
HAL Id: hal-04309109
https://hal.science/hal-04309109v1

Submitted on 27 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A comparative assessment of ASM4 rockfall barrier
modelling

R. Boulaud, Cyril Douthe

To cite this version:
R. Boulaud, Cyril Douthe. A comparative assessment of ASM4 rockfall barrier modelling. Engineering
Structures, 2022, 251 (Part B), pp.113512. �10.1016/j.engstruct.2021.113512�. �hal-04309109�

https://hal.science/hal-04309109v1
https://hal.archives-ouvertes.fr


A comparative assessment of ASM4 rockfall barrier modelling

R. Boulauda, C. Douthea

aLaboratoire Navier, Ecole des Ponts Paristech, Univ Gustave Ei�el, CNRS, 6 et 8 avenue Blaise Pascal, Champs-sur-Marne, France

Abstract

One key element of �exible rockfall barriers is the net which intercepts the block trajectory. The ASM4 ring net is

one of the widely spread net technology for medium to high energy impacts. The accurate modelling of its mechanical

behaviour has thus been the aim of many research programs, most of which use the discrete elements method and

tension members with material non-linearities. This paper proposes hence a comparison of the three main families of

models: linear spring models, tensile ring models and �exural ring models. First, homogenisation techniques are used to

characterize intrinsic properties at local scale. Then, the question of the experimental identi�cation of these properties

is addressed. Afterwards, the relevance of the identi�ed behaviour is investigated through two case studies. The �rst

one consists in a simple hyperbolic paraboloid structure which has a closed form solution involving large displacements.

The second one is based on an experiment on a reduced scale barrier with centered impact and extend the comparison

to various kind of data and loading cases. The conclusion presents the main results of the various comparisons, it gives

insight on the features that each model can capture and provides some guidelines for designers at early stage design.

Keywords: rockfall barrier, ASM4, intrinsic characteristic, dynamic relaxation, structural analysis

1. State-of-art on the modelling of ASM4 ring nets

1.1. The ASM4 ring net

During the second world war, the ASM4 ring nets were

used as Anti-Sub-Marines protective fence (and their name

comes from this original use). Since then, part of the

stocks were reused for the conception of protection struc-

tures like �exible rockfall barriers. Because of its low cost

and good mechanical properties, this type of net is still

one of the most used in this �eld. Schematically, these

structures can be described as follows: a wire net (usually

formed by an ASM ring net, but not necessarily) inter-

cepts the rock trajectory. Then, it deforms, sliding along

the supporting cables which are attached to the posts or

the cli� through dissipating devices or brakes. Because it

has a large capacity of deformation, the ring net is a com-

plex object which has been studied for a long time and

lead to many models. The elementary pattern of this net

is formed by one ring interlaced with its four neighbours

(see Figure 1).

Figure 1: Typical arrangement of rings in ASM4 ring nets where

each ring is in contact with four neighbours.

1.2. Review of existing ring models

Even if traditional �nite element approaches are some-

times used to accurately simulate rockfall barriers [17,
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16], these models often focus on cable nets [7, 20, 21]

and double-twisted hexagonal net [1, 33, 25] where slid-

ing within the net are less preponderant. In the case

of ASM4, the natural topology of the net and its non-

linearities encourage the use of discrete element methods

[9, 23, 27, 36, 15]. Among the various discrete models,

di�erent strategies have been used to reproduce the typi-

cal two stages behaviour of these rings: large deformation

by bending during the �rst stage and then high sti�ness

due to the axial sti�ness of the cable during the second

stage. One of the �rst ASM net model was developed by

F. Nicot [27]. He proposed a discrete model in which the

rings are represented by a node at their center and inter-

act with each-others by means of an axial spring. This

link is described by a non-linear law depending on the

elongation of spring. This approach has the advantage of

facilitating the geometrical description but the behaviour's

determination under any loading condition is complex and

needs to �t a multi-linear law. Another disadvantage of

this model is that it can only transmit axial forces (in the

direction given by the spring) and cannot reproduce any

transverse strain orthogonally to the spring strain. This

kind of spring model was adopted recently in [15] in a DEM

framework as well as FEM in [21, 20]. In its principle, it is

similar to the one used for twisted wire net [3, 4, 37, 33].

A few years after F. Nicot's works, H. Grassl proposed

a new discrete element model of a ASM4 ring. The shape

of his elementary cell is an octagon where one in two ver-

tices represents a contact node between two rings. The

eight nodes are connected by truss elements with a vari-

able length. The bending behaviour is conferred by ro-

tational springs on the eight angles [23]. A. Volkwein

proposed a simpli�cation of the previous model based on

the experimental tensile tests carried out by H. Grassl.

He transformed the eight nodes ring by removing the in-

termediate nodes, keeping only the contact points. Fur-

thermore, he replaced the bending behaviour by the axial

strain of two diagonal trusses [35]. By halving the num-

ber of degrees of freedom, this geometrical simpli�cation

signi�cantly reduces the computation time. Doing so, one

breaks the link between the original nature of non linearity

(the shape change) and the behaviour of the model, which

consequently made the identi�cation of member sti�ness

less straightforward.

Besides, A. Volkwein' ring model presents some defor-

mation modes with no energy (similarly to hourglass ef-

fects in �nite elements [18]). Therefore J. Coulibaly used

a similar geometry to propose a new model in which links

between two consecutive nodes are added to prevent such

kinematics [10, 8]. This model also describes very precisely

the plastic behaviour of rings, and therefore requires the

calibration of many material parameters.

Through out the years, the ASM4 model has thus been

enriched toward more accuracy, but also toward larger

complexity in the identi�cation process of constitutive pa-

rameters which in return makes their use less easy.

1.3. Purpose and methodology of the present study

In this quick literature review, it appears that there

are three typical discrete ring models: linear spring models

later called model A (after Nicot and following authors),

tensile ring models later called model B (after Volkwein

and following authors), �exural ring models later called

model C(after Grassl and following authors). When �ne

tuned, all three models show good agreement with exper-

imental results. A structural engineer in early stage de-

sign might therefore ask: how do they compared? what

features they can capture? and how easy they are to cali-

brate?

The aim of the present paper is to answer these three

questions and to present a comparative assessment of ASM4

models. The proposed methodology is progressive: from

local to global behaviour, from small deformation to large

rotations.
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1.3.1. Identi�cation of intrinsic characteristics with ho-

mogeneisation techniques

Comparing these models at net scale may require very

often the identi�cation of relevant characteristics at lo-

cal scale, recalling a continuous description of the net.

Some authors have even proposed complete continuous

representation of the net. For example N. Sasiharan [32]

and S. Dhakal [12] have used both a shell element with a

special membrane formulation in a general �nite element

framework for pocket-type rockfall structures. Recently,

A. Mentani et al. [24] have also proposed an orthotropic

elasto-plastic equivalent membrane model, for a chain-link

wire net. Such approaches require the de�nition of the

net local behaviour a priori and thus a knowledge of its

intrinsic characteristics.

A �rst idea for comparing these three typical ASM4

models consists hence in identifying these intrinsic prop-

erties by homogeneisation techniques. Such methods are

widely used in the �eld of granular materials or heteroge-

neous media to identify macroscopic properties [19]. Al-

though often limited to small displacements, this method

provides insight on the local behaviour of repetitive struc-

tures. A �rst application to ASM4 ring nets in tension had

been made in Ghoussoub [22] and was later completed by

the �rst author [5]. Detailed calculations of closed form

solutions being purely technical and somehow standard,

they will not be recalled in this paper. However the yet

unpublished results will be presented in section 2 and allow

for a �rst comparison of the three models.

