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Abstract

The North Anatolian Fault is the ~1200-km-long active continental transform boundary between
Anatolia and Eurasia. This strike-slip system initiated around 10-12 Ma and experienced
diachronous episodes of strain localization along its strike. The structural evolution of the ~350-
km-long fault segments crossing the North Aegean Sea remains to be accurately investigated.
There, the modern North Anatolian Fault is localized along two main branches: the northern
branch ends at the North Aegean Trough and the southern branch ends at the Edremit-Skyros
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Trough. The Evia Basin is located in the North Aegean Domain between the North Anatolian Fault
and the Corinth Rift. This study presents seismic reflection lines crossing the aforementioned
structures of the North Aegean Domain, which document their subsurface structure and the
sedimentary record of their activity since the Messinian. The seismic-reflection dataset is tied to
regional-scale stratigraphic markers, which constrains the age of main tectonic events related to
the formation of the North Anatolian Fault. The seismic-reflection lines show that the two main
branches of the North Anatolian Fault became localized structures at 1.3-2 Ma, coevally with the
formation of the Evia Basin. Since 2 Ma, the North Aegean Troughs developed as a series of
horsetail basins propagating westwards at the termination of the branches of the North Anatolian
Fault. On a regional scale, the wide and diffuse North Anatolian transtensive shear zone active
from Serravalian to Late Pliocene turned into a narrower shear zone at the two main branches of
the North Anatolian Fault since the Early Pleistocene. This abrupt episode of strain localization
occurred in the frame of the major Early Pleistocene change in stress regime from NE-SW to N-

S extension, which has been observed throughout the Aegean Sea.

Keywords: Continental tectonics: strike-slip and transform; Transform faults; Normal faulting;

Tectonics and landscape evolution; Europe; Crustal imaging.

1- Introduction

Transform faults are major lithospheric-scale tectonic structures acting as plate boundaries (Woodcock,
1986; Mann, 2007), along which relative plate motion occurs horizontally along the fault’s strike. The
accumulated relative plate motion along transform boundaries juxtaposes sections of the lithosphere
with different histories, ages, and hence, mechanical properties (Ben Zion & Sammis, 2003). The
complex rheology of the continental domain results in both localized (e.g. the Dead Sea Fault; Garfunkel
& Ben-Avraham, 1996) and diffuse continental transform systems (e.g. the Trans-Alboran Shear Zone;
Lafosse et al., 2020). Some transform systems have also being shown to alternate localized and diffuse
strain along their strike (e.g. the San Andreas Fault; Wesnousky, 2005; and the North Anatolian Fault;

Sengor et al., 2019).
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Field studies reveal that continental transforms initiate as several hundreds of kilometers-wide
distributed areas of deformation, forming a shear zone that is composed of scattered oblique en-échelon
strands (Tchalenko & Ambraseys, 1970; Sengor et al., 2005; Wesnousky, 2005; Mann, 2007; Sengor et
al., 2014). During fault initiation, motion is distributed over several individual fault segments. As finite
relative motion increases, fault strands progressively connect into continuous and localized strike-slip
fault segments. The increased connection of fault strands shapes narrower shear zones (<100-km- wide)
with local structural complexities in stepover (releasing or restraining bends). The localization of strike-
slip segments leaves some initial oblique strands deactivated. The timing of strain localization within
the wide shear zone may differ from one fault segment to another. The lifetime of such shear systems in
the continental setting is in the order of 107 yrs (Sengér et al., 2019). Analog models reproduce the
transition from an initial diffuse shear zone composed of Riedel faults to a localized fault formed by the
linkage of shear segments (Tchalenko, 1970; Dooley & Schreurs, 2012; Lefevre et al., 2020).

The North Anatolian Fault system, located in the Eastern Mediterranean domain (Fig. 1, 2), is the 1200-
km-long dextral strike-slip boundary between the Anatolian and Eurasian tectonic plates (Fig. 1, 2),
which connects the Anatolia-Arabia-Eurasia triple junction in the East (Hubert Ferrari et al., 2010) to
the Hellenic Subduction Zone (Flerit et al., 2004; Sakellariou et al., 2018; Ferentinos et al., 2018). The
North Anatolian Fault triggers frequent earthquakes above Mw ~7 (e.g. Izmit and Duzce events in 1999;
Hubert-Ferrari et al., 2000; Bulut et al., 2018) and its submarine segments are a potential source of
tsunamis (Hébert et al., 2005; Reicherter et al., 2010; Janin et al., 2019).

The North Anatolian Fault transects continental lithosphere with significant along-strike strength
variations, inherited from the successive geological events that shaped the Hellenides mountain belt
prior to its collapse. As such, the North Anatolian Fault is a relevant case-study of a post-orogenic
transform fault (Le Pourhiet et al., 2014; Jolivet et al., 2021).

The objective of this study is to constrain the structural evolution of the ~350-km-long segment of the
North Anatolian Fault crossing the North Aegean Sea (Fig. 3, 4), on the basis of a set of multibeam data
(Ypother cruises, 2013-2016; Sakellariou et al., 2018) and seismic-reflection profiles (NAFAS cruise,

2017; Rodriguez et al., 2018; vintage seismic lines published in Beniest ef al., 2016).

W
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The present dataset covers some of the major tectonic structures encountered in the North Aegean
Domain, namely the North Aegean Trough, the Edremit-Skyros Trough and the Evia Basin (Fig. 2-4).
There, the different steps of formation of the North Anatolian Fault remained poorly constrained due to
the lack of seismic-reflection and stratigraphic data (Krijgsman et al., 2022). We define some regional
stratigraphic markers for the period spanning the Messinian to the present-day (Laigle et al., 2000;
Beniest et al., 2016; Ferentinos et al., 2018) to reach a precision in the ages of tectonic events
comparable to the segments of the North Anatolian Fault observed in the Marmara Sea (Le Pichon et
al., 2014). Finally, we provide structural maps of the post-Messinian evolution of the North Aegean
Domain, from the Yenigaga Fork east of Marmara to the Evia Basin in Greece (Fig. 2). Overall, our
structural reconstructions of the North Anatolian Fault document the strain localization within a post-

orogenic continental shear zone and the time of effective formation of such tectonic plates.

