ma). 

515 On the other hand, the North Aegean Trough consists in three horsetail basins (at the end of the Sithonia, 

516 Central and Main Splays) that merged in a single one. Our seismic dataset highlights the successive 

517 activation of the Sithonia Splay at 2 Ma, the Central Splay at 1.3 Ma and the Main Splay at 0.5 Ma, 

518 which corresponds to the westward propagation of the northern branch of the North Anatolian Fault (Fig 

519 18). The distance between the negative flower structure at the end of each splay is on the order of 30 to 

520 50-km. This corresponds to the distance added to the northern branch of the North Anatolian Fault every 

521 0.7-0.8 Ma in the frame of its westward propagation. The three main splays of the North Aegean Trough 

522 have remained active since their inception. The decrease in slip rates observed in GPS measurements at 

523 the Sporadhes Archipelago (Müller et al., 2013) may be the result of slip partitioning over each major 

524 splay of the North Aegean Trough (Fig. 1). 
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525 This framework of structural evolution of the horsetail terminations encountered in the North Aegean 

526 Domain provides a ground-truth validation of analog modeling tests performed by Basile & Brun (1999). 

527 In their models (Fig 20), a horsetail termination initially consists in an en-échelon normal fault system 

528 trending perpendicular to the main strike-slip displacement zone, composed of oblique Riedel splays. 

529 As the relative motion between the adjacent blocks increases, the Riedel splays progressively connects 

530 the en-échelon normal fault system. For dextral motion, the first Riedel fault forms to the east of the 

531 horsetail and the subsequent splays propagate westwards. Accordingly, the en-échelon normal faults are 

532 first captured in the overall horsetail structure in the east. The western en-échelon normal faults are 

533 progressively captured within the horsetail structure during its maturation. While some grabens 

534 associated to the en-échelon normal faults are captured by the oblique splays, others are crosscut by the 

535 propagating main displacement zone. Once initiated, all the oblique splays remain active during the 

536 lifetime of the horsetail. 

537

538 6-2. The Plio-Pleistocene transition from a wide North Anatolian Shear Zone to a localized North 

539 Anatolian Fault

540 Our structural analysis further highlights the Late Pliocene change in stress regime (Lyberis, 1984) at 

541 the scale of the North Aegean Domain (Fig. 21). From the Serravalian to the Late Pliocene, the North 

542 Anatolian Shear Zone consisted in a diffuse system of en-échelon normal faults connected through 

543 dextral transfer faults, thereby isolating a series of basins. These basins include a set of Late Miocene-

544 Early Pliocene basins compartimentalizing the Rhodope Core complex (Brun & Sokoutis, 2018) and the 

545 series of basins identified at sea in the vicinity of the North Aegean Trough, including the Athos and 

546 Venus grabens, deactivated at 2.8 Ma (Fig. 21a). 

547 Our reconstructions at 2 and 1.3-0.8 Ma (Fig. 21b-c) show the period of transition from the wide shear 

548 zone to the two main branches of the North Anatolian Fault; i.e. the period of effective propagation of 

549 the North Anatolian Fault in the North Aegean Sea. This transition is roughly coeval with the 

550 deactivation of the South Marmara Fault dated by Le Pichon et al. (2015) and the subsequent activation 

551 of the Main Marmara Fault. While propagating westward, the strike-slip segments of the North 

552 Anatolian Fault either connected or crosscut the Late Pliocene system of en-échelon grabens including 
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553 the Athos and Venus grabens. Unconformity C (Fig. 21c-d) records the first stage of formation of the 

554 northern and southern branches of the North Anatolian Fault at the North Aegean Trough and the 

555 Edremit-Skyros Trough, whereas unconformities B and A marks the successive steps of development 

556 of these basins. 