1.3.2. Calibration on experimental results from the Na-

tional Project C2ROP

Discrete like continuous models require the identi�ca-

tion of parameters in order to understand how they com-

pared to reality and to be used in a predictive manner.

One of the major aim of the C2ROP National Project

(www.c2rop.fr) was hence to provide a wide experimen-

tal range for the calibration of numerical models that is

not limited to standard ETAG test. A working group has

formed around the modelling and testing of �exible barri-

ers. A 1:2 scaled barrier was developed with documented

separated tests of each components which will be used in

section 3 for the calibration of the ring net models at local

scale and intrinsic characteristic identi�cation. The results

of the quasi-static tests on the complete barrier will then

be used in section 5 for the investigation of the in�uence

of the ASM4 model on the global response of the structure

in large deformation [29].

The whole set of non-standard experiments realised in

this framework has been published in [30]. They show �rst

that there is a signi�cant spreading of results due to the

spreading of components characteristics and inherent im-

perfections induced by on-site rope work. Then, through

the comparison of quasi-static and dynamic loading tests

on the barrier, they show that qualitatively, on the tested

barrier, the two behaviours were very similar. This can

be explained by the fact that 85% of the system mass is

concentrated in the block which therefore concentrates all

the kinetic energy.

1.3.3. Simulation with the dynamic relaxation method

Building on these observations, quasi-static analysis of

barriers should be su�cient to evidence the dominant phe-

nomena in�uencing the net response at reasonable calcu-

lation time [see detailed analysis of this hypothesis in 5,

chap 5]. Therefore, it was decided to focus on equilibrium

con�gurations which will be investigated by the dynamic

relaxation method in the sections 4 and 5. In this method

developed by A.S. Day [11], the equilibrium of the sys-

tem is regarded as the result of a highly damped dynamic

process. This simple method has proved very interesting

results in structural application and tensile structure [see

for example the state-of-art presented by 34].

All numerical computations presented in this paper are

thus conducted with a numeric tool developed in labora-

tory [13, 14, 31]. This tool is implemented in the frame-
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work of the commercial software Rhinoceros3D�and more

speci�cally in its plug-in Grasshopper�.

1.3.4. Summary of contributions

The present study proposes thus a comparison of three

net models in three steps.

� In Section 2, the intrinsic mechanical properties of

the nets formed by the in�nite repetition of three

discrete models of ASM4 are characterized at local

scale by an homogenisation method in small per-

turbation.

� Afterwards in Section 3, the sti�ness parameters re-

lated to the homogenised elasticity tensors are iden-

ti�ed thanks to a plane tensile experiment carried

out on a square ring net. The experiment being car-

ried out well beyond small perturbations, it provides

local properties for small and large displace-

ments.

� Then, in Section 4, the relevance of the identi�ed

membrane behaviours is investigated through the trans-

formation of a square net, initially �at, into a paraboloid

hyperbolic shape, a transformation involving smooth

large displacements with closed form solution at

structural scale.

� Finally in the last section, the in�uence of the net

model on thewhole rockfall barrier is investigated

through the simulation of an experiment with full

non-linearities.

2. Identi�cation of ASM4 models intrinsic proper-

ties

2.1. Description of the three net models

In this section, the intrinsic mechanical properties of

the net, formed by three di�erent discrete models of ASM4

ring net, are identi�ed with help of homogenisation tech-

niques. The considered ring models are strongly inspired

by those presented in Section 1.2. The �rst one (Model A

in Figure 2) is an adaptation of the Nicot's model in which

each particle is linked to its neighbours by axial springs [26,

15] (in the initial model by Nicot, each ring was connected

to six neighbour instead of four in the present paper). The

second model (Model B in Figure 2) used the geometry

proposed both by A. Volkwein [35] and J. Coulibaly [10].

The four contact points of the ring with its neighbours are

connected with a same link. The last one (Model C in

Figure 2) is an adaptation proposed by the authors of the

model initially developed by H. Grassl [23]. The geome-

try of the ring is approached by an octagon which is not

regular. The eight edges have the same length, the sum of

which corresponds to the perimeter of the real ring. The

angles formed by two consecutive edges are however not

equal. The eight vertices are connected by a strain energy

associated to the perimeter of the ring and by a bending

energy associated to the local curvature variations [13].

Figure 2 shows the geometry and the interactions of each

discrete ring model. The blue squares represent the ele-

mentary cells boundary which form the whole net by peri-

odic repetition. For simplicity reasons, the models will be

called A, B and C respectively in the rest of the paper.

Figure 2: Patterns of the three elementary cells : A. Truss model,

B. Tensile ring, C. Bent ring

2.2. Presentation of the homogenisation method

The homogenisation, sometimes also called the asymp-

totic analysis, includes a set of methods enabling the eval-

uation of the in�uence of the micro-structure on the whole

medium behaviour. The method presented in this section
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has been developed by C. Florence and K. Sab [19]. This

method enables the identi�cation of the mechanical prop-

erties of an in�nite periodic lattice from the resolution of

an auxiliary problem of an elementary cell in the frame-

work of the linear elasticity. There are two ways to solve

this elementary problem. The �rst one consists in enforc-

ing a kinematic admissible strain �eld to the elementary

cell. This method is called "kinematic method". The sec-

ond one consists in enforcing a statically admissible �eld

and is called "static method". Only the kinematic method

is presented here and used in this paper for conciseness.

It can however be proved that these two methods are dual

and give equivalent results [19].

To respect the framework of this method, it is assumed

that the ASM4 ring net is a periodic and in�nite lattice.

This assumption is very strong and will fail when the solu-

tion of the problem will be dominated by boundary e�ects.

The elementary cell, whose periodic repetition forms the

whole media, is composed of a set of particles of di�er-

ent types (two di�erent particles have the same type if

they have an identical neighbourhood: same connectivity,

same geometry and same spring characteristics and orien-

tations). Figure 3 shows the formation of the Model C

lattice by periodic repetition of its elementary cell: all the

particles drawn in red are of the same type (the particles in

the other corner points have di�erent spring orientations

and, by there, are of di�erent type with di�erent periodic

displacements). The purpose of this method is to identify

the local strain �eld and the elastic strain energy of an

elementary cell. The e�ective local �eld is the one which

minimises the elastic energy of the cell. This minimum

corresponds to the strain energy in the homogeneous ma-

terial.

Let E be the symmetric second order tensor of the

global strain, i the index of a particle belonging to the

elementary cell and Xi its position vector. A kinetic dis-

placement of the particle i is obtained by superposing its

linear homogeneous displacement E · Xi and its periodic

Figure 3: Periodic repetition of Model C elementary cell

displacement uperi . Two particles of the same type have

also the same periodic displacement. Considering the pre-

vious notations, the displacement of the particle i is hence

given by: ui = E · Xi + uperi . Noting that the particles

don't have degrees of freedom in rotation, the set of the

kinematic admissible displacement �elds K.A.(E) is hence

de�ned by:

K.A.(E) = {u/ui = E ·Xi + uperi ∀i ∈ cell} (1)

Then, the elastic strain energy of the discrete elemen-

tary cell ψhom(E) is computed as the sum of the elastic

strain energies provided by the interactions between parti-

cles in the cell ψi (u) divided by its area AΩ. The relation

of homogenization is thus given by:

ψhom(E) =
1

2
E : A : E = min

u∈K.A.(E)

1

AΩ

∑
i

ψi (u) (2)

where A is the overall elasticity tensor. A part of the cell

deformation is �xed by the global behaviour of the lattice

E. The other part, associated with uper, requires solving

a minimization problem which is quadratic in uper.