2- Geological Background

2-1-Present-day configuration of the North Anatolian Fault in the North Aegean Domain

The North Anatolian Fault is the plate boundary between Anatolia and Eurasia, with a current dextral
strike-slip rate of 23 mm.yr! (Le Pichon et al., 2003; Reilinger et al., 2006; Le Pichon & Kreemer, 2010;
Pérouse et al., 2012; Miiller et al., 2013). The finite amount of dextral motion along the North Anatolian
Fault is estimated to 8545 km, with some ambiguities in areas where slip is distributed over several fault
strands (Sengor et al., 2005). The finite offset results from strike-slip rates that grew from ~3 mm.yr!
in the earliest stages of formation of the fault system to near-current slip rates since the Early Pleistocene
(Hubert Ferrari et al., 2010).

In this study, the North Aegean Domain is defined as the area bounded to the south by the North Cycladic
Detachment System, to the north by the Rhodope Detachment System, to the west by the Vardar Suture
Zone and to the East by the Yeni¢aga fork (Fig. 1, 2). The total amount of slip-rate along the North
Anatolian Fault is accommodated by its northern and southern branches in the North Aegean Domain
(Fig. 1, 2; Le Pichon et al., 2003).

The northern branch of the North Anatolian Fault crosses the Marmara Sea (i.e. the Main Marmara
Fault; Le Pichon et al., 2001), then runs along the Gelibolu Peninsula and the Gulf of Saros until it
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connects the North Aegean Trough (Fig. 2). The North Anatolian Fault makes a ~30° bend at the
connection between the Saros Gulf and the North Aegean Trough (Roussos & Lyssimachou, 1991;
Koukouvelas & Aydin, 2002). The strike-slip rate of relative motion along the northern branch decreases
from 21.2 mm yr! at the Gulf of Saros to ~5 mm yr~! at the Sporadhes archipelago (Miiller ez al., 2013).
The southern branch of the North Anatolian Fault crosses the Biga Peninsula and connects the Edremit-
Skyros Trough in the Aegean Sea (Fig. 2). The strain distribution of the southern branch of the North
Anatolian Fault (Fig. 2-4) is diffuse onland in Turkey (Siimer et al., 2018), whereas it is expressed as a
localized structure offshore (Papanikolaou et al., 2019). The strike-slip rate along the southern branch
is on the order of 10 mm.yr! (Miiller et al., 2013).

Both the North Aegean and the Edremit-Skyros Troughs reveal horsetail structures (Fig. 3-4). Horsetail
structures are commonly observed at the termination of strike-slip faults (Basile & Brun, 1999): they
consist in numerous oblique splays rooting on the main strike-slip faults and isolating a series of
transtensive basins. On one hand, the North Aegean Trough is ~150-km-long, up to 80-km-wide and
1600-m-deep (Brooks & Ferentinos, 1980; Papanikolaou et al., 2002; Sakellariou et al., 2018;
Ferentinos et al., 2018), running from the Lemnos Deep to the Sporadhes archipelago (Fig. 3, 4). On the
other hand, the Edremit-Skyros Trough is 70-km-long, up to 50-km-wide, and 1050-m-deep (Fig. 3, 4;
Papanikolaou et al., 2019). There, the southern branch of the North Anatolian Fault acts as a marginal
structure, which bounds the southern flank of the trough over its entire length and splits into two 45 to

66-km-long oblique splays isolating sub-basins.

2-2- Tectonic configuration of the North Anatolian Fault in the North Aegean Domain since the

Middle Miocene

The formation of the North Anatolian Fault results from the influence of several geodynamic drivers,
including Arabia-Eurasia collision, the dynamics of the Hellenic trench retreat and the resulting
differential in gravitational potential between the Anatolian plateau and the Aegean Sea (Jolivet &
Faccenna, 2000; Faccenna et al., 2006; Brun & Faccenna, 2008; Le Pourhiet et al., 2012; Jolivet et al.,

2015; Brun et al., 2016; England et al., 2016).

(O}
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Most of the constraints on the history of the North Anatolian Fault in the North Aegean Domain are
based on the study of the Marmara Sea and its surroundings. At least three successive major strike-slip
systems, evolving into a continuous frame of shearing of the continental lithosphere, have been
identified on the basis of seismic data tied to industrial wells (Sengor et al., 2014; Le Pichon et al., 2014;
2015).

A first diffuse strike-slip system emplaced in Late Serravalian-Tortonian (12-10 Ma), in the area that is
now enclosed between the Thrace basin and the Sakarya suture (Fig. 1, 2). A part of this first strike-slip
system is still active as the southern branch of the North Anatolian Fault, where the pattern of drainage
networks recorded a structural reorganization around 0.5-1.3 Ma (Demoulin et al., 2013).

A second strike-slip system is evidenced at the South Marmara Fault and the Ganos segment, both
corresponding to positive flower structures formed at a restraining bend (Fig. 2; Le Pichon et al., 2014;
2015; Karakas et al., 2018). These structures record the beginning of the localization of the North
Anatolian Shear System in the Pliocene (Armijo et al., 1999; Le Pichon et al., 2014; 2015). The South
Marmara Fault goes extinct around 3.5 Ma, while the Ganos segment is still active and forms a well-
localized, >130-km-long dextral strike-slip fault (Armijo et al., 1999).

The third, localized strike-slip system corresponds to the northern branch of the North Anatolian Fault,
expressed as the Main Marmara Fault in the Marmara Sea (Le Pichon et al., 2001; 2003; Carton et al.,
2007). Estimates of the age of the Main Marmara Fault range between 0.5 and 2.5 Ma (Rangin et al.,
2004; Grall et al., 2012, 2013; Le Pichon et al., 2015). The Main Marmara Fault crosses the Gelibolu
Peninsula and connects the Gulf of Saros at the entrance of the Aegean Sea through the Ganos strike-
slip segment (Fig. 2; McNeill et al., 2004).

The age of formation of the North Aegean Trough and the Skyros-Edremit Trough is roughly
constrained in the Late Pliocene-Early Pleistocene (Laigle et al., 2000; Beniest et al., 2016), a period
which encompasses several stages of evolution of the North Anatolian Fault.

