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Abstract

Acoustic sensing for heartbeat monitoring has become a prevail-

ing research topic in wireless sensing. Existing acoustic sensing

systems have two limitations––limited sensing range, and heart-

beat monitoring for a single user only, hindering the large-scale

deployment of applications. In this paper, we present DF-Sense, a

Dual Forming based multi-user acoustic Sensing system for heart-

beat monitoring in home settings. Specifically, we design a novel

sensing signal-to-noise ratio (SSNR) enhancement model, namely

Dualforming, based on the constructive superposition across multi-

ple subcarriers and microphones, and further build the quantitative

relationship between critical factors and SSNR enhancement to

optimize sensing performance. To enable Dualforming, we propose

a novel MUltiple Subtle SIgnal Classification (MUS2IC) method to

identify multiple subjects with subtle motions. We implement DF-

Sense using commercial acoustic devices and conduct extensive

experiments in a home setting. Results show that DF-Sense achieves

high precision measurement of instantaneous heart rate within the

range of 10 m, which is sufficient for most daily space requirements,

and is able to monitor heartbeat for up to 6 subjects in a 2-D space

simultaneously.

CCS Concepts

•Human-centered computing→Ubiquitous andmobile com-

puting.
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Figure 1: Example of an application scenario for DF-Sense

1 Introduction

Monitoring heartbeat in a home setting plays a crucial role in

assessing people’s health conditions. Existing solutions leverage

on wearable sensors such as Electrocardiograph (ECG) and photo-

plethysmography (PPG) devices, to record small electrical changes

or blood volume changes of the cardiac cycle to derive heart rhythm.

Wearable systems can achieve reasonable high accuracy, but wear-

ing sensors in a long-term basis may cause discomfort to users.

Contact-free heartbeat monitoring leveraging on computer vision

[9] and radio frequency (RF) signals [1, 4, 8, 23, 39, 43–45] have

been intensively studied in recent years. Vision-based systems ex-

tract heartbeat features from video images captured by camera,

however, they require good lighting condition and may raise pri-

vacy concerns. RF-based systems typically use Frequency Modu-

lated Continuous Wave (FMCW) [1, 8] or Ultra Wide Band (UWB)

[4, 23, 43, 45] to enable heartbeat measurement, but most of them

require dedicated and expensive devices.

Acoustic sensing offers a promising solution to contact-free

heartbeat monitoring, leveraging on its high sensing granularity

and the wide availability of acoustic devices. Several FMCW-based

acoustic sensing systems have been proposed to monitor heartbeat

[22, 42], but two common limitations exist. First, acoustic signals at-

tenuate rapidly over distance (i.e., path loss), as a result, the sensing

range for heartbeat monitoring in existing systems is limited for the

large-scale deployment of acoustic sensing applications [22, 33, 42].

In addition, existing acoustic sensing systems focus on single user

only. When multiple subjects appear in the space, received acoustic

signals will be mixed and entangled, making it difficult to distin-

guish between multiple users. To address the limitations in exist-

ing systems, in this paper, we present DF-Sense, a Dualforming

based acoustic sensing system for multi-user heartbeat monitor-

ing in home settings. DF-Sense can be deployed on any acoustic
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devices/appliances such as TV and portable speaker system with

microphone (abbreviated as mic), as shown in Fig. 1. Essentially,

we propose Dualforming, a novel signal processing technique lever-

aging on both space-domain beamforming and frequency-domain

beamforming, to significantly enhance SSNR [41] at multiple sub-

ject locations in a 2-D space. Note that we leverage the metric SSNR

to quantify the sensing capacity of our system, which is defined as

the ratio of the power of the target reflection and that of the noise.

Our system chooses Orthogonal Frequency Division Multiplexing

(OFDM) as the basic scheme since it evenly distributes the receiver

power over multiple subcarriers. By knowing the locations of mul-

tiple users, including path lengths and incident angles relative to

the transceiver, Dualforming derives the phase corresponding to

the subcarrier of each mic in the array, then creates a constructive

superposition by compensating for the phase differences across

multiple subcarriers and mics. Theoretical results show that it im-

proves the SSNR by 𝑀𝑁 times, where 𝑀 and 𝑁 are the numbers of

the mics and subcarriers, respectively. Consequently, Dualforming

can substantially extend the acoustic sensing range. In addition,

since the SSNRs at non-target locations will be deconstructively

reduced, we can efficiently sense heartbeat for multiple users at dif-

ferent locations without mutual interference. Using heartbeat as an

example, DF-Sense achieves an average heartbeat measurement er-

ror of 0.92 Beats per Minute (BPM) in a range of 10 m, and is able to

monitor heartbeat for up to 6 subjects in a 2-D space simultaneously.