In order to simplify the writing in the further develop-

ments, the Voigt's Notation is introduced as in [22]:

A : E =


A1111 A1122 A1112

A2211 A2222 A2212

A1112 A2212 A1212

 :


E11

E22

2E12

 (3)

2.3. Calculation of the elastic strain energy

The purpose of this section is to describe the di�erent

interactions between particles used in the three considered
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models of net. Three types of interaction are studied: a

spring interaction between a couple of particles, a tensile

ring interaction involving a closed set of particles and a

�exural beam interaction between three particles (see Fig-

ure 4). The �rst type is used in the three models, the

second re�ects coupling between strain in orthogonal di-

rections and is used in Model B and C. The third one

is only used in Model C. It is important to remember

that, in this section, all interactions are elastic, and that

all vertices motions are assumed small compared to the

characteristic size of the elementary cell.

Figure 4: Illustration of the three types of interaction: spring, ring

and beam interactions. Note that for the ring interaction, the main

characteristic is the loop. The number of nodes in the loop might

vary: it is of 8 in model C and 4 in model B.

2.3.1. Bar interaction

The bar interaction simply refers to the spring interac-

tion between a couple of particles. The associated elastic

strain energy is thus given, for small strains, by the fol-

lowing expression:

ψba(εba) =
1

2

EbaSba
lba

d2
ba (4)

where EbaSba

lba
is homogeneous to a sti�ness in N.m−1 and

lba and dba are the rest length (the distance between the

two particles in the stress free con�guration) and the rela-

tive displacement of the interacting particles. This relative

displacement is de�ned by di = ui+1−ui. Introducing the

particle displacements induced by the global strain, the

relative displacement of the couple ci can be rewritten as:

di = E · li + ∆uperi with li = Xi+1 −Xi (5)

2.3.2. Ring interaction

The second interaction is of ring type. It refers to an

ordered set of N particles. Ordered means that each par-

ticle has always the two same neighbours. In other words,

each particle belongs to two consecutive couples of par-

ticles and the ring interaction acts on the ordered series

of these N couples (for instance in Figure 4 the particle i

belongs to the couples [i− 1, i] and [i, i+ 1]). The form of

the elastic strain energy related to the ring interaction is

the same as the one used in the case of the bar interaction:

ψr(εr) =
1

2

ErSr
lr

d2
r (6)

The ring elongation is the sum of the elongations of each

couple ci:

dr =

N∑
k=1

di (7)

As previously, the expression of the overall rest length is

also derived from the rest length of each couple by:

lr =

N∑
k=1

li (8)

2.3.3. Bending interaction

Experimental results on ring tensile tests have shown

a stage of the behaviour which is due to the ring bend-

ing (see Figure 7). To model it with only the assump-

tions of the cable theory, many authors have chosen to add

material non-linearities to reproduce the sti�ness changes

[27, 36, 10, 15]. However, there exist simple models to re-

produce bending forces in axi-symmetric sections [2, 13,

14, 31]. These models have the advantage of not requir-

ing rotational degrees of freedom to compute the bending

moment. An elastic energy depending only on the nodal

translation can thus be associated with this bending in-

teraction. In standard strength of material, the bending

moment is computed by:

‖M i‖ =
EI

ri
(9)

where ri is the local radius of curvature associated with the

particle i and calculated from the osculating circle passing
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Figure 5: Calculation of the radius of curvature and of the bending

moment

through the particles (i−1, i, i+1) (see right of Figure 4).

Using the same notations as in section 2.3.1, the radius of

curvature is de�ned by:

ri =
‖li−1,i+1 + di−1,i+1‖

2 sin θi
(10)

where θi is the angle formed by the vectors (li−1 + di−1)

and (li + di).

In the framework of the proposed homogenization method,

energies are quadratic functions of the strain �eld. To this

end, the sine function must be expressed as a function of

the particle couple :

sin θi · ez =

(
li−1 + di−1

)
∧ (li + di)

‖li−1 + di−1‖‖li + di‖
(11)

In the case of the ring, the initial curvature is not equal to

zero. The calculation of the bending moment must be thus

slightly modi�ed to account for the curvature variation:

M i

2EI
=

(
li−1 + di−1

)
∧ (li + di)

‖li−1 + di−1‖‖li + di‖‖li−1,i+1 + di−1,i+1‖

−
li−1 ∧ li

‖li−1‖‖li‖‖li−1,i+1‖

(12)

Expression (12) is used in this form for the implementa-

tion in the custom code cited in Section 1.3.3. To simplify

notations, the variables referring to the couple of particles

(i− 1, i+ 1) will be indexed in the rest of the paper with

the subscript i and the superscript c (for chord). To re-

main within the framework of the homogenisation method

[19], the particle displacements must remain small and the

expression of the bending moment (12) can hence be lin-

earised according to the relative displacements of each cou-

ple of particles: di−1 , di and di−1,i+1 = dci .

M i

2EI
‖li−1‖‖li‖‖l

c
i‖ = li−1 ∧ di + di−1 ∧ li

+ li ∧ li−1

(
lci · d

c
i

‖lci‖
2 +

li−1 · di−1

‖li−1‖
2 +

li · di
‖li‖

2

) (13)

The elastic bending energy associated with the particle i

is then given by the formula:

ψibe =
1

2

M i
2

EI

‖li−1‖+ ‖li‖
2

(14)

Even if in this section, the elementary cells are con-

sidered planar, it can be remarked that the expressions

of the bending moment and of the elastic bending energy

presented above ((12) (14)) remain valid for the study of

3D problems [13].

These three interactions enable the calculation of the

strain energy of each elementary cell introduced in Section

2.1. It can be reminded that in Figure 2, the cell perime-

ters are limited by the square drawn in blue. Only Model

C has particles whose displacements do not only depend on

the overall strain �eld E. Therefore, the identi�cation of

the homogeneous elasticity tensor requires the resolution

of a minimisation problem only in this last case.

2.4. Identi�cation of the sti�ness matrices

For this part of the study, it is assumed that the three

models consist in in�nitely periodic material under uni-

form strain undergoing small deformation.

2.4.1. Model A

In this model, each ring is represented by one particle

in its center and four links of bar-type interaction con-

necting it with its four neighbours (Model A in Figure 2).

The identi�cation of the homogeneous elasticity tensor is

straight forward and lead to:

AA =

 KA
ba 0

0 KA
ba

 (15)
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with:

KA
ba =

EAbaS
A
ba

2R
(16)

where superscript A refers to model A, R is the radius of

the ring, which means that 2R is here the length between

two neighbour particles and EAbaS
A
ba is the sti�ness of the

bar interaction in N . The equivalent homogeneous net has

no shear sti�ness and a null Poisson's ratio.

2.4.2. Model B

In this model, each ring is formed by four particles

located at the contact points with the adjacent rings (see

Figure 1). The loads are transmitted between the particles

through only one ring interaction. Using the relation (6)

and (2), the derivation of the sti�ness matrix is straight-

forward again and leads:

AB =

√
2

2

 KB
r KB

r

KB
r KB

r

 (17)

with:

KB
r =

EBr S
B
r

2R
(18)

where superscript B refers to model B, R is the ring radius

and KB
r is the sti�ness of the ring perimeter. In Model B

the shear sti�ness is still zero, but the Poisson ratio is now

equal to 1 which introduces a signi�cant di�erence with

Model A in which stresses in orthogonal directions were

uncoupled.