Onland, a series of sedimentary basins (Fig. 2; namely the Strymon, Orfanos, Prinos, Drama, Sandanski,
Mygdonia basins and grabens) formed in the Serravalian segmenting the Rhodope Metamorphic Core

Complex until the Early Pliocene (Brun & Sokoutis, 2018). Traces of Late Miocene extension and

[ep}
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differential subsidence are further observed in the Gulf of Thermaikos and offshore the Chalkidiki

peninsula (Varesis & Anastasakis, 2021).

2-3- Structure of the lithosphere in the North Aegean Domain

In the North Aegean Domain, the continental lithosphere keeps the record of a complex geological
history, from the closure of Mesozoic Oceans (i.e. the Vardar and Pindos Oceans, Schettino & Turco,
2011; Okay & Tiiysuz, 1999) to the building of the Hellenides Mountain Belt and its subsequent collapse
in the wake of the Early Cenozoic collision between Adria and Pelagonia domains (Handy et a/., 2010).
A series of metamorphic core complexes emplaced in the North Aegean Domain from the Late Eocene
to the Middle Miocene (Rhodope Core complex, 45-Myrs-old; North Cycladic Detachment System, 15-
20 Myrs-old; Jolivet & Brun, 2010; Le Pourhiet ef al., 2012; Jolivet et al., 2013).

As a result, the North Aegean lithosphere displays an unusual layering, with a shallow brittle ductile
transition (<10 km, Brun & Sokoutis, 2018) and a thinned lithospheric mantle. The Moho depth ranges
between 20 and 30 km (Sodoudi et al., 2006). Rayleigh wave anisotropy reveals the existence of a
thermal anomaly located right in between the two segments of the North Anatolian Fault in the North

Aegean domain, within the lower crust and the lithospheric mantle (Endrun et al., 2011).

3- Material and Methods

3-1- Topography & seafloor bathymetry

The Digital Elevation Model used for the maps of the North Aegean Domain (Fig. 1-4) combines data
from the Shuttle Radar Topography Mission (SRTM) at 3 seconds and the multibeam dataset acquired
during the Ypother oceanographic cruises between 2013-2016 (Sakellariou et al., 2018), here gridded

at 25 m.

3-2- Seismic profiles

In this study, we present a new seismic-reflection dataset collected during the NAFAS (North Anatolian
Fault in the North Aegean Sea) expedition in summer 2017, onboard the R/V Tethys II. The expedition
focused on the North Aegean Trough, the Edremit-Skyros Trough and the Evia Basin. The NAFAS

A

Page 8 of 57



Page 9 of 57

oNOYTULT D WN =

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

Geophysical Journal International

dataset is complementary documented by a set of vintage seismic-reflection dataset collected in the 70°s
and partly explored in Beniest et al. (2016). All the seismic-reflection profiles are displayed on the
figures with a vertical exaggeration of 14, with their related simplified cross-section at 1:1 scale.

Seismic reflection profiles were shot using a GI airgun and a 24-trace streamer with 400-m maximum
offset. The GI gun was triggered in harmonic mode (2 x 24 cubic inches) every 6s, with an acquisition
speed of 4.1 knots, leading to a shot interval of 12.5 m. The trace record length is 5500 ms with a 1-ms
sample interval. Only 8 out of 24 traces were working with a maximum offset of 200-m and a maximum
CDP (Common Depth Point) fold of 4. The depth of penetration of the signal reaches about 3 seconds
two-way travel time (TWT). The processing workflow consists in geometry setting, water-velocity

normal move-out, stacking, deconvolution and Kirchhoff finite difference post-stack migration.

3-3-Multibeam and interpretation of geological structures on seismic-reflection profiles

The geological mapping of tectonic structures is based on the seafloor signature of the structure on the
multibeam data and the expression of these features on the seismic-reflection lines (Fig. 5). The offshore
structural maps provided in this study (Fig. 4-5) are slightly modified from Papanikolaou et al. (2002;
2019) and Sakellariou et al. (2018), considering our new seismic dataset.

The North Aegean Domain is dominated by a large variety of strike-slip structures (Fig. 5):

-Negative flower structures: Most of the sub-basins isolated by the oblique splays within the horsetail
terminations correspond to negative flower structures. The negative flower structures are bounded by
normal faults of opposite dip and connect into a single strike-slip fault at depth.

-Transpressive structures: They correspond to positive flower structures and push-up structures, formed
by a set of strike-slip faults with a reverse component.

Tectonic processes control the distribution of clastic sedimentary deposits in the study area (Fig. 6).
Prior to the onset of the North Anatolian Fault, scattered distal deltaic rivers flood the area, marked by
moderate incision along the thalweg. Since the onset of tectonic subsidence, the rivers form channel-
levee systems close to the slope break and evolve downslope into canyons with V-shape morphologies
(Fig. 6a). The complex distribution of faults and basins within the North Aegean Trough results in a
scattered distribution of submarine landslides, identified according to their multibeam signature (arcuate

8
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scar and block falls at the edge of the slope, fig. 6¢) and their related mass transport deposits (marked a
chaotic-to-transparent seismic facies). Some of the steepest slopes display undulated seafloor (fig. 6b),
underlain by a series of wavy reflectors, which could be interpreted as sediment waves resulting from
creeping of sediments in interaction with bottom-current controlled deposition (Faugéres et al., 2002;
Shillington et al., 2012). The tectonic structures also influence the circulation of oceanic bottom-
currents. Where the current intensity is strong, the axis of the current is associated with a rough seafloor,
which is an indicator of the strong sediment sorting. The attenuation of the intensity of the oceanic
currents promotes the building of a series of fault-controlled contourite drifts (sensu Rebesco et al.,
2014). The architecture of these contourite drifts display typical sigmoid to mounded configurations
(Fig. 6e), characterized by important lateral thickness variations of the sedimentary layers, with pinched-
out reflectors close to the current axis and thicker deposits away from it. Fluid escape features are
commonly observed close to the main faults and on the extrados of the main rollover structures (Fig. 4).
Fluid escape features are expressed as dense networks of conduits leading to small offsets of the
sedimentary layers or undulated to chaotic series of reflectors on the seismic dataset (Fig. 6d). At the
seafloor, the area of fluid escape form fields of coalescing circular depressions (Fig. Se, Papatheodorou
etal., 1993).