557 If we consider the series of Serravalian-Pliocene basins dissecting the Rhodope Core complex (Brun & 

558 Sokoutis, 2018) as the earliest traces of the North Anatolian Shear Zone in the North Aegean Domain, 

559 then the North Anatolian Shear Zone remained a diffuse transtensive system for about 5 to 7 Myrs until 

560 the Messinian, with a first step of localization marked by the formation of the Ganos-Saros segment at 

561 ~5 Ma (Armijo et al., 1999). The Anatolia-Eurasia relative motion used to be distributed over this 

562 transtensive system composed of multiple en-échelon fault segments prior to Messinian. The enhanced 

563 localization of the North Anatolian Shear Zone in the North Aegean Domain evidenced here at 2-1.3 

564 Ma coincides with the Early Pleistocene increase in slip-rates along the North Anatolian Fault (Hubert 

565 Ferrari et al., 2010). The localization of the North Anatolian Fault therefore contributed to the Early 

566 Pleistocene change in stress regime recorded over the entire Aegean, previously attributed to a change 

567 in the dynamics of the Hellenic Subduction Zone (Lyberis, 1984; Mascle & Martin, 1990; Armijo et al., 

568 1992; Sakellariou & Tsampouraki-Kraounaki, 2016).

569 In this frame, the ‘wide shear-stage’ of the North Anatolian Shear Zone and the diachronous strain 

570 localization within it lasted several million years longer in the western North Aegean Domain than east 

571 of the Yeniçaga Fork (Fig. 21; Sengör et al., 2005). Some fault segments are localized since the 

572 Messinian (e.g. the Ganos-Saros fault) while others formed in the Early Pleistocene (e.g. the North 

573 Aegean and the Edremit-Skyros Troughs). This implies that some diffuse en-échelon systems (e.g. 

574 Chalkidiki or Marmara at 3.5-4 Ma) remain active while major, several hundred-km-long localized fault 

575 segments (e.g. Ganos-Saros segment) exist in between (Fig. 21). Further strain localization involved the 

576 abandonment of Late Miocene-Early Pliocene en-échelon faults (e.g. Strymon, Drama, Prinos) and 

577 major transfer strike-slip faults (e.g. transfer faults within the Thrace basin, the South Marmara Fault). 

578

579 7-Conclusions
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580 Our study documents multiple episodes of strain localization within the North Anatolian Shear Zone in 

581 the North Aegean Domain. During the Late Serravalian to the Early Pliocene, the North Anatolian Shear 

582 Zone was a diffuse transtensive fault zone. During the Late Pliocene, strike-slip strain localized along 

583 some fault segments (e.g. the Ganos-Saros segment) while remained diffuse in others (Prinos, Strymon, 

584 Drama, Thrace basins, Fig 21). Offshore sediments record the first abrupt step of strain localization 

585 along the northern and southern branches of the North Anatolian Fault in the North Aegean Domain at 

586 2-1.3 Ma. This is coeval with the general increase of slip rate along the entire North Anatolian system 

587 and the regional change in stress regime over the Aegean Sea. Further westward propagation and 

588 localization along the northern and southern branches formed the North Aegean and Skyros-Edremit 

589 Troughs as horsetail structures. The North Aegean Trough results from the formation of three successive 

590 horsetails, formed at 2 Ma, 1.3 Ma and 0.5 Ma and propagating westward at a rate of 40 to 60 km.Myr-

591 1.

592
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636 Figures:

637

638 Figure 1: Tectonic framework of the Eastern Mediterranean Sea (active faults from Kreemer and 

639 Chamot-Rooke, 2004 and Chamot-Rooke et al., 2005). The tectonic escape of Anatolia results from 

640 interactions between Arabia-Eurasia and the Hellenic trench retreat. NCDS: North Cycladic Detachment 

641 System
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642

643 Figure 2: a) Structural map of the segment of the North Anatolian Shear Zone in the North Aegean 

644 Domain, modified after Lyberis (1984), Koukouvelas and Aydin (2002), Yalçin et al. (2016); 

645 Sakellariou et al. (2018), Papanikolaou et al. (2002; 2019). The stress tensors are from Gürer et al. 

646 (2016); Sümer et al. (2018). The location of the Late Miocene-Late Pliocene basins (Strymon, 

647 Mygdonia, Drama, Orfanos, Prinos) is from Brun and Sokoutis (2018). b) Present-day stress tensors and 

648 c) strain rate, from Floyd et al. (2010) and Konstantinou et al. (2016).
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649