Though promising, two critical issues remain to address. Firstly,

there is a big gap between signal superposition and the desired

SSNR enhancement. The enhancement effect can be quantitatively

measured by four factors––bandwidth, frequency interval between

adjacent subcarriers, mic array width and mic spacing. How to cor-

relate the superposition across multiple subcarriers and mics with

the SNR enhancement becomes crucial. This is because, given the

phase difference between subcarriers, it is difficult to achieve the

desired SSNR enhancement by directly superimposing the signals

across multiple subcarriers on each mic. Without understanding

the correlation between the measurement factors and the enhanced

performance, we may have to resort to a trial-and-error approach

which is time-consuming and costly. We use Dualforming to es-

tablish the quantitative model between each of the factors and the

SSNR enhancement, providing the theoretical basis for parameter

tuning to achieve the desired SSNR enhancement.

However, Dualforming requires prior knowledge of subjects’

locations. To detect multiple subjects, inspired by the MUSIC algo-

rithm, we propose MUS2IC to detect the target path of a subject in

distance. By extending the MUSIC algorithm which is based on sig-

nal samples of the same instant,MUS2IC is built on received signals

from multiple continuous instants. With the dynamic signals from

continuous frames, the rank of the correlation matrix in the MUSIC

algorithm can be increased for the detection of multiple subjects.

Meanwhile, the environmental dynamics consist of subjects’ subtle

motions only. Thus, the subtle motion of each subject can be easily

singled out. MUS2IC has two superior advantages: 1) able to detect

and distinguish multiple subjects simultaneously; 2) able to distin-

guish subjects with subtle motions (e.g., respiration and heartbeat)

from other static objects such as desks, walls, and the floor.

By enhancing SSNR, DF-Sense can sense subtle motions, how-

ever, many household appliances may generate similar tiny move-

ments during operation such as fridge and microwave oven. We

separate human subjects from non-human motions based on the

observation that human respiration is a quasi-periodical movement

with a frequency range between 0.16 and 0.33 Hz, while non-human

motions usually have a higher frequency range. In addition, how to

extract heartbeat patterns from mixed signals which are dominated

by the stronger respiration components is critical. A low-range

band-pass filter can be applied, but the human body may have some

tiny body motions which introduce noise to the frequency range of

the heartbeat. We adopt Improved Complete Ensemble Empirical

Mode Decomposition with Adaptive Noise (ICEEMAN) to decom-

pose mixed signals into multiple separated modes, corresponding to

each pattern of heartbeat, respiration and other noise, respectively.

The main contributions of this work are highlighted as follows:

• To the best of our knowledge, DF-Sense appears to be the

first acoustic sensing system to enable monitoring heartbeats for

multiple subjects in a room-scale.

• We design a novel signal processing technique named Du-

alforming to enhance SSNR based on the constructive superposi-

tion across multiple subcarriers and mics, and further build the

quantitative relationship between critical factors and the SSNR

enhancement to optimize sensing performance.

• We propose a novel method named MUS2IC, built on received

signals from multiple continuous instants, to locate and identify

multiple users with subtle motions in distance.

• We conduct extensive experiments using commercial acoustic

devices to evaluate DF-Sense. Results show that DF-Sense achieves

high precision measurement of instantaneous heartbeat within a

range of 10 m, which is sufficient for most daily space requirements,

and is able to monitor heartbeat for up to 6 subjects in a 2-D space

simultaneously.

2 DF-Sense Design

2.1 Dual Forming Model

Space-domain beamforming [6, 7] combines signals in an an-

tenna array to enhance the SSNR of signals at a particular direction

(signals at other directions experience constructive interference).

It thus can be used to improve sensing capability. It is also capa-

ble of sensing multiple users by enhancing the SSNR of multiple

targets in different directions concurrently. However, we discover

two limitations when applying this scheme to multi-user sensing.