The clastic input to the North Aegean Sea implies that most of the structures related to the North
Anatolian Fault are growth structures. The timing of formation of the strike-slip structures is constrained
from the age of onset of the fanning of the sediments. Although many second-order unconformities
linked to periodic sea-level and climatic variations are encountered in the study area (Lykousis, 2009;
Piper & Anastasakis, 2013), we here focus on the major unconformities corresponding to the main
tectonic episodes related to the evolution of the North Anatolian Shear Zone, i.e. the unconformities

corresponding to a significant tilt of the seafloor.

4- Stratigraphy of the North Aegean Domain

4.1. The pre-Messinian period and the Messinian Event

Field studies in the Thermaikos, Thrace and Saros Basins document two Eocene to Oligocene silici-
clastic units ontop of the metamorphic basement (Turgut & Eseller, 2000; Siyako & Huvaz, 2007,

9
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Islamoglu et al., 2008). Seismic profiles tied to wells evidence the continuity of these units offshore in
the North Aegean Domain, with a major angular unconformity at the Oligocene-Miocene boundary
(Beniest et al., 2016; Varesis & Anastasakis, 2021). Industrial wells located in the Prinos Basin
(Proedrou & Papaconstantinou, 2004) provide precise constraints on the ages of the geological events
related to the Messinian Salinity Crisis, with the salt mobile unit dated between 5.97 and 5.33 Ma, and
earliest traces of the Messinian stage dated around 7.15 Ma (Karakitsios et al., 2017).

We identify on the seismic dataset the contact between the Late Miocene Unit and the Messinian Event
according to the following criteria:

-Late Miocene Unit: During the Miocene, fluvial and floodplain deposits cover the North Aegean
Domain (Melinte-Dobrinescu et al., 2009; Suc et al., 2015). Drilling sites in the Prinos Basin that reach
Tortonian layers document an alternation of marine shales and turbidites in a distal marine environment,
followed by sandstone with marl and coal intercalations (Karakitsios ez al., 2017; Varesis & Anastasakis,
2021). On seismic data, the Late Miocene Unit is expressed by a series of interbedded channel systems
(Fig. 7).

-Messinian Event: The Messinian is dominantly expressed as an erosive surface in the North Aegean
Domain (Fig. 7), with a few evaporitic units scattered in some basins (e.g. Prinos; Mascle & Martin,
1990; Proedrou & Sidiropoulos, 1992; Proedrou & Papaconstantinou, 2004). Offshore Thermaikos, the
thickness of the Messinian Unit displays important lateral variations, culminating at 0.8 s TWT (Varesis

& Anastasakis, 2021).

4.2. Plio-Pleistocene Period

The Pleistocene stratigraphy has mainly been constrained on the basis of sequence stratigraphy studies,
investigating the influence of sea level variations and oceanic current activity using the architecture of
sedimentary bodies (Sakellariou & Galanidou, 2017; Tripsanas et al., 2016). In the North Aegean
Domain, sequence stratigraphy studies in the Thermaikos Gulf (Lykousis, 2009) and offshore the Biga
Peninsula (Isler ez al., 2008) identified the reflectors corresponding to MIS (Marine Isotopic Stage) 2
(18 ka) to MIS 12 (430 ka). Additional stratigraphic constraints are obtained from the study of contourite
drifts in the Southern Aegean Domain since MIS 11 (420 ka), with an increased current intensity, and
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hence, erosive events during interglacial periods (Tripsanas et al., 2016). In the vicinity of the North
Aegean Trough, some coring document pro-delta formations during the Late Quaternary (last ~150 kyrs;
Piper & Perissoratis, 1991; Lykousis et al., 2002).

Unfortunately, the published reports of the Prinos wells (Proedrou & Papaconstantinou, 2004) do not
provide stratigraphic details for the detritic Plio-Pleistocene sequence.

The only available stratigraphic constraints in the offshore Aegean Domain prior MIS12 are located at
the Myrtoon Basin (Anastasakis & Piper, 2005; Anastasakis et al., 2006), which is about 250-km away
from our study area (Fig. 1). There, the age of the sedimentary layers is fairly well constrained as far as
2.8 Ma on the basis of correlation with DSDP Site 378 in the nearby Cretan Basin (Hsu et al., 1978) and
the age of volcanic layers coming from Milos Island (Fytikas et al., 1976, 1986; Anastasakis & Piper,
2005; Calvo et al., 2012). This set of reflectors is also observed offshore the Evoikos Gulf (about 100
to 150 km away from our study area, Fig. 1) and their age is confirmed at 2 Ma upon the base of the sea-
level dependance of progradational packages of fluvial deposits (Anastasakis & Piper, 2013). However,
the Cycladic Plateau (Fig. 1, 7) has isolated the Myrtoon and Evoikos area (Fig. 1) from the North
Aegean Domain at various periods of sea-level lowstands (Sakellariou & Galanidou, 2017).

In order to investigate whether the stratigraphic constraints obtained at the Myrtoon Basin can be
correlated as far north as the North Aegean Domain, we compare a seismic-reflection profile collected
in the Myrtoon Basin (from Anastasakis & Piper, 2005) with a profile collected at the southern
termination of the Evia Basin, i.e. north of the Cycladic Plateau, here considered as the key feature of
the boundary between the north and south Aegean domains (Fig. 7). Despite a difference of resolution
between the two datasets, both profiles share similarities with respect to the seismic facies of the
Pliocene series up to a key reflector datesd at 1.3 Ma (Fig.7).