650 Figure 3: Topographic and bathymetric map of the North Aegean Domain and location of the seismic 

651 lines published in this study (Sakellariou et al. 2018; Papanikolaou et al., 2002; 2019)
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652

653 Figure 4: Structural map of the active faults of the North Aegean Trough and the Edremit-Skyros 

654 Trough and the main sedimentary features (modified after Sakellariou et al. 2018; Papanikolaou et al., 

655 2002; 2019). CSH: Central Structural High
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656

657

658 Figure 5: Criteria of identification of transtensive and transpressive strike-slip structures on the 

659 multibeam and seismic-reflection dataset, with the examples of a) the Sithonia Splay and b) the Athos 

660 Splay
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661

662 Figure 6: Classification of the facies of the main sedimentary features observed on the multibeam and 

663 seismic dataset in the study area
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664

665 Figure 7: Stratigraphic correlation between the Myrtoon basin (Anastasakis and Piper, 2005), the Evia 

666 Basin and the NW border of the Edremit-Skyros Trough 
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667

668 Figure 8: Seismic line 701 from the NAFAS cruise, crossing the Athos Splay and the North Anatolian 

669 Fault at the entrance of the North Aegean Trough. See figure 3 for location.
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670

671 Figure 9: Seismic line 702 from the NAFAS cruise, crossing the Medusa High and the North Anatolian 

672 Fault. See figure 3 for location.
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673

674 Figure 10: Seismic line 602 from the NAFAS cruise, crossing the main splay of the North Anatolian 

675 Fault, the central high and the Sithonia splay within the North Aegean Trough. See figure 3 for location.
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676

677 Figure 11: Seismic line 603 from the NAFAS cruise, crossing the main splay of the North Anatolian 

678 Fault, the central high and the Sithonia splay within the North Aegean Trough. See figure 3 for location.
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679

680 Figure 12: Seismic line 103 from the NAFAS cruise, crossing the Main splay of the North Anatolian 

681 Fault, the central splay and the western termination of the Sithonia Splay within the North Aegean 

682 Trough. See figure 3 for location
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683

684 Figure 13: Seismic line 201 from the NAFAS cruise, crossing the series of oblique splays dissecting 

685 the slope at the edge of the Gulf of Thermaïkos and a field of fluid escape features. See figure 3 for 

686 location.
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687

688 Figure 14: Seismic line 801 from the NAFAS cruise, crossing the Edremit-Skyros Trough. See figure 

689 3 for location.
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690

691 Figure 15: Seismic line 802 from the NAFAS cruise, crossing the Edremit-Skyros Trough. See figure 

692 3 for location.
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693

694 Figure 16: Seismic line 803 from the NAFAS cruise, crossing the Edremit-Skyros Trough. See figure 

695 3 for location.

Page 40 of 57Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



40

696

697 Figure 17: Seismic line 401 from the NAFAS cruise, crossing the main normal fault bounding the Evia 

698 Basin and seismic line 301 crossing one of the structural thresholds identified within the Evia basin. See 

699 inset and figure 3 for location.
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700

701 Figure 18: Vintage seismic line, from Beniest et al. (2016), showing the Venus graben. See figure 3 for 

702 location.
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703

704 Figure 19: Summary of the main steps of structural evolution of the North Anatolian Fault and the Gulf 

705 of Corinth in the North Aegean Domain. 
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706

707 Figure 20: Analog (sandbox) models for the evolution of horsetail termination, from Basile and Brun 

708 (1999), compared with the evolution of the North Aegean Trough horsetail (this study).
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709

710

711 Figure 21: Structural evolution of the North Anatolian Fault in the North Aegean Domain, compiling 

712 field and offshore observations. This series of maps represents the present-day location of the faults that 

713 used to be active at 4-3.5 Ma, 2 Ma, 1.3-0.8 Ma, 0.5 Ma. The past shorelines are not reconstructed. 

714 Paleo-stress tensors from Sümer et al. (2018) and Lybéris (1984).
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