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Abstract:  1 

 2 

Background: The mechanical properties of biological tissues and soft biomaterials are difficult to 3 

explore even though they play an important role in mechanobiological responses and organ 4 

homeostasis. Limited availability of harvested tissue and careful handling must be considered as 5 

well as discrepancies in biomaterial development. 6 

Objective: We hypothesized that a mixed analytical-experimental modal analysis could be used to 7 

determine effective mechanical properties at the mesoscale for hydrated and fragile, poorly 8 

available and small-sized biological tissue and biomaterials.  9 

Methods: Young's modulus E, shear modulus G and Poisson's ratio  were obtained from the 10 

measurement of first two natural frequencies of a set-up associating tested specimen with a 11 

cantilever. Tangent modules are calculated using a set of two analytical governing equations in 12 

linear vibration framework. A complementary parametric sensitivity analysis was performed. The 13 

methodology was evaluated using materials known to be challenging, namely agarose for 14 

biomaterials and bone marrow for biological tissues. 15 

Results: Frequencies were in the range of 350 Hz and acquisition time of few seconds. Linear 16 

responses was checked and solution triplets (E, G, ) were (99  10 kPa, 43  0.3 kPa, 0.16  0.1) 17 

for agarose and (61  12 kPa, 28  7 kPa, 0.07  0.03) for bone marrow.  18 

Conclusion: Comparisons with literature when available, confirmed approach acceptability. 19 

Limited influences of boundary conditions, brief experiments and reproducibility can be 20 

considered for applications to fragile and rare biomaterials and biological tissues, in addition to 21 

conventional characterization methods. 22 

 23 

 24 

  25 
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List of symbols: 1 

v(x,t), w(x,t): transverse displacement of the cantilever 2 

Q(x,t), M(x,t): shear force and bending moment in the cantilever 3 

i, i(x): angular frequency and mode shape 4 

EcI, c, S, L: cantilever properties: bending stiffness, density, cross- section, length 5 

E, G,: specimen properties: effective Young’s modulus, shear modulus and Poisson’s ratio 6 

, , s, l: specimen properties: density, shear coefficient, cross-section and length 7 

k, m: specimen properties: translational stiffness and mass 8 

k i  :  specimen properties: rotational stiffness and inertia 9 

 10 

I - Introduction 11 

 Human soft tissue mechanical properties determination is challenging because of tissue scarcity, 12 

frailty and underlying difficult handling, while they can play a significant role in tissue homeostasis 13 

[1, 2]. Pediatric pathologies and aging, traumatology and reconstruction, infection and oncology 14 

are strongly concerned by this issue [3 - 9]. Diagnosis, therapeutic strategies and patient follow-up 15 

could benefit from the knowledge of these properties. 16 

 The developments of innovative methodologies to identify in-vivo multiscale biophysical 17 

properties are still open issues. In-vivo techniques have been proposed including local indentation 18 

[10-13] or wave propagation, ultrasound elastography and MRI elastography at the macroscopic 19 

scale [14-18]. While those approaches are promising and are used to diagnose pathologies in some 20 

organs, the calculated elastic properties accuracy is still dependent upon the device resolution, upon 21 

the chosen mechanical model to evaluate the properties and upon the heterogeneities in the 22 

explored tissue. Limitations include also the depth at which the tissue is aimed to be explored for 23 

instance with ultrasound, the surrounding type of tissue such as bone or soft organs and the 24 

reproducibility of measurements (usage of manual probes).  25 

 Alternatively, ex-vivo soft tissue characterizations have been implemented since several 26 

decades while involving diversified modalities such as tensile, compressive and multiaxial tests or 27 

wave propagation - based tests [19 - 28] on diverse soft tissues such as brain, vessels, abdominal 28 

tissues, ligaments, fascia or skin. Non-linear governing equations frequently concern strain 29 

dependence and large deformation theory [19, 20, 21]. This complexity induces numerous 30 

identification models often based upon different strain energy function and involving series of 31 