As shown in Fig. 2, when two subjects (e.g., user 1 and user 2) are

located at different distances in a similar direction, space-domain

beamforming fails to enhance relevant SSNR due to phase ambi-

guity. Second, performance enhancement is directly related to the

size of the antenna array, i.e., a wider array antenna can achieve

fine-grained sensing at a longer distance. However, a wider antenna

array may not be suitable for home environments.

To address these limitations, we propose Dualforming to en-

hance the SSNR of the signals coming from a specific distance

and direction for multi-user fine-grained acoustic sensing. Dual-

forming essentially leverages both space-domain beamforming and

frequency-domain beamforming. Similar to antenna array in space-

domain beamforming, frequency-domain beamforming combines
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Figure 2: Multi-user model Figure 3: CFR amplitude with Dualforming

in 2-D space.

OFDM measurements at multiple frequencies in a constructive way

to enhance the SSNR of the signal from a certain distance. We

elaborate on the Dualforming model in details.

Assume that a mic array consists of 𝑀 mics, and adjacent mics

are uniformly separated by the distance of Δ𝑑 . An object is far away

from the mic array with a path length of 𝑑𝑙 (𝑡). The incident angle
of 𝜃𝑙 (𝑡) from the first mic and the path length relevant to the𝑚-th

mic can be further approximated as 𝑑𝑙 (𝑡) + (𝑚 − 1)Δ𝑑 sin(𝜃𝑙 (𝑡))
since the incident angles of object from the first and𝑚-th mic are

approximately equal. Then, the mathematical representation of

Channel Frequency Response (CFR) at time 𝑡 for the𝑚-th mic and

frequency 𝑓𝑛 can be presented as:

𝐻𝑚 (𝑓𝑛, 𝑡) = 𝛼𝑚,𝑛 (𝑙) exp(− 𝑗2𝜋 𝑓𝑛
𝑑𝑙 (𝑡 )+(𝑚−1)Δ𝑑 sin𝜃𝑙 (𝑡 )

𝑐 )
+𝜖𝑚 (𝑓𝑛, 𝑡), (1)

where 𝛼𝑚,𝑛 (𝑙) is the representation of amplitude attenuation cor-

responding to 𝑙-th path at𝑚-th mic and frequency of 𝑓𝑛 , 𝑐 is the

speed of the sound, and 𝜖𝑚 (𝑓𝑛, 𝑡) denotes the corresponding addi-
tive white gaussian noise (AWGN). For brevity of description, we

replace 𝛼𝑚,𝑛 (𝑙) exp(− 𝑗2𝜋 𝑓𝑛
𝑑𝑙 (𝑡 )+(𝑚−1)Δ𝑑 sin𝜃𝑙 (𝑡 )

𝑐 ) with 𝐴𝑚 (𝑓𝑛, 𝑡)
(i.e.,𝐴𝑚 (𝑓𝑛, 𝑡) = 𝛼𝑚,𝑛 (𝑙) exp(− 𝑗2𝜋 𝑓𝑛

𝑑𝑙 (𝑡 )+(𝑚−1)Δ𝑑 sin𝜃𝑙 (𝑡 )
𝑐 )). Note

that 𝐴𝑚 (𝑓𝑛, 𝑡) represents the CFR of the target reflection. Since

amplitude attenuation is highly related to path length and mic

position in the array has little impact on path difference, we as-

sume that 𝛼𝑚,𝑛 (𝑙) is approximate to 𝛼 (𝑙), which is determined by

path length. For 𝑀 mics and 𝑁 frequencies, we express 𝑀 · 𝑁
CFR representations regarding the target reflection in the vec-

tor form as A(𝑡) = [𝐴1 (𝑡), 𝐴2 (𝑡), . . . , 𝐴𝑀 ·𝑁 (𝑡)]T, where 𝐴𝑘 (𝑡) =
𝐻�𝑘/𝑁 �+1 (𝑓𝑘−𝑁 · �𝑘/𝑁 � , 𝑡) is the 𝑘-th element in the CFR vector. Sim-

ilarly, let𝑊𝑚,𝑛 (𝜃𝑤 , 𝑑𝑤) = exp(− 𝑗2𝜋 [𝑓𝑛 (𝑚− 1)Δ𝑑 sin(𝜃𝑤)/𝑐 + (𝑛−
1)Δ𝑓 𝑑𝑤/𝑐]) denote the phase-shifted complex weight for the CFR