2.4.3. Model C

Unlike the two previous elementary cells, Model C has

inner nodes which do not belong to the boundary of the cell

and whose displacements are not determined by periodic-

ity conditions as in Model A (see Figure 3). The elastic

energy expression thus depends on the periodic displace-

ments of the inner nodes. The identi�cation of the elastic-

ity tensor is, this time, a little more complex and requires

solving an auxiliary minimisation problem. The detail of

the calculations is proposed in Boulaud's Phd thesis [5].

It is proved that the elasticity tensor of Model C can be

numerically expressed as:

AC = 2.3KC
be


1 0.8 0

0.8 1 0

0 0 0.4

 (19)

where superscript C refers to model C and

KC
be ∼

ECIC

R3
(20)

KC is homogeneous to a �exural sti�ness with IC the in-

ertia of the ring.

2.5. Comparison of the elasticity tensors of the three mod-

els

The three models have been presented by order of com-

plexity. The Model A composed of two bar interactions has

a null Poisson ratio and no shear sti�ness. A ring inter-

action is added in Model B and its Poisson ratio is now

equal to 1 but the cell has still no shear sti�ness. This

Poisson ratio equal to 1 corresponds to a kind of plane

strain incompressibility condition which re�ects an impor-

tant physical property of ASM4 rings. Furthermore the

introduction of a bending sti�ness in Model C has slightly

lowered the Poisson ratio to 0.79 and conferred shear sti�-

ness to the net.

The comparison of the intrinsic elastic properties of

these three models indicates thus, that, for small strains,

the way they transfer loads is di�erent. The micro-structure

of Model C being closer to the real ring structure, it is ex-

pected that its behaviour is closer to the reality. Nonethe-

less, it will be shown in the next section that, when trying

to identify the characteristic sti�nesses of the three mod-

els, Model C is also the simplest.

3. Identi�cation of the intrinsic equivalent behaviour

through a large deformation tensile test

3.1. Experimental set-up

The experiment presented below, carried out in the

framework of the french national project "C2ROP" [28,
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30], consists of a square and rigid support frame on which

a three by three ASM4 ring net is �xed (see Figure 6).

The rings are considered to be perfectly circular in their

relaxed geometry with a radius R0 = 13.5 cm. They are

made of 7.5 mm strand of galvanised steel. A uni-axial ten-

sile loading is applied to the ring net by pulling one edge

of the support frame. The normal displacement of this

edge is imposed while on the other edges tangential dis-

placements are free and normal displacements are blocked.

Force sensors are placed on the moving edge and on one of

the lateral edges so that the whole resultant forces applied

by the net on the frame are recorded. Considering then

that the deformation in the net is uniform, the force ap-

plied on a single ring is assumed to be equal to one third

of the total force applied on the edge.

Furthermore, the order of magnitude of displacements

applied in this test was chosen in order to investigate also a

deformation range beyond that of previous section. Equiv-

alent material characteristics identi�ed by this test will

thus cover the domain of small perturbations (for strains

smaller than 4% of the specimen size) and also allow for

the identi�cation of a second linear domain (for strains

larger than 25%) where the rings have become diamonds

and work in pure tension. The choice was made to identify

only two parameters for each model to ease comparisons:

one for small strains (and bending energy in the ring),

one for large strains(and strain energy in the ring). Other

choices with more parameters could also be made, like in

[10]).

3.2. Model A

In Model A, the non-linear behaviour of the ring is

modelled by means of material non-linearity. It is assumed

that the tensile behaviour of the ring can be described by

means of a bi-linear law in traction with a null sti�ness in

compression (similarly to what is made by F. Nicot et al

[27] or by L. Dugelas et al [15]. The left part of Figure 7

shows the pattern of this model drawn in red as well as

Figure 6: Experimental set-up of the plane tensile test on a ASM4

ring net (by courtesy of national project C2ROP).

the domain of the elementary cell drawn with a dotted

line. The identi�cation of the bi-linear behaviour law from

the experimental results is presented in the right part of

the �gure. Referring to the notations of Figure 7 the axial

displacements of the moving edge is noted Ua and the axial

resultant force Faxial. The behaviour is given according

to εa, the axial Green-Lagrange strain applied to the net

during the experiment:

εa =
1

2

[(
Ua + 6R0

6R0

)2

− 1

]
(21)

The two sti�nesses of the bi-linear behaviour which are

noted KA
ba,1 and KA

ba,2 respectively, are �tted from the ex-

perimental results by means of least squares �tting on the

two asymptotic behaviours. The low sti�ness is �tted for

axial strains lower than 4% whereas the second sti�ness is

�tted for strains higher than 25%. The parameter values

are given below. εAlim is the strain for which the change of

sti�ness occurs.
KA
ba = 0 kN.m−1 if ε ≤ 0

KA
ba = 31 kN.m−1 if ε ≤ εAlim = 23%

KA
ba = 2160 kN.m−1 if ε > εAlim = 23%

(22)

3.3. Model B

In ModelB, the non-linear behaviour is modelled thanks

to one ring with a bi-linear behaviour in traction, in the

same way as for the Model A, with a low sti�ness for the

9



Figure 7: Pattern of Model A and �tting of its bi-linear behaviour

bending stage and a high sti�ness for the tensile stage. In

this model, initially, the rings have a diamond shape and

their perimeter is actually much lower than the perime-

ter of the physical ring. It is self understandable that the

sti�ness change in the model will occur when the perime-

ter of the diamond ring will get close to the perimeter of

the circular ring, which corresponds to the fact that, phys-

ically, iso-perimetric deformation of the circular ring into a

diamond ring is achieved and cables go straight from con-

tact point to contact point. The initial pattern of Model

B as well as the calibration of the element's sti�ness are

presented in Figure 8.

The �tting of the ring's characteristics requires to cal-

culate the strain of the diamond ring from the displace-

ments of the moving edge Ua and its tensile stress from

the axial force. The Green-Lagrange strain of the diamond

ring, εBr , is given by the following expression:

εBr =
1

2

(
4R2

0 +
(
2R0 + Ua

3

)2
8R2

0

− 1

)
(23)

Referring to the left scheme in Figure 8 the tensile force

in the diamond ring is calculated by:

NB
r =

1

2

Faxial
3

√
4R2

0 +
(
2R0 + Ua

3

)2
2R0 + Ua

3

(24)

The sti�nesses are still calculated by �tting the real be-

haviour for the same limit of axial strains in model A

(lower than 4% and higher than 25% of the specimen

length), which correspond to strains of the ring lower than

2% and higher than 12.5%. The parameter of Model B

are hence:
KB
r = 0 kN.m−1 if ε ≤ 0

KB
r = 43 kN.m−1 if ε ≤ εBlim = 11.5%

KB
r = 2750 kN.m−1 if ε > εBlim = 11.5%

(25)

Figure 8: Pattern of Model B and �tting of its behaviour

3.4. Model C

Model C behaviour being richer than the previous ones,

the characterization of its mechanical property is directly

performed from the expression of the elasticity tensor (19)

and refers to the notations used in [5]. For small axial

displacements applied during the experiment, the following

equation is valid:

Faxial
2R0

= A1111εa = 2.3KC
beεa (26)

where εa is still the axial strain. Moreover, in the case

of Model A (see section 3.2), it has been already shown

that: Faxial

2R0εa
= 31 kN.m−1, which enables to straightfor-

ward deduce the value of KC
be. Then, for large axial strain,

the behaviour of Model C becomes similar to the one of

Model B, because the sti�ness KC
r is large compared to

KC
be (see [5]), the octagonal ring deform into a diamond

shape. To identify the value of the ring sti�ness, the same

approach as in Section 3.3 can thus used. However, the

Green-Lagrange strain needs to be modi�ed by taking into
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account the actual perimeter of the octagonal ring:

εCr =
1

2

(
4R2

0 +
(
2R0 + Ua

3

)2
4π2R2

0

− 1

)
(27)

The �tting of this last parameter is presented in Figure

9 as well as the pattern of the Model C. Finally, the

parameters of the Model C are:

KC
r = 1140 kN.m−1 and KC

be = 13 kN.m−1 (28)

Unlike the previous models, this one does not require the

identi�cation of a third parameter linked to the material

non-linearity. The transition from one behaviour to the

other is smoothly done through the geometric deformation

of the ring.