coefficients fitted by using differentiated experimental characterization methodologies. Quasi-32 

static response is frequently explored with robustness defined by domain depending upon stress 33 

and strain fields, displacement field or forces. 34 

 The availability of material in amount and size might be problematic [20, 29] and the 35 

intermediate mesoscopic scale (from mm to cm) between cell and macroscopic tissue can be 36 

relevant in clinical issue because of the spatial heterogeneity of tissues.  37 

 The modal analysis has been used to explore biological tissue properties [30 - 34]. At the 38 

macroscopic scale, it was often associated with numerical identification method to evaluate the 39 

uniqueness of distribution patterns and required delicate experimental procedures to obtain reliable 40 

modal bases. This approach finds limitations with small amount of material especially with soft 41 

and frailty tissues. 42 

 To contribute to this issue, we hypothesized that the analytical solutions of the two first mode 43 

shapes of a biological sample shaped in short cylinder and associated with a controlled cantilever 44 

could provide the effective mechanical properties of tissue, i.e. Young’s modulus, shear modulus 45 

and Poisson’s ratio, in one single measurement at the mesoscale. The proposed methodology is in 46 
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the field of linear vibrations which implies limited displacement and deformation fields in the 1 

vicinity of initial equilibrium position which allows to obtain the tangent moduli of the materials. 2 

This methodology could complement modalities often used sequentially such as tensile and shear 3 

tests and which can be very sensitive to boundary conditions and handling for hydrated and fragile, 4 

poorly available and small-sized tissue and biomaterials. The discriminant choice of tested 5 

materials was agarose for its compliance and bovine bone marrow explants for its significant 6 

compliance, fragility and problematic handling. 7 

 In this article, the theoretical modal analysis detailed initially, is followed by the description of 8 

the experimental methodology. The control specimens are agarose samples and the biological 9 

application concerned specimens of bovine bone marrow. To conclude, methodology discussions, 10 

limitations and perspectives are proposed. 11 

 12 

II – Theoretical and experimental methodology 13 

2.1 Theoretical modal analysis 14 

 When the clamped-free slender beam or cantilever described in Figure (1a) is considered, 15 

rectangular cross-section properties determine vertical plane (O, x, y) and horizontal plane (O, x, 16 

z) as principal bending vibration planes, associated with  vertical displacement v(x,t) horizontal 17 

displacement w(x,t). The tested cylindrical specimen considered as a short beam is located at the 18 

cantilever tip with a local reference frame defined by (O,xs,ys,zs). It respects the vertical symmetry 19 

plane such that local axis xs and zs are aligned with y and z, respectively.  20 

 The set of governing equations is detailed for the displacement in the vertical plane (O, x, y) and 21 

a similar methodology can be applied for the horizontal kinematics. The governing equation (1) 22 

described the conservative dynamic equilibrium of the cantilever beam in its motion v(x,t) with 23 

damping, shear and inertia effects of second order (Meirovitch 1986, Clough and Penzien 1975). 24 

The transverse displacement is written as the product of the mode shape (x) by the harmonic 25 

function f(t) with  angular frequency . Theoretical developments are detailed in Appendix. 26 

( ) ( )4 2

4 2
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0c c

v x t v x t
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x t


 
+ =

 
    with    ( ) ( ) ( ),v x t x f t=     (1) 27 

 Transverse displacement of the cantilever in the vertical plane induces a translation and an off-28 

plane rotation of the specimen cross-section. Clamping conditions for x = 0 provides two kinematic 29 

equations. Two supplementary equations are obtained from the kinematics continuity at the 30 

specimen - cantilever interface, i.e. x = L. Local equilibrium on local axis xs give relationship, i.e. 31 