Based on sequence stratigraphy studies and correlation with the Myrtoon Basin, we consider that four
Plio-Pleistocene key reflectors, corresponding to regional volcanic deposits and sapropel events
(Anastasakis & Piper, 2005), can be defined in the North Aegean Domain (fig. 7), separating four main
seismic units:

- Reflector D (2.8 Ma): In the wake of the Messinian event, numerous Gilbert deltas developed in the
surroundings of the Aegean Domain, followed by marine clastic sediments throughout the Pliocene,
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characterized by distal channel systems (Proedrou & Papaconstantinou, 2004; Anastasakis & Piper,
2005). Anastasakis & Piper (2006) show the regional transition from terrestrial to full marine facies
occurred regionally at the boundary between the middle and upper Pliocene. A key reflector, labeled D,
seals the seismic unit interpreted as the episode of delta fan supply in the Aegean Sea (Fig. 7; Anastasakis
& Piper, 2005). This seismic unit is characterized by the signature of distal channel-levee systems,
marked by an alternation of minor downlap and onlap that reflects their successive avulsions. Reflector
D is the top reflector of a series of three high-amplitude reflectors sealing the systems of delta fans. The
reflector D is dated at ~2.8 Ma from Milos volcanics (Anastasakis & Piper, 2005).

- Reflector C (~2 Ma): Reflector C corresponds to an erosive surface, dated between 1.6 and 2.1 Ma
from the volcanic deposits related to the Oros eruption (Pe-Piper et al., 1983; Dietrich et al., 1988).
Sequence stratigraphy studies in the Evoikos Gulf suggest the age of reflector C to be closer to 2 Ma
than 1.6 Ma (a reflector distinct from C being dated at 1.6 Ma, Piper & Anastasakis, 2013).

-Reflector B (~1.3 Ma): Reflector B marks the onset of progradational wedges in the Aegean Sea, dated
around 1-1.4 Ma with lava flows (Anastasakis & Piper, 2005). The age has been refined at 1.3-1.4 Ma
from sequence stratigraphy studies in the Evoikos Gulf (Piper & Anastasakis, 2013).

-Reflector A (~430-480 ka): Reflector A is defined by a set of sequence stratigraphic constraints
available in the North Aegean Domain. It corresponds to MIS 12 (~430-480 ka). Our picking and spatial

correlation of reflector A in the North Aegean Trough agrees with the work of Ferentinos ef al. (2018).

5- RESULTS

5-1- Structure of the North Aegean Trough (Northern Branch of the North Anatolian Fault)

5-1-1- The connection between the Gulf of Saros and the North Aegean Trough

At the northeastern entrance of the North Aegean Trough, the Main Splay of the North Anatolian fault
makes a bend, which is expressed on the seafloor by a series of push-up ridges (Fig. 3-4). The Main
Splay forms a steep, ~5 to 10° slope, which is covered by an undulated seafloor. There, a set of secondary
fault splays connects along the main fault. A 15-km-long ridge, referred to as the Medusa High (Mascle

& Martin, 1990; Sakellariou ef al., 2018), runs parallel to the North Anatolian Fault in the area of
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bending (Fig. 3-4). A second splay, referred to as the Athos Splay, runs at 40° with respect to the North
Anatolian Fault and terminates at the tip of the Athos Peninsula (Fig. 3-4).

Seismic line 701 is perpendicular to the Athos splay (Fig. 8) and seismic line 702 crosses the area
between the main splay and the Medusa High (Fig. 9). The Main Splay runs across an area of chaotic
reflectors and forms a flower structure. The Athos Splay is an apparent normal fault dipping at 55°
southward, consistent with focal mechanisms at this location (Kiratzi & Louvari, 2003). The footwall
reveals a buried tilted block (Fig. 8). A dense network of normal faults, most of them being blind on the
seafloor, connects into a set of three flower structures in the basin, located at the footwall of the Athos
Splay (Fig. 8). The Medusa High (Fig. 9) corresponds to an elongated push-up structure (Mascle &

Martin, 1990; Sakellariou ef al., 2018).

5-1-2- The central segment of the North Aegean Trough offshore the Chalkidiki Peninsula

The Main Splay of the North Anatolian Fault runs within a 40-km-long, 15-km-wide, asymmetric
spindle-shaped trough (Fig. 3-4). Focal mechanisms confirm the strike-slip motion along the strike of
the Main Splay and suggest a minor component of transtension locally (Kiratzi & Louvari, 2003;
Kourouklas et al., 2022). The Main Splay is sub-vertical and blind on the seafloor due to mass-wasting
sedimentation rates higher than its vertical slip-rate (~0.4-s TWT -thick package of mass transport
deposits on Line 603; Fig. 11). It forms a growth-synform structure on Line 602 (Fig. 10) and promotes
the uplift of the basement on line 603 (Fig. 11). The sedimentary cover of both flanks of the spindle-
shape basin displays an undulated configuration upslope, which becomes more chaotic downslope.

The Sithonia Splay is a second strike-slip faut trending 60°NE. To the west, a network of normal faults,
dipping 20° to the North, roots diagonally to the Sithonia Splay and forms a horsetail structure offshore
the Kassandra Peninsula, where focal mechanisms indicate normal faulting (Kourouklas et al., 2022).
The multibeam map reveals two sedimentary basins along the Sithonia Splay: a first one, located on the
southern flank of the eastern segment of the fault and a second one, located on the northern flank of the
western segment of the fault (Fig. 5). The Sithonia Splay is subvertical in its central part, forming a
short-wavelength, symmetric growth-synform structure on Line 602 (Fig. 10). Line 603 indicates a
strong component of subsidence with a well-marked fanning of the sediments on the northern side of
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the Sithonia Splay (Fig. 11). The westward increase of the subsidence corresponds to the transition
toward the transtensional regime of the horsetail termination (Fig. 5).

The Main Splay of the North Anatolian Fault and the Sithonia Splay are separated by a Central Structural
High (Fig. 3-4). The Central Structural High is a ~50-km-long elongated feature, with two highs
culminating at 700-m and 550-m depth. The Central Structural High appears as an antiform structure,
with undulations in the sedimentary cover (Fig. 10-11). The part of the antiform which is still exposed
at the seafloor corresponds to a basement high. A field of apparent normal faults with short and uneven

offsets is observed between the Central Structural High and the Sithonia Splay (Fig.10-11).