For the sake of completeness, it must be added here

that an additional geometric constraint has been intro-

duced in model C insuring that the nodes, which do not

belong to the cell boundary, move along the bisector of the

chord formed by their two neighbour nodes. For numer-

ical computation this geometric constraint is changed to

a mechanical constraint by adding eight springs along the

edges of the octagonal ring. In order to minimize the in-

�uence of these springs on the behaviour of Model C, their

sti�ness must be very small compared to the sti�ness of

the ring KC
r . Computation will hence be performed with

a value of 10−2KC
r .

Figure 9: Pattern of Model C and �tting of its behaviour

3.5. Assessment of the homogeneous behaviours

The aim of this section is the validation of the homoge-

neous behaviour of the three models which have just been

characterised. For this purpose, the experiment described

in section 3.1 is numerically simulated. All calculations

are carried out with a custom DEM code. The evolution

of the axial and transverse forces are presented according

to the axial displacement for each model in Figure 10.

It is observed that the sti�ness parameters identi�ed

in the sections 3.2, 3.3 and 3.4 allow to correctly approxi-

mate the net behaviour in the traction direction. However

as explained in Section 2.5, the model A has a null Poisson

ratio and the resultant force is hence null in the transverse

direction. Furthermore the model C reproduces more ac-

curately the behaviour of the net, without any material

non-linearity, because its micro-structure accounts for the

right geometric non-linearity. The geometrical description

of the real ring by an octagon also enables to correctly

reproduce the behaviour in the transverse direction. It is

observed in Figure 10 that the bi-linear law of model B

enables to reproduce only the two asymptotic behaviours

but is not enough to describe the progressive change of the

sti�ness. As mentioned earlier, more complex behaviours

could be implemented, using for instance polynomial laws

as in [10, 6], but that would require the identi�cation of

more parameters with di�cult physical interpretation.

3.6. Conclusion of the experimental identi�cation process

The plane behaviours of the three net models are now

completely characterized and give each one a good approxi-

mation of the real net behaviour. The experiment allowed

for an identi�cation which goes beyond small perturba-

tions and covers the whole range of uni-axial deformations

of the rings in real structures. The mechanical properties,

identi�ed in this section for the three models, will be those

used in the rest of this paper. At this stage of the com-

parison, Model C seems to be more relevant to describe

accurately the behaviour of a ring net. In a rockfall bar-
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Figure 10: Comparison of the behaviour of the three models (continuous line: experimental results with 3x3 rings specimen; dots and stars:

numerical results with real density of rings (3x3) and 100 times density (30x30) respectively).

rier, however, when the net is impacted by a boulder, it

undergoes both large out-of-plane displacements and large

strains. Before studying the behaviour of the models un-

der these severe conditions, a intermediate loading case,

for which closed form solution can be determined, is as-

sessed in the next section. It will give a �rst indication on

how local properties in�uence results at structural scale.

4. First case-study: structure under large displace-

ments with closed form solution

The case study investigated here consists in the trans-

formation of a �at square membrane in a quasi hyperbolic

paraboloid. In this transformation, no external load is ap-

plied and only the boundaries of the square are moved ver-

tically proportionally to their distance to the centre of the

square. De�ning hence the orthonormal coordinate sys-

tem (x1, x2, x3) and u1(x1, x2), u2(x1, x2) and u3(x1, x2)

the displacements in the three directions, the transforma-

tion called hypar transformation and presented in Figure

11 is characterised by:

u3(x, y) =
x1x2

c
(29)

Considering that H is the vertical displacement of each

corner (see Figure 11), the parameter c is given by: c =

l2

4H .

Figure 11: Transformation of the �at membrane in a hyperbolic

paraboloid

In the following, the equilibrium state of the membrane

under the Von Karman assumptions will be �rst estab-

lished, then a convergence study with various mesh den-
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sity of the three models will be conducted before a �nal

comparative assessment is presented.

4.1. Equilibrium state of the membrane undergoing an hy-

par transformation

According to the assumptions of the Von Karman plate

theory: large out-of-plane displacements but small plane

strains [38], the components of the Green-Lagrange strain

(ε11, ε12 and ε22) of the equivalent membrane can be de-

duced from the derivative of displacements in the tangent

plane (u1 and u2) and the square of the displacement in

the normal direction (u3) by:

ε11 = u1,1 + 1
2u

2
3,1

ε22 = u2,2 + 1
2u

2
3,2

ε12 = 1
2

[
u1,2 + u2,1 + u2

3,1u
2
3,2

] (30)

Assuming then a linear elastic behaviour, the constitutive

law of the membrane takes the following form:
N11

N22

N12

 =


A1111 A1122 0

A1122 A2222 0

0 0 A1212




ε11

ε22

2ε12

 (31)

where N11,, N22 and N12 represent the components of

membrane forces in the shell and Aijkl the components

of the sti�ness matrix. For the three equivalent homoge-

neous membranes, the equivalent sti�ness matrix has been

identi�ed in (15), (17) and (19). They are all orthotropic

with the same sti�ness in the two principal directions so

that A1111 = A2222. So, introducing the Poisson ratio

(ν = A1122

A1111
), two cases have to be distinguished: Membrane

A and B where the shear sti�ness is zero and Membrane

C where the shear sti�ness is non zero.

Without external forces and assuming that the bending

sti�ness is negligible in comparison to the in-plane sti�-

ness, the solution of von Karman's problem [38] can be

sought in such a way that u3(x1, x2) = x1x2

c everywhere

and reduces hence to:
u1,11 + A1122

A1111

(
u2,12 + x1

c2

)
+ A1212

A1111

(
u1,22 + u2,12 + x1

c2

)
= 0

u2,22 + A1122

A2222

(
u1,12 + x2

c2

)
+ A1212

A2222

(
u1,12 + u2,11 + x2

c2

)
= 0

A1212

(
u1,2 + u2,1 + x1x2

c2

)
= 0

(32)

First case: A1212 = 0. In this case, the in-plane dis-

placements u1 and u2 can be expressed each one as a

single variable function. The boundary conditions im-

pose that the in-plane displacements are null in the four

corners. Moreover the symmetry conditions impose that

u1(0, x2) = u2(x1, 0) = 0. Finally it is established that: u1(x1) = ν
6c2x1

(
l2

4 − x
2
1

)
u2(x2) = ν

6c2x2

(
l2

4 − x
2
2

) (33)

Without shear sti�ness, it is possible to �nd a solution of

the problem (32) which satis�es the condition: u3(x1, x2) =

x1x2

c by imposing only a vertical motion to the boundary

∂Ω. It can be also noted that in the trivial case for which

the Poisson ratio ν is equal to zero, the equilibrium equa-

tions are satis�ed without in-plane displacements.