Equation (2a) between shear force Q(L,t) and translational dynamical force involving specimen 32 

translational stiffness k and mass m. Second, the cantilever bending moment M(L,t) is balanced by 33 

specimen dynamical moment depending upon rotational  stiffness k and mass inertia i as 34 

expressed by equation (2b) 35 

( ) ( )( , ) , , 0Q L t k v L t m v L t −  +  =    (a)   and  ( ) ( )( , ) , , 0M L t k L t i L t   −  +  =    (b) (2) 36 

with 
3 2

3 2

( ) ( )
( , )= - ( )   and   ( , ) ( )  c c

L L
Q L t E I f t M L t E I f t

x x

  
 = 

 
 37 

 The determinant cancellation of matrix system (3) of boundary conditions is expressing the 38 

existence condition for a non-trivial solution for constants C to F. This transcendental equation 39 

involves natural frequencies   known from experimental modal analysis. 40 
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 (3) 1 

 The similar methodology applied to the cantilever transverse displacement in the horizontal 2 

plane (O, x, z) is associating cantilever shear force to specimen dynamical translation force in zs 3 

and cantilever bending moment to specimen dynamical rotational moment in xs. This is leading to 4 

the second transcendental equation.  5 

 Specimen contributes to kinetic energy and strain energy of the structure and unknown 6 

quantities introduced into expressions of k, m, k and i and appearing into transcendental equations 7 

are specimen effective material properties. Methodology to establish relationships between 8 

stiffness, mass, and material properties is based upon mechanics of curvilinear continuum and 9 

beam dynamics especially. Forces and moments are resulting from the product of interface motion, 10 

i.e. translation and off-plane rotation, by stiffness and mass matrix of the specimen. Specimen local 11 

reference frame (O, xs, ys, zs). is detailed in Figure 1. Cubic approximation for transverse motion 12 

and linear approximation for longitudinal motion allow stiffness and mass matrices to be expressed 13 

explicitly after spatial integration. This is equivalent to considering a two-node finite element beam 14 

[Clough and Penzien 1975, Meirovitch et al. 1986, Blevins 2001, Lalanne et al. 1983] clamped at 15 

its base and attached to the cantilever tip. Stiffness coefficients are analytically exact while mass 16 

coefficients are approximated. To summarize, for the vertical mode shape, cantilever vertical 17 

motion v(x,t) is associated with longitudinal motion (xs axis) of the specimen and bending rotation 18 

around of the cantilever-specimen interface (zs axis). For the horizontal mode shape, cantilever 19 

horizontal motion w(x,t) is associated with transversal motion (xs axis) of the specimen and rotation 20 

around of the cantilever-specimen interface (ys axis). Translational stiffness k and mass m, 21 

rotational stiffness k and inertia i are involving effective Young’s modulus E, shear modulus G 22 

and  Poisson’s ratio . It can be noticed that for the vertical motion, translational stiffness k is only 23 

dependant upon e while rotational stiffness k  mainly influenced by E, is weighted by G. For the 24 

horizontal motion, k mainly influenced by G, is weighted by E.  25 

 Finally, transcendental equations involving stiffness and kinetic couplings are expressed by 26 

equations (8a) and (8b) for vertical and horizontal motions, respectively. Indeed, equation (8a) is a 27 

3rd degree polynomial form in E coupled with linear terms in G whereas equation (8b) is a quadratic 28 

form in G associated with linear term in E. Coefficients a1 to a11 are detailed in appendix. 29 

( ) ( )3 2+ + +  +  +  = 01 2 3 4 5 6a e a g a e a g a e a g        (a) (8) 30 

( ) ( )2 + +  +  +  = 07 8 9 10 11a e a g a e a g a e         (b) 31 

 We targeted the two lowest first frequencies, i.e. the given v and h, associated with vertical 32 

and horizontal mode shapes, i.e. v and h, since they are predominant in the dynamical response. 33 

Among the six solutions (E, G) of equations (8a) and (8b) obtained using a Newton numerical 34 

scheme, only one was physically admissible. The admissible solution (E, G) put into system (7), 35 

give access to the dimensionless mode shape using Euclidean normalization. In addition, Poisson’s 36 

ratio was deducted straightforwardly with  = (E/2G)-1 assuming an isotropic behavior of the 37 

specimen. Equation management and solving was managed using Maple software (MapleSoft®). 38 