signals at 𝑚-th mic and frequency of 𝑓𝑛 , where 𝑑𝑤 and 𝜃𝑤 are

the weighted path length and incident angle of the 𝑙-th path rel-

ative to the first mic. Accordingly, we have the weighted vector

of W(𝜃𝑤 , 𝑑𝑤) = [𝑊̂1 (𝜃𝑤 , 𝑑𝑤),𝑊̂2 (𝜃𝑤 , 𝑑𝑤), . . . ,𝑊̂𝑀 ·𝑁 (𝜃𝑤 , 𝑑𝑤)]T,
where 𝑊̂𝑘 (𝜃𝑤 , 𝑑𝑤) = 𝑊�𝑘/𝑁 �+1,𝑘−𝑁 · �𝑘/𝑁 � (𝜃𝑤 , 𝑑𝑤) is the 𝑘-th el-

ement in the weighted vector. Combining CFR signals across 𝑀
mics and 𝑁 frequencies, we express the synthesized CFR signals

regarding the target reflection as:

𝐴𝑤 (𝑡) = W(𝜃𝑤 , 𝑑𝑤)H · A(𝑡)
=

∑𝑀
𝑚=1

∑𝑁
𝑛=1 𝐻𝑚 (𝑓𝑛, 𝑡) ·𝑊 ∗

𝑚,𝑛 (𝜃𝑤 , 𝑑𝑤)

= 𝛼 (𝑙)𝑒− 𝑗2𝜋 𝑓1
𝑑𝑙 (𝑡 )
𝑐

∑𝑁
𝑛=1 𝑒− 𝑗2𝜋 (𝑛−1)Δ𝑓 𝑑𝑙 (𝑡 )−𝑑𝑤

𝑐 ·
∑𝑀
𝑚=1 𝑒− 𝑗2𝜋 𝑓𝑛 (𝑚−1) Δ𝑑 (sin𝜃𝑙 (𝑡 )−sin𝜃𝑤 )

𝑐 , (2)

whereW(𝜃𝑤 , 𝑑𝑤)H is the conjugate transpose ofW(𝜃𝑤 , 𝑑𝑤) and
𝑊 ∗
𝑚,𝑛 (𝜃𝑤 , 𝑑𝑤) is the conjugate of𝑊𝑚,𝑛 (𝜃𝑤 , 𝑑𝑤). The changes in the

path length due to heartbeat are minimal, thus, we consider 𝑑𝑙 (𝑡)
to be an approximately constant for a specific user. The expected

power of CFR can be further expressed as:

E( |𝐴𝑤 (𝑡) |2) = 𝛼2 (𝑙) ·
���∑𝑁

𝑛=1 exp(− 𝑗2𝜋 (𝑛 − 1)Δ𝑓 𝑑𝑙 (𝑡 )−𝑑𝑤
𝑐 )

���
2
·

���∑𝑀
𝑚=1 exp(− 𝑗2𝜋 𝑓𝑛 (𝑚 − 1) Δ𝑑 (sin𝜃𝑙 (𝑡 )−sin𝜃𝑤 )

𝑐 )
���
2

= 𝑀2𝑁 2𝛼2 (𝑙)
���sinc(𝑁𝜋Δ𝑓 𝑑𝑙 (𝑡 )−𝑑𝑤

𝑐 )
���
2
·

���sinc(𝑀𝜋𝑓𝑛
Δ𝑑 (sin𝜃𝑙 (𝑡 )−sin𝜃𝑤 )

𝑐

���
2
. (3)

Eq. (3) shows that the expected power of CFR for path 𝑙 can be

maximized when the weighted path length and incident angle are

equal to those of the 𝑙-th path (i.e., 𝜃𝑤 = 𝜃𝑙 (𝑡) and 𝑑𝑤 = 𝑑𝑙 (𝑡)).
Conversely, Dualforming has an evident degradation with the value

increase of |𝜃𝑤 − 𝜃𝑙 (𝑡) | or |𝑑𝑤 − 𝑑𝑙 (𝑡) |. We give the simulation

result in Fig. 3 to illustrate CFR amplitude change at different

paths in the 2-D space. The subject is assumed to be located at

(𝑑𝑙 (𝑡), 𝜃𝑙 (𝑡)) = (4, 𝜋6 ). The weighted path length and incident an-

gle are set to be equivalent to those in the ground truth. Then, we

observe that the CFR amplitude at the target path can be substan-

tially enhanced while the destructive effect of the noisy multipath

can be effectively suppressed, which demonstrates the advantage

of Dualforming.