Second case: A1212 6= 0. This time, the third equation of

(32) imposes that the shear strain is null. The displace-

ment �eld solution is then given by: u1(x1, x2) = x1

4c2

[
l2

4 − x
2
2 + ν

3

(
l2

4 − x
2
1

)]
u2(x1, x2) = x2

4c2

[
l2

4 − x
2
1 + ν

3

(
l2

4 − x
2
2

)] (34)

Under this condition, it is hence observed that the in-plane

displacements satisfying the conditions: u3(x1, x2) = x1x2

c

are maximum in the middle of each edge.

4.2. Behaviour of the net models for an hypar loading

In this section, the three equivalent membranes are

loaded in displacement by imposing the conditions pro-

vided by (34) to their boundary. This speci�c shear-free

state of strain allows to compare the behaviour of the three

models.
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4.2.1. Behaviours of the homogeneous equivalent materials

Without shear strain and for small displacements, the

di�erences between the behaviour of the three homoge-

neous materials are only due to the value of the Poisson

ratio (see Section 2.4). From the expression (34) of the dis-

placement �eld, the strains are calculated using (30) and

then the stress �eld, using (31):

N =

 N(x2) 0

0 N(x1)

 (35)

with

N(x) =
A1111

4c2

(
l2(3 + ν)(1 + ν)

12
+ (1− ν)2x2

)
(36)

It can be remarked that, for a Poisson ratio equal to 1,

which is the case for Model B, the stress state is uniform

and isotropic in the equivalent material. The geometry of

the membrane is therefore a minimal surface. Otherwise

the stress evolves quadratically.

To go further and easily compare analytic and numeri-

cal results, the resultant force applied along an edge of the

membrane provides an interesting global measure of forces

in the membrane, it is given by:

F =

∫ l
2

− l
2

N(x)dx =
1 + ν

3
A1111

4H2

l
(37)

4.2.2. Numerical behaviour of the net models

The common modelling choice in �exible rockfall bar-

rier is to use one numerical element for one physical ele-

ment. However, considering the numerical model as a pure

discretisation problem of a continuous mechanical prob-

lem, it is common knowledge that the size of elements

relatively to the characteristic size of the structure has an

in�uence on the quality of the approximated solution given

by the numerical model. One might therefore ask if, in the

present study, the size of the ring elements is su�ciently

small to reproduce the behaviour of the net, especially in

this case-study where a closed form solution exists.

To investigate this question a convergence study is thus

conducted by varying the size of the ring elements and

keeping the size of the hypar structure constant, as well

as the net sti�ness per unit length. To this end, the in-

dividual sti�ness of the ring element have to be adjusted

for each calculation. Indeed, the size of the ring element

appears in all the expressions of the sti�ness identi�ed in

section 3 (see 16, 18 and 20). To keep the sti�ness per unit

length constant, it was thus decided to modify the Young

Modulus of the ring inversely to R the radius of the ring

element for model A and B and to R3 for model C.

In this convergence study, a 1 m square net is deformed

in an hypar form with a ratio H
l equal to 1

4 . The choice of

the ratio value is deliberately made here beyond the hy-

pothesis of small displacements. The results are presented

in Figure 12. The relative gap between the values obtained

for the highest density and the current density is plotted

as a function of the mesh count (the number of rings in

the net. It can be noticed that for the three models, errors

of less than 1 % are achieved for a net of 9x9 rings, which

is comparable to the real mesh density in a typical rockfall

barrier unit (for example the net shown in Figure 14 has

17× 23 rings between two successive posts). With a mesh

density of 15× 15 rings, the errors falls down to 1.5�for

the models A and B and 2.5�for Model C.

Figure 12: Convergence study in terms of mesh density

Now that the mesh density to be used for numerical

simulations has been investigated, the behaviour of the
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models can be compared with the one of their equivalent

homogeneous membrane on a 9 × 9 net, which ensures

hence less than 1% error. The computations are carried

out by varying the ratio H
l and comparing the resultant

applied to an edge (37). The results are presented in Fig-

ure 13, where closed-form solutions of each model is re-

ferred as "analytic" curve and discrete element model as

"numerical" curve. It is observed that for the models A

and B, the analytic behaviour of the equivalent membrane

is very close to the one of the discrete net. The sti�ening

induced by the geometric changes of the underlying sur-

face (the more Gaussian curvature in the surface, the sti�er

the structure) is clearly captured by the models. The in-

�uence of the Poisson ratio, predicted by the theoretical

expression of the resultant force (37), is also veri�ed for

the discrete nets (FA ≈ 2FB).

Figure 13: Comparison of the three net models

For model C, the numerical model predicts an addi-

tional sti�ening which is not included in the closed form so-

lution. This sti�ening corresponds to geometrical changes

at local scale: the ring geometry varies signi�cantly with

the ratio H
l from octagonal shape toward diamond shape.

The equivalent homogeneous elastic properties of the mem-

brane increase thus with the deformation and cannot be

considered constant. Interestingly, this should also be the

case for model B where the ring shape also changes from

square to diamond. In the deformation range studied here,

the order of magnitude of local sti�ness increases induced

by these changes in model B are thus one order of mag-

nitude lower than the one induced by changes in model

C.

5. Second case-study: complex rockfall barrier un-

der large displacements

The simple academic case study proposed in Section

4 has shown that, at structural scale, the response of the

three models have signi�cant di�erences, even in the global

response to simple loading. In this second case-study, a

realistic application is chosen with the aim of investigat-

ing which features of the behaviour of a rockfall barrier

the three models can capture. Large de�ections will still

be evaluated with the dynamic relaxation method. Nu-

merical results obtained with the three models are �rst

compared to experimental results on a centred impact and

then between them on non-centred impacts.

5.1. Experimental set-up

5.1.1. Barrier architecture

A full-scale quasi-static experiment was carried out in

the framework of the french national project C2ROP (pre-

viously mentioned in Section 3.1) on a rockfall barrier com-

posed of three units, each one 5 meters wide and 2.75 me-

ters high [29, 30, 15]. A picture of the whole structure

which can be seen as a reduced scale of a high energy bar-

rier is shown in Figure 14.

Figure 14: Front view of the tested rockfall barrier prototype (by

courtesy of national project C2ROP)
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The barrier is formed by an ASM4 ring net which can

slide along ten support cables: four upstream and down-

stream and two lateral. Because of the large span of the

barrier, the wiring along the edges, presented in Figure

15, is complex. It is symmetric between the upstream and

downstream edges. The two external cables link the lat-

eral anchor with the head of the central post (cables A

and Abis drawn in blue in Figure 15) and two central ca-

bles connect the head of the �rst and third posts (cable

B and Bbis drawn in red). Each cable holds partially the

net and is free near the post's head. With this assembly,

the net is hold by two cables in the centre of each modu-

lus and by one cable near posts. Each supporting cable is

anchored (either to the head of a post or to the cli�) by

a device dissipating the energy which is usually called a

brake. Their technology is often complex but most of the

time their behaviour can be considered bi-linear elasto-

plastic. The whole structure is anchored to the cli� at the

base of the posts which are also held by three anchoring

cables.