 39 
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2.2 Parametric sensitivity analysis 1 

 The first order Taylor expansion of E and G for small variations of polynomial roots relative to 2 

vertical and horizontal mode shapes, allowed expressing dimensionless sensitivities of effective 3 

specimen properties to measured frequencies, i.e. v and h.  Sensitivity vector relative to E, i.e. 4 

SE, is detailed in equation (9) and those to G and , i.e. SG and S, were obtained similarly.  5 

( )t , ,
v h vhE E E Es s s=S  with 

v vE vs E δ E =   , 
h hE hs E δ E =    and 

2

v hEvh v hs E δ δ E   =     (9) 6 

 First derivatives ∂ were computed using a centred finite difference scheme on average solutions 7 

of system (8) and then, sensitivity vectors scaled using the Euclidean norm.  8 

 9 

2.3 Experimental modal analysis 10 

 As shown in Figure (1), the 3D-printed fixture was associating the cantilever and a rigid and 11 

massive support compared with the cantilever and tested specimen. Cantilever geometrical 12 

properties were L = 40.18  0.04 mm, b = 2.5  0.07 mm and h = 1.33  0.08 mm. Material was a 13 

PLA polymer with c = 1131  0.8 kg/m3 and Ec = 2.5 109  0.7 Pa. Cantilever mass and fixture 14 

mass including the fixation screw were 1.51.10-4  0.1 kg and 1.3.10-2  0.01 kg, respectively.  15 

 The set-up is described in Figure (2a) and Figure (2b). The tested specimen was located at the 16 

cantilever tip and maintained by a minimal drop of cyanoacrylate polymer for displacement 17 

continuity during vibration cycles. The fixture was mounted on an electrodynamic shaker 18 

(K2007E01; PCB® Piezotronics) using a piezoelectric force gauge (208C02; PCB® Piezotronics). 19 

In order to measure mode shapes in both vertical and horizontal plane, the cantilever is tilted on 20 

the support with an angle of 25° according to the support horizontal plane as seen on Figure (2c). 21 

 Natural frequencies were obtained from the frequency response function (FRF), as the ratio of 22 

the cantilever motion combining v() and w() over the excitation force  F() in the frequency 23 

space [39,40]. The base displacement was monitored using a dynamic analyser (OR34; Oros®) 24 

with swept sine and random noise in the range 10 Hz - 1 kHz. Hanning window was used with 60 25 

% overlap, 8192 FFT lines with sampling frequency up to 2 KHz. Minimal resolution in frequency 26 

was 0.24 Hz. Cantilever motion was measured using an optical displacement probe (confocal 27 

chromatic probe associated with CHRocodile 2S Precitec®) with a 12 µm spot diameter. A custom-28 

made 3-axis motorized system using translation actuator (Newport) was designed to identify the 29 

vertical and horizontal mode shapes (x,t) and automatize the displacement of the probe.   30 

 2.4 Preparation of specimens 31 

 Agarose as a derivative collagen was used initially to mimic biological tissue and evaluate the 32 

methodology. The 5% agarose gel (A0169 - 25G, Sigma-Aldrich) was prepared by mixing with 33 

deionized water and then placed at 4°C for one hour. Five molded cylindrical samples were used 34 

which dimensions were d = 3.08  0.15 mm in diameter and l = 4.42  0.15 mm in length. Specimen 35 

mass and density were 3.40×10-5  0.34 kg and  = 1024  1.7 kg/m3, respectively. 36 

 Biological tissue was bone marrow harvested in bovine bone and five specimens were collected 37 

in the distal femoral epiphysis and metaphysis of three undifferentiated animals. Small cylindrical 38 

specimens were cut using a cylindrical hollow - punching device (Figure 2d). Cylinders were d = 39 

3.95  0.2 mm in diameter and l = 4.5 mm  0.23 mm in length. Specimen mass and density were 40 