5-1-3- Termination of the horsetail in the Thermaikos-Skopelos area

Offshore Skopelos, the geometry of the Main Splay of the North Anatolian Fault changes from a strike-
slip fault to a low-angle normal fault (Fig. 3-4), which runs along Pelion and the Thermaikos Gulf
(Laigle et al., 2000). The seismic reflection profile 103 (Fig. 12) crosses all the splays from Skopelos
Island to Kassandra Peninsula. We observe a large-scale rollover structure in the hanging wall of the
North Anatolian Fault, bending along the Main Splay, acting here as a north-dipping low-angle (~20°)
normal fault. Focal mechanisms however indicate pure strike-slip motion in this area (Kourouklas et al.,
2022), which suggests that the normal fault is turning into a strike-slip fault. The configuration of the
low-angle normal fault isolates a 20-km long, 10-km-wide trough along the Main Splay, filled-in by
mass transport deposits (Fig. 12). The hinge of the rollover is dissected by numerous synthetic and
antithetic normal faults. These fault systems cross a field of coalescing circular depressions spreading
over ~200-km?, which corresponds to a series of short-wavelength undulated reflectors on the seismic,
focused on the uppermost ~0.4 s TWT (Fig. 12). The field of circular depressions is interpreted as the
result of fluid escape (Fig. 3-4).

The Central Splay (Fig. 3-4), roots on the Central Structural High, then bends across the extrados of the
rollover into a 25-km-long, 15-km-wide, 1450-m-deep trough, formed by a system of normal faults. The
normal fault scarps reach 350-m-high at the seafloor along the slope of the Gulf of Thermaikos and

localize a system of slope-apron canyons.
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The seismic line 201 (Fig. 13) crosses the area between the major low-angle (~35° dip) normal fault
where the North Anatolian Fault ends and the termination of the Sithonia Splay. The hanging wall forms
a syncline basin, filled-in by sediments characterized by the short-wavelength undulated facies formed
by fluid escape. The system of normal faults crossing the slope of the Gulf of Thermaikos forms a series
of horst and graben (Fig. 13). The termination of the Sithonia Splay is a set of two sub-parallel listric
faults, dipping 20° to 30° to the north, with their associated rollover structures dissected by synthetic
and antithetic normal faults (Fig. 13), consistent with the focal mechanisms at this location (Kourouklas

etal., 2022).

5-2-Structure of the Edremit-Skyros Trough (Southern Branch of the North Anatolian Fault)

The structure of the Edremit-Skyros horsetail is described in details in Papanikoalou et al. (2019). In
this study, we present three new seismic profiles, which cross all the key structures of the Edremit-
Skyros Trough.

The seismic profile 801 (Fig. 14) crosses the Venus plateau, an oblique splay of the horsetail, the deepest
basin of the trough, here expressed as a growth syncline, and the main system of sub-parallel low-angle
(~25° dip) normal faults bounding the Skyros Island, which isolates a half-graben. The seismic line 802
(Fig 15) crosses the southern branch of the North Anatolian Fault and the southern edge of the Edremit-
Skyros Trough. It reveals a series of angular unconformities associated to tilted blocks. On the seismic
profile 803 (Fig. 16), the oblique splays of the horsetail appear as normal faults isolating either half-
grabens or growth synclines, dominantly filled-in by mass transport deposits. The subsidence increases
towards the Skyros Island. Normal faults segment the bulge of the growth-synclines. In this area,
sedimentation rates exceed the vertical slip-rate at the faults, resulting in their smooth aspect on the

seafloor.

5-3- Structure of the Evia Basin

The Evia basin consists in a 90-km-long series of three subsiding basins, up to 1000-m deep, separated
by structural highs (Fig 3-4). On the seismic lines (Fig 17), all the Evia sub-basins appear as a series of
tilted half grabens bounded by a major normal fault on their SW flank. The maximum thickness of the
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post-Messinian sediments reaches ~1 s (TWT). The series emplaced before the formation of the structure
display seismic facies typical of distal detritic sedimentation, while the syn-tectonic series display a
fanning configuration recording the progressive subsidence of the structure. Only minor Mass Transport
Deposits are observed within the growth structures, which results from the ~20° steep slope formed by
the main normal fault that does not allow the storage of sediments. The structural thresholds appear as
positive flower structures in line with the trend of the North Anatolian Fault, with uplifted segments of

the basement and a dense pattern of faults on their flanks.

5-4- A diffuse fault system buried in the offshore North Aegean Domain

The seismic lines collected during the NAFAS cruise in 2017 together with the compilation of vintage
seismic lines (Mascle & Martin, 1990; Beniest et al., 2016) reveal fossil structures buried under the
sediments of the North Aegean Domain and locally crosscut by the horsetail structures.

The first structure is encountered in the area of the connection between the Saros Gulf and the North
Aegean Trough, at the -W-E trending Athos splay (Fig 3-4). There, the seismic line 701 (Fig 8) reveals
a buried tilted block sealed by a series of onlap terminations of the sedimentary layers.

The second structure also corresponds to a tilted graben, located at the plateau isolated between the
North Aegean Trough and the Edremit-Skyros Trough (Fig. 18). This graben is referred to as the Venus

graben.

5-5- Chronology of tectonic events in the North Aegean Sea

The series of angular unconformities labeled from A to D records the main tectonic events that shaped
the North Aegean Domain since the Messinian (Fig 7).

5-5-1. The North Aegean Trough

Unconformity D, dated at 2.8 Ma, records the end of the tectonic episode expressed by the series of
tilted blocks composed of the Athos (Fig. 8) and Venus (Fig. 18) grabens. This unconformity also marks
the deactivation of a series of push-up structures located in the area of the Central Structural High (line

603, Fig 11). At the termination of the Sithonia Splay (line 201, Fig 13) offshore Kassandra Peninsula,



oNOYTULT D WN =

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

Geophysical Journal International

this unconformity marks the onset of a fanning configuration of the sediments and, therefore, the onset
of the tilt of the graben.

The second key angular unconformity C, dated at 2 Ma, is well identified by onlap terminations over
the underlying, tilted deposits in the North Aegean Trough (e.g. in the vicinity of Skopelos at line 103,
Fig 12). This unconformity marks the onset of the fanning configuration of the sediments observed all
along the Sithonia Splay (line 201, Fig 13; line 602-603, Fig 10-11), and hence, the formation of this
still-active splay within the North Aegean Trough. The amplitude of slope incision features remains
poorly disturbed by this tectonic episode (e.g. at the edge of the Thermaikos Gulf, line 201, Fig 13),
which indicates a still rather low subsidence rate.