Figure 15: Detailed wiring between the net and the support cables

5.1.2. Quasi-static loading

A quasi-static loading is applied to the structure shown

in Figure 14. A 740kg normalised polyhedral-shaped con-

crete block is held by a winch and slowly placed in the

middle of the net until the barrier reaches equilibrium un-

der dead-weight and block load. Then, another winch is

hooked to the underside of the block and pulled perpen-

dicularly to the net. Its vertical displacement is controlled

and slowly increased so that the loading can be considered

quasi-static. Several load cells are put on the fence sup-

porting cables as well as on the winch. The whole resultant

force applied to the structure and the tensile forces along

some cables are thus recorded during the experiment.

5.2. Modelling of the barrier components and the loading

Beside the net, the other key components of the rockfall

barrier are the support cables. They transfer the load ap-

plied to the net to the posts and the anchors. As explained

in Section 5.1.1, they are connected with the posts and the

anchors through brakes. When the net is impacted by a

block, it slides along the support cables and concentrates

around the impacted zone. This phenomenon, whose many

modellings can be found in the literature [9, 35, 22, 6], is

usually called the "curtain e�ect".

The characteristic behaviour of a brake is elasto-plastic

and since a support cable is linked by one brake at each

end, the set formed by the three elements has also a bi-

linear elasto-plastic behaviour. For the modelling, the

three elements (one cable with two brakes) are merged

into one single element which is called "sliding cable" in

the rest of this section. In the discrete modelling, a sliding

cable represents a set of n ordered nodes which are linked

to their neighbours by forces of same intensity [6]. The uni-

form tensile tension in the sliding cable is the consequence

of the hypothesis that the contact points slide along it

without friction. The idealised mechanical behaviour of

the sliding cables is shown in Figure 16.

For the four upstream and downstream sliding cables,

the values of the parameters introduced in Figure 16 are:

k1 = 1140 kN, k2 = 35 kN, and Tlim = 25 kN, while

for the two lateral sliding cables they are: k1 = 1190 kN,

k2 = 35 kN, and Tlim = 25 kN. Those values are calibrated

on separate experiments on brakes which were conducted

in the framework of the national project C2ROP [29, 30].

Compared to the plane tensile test presented in Section

3.1, the net installed in the barrier is turned with an angle

of π
4 (indeed one can see in Figure6 that the axes of the
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Figure 16: Numerical behaviour of the sliding cable elements

net periodic cell are rotated by π
4 relatively to the net

unit axes). This change has little in�uence for models A

and C but requires to modify locally the geometry of the

rings linked to the edge cables in Model B, from square

to triangle [similarly to 36, 10] (Figure 17). Using this

new boundary rings, the strain limit theoretically increases

according to the experiment conducted by H. Grassl. For

simplicity, only the relaxed length of the modi�ed ring was

adjusted for the numerical computations.

Figure 17: Triangular rings along the edge cable in Model B

Since the loading model is quasi-static, there is no risk

of punching and the representation of the normalized block

has very few in�uence on the whole structure behaviour.

The block shape used for the numerical simulations is not

polyhedral as in the experiment but spherical. Its diame-

ter is 0.85 m and corresponds to the one of the sphere tan-

gent to the edges of the polyhedron. Contact is modelled

thanks to bar elements, which work only in compression

and whose rest lengths correspond to the block radius. The

nodes of the net slide hence without friction on the block.

Their tensile sti�ness is null while their behaviour is linear

elastic in compression. The sti�ness is determined accord-

ing to the maximum tensile force applied to the structure

and the tolerance of interpenetration. With a maximum

force of almost 210kN and a tolerance of 1cm (which is

in accordance with the accuracy induced by the discreti-

sation as seen in section 4.2.2), the sti�ness of the block

bar is set to: Kblock = 5.106kN/m. As in the physical ex-

periment, the simulations are carried out by imposing the

block displacement.

5.3. Comparison of the three models

5.3.1. Global barrier behaviour

The experimental force applied by the winch and the

numerical behaviour calculated for each net model are pre-

sented in Figure 18. It is remarked that the overall be-

haviour in terms of force-displacement is well reproduced

by the three net models. The modelling of the net seems

to have little in�uence on the whole structure response

(except may be for very large block displacements, where

model A and B are sti�er).

Figure 18: Comparison between the experiment and the three nu-

merical force-displacement curves.
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5.3.2. Resultant forces applied to the net boundary

After comparing the overall behaviour of the structure,

the distribution of the forces applied along the boundary of

the net is investigated. The forces applied by the net to the

two lateral cables are not considered here because they are

relatively low compared to that applied to the upper and

lower cables. Furthermore, the force distributions along

the upper and lower edges of the net are close due to the

strong symmetry properties of the structure and the small

displacements of the post heads. Only the one applied to

the upper sliding cables is thus plotted in Figure 19. Five

levels of the block vertical displacements are considered:

from 1m to 5m. The forces applied to the net boundary

are plotted according to their application points along the

edge.

Concerning the global behaviour, it is observed that,

due to vertical deformation of the net and its sliding along

its boundary, the loads tend to concentrate around the

four points where the edge cables leave the net (see Figure

15). For a block displacement of 3m (Figure 19, graph

(c)), the sliding of the net is almost achieved and the node

distribution along the cable no longer changes. This load

distribution is the same for the three models, and seems

to depend only on the architecture of the fence.

However some di�erences in the intensity of forces be-

tween the three models can be noticed. During the �rst

stage where the sliding occurs (graphs (a) and (b) of Figure

19), Model C concentrates forces in the central zone where

deformations of rings are high and therefore where the net

has become sti�. Model A presents low force everywhere,

the lack of Poisson e�ect directs forces only to the supports

points. Model B is uniformly sti� and therefore pulls ev-

erywhere on the edges. When the sliding is completely

achieved (graphs (c), (d) and (e)), the behaviours of the

three models become similar. The forces increases at the

support points and more quickly at the two lateral points,

located in x = −4 m and x = 4 m. However, the rates

of force increase are di�erent between the models and cor-

Figure 19: Force distribution on the upper edge of the net
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related with their sti�ness. Especially, the forces increase

more quickly for Model A and B than for Model C.

5.3.3. Non-centred impacts

This last paragraph is devoted to the exploration of

the states of equilibrium of the fence when the loading

position changes in the plane of the net. For modelling

simplicity, this time, perfect contacts between the block

and the net are considered in this last section. Although

very interesting from the designer point of view, direct

interaction of the block with the posts is also neglected, the

phenomena at stake would require a dedicated study which

is too far from the scope of the present study. Indeed,

the goal here is not to reproduce extreme loading cases in

a realistic manner, but to study the in�uence of the net

model on the behaviour of the structure. The loading is

hence applied by imposing the position of the center of

the block, which is here set to 3m in order to activate

signi�cantly the brakes (as observed in previous section).

Figure 20: Position of the block used for the spatial characterisation

of net behaviours.

The tested positions of the block in the plane of the

net are presented in Figure 20, where the hn and d in-

dicate respectively the nominal height of the net and the

dimension of a net unit. The centres of the modules are

thus located at the abscissa x = −d, x = 0 and x = d and

the posts at abscissa x = −3d/2, x = −d/2, x = d/2 and

x = 3d/2. As the radius of the block is between hn/8 and

3d/20, the positions of the block are limited to a band of

height hn/2 centred on the axis of symmetry of the net, to

avoid local e�ect induced by direct interaction between the

block and the edge cables. Then, considering symmetry of

the modelled structure, the block positions are varied only

on the right half of the net (see Figure 20). Afterwards, to

facilitate the interpretation of the results, a continuous de-

scription of the properties is preferred and built using the

natural neighbour interpolation of Matlab® on the entire

strip. This interpolation being possible only between cal-

culation points, results in following �gures will be centered

on the range X ∈
[
0; 6d

5

]
Y ∈

[
−h4 ; h4

]
.