5.13×10-5  0.6 kg and  = 1028.2  5 kg/m3. Tests were performed in laboratory air at room 41 

temperature of 21  1°C. 42 

 Dimensions and masses were measured using a CCD laser micrometer (LS-7601, Keyence) and 43 

a precision balance (PPS413C Fisher Scientific®), respectively. 44 

 45 
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3 – Results 1 

Agarose specimen 2 

 Averaged frequencies were obtained from three successive measurements of each specimen 3 

with a repeatability error of 2%. Averaged frequencies were 328  12 Hz and 363  4 Hz for the 4 

horizontal mode shape and vertical mode shape, respectively. Solution couples (E, G) were (99  5 

10 kPa, 43  0.3 kPa) for agarose. Associated Poisson’s ratio was 0.16  0.1.  6 

 7 

Bone marrow specimen 8 

 Averaged frequencies were 312 Hz  20 Hz for the vertical mode shape and 349  9 Hz for the 9 

horizontal mode shape. Solution couples (E, G) were (61  12 kPa, 28  7 kPa) and Poisson ratio 10 

was  = 0.07  0.03. 11 

 An example of FRF Bode diagram is given Figure (2e). It shows two magnitude peaks at 250 12 

Hz and 356 Hz and coinciding phase changings at 270°, i.e. 3/2. The presence of resonances 13 

associated with first vertical mode shape v and first horizontal mode shape h is confirmed. There 14 

is no difference between amplitude resonance and phase resonance which confirms the second 15 

order effect of structural damping. The linear responses were confirmed by ascending and 16 

descending swept sines giving reproducible magnitudes and phases, no inclination of magnitude 17 

peaks nor jump. Dimensionless mode shapes and are plotted in Figures (3b) and (3c), respectively.  18 

 19 

Sensitivity study  20 

 For agarose the sensitivity vectors were SE
t
 = (1, -0.005, 0) and SG

t
 = (-0.17, 0.84, -0.001) and 21 

S
t
 = (0.35, -0.92, -0.006). For the bone marrow samples the sensitivity vectors were SE

t
 = (1, -22 

0.004, 0), SG
t
 = (-0.16, 0.98, -0.001) and S

t
 = (0.37, -0.93, -0.007). Results showed that E and v 23 

were strongly correlated since sEv was always predominant. Even if G was playing the major role 24 

in the horizontal mode shape as shown by sGh values, influences of vertical mode shape was not 25 

negligible. This effect increase when sensitivities of Poisson’s ratio are studied. In all cases, crossed 26 

sensitivities, i.e. sEvh, sGvh and svh had no effect. 27 

 28 

4 – Discussion and Conclusion 29 

 We initially hypothesized that modal analysis could provide the effective elastic properties of 30 

soft tissue, especially for small and fragile specimens. In our approach, the multiphasic aspect of 31 

tissue was circumvented by the notion of effective properties and finally the millimetric 32 

mesoscopic scale was focused. Young modulus, shear modulus and Poisson ratio were obtained 33 

within the same analytical methodology nourished by the simultaneous measurement of two natural 34 

frequencies. This avoids numerical models such as FEM and inverse algorithms raising the 35 

discussion of convergence to a unique solution. 36 

 The experimental procedure took a few seconds without specific sample manipulation which is 37 

useful when exploring hydrated and fragile tissue or weakly available in amount. Indeed, natural 38 

frequencies are intrinsic to the structure whatever its scale and they can be revealed with minimal 39 

input energy while being measured with accuracy. The fixture was designed such that its mass and 40 

stiffness were much higher than those of specimen and cantilever.  Their influence on overall ratio 41 

of kinetic by strain energy was negligible and did not affect targeted natural frequencies.  42 

 With conventional static tests, force boundary conditions might affect strain energy with 43 

significant local effects and tests must be designed accordingly with slender specimens, specific 44 

grips or enhanced modelling with identification inverse methods. In steady state dynamics, there 45 

is an energetic transfer between kinetic energy and strain energy so that the Lagrangian is constant. 46 