These unconformities D and C record the Late Pliocene-Early Pleistocene change in the pattern of strain
localization within the North Anatolian Shear Zone. These unconformities also pre-date the first stage
of the formation of the North Aegean horsetail structure, with the activation of the Sithonia Splay.

The third angular unconformity B, dated at ~1.3 Ma, records the formation of the termination of the
central splay (observed at line 103, Fig 12). Across the edge of the Thermaikos Gulf, the 1.3 Myrs-old
unconformity corresponds to an increase in the amplitude of the slope incisions features (line 201, Fig
13), which indicates a major increase in the overall subsidence, the channels digging deeper to catch
their equilibrium line. The Mass Transport Deposits associated to this episode are the thickest (~0.2-0.3
s TWT) encountered within the North Aegean Domain since the Messinian. At the connection between
the North Aegean Trough and the Saros Gulf, the 1.3 Myrs-old unconformity records the formation of
the Athos Splay and the main uplift of the Medusa High (Fig 8-9). There, the mean vertical slip-rate of
the Athos normal fault increased from a 0.13 mm.yr! during the 2-1.3 Ma interval to 0.22 mm.yr! since
1.3 Ma. Overall, this set of observations indicates a major structural reorganization of the northern
branch of the North Anatolian Fault at 1.3 Ma, marked by a drastic increase in subsidence rates within
the sub-basins of the North Aegean Trough.

Finally, unconformity A, dated at ~0.5 Ma, records the onset of the Main Splay of the North Anatolian
Fault all across the North Aegean Trough (Ferentinos et al., 2018). The formation of the Main Splay is
best recorded offshore Skopelos (line 103, Fig 12), the segment of the fault running at the edge of the
Central High being affected by current and gravity-driven erosion (line 602, Fig 10). The activation of
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the Main Splay induced a change in the activity of the Sithonia Fault, with an increase of the vertical
slip-rate from 0.16 mm.yr!' during the 1.3-0.48 Ma interval to 0.3 mm.yr! since 0.48 Ma. However, the

vertical slip-rate of the faults related to the Central Splay remained steady.

5-5-2. The Skyros-Edremit Trough

The unconformity C (2 Ma) is onlapped by a tilted series of reflectors on the southern edge of the trough
(line 803, Fig. 16). This unconformity marks the first stages of the formation of the Southern branch of
the North Anatolian Fault offshore Skyros. Unconformity B (1.3 Ma) corresponds to the increase in the
subsidence rate (up to 0.45 mm.yr') at the hanging wall of the normal fault system running along Skyros
Island (Fig. 14, 15, 16). Unconformity A (~0.5 Ma) is well expressed close to the oblique splay 1 and
marks an increase in subsidence at the hanging wall of this splay (Fig. 15). Unconformity A therefore

records the formation of the oblique splay 1 (Fig. 16).

5-5-3. The Evia basin

The onset of subsidence within the Evia Basin is dated between 2 and 1.3 Ma based on unconformities
B and C (Fig. 17). This marks the base of the fanning configuration of the sedimentary infill. The main
formation episode of the Evia Basins is therefore coeval with the increase in subsidence at Corinth and
the first step of strain localization at both the northern and southern branches of the North Anatolian

Fault.

6- Discussion

The present-day configuration of the North Aegean Domain shows the gradual kinematic transition from
the strike-slip deformation that dominates in the northeastern Aegean Domain to the dip-slip
deformation encountered in the Northwest Aegean Domain (Mouslopoulou et al., 2007a,b). Our new
set of geological constraints allows us to refine the framework of strain localization of the North
Anatolian Shear Zone in the North Aegean Domain and highlights the westward propagation of the

strike-slip dominated area since the Late Miocene. The new geological constraints obtained from the
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seismic-reflection dataset are summarized in Figure 19 and integrated to the previously available

constraints on the geological events of the area.

6-1. Mode of formation of horsetail structures: the North Aegean and Edremit-Skyros Troughs

The formation of the horsetail terminations of both the northern and southern branches of the North
Anatolian Fault occurs in the frame of the westward propagation of the North Anatolian Fault within
the prevailing NNE-SSW to N-S extensional conditions of the western North Aegean Domain. The
horsetail configuration emplaces where the strike-slip fault connects a system of low-angle normal faults
inherited from the extensive stage.

The North Aegean and the Edremit-Skyros Troughs are horsetail terminations that are currently at
different steps of their development. Although the formation of both structures initiated at the same age
(~2 Ma), the lower slip rate along the southern branch of the North Anatolian Fault leads the Edremit-
Skyros to be structurally less mature. This differential stage of horsetail structural evolution allows us
to investigate the tectonic and sedimentary processes at their origin.

On one hand, the Edremit-Skyros Trough corresponds to the evolution of a single horsetail structure.
The oblique splays of the Edremit-Skyros Trough formed first along the main detachment fault, then
migrated eastwards (oblique splay 1 formed at 0.5 Ma).

On the other hand, the North Aegean Trough consists in three horsetail basins (at the end of the Sithonia,
Central and Main Splays) that merged in a single one. Our seismic dataset highlights the successive
activation of the Sithonia Splay at 2 Ma, the Central Splay at 1.3 Ma and the Main Splay at 0.5 Ma,
which corresponds to the westward propagation of the northern branch of the North Anatolian Fault (Fig
18). The distance between the negative flower structure at the end of each splay is on the order of 30 to
50-km. This corresponds to the distance added to the northern branch of the North Anatolian Fault every
0.7-0.8 Ma in the frame of its westward propagation. The three main splays of the North Aegean Trough
have remained active since their inception. The decrease in slip rates observed in GPS measurements at
the Sporadhes Archipelago (Miiller et al., 2013) may be the result of slip partitioning over each major

splay of the North Aegean Trough (Fig. 1).
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This framework of structural evolution of the horsetail terminations encountered in the North Aegean
Domain provides a ground-truth validation of analog modeling tests performed by Basile & Brun (1999).
In their models (Fig 20), a horsetail termination initially consists in an en-échelon normal fault system
trending perpendicular to the main strike-slip displacement zone, composed of oblique Riedel splays.
As the relative motion between the adjacent blocks increases, the Riedel splays progressively connects
the en-échelon normal fault system. For dextral motion, the first Riedel fault forms to the east of the
horsetail and the subsequent splays propagate westwards. Accordingly, the en-échelon normal faults are
first captured in the overall horsetail structure in the east. The western en-échelon normal faults are
progressively captured within the horsetail structure during its maturation. While some grabens
associated to the en-échelon normal faults are captured by the oblique splays, others are crosscut by the
propagating main displacement zone. Once initiated, all the oblique splays remain active during the

lifetime of the horsetail.