The evolution of elastic deformation energy at equilib-

rium is shown in Figure 21. The distributions of the total

strain energy are remarkably similar and cover a consider-

ably large range from 50 kJ in the center to almost 200 kJ

in the side module near an edge. For the three models,

the strain energy increases towards the edges with a global

minimum in the center and a local minimum near the cen-

ter of the lateral units at the abscissa x = 4.5m. This

local minimum is much more pronounced in model A than

in models B and C. Considering that, in these simulations,

the imposed height of the block is constant, the total strain

energy is directly proportional to the force applied by the

block on the net, and by there to the global sti�ness of

the structure. The areas with higher strain energy allow

hence the identi�cation of the areas where the sti�ness of

the barrier is higher. These areas correspond hence to the

vicinity of the post and the lateral edge.

Figure 21: Evolution of the strain energy as a function of the block

position for the three models.
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Now that the in�uence of the position of the block on

the total energy of the structure has been identi�ed, the

part of this energy which is due to the strain of the edge

cables can be studied for each of the three models. The

ratio of the strain energy stored in the cables and the total

strain energy is hence shown in Figure 22. For the three

models, at least 70% of the energy is stored in the edge

cables (except in the central module of model C). The

share of energy only due to the deformation of the edge

cables seems thus to follow the evolution of the total en-

ergy: the structure is softer in the area where sliding is

allowed (in the centre of the module) and solicit less the

edge cables. To be more speci�c, the strain energy of edge

cables splits into elastic and plastic energy dissipated by

the brakes. Considering the high elastic sti�ness of the ca-

bles and the low threshold of the brakes, it can be assumed

that the strain energy in the edge cables approximates the

energy dissipated by the brakes. Therefore, the higher the

local sti�ness of the net, the higher the share of the total

energy dissipated by the brakes on the edge cables. Fol-

lowing this interpretation, model A is sti�er than model

B which is also sti�er than model C (which apparently is

in contradiction with observations made in section 4).

Figure 22: Evolution of the share of the strain energy stored in the

edge cables as a function of the block position for the three models.

To explain this observation, one must go further into

the comparison. To this end, the spread of the energy

stored by the cables between the di�erent cables has been

analysed for the three models. It is chosen to focus on

cable Binf which runs from point B to point B on the

bottom of �gure 15, because it is the closest to the loaded

area. Results of simulations are shown in Figure 23. The

similarity of the three maps is remarkable. The maps rel-

ative to the other cables have also been plotted and show

the same similarities. The maps for each cable being al-

most identical for the three models, it means that the split

between the cables of the strain energy stored by each ca-

ble is similar and, by there that the load paths through the

net to the anchor points is similar. Di�erences observed

in Figure 22 must thus be attributed to di�erences in the

energy stored by the nets.

We know from the �rst sections of this paper that

the two asymptotic sti�nesses (�exural and tensile) of the

models are all identical and calibrated on the same exper-

iments. Their main di�erence relies in their ability to de-

form in the direction perpendicular to the principal strain

(their ability to capture Poisson e�ect). Indeed, without

Poisson e�ect, the net pulls straight forward to the hard

points on its boundary (which correspond to the points

where the edge cables leave the net). These points then

slide until they almost joint. Afterwards, the net deforms

only marginally and only the edge cables and the brakes

concentrate the deformations. With Poisson e�ect, the

forces toward hard points of the net go with perpendicular

forces which encourage the rearrangement of the net and

facilitate the sliding. By there, these forces give additional

strain reserve in the loaded area and mobilise a larger part

of the net which consequently store a larger part of the

strain energy.

This analysis is con�rmed by the study of the trans-

verse height (the height measured perpendicularly to the

cli�) which is the other key element of the European agree-

ment. Transversal heights under loading are hence plotted

in Figure 24 for the three models. Di�erences in the maps
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Figure 23: Evolution of the share of the strain energy stored in the

cable Bing as a function of the block position for the three models.

are signi�cant and follow qualitatively the maps of the

share of strain energy in the edge cables (see Figure 22).

Poisson e�ect allows the spreading of strains in the net

and consequently reduces deformation of the edge cables

in the transverse direction.

Figure 24: Evolution of the residual height as a function of the block

position for the three models.

From this study on non-centered impacts, one can thus

conclude that:

� the global behaviour of the barrier (Figure 14 and 21)

as well as the load path through the net or the share

of the energy dissipated by the brakes between the

edge cables (Figure 23) are driven by the architecture

of the barrier and not by the net model,

� the share on the energy stored by the net relatively

to the total energy (Figure 21 as well as the resid-

ual height transversally to the loading direction (Fig-

ure 24) are linked with Poisson e�ect and therefore

depend on the net model.

Depending hence on the objectives of the simulation, each

of the three net models can be relevant and safely imple-

mented by a designer. The authors would however recom-

mend to use a model with Poisson e�ect, which means with

ring interaction (i.e. model B or C), which can capture

more aspects of the barrier behaviour.

6. Conclusion

In this paper, the in�uence of the discrete ring model

in view of modelling the behaviour of ASM4 barriers was

assessed. Three di�erent modelling strategies have been

compared. These strategies were adapted from existing

models in the literature in order to built three typical

characteristic modelling choice and to compare their con-

sequence.

In the �rst stage, the intrinsic mechanical properties

of the net models have been identi�ed thanks to a robust

homogenisation method, which allows to establish the ex-

pression of an equivalent elastic membrane tensors. This

preliminary result gives an objective criterion to compare

the behaviour of the discrete models and thus identify their

intrinsic limitations. For instance, it has been deduced

that the equivalent membrane of the spring model (model

A) has a null Poisson ratio whereas that of the �exural

ring model (model C) has a shear sti�ness contrary to the

others.

Then, using the form of the elasticity tensors, the me-

chanical property of the net models have been calibrated in

such way that their axial sti�ness was the same. The di�-

culty to reproduce the characteristic non-linear behaviour
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of a ring was hence observed, as well as the di�erent strat-

egy to model it. A �ctitious material non-linearity must

be introduced for model A and B, while consistent geo-

metric non linearities are naturally present in model C, so

that calibration is only based on initial axial and bending

sti�ness.

The third stage of the comparison was dedicated to

the study of a particular transformation, involving large

space displacements and for which a closed form solution

exists. This transformation has on one hand highlighted

the advantage of the geometric non-linearity in model C,

and on the other hand, allowed to validate the performance

and the accuracy of the numerical tools.

Finally, the behaviours of the three models were stud-

ied on a whole rockfall barrier. All of them present remark-

able agreement with the experimental results at global

scale, despite the intrinsic di�erence in their local behaviour.

This con�rms hence one conclusion of Dugelas et al [15]

who demonstrate that DEM models with di�erent com-

plexity level may result in similar abilities in predicting the

barrier impact response. On the contrary, when looking at

global deformations and residual height, the cable model

(model A) was found much sti�er than the two others.

This has been interpreted as a consequence of the nullity

of the Poisson ratio which does not allow for a di�usion

of the forces in both directions of the net and hence limits

the rearrangement of the net around the loaded area.

This comparative assessment can further be used as

guidelines for designers in order to chose their models, to

interpret their results and to separate which aspect is in-

trinsecaly linked with the numerical model and which one

is linked with the real structure behaviour.
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