8 

 

This is the case when the structure is excited at resonance and responds throught associated mode 1 

shape. In our methodology resonance is measured without any contact force but using a foundation 2 

excitation with only minimal input energy and structure reveals its intrinsic response associating 3 

strain and mass effects. Indeed, kinetic energy due to distributed mass motion is associated with 4 

strain energy during a vibrational cycle. It helps compensating local effects of boundary conditions 5 

but also to smooth potentials effects of structural heterogeneities to provide effective material 6 

properties from natural frequencies. These are measured with great accuracy mainly due to fast 7 

acquisition of large numbers of time periods and robust post-treatment in frequency space. 8 

Obtaining material properties with unique testing modality and one single measurement sequence 9 

limits specimen handling and alteration especially for small and hydrated tissue. 10 

 Agarose was used as control and explored biological tissue was bovine bone marrow. For 11 

agarose, modal analysis and results from literature compare favorably in terms of magnitude orders 12 

[41 - 45]. Indeed, available values range between 10k Pa - 100 kPa and 2 kPa - 50 kPa for Young’s 13 

modulus and shear modulus, respectively. Also, significant variations are inherent to material 14 

chemical composition, to specimen size and associated manufacturing process and to testing 15 

methods. Our results are more in the upper range of values. Used agarose gel was stiff enough to 16 

withstand tensile tests performed on molded shouldered test bars. The experimental methodology 17 

was not described because of its conventional character. Good comparison was obtained since 18 

discrepancies on Young’s modulus were lower than 10%.  19 

 Concerning bone marrow, our results were also in agreement with the literature ranging from 1 20 

kPa to 140 kPa for Young modulus and from 1 kPa to 200 kPa for shear modulus [2, 46 - 48]. 21 

When available, measures are strongly dependent upon investigation scales that are from cell to 22 

tissue with noticeable variations. Sources of significant discrepancies are attributed to the role of 23 

the extracellular matrix, hydration and temperature dependence or species and anatomic site 24 

associated with the collecting method [46]. Comparative tensile tests were unrealistic because of 25 

grip conditions. Compressive tests gave non-reproducible results due to deficiency of load-bearing 26 

structure and hydration loss incompatible with test durations. 27 

 In our methodology, Poisson’s ratios were deducted from elastic moduli straightforwardly 28 

assuming isotropic properties. Averaged values were lower than 0.2 which confirmed the 29 

compressible nature of materials in the sense of continuous media mechanics and specifically 30 

biphasic or poroelastic behaviours [49 - 52]. Direct comparison with a documented literature was 31 

challenging since no data were available for either agarose or bone marrow, to our knowledge. 32 

Some values are however available for hydrogels of different macromolecules and generally less 33 

hydrated. They range between 0.3 and 0.5 with significant related to characterization methods. 34 

Nevertheless, magnitude order that we obtained was confirmed for biological tissue such as nucleus 35 

pulposus or meniscus with values comprises between 0.12 and 0.19 [55, 56]. 36 

 The proposed methodology was primary oriented towards characterization of soft biomaterial 37 

and soft tissue available in limited amount. By adapting cantilever stiffness and mass, it can be 38 

applied to stiffer tissue such that cancellous bone such that specimen strain energy was playing a 39 

significant role into the modal response to highlight the role of effective material properties. 40 

Specimen shapes can also be modified depending upon in-vivo collection method even if it 41 

preferable to keep specimen axisymmetric properties to limit spatial couplings of mode shapes. For 42 

material without sufficient static stiffness such as fat tissue, a confinement system can be designed 43 

associated with specific developments of the dynamic analytical model. 44 

 The parametric sensitivity study showed that specimen Young’s modulus and shear modulus 45 

were the prevailing factors into the vertical and horizontal mode shapes, respectively. This 46 

reinforces the validity of assumptions underlying our study. Compared with average values, 47 
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standard deviations were of the same magnitude order magnitude for both elastic modules, i.e. 20 1 