6-2. The Plio-Pleistocene transition from a wide North Anatolian Shear Zone to a localized North

Anatolian Fault

Our structural analysis further highlights the Late Pliocene change in stress regime (Lyberis, 1984) at
the scale of the North Aegean Domain (Fig. 21). From the Serravalian to the Late Pliocene, the North
Anatolian Shear Zone consisted in a diffuse system of en-échelon normal faults connected through
dextral transfer faults, thereby isolating a series of basins. These basins include a set of Late Miocene-
Early Pliocene basins compartimentalizing the Rhodope Core complex (Brun & Sokoutis, 2018) and the
series of basins identified at sea in the vicinity of the North Aegean Trough, including the Athos and
Venus grabens, deactivated at 2.8 Ma (Fig. 21a).

Our reconstructions at 2 and 1.3-0.8 Ma (Fig. 21b-c) show the period of transition from the wide shear
zone to the two main branches of the North Anatolian Fault; i.e. the period of effective propagation of
the North Anatolian Fault in the North Aegean Sea. This transition is roughly coeval with the
deactivation of the South Marmara Fault dated by Le Pichon ef al. (2015) and the subsequent activation
of the Main Marmara Fault. While propagating westward, the strike-slip segments of the North
Anatolian Fault either connected or crosscut the Late Pliocene system of en-échelon grabens including

20
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the Athos and Venus grabens. Unconformity C (Fig. 21c-d) records the first stage of formation of the
northern and southern branches of the North Anatolian Fault at the North Aegean Trough and the
Edremit-Skyros Trough, whereas unconformities B and A marks the successive steps of development
of these basins.

If we consider the series of Serravalian-Pliocene basins dissecting the Rhodope Core complex (Brun &
Sokoutis, 2018) as the earliest traces of the North Anatolian Shear Zone in the North Aegean Domain,
then the North Anatolian Shear Zone remained a diffuse transtensive system for about 5 to 7 Myrs until
the Messinian, with a first step of localization marked by the formation of the Ganos-Saros segment at
~5 Ma (Armijo et al., 1999). The Anatolia-Eurasia relative motion used to be distributed over this
transtensive system composed of multiple en-échelon fault segments prior to Messinian. The enhanced
localization of the North Anatolian Shear Zone in the North Aegean Domain evidenced here at 2-1.3
Ma coincides with the Early Pleistocene increase in slip-rates along the North Anatolian Fault (Hubert
Ferrari et al., 2010). The localization of the North Anatolian Fault therefore contributed to the Early
Pleistocene change in stress regime recorded over the entire Aegean, previously attributed to a change
in the dynamics of the Hellenic Subduction Zone (Lyberis, 1984; Mascle & Martin, 1990; Armijo et al.,
1992; Sakellariou & Tsampouraki-Kraounaki, 2016).

In this frame, the ‘wide shear-stage’ of the North Anatolian Shear Zone and the diachronous strain
localization within it lasted several million years longer in the western North Aegean Domain than east
of the Yenicaga Fork (Fig. 21; Sengor et al., 2005). Some fault segments are localized since the
Messinian (e.g. the Ganos-Saros fault) while others formed in the Early Pleistocene (e.g. the North
Aegean and the Edremit-Skyros Troughs). This implies that some diffuse en-échelon systems (e.g.
Chalkidiki or Marmara at 3.5-4 Ma) remain active while major, several hundred-km-long localized fault
segments (e.g. Ganos-Saros segment) exist in between (Fig. 21). Further strain localization involved the
abandonment of Late Miocene-Early Pliocene en-échelon faults (e.g. Strymon, Drama, Prinos) and

major transfer strike-slip faults (e.g. transfer faults within the Thrace basin, the South Marmara Fault).

7-Conclusions
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Our study documents multiple episodes of strain localization within the North Anatolian Shear Zone in
the North Aegean Domain. During the Late Serravalian to the Early Pliocene, the North Anatolian Shear
Zone was a diffuse transtensive fault zone. During the Late Pliocene, strike-slip strain localized along
some fault segments (e.g. the Ganos-Saros segment) while remained diffuse in others (Prinos, Strymon,
Drama, Thrace basins, Fig 21). Offshore sediments record the first abrupt step of strain localization
along the northern and southern branches of the North Anatolian Fault in the North Aegean Domain at
2-1.3 Ma. This is coeval with the general increase of slip rate along the entire North Anatolian system
and the regional change in stress regime over the Aegean Sea. Further westward propagation and
localization along the northern and southern branches formed the North Aegean and Skyros-Edremit
Troughs as horsetail structures. The North Aegean Trough results from the formation of three successive

horsetails, formed at 2 Ma, 1.3 Ma and 0.5 Ma and propagating westward at a rate of 40 to 60 km.Myr

1
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*Main Marmara Fault
(emplacement between
0.5 & 2.5 Ma)
(Grall et al., 2013;
Le Pichon et al., 2015)

*Reorganization of the
Southern branch of
the NAF at 0.5-1.3 Ma
(Demoulin et al. 2013)

Figure 19: Summary of the main steps of structural evolution of the North Anatolian Fault and the Gulf

of Corinth in the North Aegean Domain.
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53 711 Figure 21: Structural evolution of the North Anatolian Fault in the North Aegean Domain, compiling
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55 712 field and offshore observations. This series of maps represents the present-day location of the faults that
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57 713  used to be active at 4-3.5 Ma, 2 Ma, 1.3-0.8 Ma, 0.5 Ma. The past shorelines are not reconstructed.

59 714  Paleo-stress tensors from Siimer et al. (2018) and Lybéris (1984).
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