% for agarose and 37 % for marrow. In return, they increased for Poisson ratios, i.e. 60 % for 2 

agarose and 95 % for marrow. Indeed, discrepeancies on Young's modulus and shear modulus were 3 

added when deriving Poisson's ratio. This was supported by intrinsic couplings revealed into the 4 

sensitivity vector and cumulative measurements uncertainties.  5 

 To highlight complementarity to conventional characterization methods, the proposed 6 

methodology has been evaluated using material, i.e agarose and bone marrow, which are 7 

challenging in term of mechanical characterization. Agarose studies circumvented material 8 

properties discrepancies using manufacturing process. In contrast bone marrow involved intrinsic 9 

variations due to animals and collecting sites. Here, the aim was to evaluate protocol feasibility 10 

and reproducibility without targeting an exhaustive exploration of tissue properties. Even if 11 

encouraging results have been collected, methodology relevance will be reinforced by testing a 12 

wider panel of materials, whether soft biological or substitute. Then, measuring of average 13 

properties of soft and fragile tissue population could be envisioned as well clinical biopsies from 14 

individual patients to quantify pathological responses.  15 

 Limitations could arise in joined theoretical and experimental aspects. First, the concept of 16 

equivalent elastic modulus underlying the proposed methodology can be discussed. Indeed, 17 

materials are multiphasic with the presence of a fluid phase saturating complex porous skeletons. 18 

Time-dependent properties at the microscale such as fluid-structure interactions or viscous 19 

properties of structural porous skeleton might provoke non-linear frequency dependence. However, 20 

response comparison of ascending and descending swept sines did not reveal effects of that type 21 

[39, 40]. Anyway, it can be kept in mind that tissue variability and uncertainties due sample 22 

preparation were always predominant. 23 

 Another limitation could concern the sample pre-stress condition which might affect effective 24 

modules because of non-linear effects. To that end, the initial conditions into the fixture verified a 25 

minimal contact positioning measured by cantilever initial deflection and much lower than the 26 

imposed vibrations. The linear response was confirmed by ascending and descending swept sines. 27 

However, the experimental device can easily be completed to mimic in-vivo non-linear responses 28 

by controlling initial imposed displacement and pre-stress of sample under the cantilever. 29 

 In conclusion, modal analysis showed compelling aspects for the identification of effective 30 

properties at the mesoscopic scale overall because of accuracy and reproducibility, limitation of 31 

boundary condition effects and short experimental time necessary for the measurement. It appears 32 

that the proposed theoretical and experimental procedure could be reasonably exploited to 33 

characterize fragile weakly available tissues or bioengineering materials which properties evolve 34 

rapidly in time. 35 
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 1 

Appendix : 2 

 Under separation of variables hypothesis, the displacement v(x,t) is written as the product of the 3 

mode shape (x) by the time function f(t). Verifying equation (1) gives conditions (A1) and (A2). 4 

( )
( )

4

2

4
0c

c

x S
x

x E I

 
 


−  =


    (a)     

( )
( )

2

2

2
0

f t
f t

t



+ =


  (b) (A1) 5 

 Solutions of f(t) are harmonic functions with constants depending upon time initial conditions 6 

as expressed by equation (A2). The mode shape (x) is expressed by equation (A3a) with roots   7 

depending upon angular frequencies as detailed in (A3b).  8 

( ) sin cosf t A t B t = +  (A2) 9 

( ) sin cos sinh coshx C x D x E x F x    = + + +    (a)   with    ( )
1 4

2

c cS E I  =    (b) (A3) 10 

Constants C, D, E and F depend on space boundary conditions. Clamping conditions in x = 0 give 11 

the two first equations (A4a) and (A4b) independent from f(t).  12 

( )0 0 =  (a)   and   
( )0

0
x


=


 (b) (A4) 13 

 14 

 For mode shapes describing motion in the vertical plane, i.e. v(x,t), mass and stiffness 15 

coefficients used in equation (8a) are detailed as follows: 16 

EI = E bh3/12, m = sl / 3, i = sl3/105, k = es / l, k = (4+a) ei / (1+a) l     17 

with   i = s2 / 4   and   a = 3es / l 2 g   with    : shear coefficient 18 

For mode shapes describing motion in the horizontal plane, i.e. w(x,t), mass and stiffness 19 

coefficients used in equation (8b) are detailed as follows: 20 

EI = E.hb3/12,  m= 13sl / 35, i = s2l/ 6, k = 12 ei / (1+a) l 3, k = gs2/ 2l    21 

with   i = s2 / 2   and   a = 3es / l 2 g 22 

In those equations, b and h are respectively the width and height of cantilever cross-section, E  the 23 

cantilever Young’s modulus. The parameters  s and l  are respectively the effective density, cross-24 

section surface and length of the specimen whereas e, g and are the effective Young’s modulus, 25 

the shear modulus and the Poisson’s ratio of the specimen.  26 

 27 

Coefficients of equations (8a) and (8b) are detailed as follows: 28 

( )4

1 945 1 cos cha s L L = −        ( )3 2

2 1260 1 cos cha s l L L  = −  29 

( )( ) ( )
( )

3 2 2 2 3 3

3

2

315 36 1 cos ch 945 cos sh sin ch

3780 cos sh sin ch

a s l s l L L EI ls L L L L

EI ls L L L L

         

    

= − + − + +

+ +
 30 

( )( ) ( )
( )

3 2 2 2 3 3

4

2

315 36 1 cos ch 945 cos sh sin ch

3780 cos sh sin ch

a s l s l L L EI ls L L L L

EI ls L L L L

         

    

= − + − + +

+ +
 31 

( ) ( )
( ) ( )

3 5 2 2 3 2 2

5
2 4 2 6 3 2 4

36 cos sh sin ch 1260 cos sh sin ch

3780 1 cos ch 12 1 cos ch

a EI l s L L L L EI l s L L L L

EI l s L L l s L L

             

        

= − + + −

+ + + −
32 

( ) ( )
( ) ( )

2 3 7 2 2 5 2

6
2 2 4 4 2 3 2 2 4

12 cos sh sin ch 420 cos sh sin ch

1260 1 cos ch 4 1 cos ch
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= − + + −
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( )4

7 630 1 cos cha s L L  = −1 

( ) ( )3 4 2 2 3

8 39 1 cos ch 105 cos sh sin cha s l L L s EI L L L L         = − − + +  2 
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 1 
 2 

Figure 1 – (a) Experimental device: clamped beam simply supported on the elastic specimen with 3 

(O,x,y,z) being the cantilever reference frame. (b) Diagram of the theoretical model: v(x,t) is the 4 

cantilever transversal displacement in the vertical plane (O,x,y) and w(x,t) is the cantilever 5 

transversal displacement in the horizontal plane (O,x,z). (c) Specimen stiffness and mass properties:  6 

k, k, m and i are involved into the dynamic vertical response (─) and k, k, m and i are involved 7 

into the dynamic horizontal response (─). The excitation force is F(t). 8 
 9 
 10 

 11 
 12 

 13 

Figure 2 – (a) Diagram of the experimental device, (b) Experimental set-up, (c) Agarose specimen 14 

in the fixture, (d) Bone marrow specimen 15 
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 1 
 2 
 3 

 4 
 5 

Figure 3 – Frequency response function of the structure (agarose specimen  and cantilever): 6 

(a) Bode representation, i.e. X/F in magnitude (mm/N) and phase (°), X being the displacement 7 

magnitude measured by the confocal probe and F the transmitted force magnitude, (b) 8 

dimensionless first mode shape v (frequency: 250 Hz) in the vertical plane (O,x,y), (c) 9 

dimensionless first horizontal mode shape h (frequency : 356 Hz) in the horizontal plane (O,x,z). 10 
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