Similar to the CFR representation A(𝑡), we also use the vec-

tor 𝝐 (𝑡) to represent the noises on 𝑀 mics and 𝑁 subcar-

riers, where 𝝐 (𝑡) = [𝜖1 (𝑡), 𝜖2 (𝑡), . . . , 𝜖𝑀 ·𝑁 (𝑡)]T and 𝜖𝑘 (𝑡) =
𝜖�𝑘/𝑁 �+1 (𝑓𝑘−𝑁 · �𝑘/𝑁 � , 𝑡) is the 𝑘-th element in the noise vector.

Along with the synthesis process of CFR regarding the target re-

flection, the noise is re-formed as 𝜖𝑤 (𝑡) = W(𝜃𝑤 , 𝑑𝑤)H · 𝝐 (𝑡). Thus,
the expected power of noise can be expressed as:

3
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(a) Bandwidth = 0.5 kHz (b) Bandwidth = 1 kHz (c) Bandwidth = 2 kHz (d) Bandwidth = 3 kHz

Figure 4: The relationship between the bandwidth and the enhancement range in the path length.

(a) Freq. spacing = 25 Hz (b) Freq. spacing = 100 Hz (c) Freq. spacing = 200 Hz (d) Freq. spacing = 300 Hz

Figure 5: Relationship between frequency spacing and grating lobes in the path length

E( |𝜖𝑤 (𝑡) |2) = E((W(𝜃𝑤 , 𝑑𝑤)H𝜖 (𝑡)) (W(𝜃𝑤 , 𝑑𝑤)H𝜖 (𝑡))∗)

= E(
𝑀𝑁∑

𝑖=1

��𝑊̂𝑖 (𝜃𝑤)
��2 |𝜖𝑖 (𝑡) |2) + E(

𝑀𝑁∑

𝑖=1

𝑀𝑁∑

𝑗=1, 𝑗≠𝑖

(𝑊̂𝑖 (𝜃𝑤 , 𝑑𝑤)𝑊̂ ∗
𝑗 (𝜃𝑤 , 𝑑𝑤)𝜖𝑖 (𝑡)𝜖∗𝑗 (𝑡))

(4)

Given that
��𝑊̂𝑖 (𝜃𝑤)

��2 is equal to 1 and 𝜖𝑖 (𝑡) is the independent
and identically distributed AWGN with mean of 0 and variance of

𝜎2, we haveE(
𝑀𝑁∑
𝑖=1

��𝑊̂𝑖 (𝜃𝑤)
��2 |𝜖𝑖 (𝑡) |2) = 𝑀𝑁𝜎2 andE(𝜖𝑖 (𝑡)𝜖∗𝑗 (𝑡)) =

E(𝜖𝑖 (𝑡))E(𝜖∗𝑗 (𝑡)) = 0 for ∀𝑗 ≠ 𝑖 . Thus, Eq. (4) can be transformed

into 𝑀𝑁𝜎2. Combining Eq. (3) and Eq. (4), the maximum SSNR of

the enhanced signal can be expressed as:

𝑆𝑆𝑁𝑅𝑚𝑎𝑥 =
𝑀𝑁𝛼2 (𝑙)

𝜎2
(5)

In contrast, for a singlemic and subcarrier, the SSNR is only
𝛼2 (𝑙 )
𝜎2 ,

which theoretically demonstrates that Dualforming improves the

SSNR by up to 𝑀𝑁 times comparing to the case with a single mic

and subcarrier.

2.2 Quantization of Enhancement

Based on Eq. (3), we know intuitively that the signal from a

specific location can be substantially enhanced in a 2-D plane. Fur-

ther understanding of the impact of various practical factors on

enhancement is necessary to guide our design. In this section, we

focus on quantifying the relationship between typical factors (i.e.,

bandwidth, frequency interval, mic spacing, and mic array width)

and the SSNR enhancement.

2.2.1 Bandwidth According to the first part (i.e.,���sinc(𝑁𝜋Δ𝑓 𝑑𝑙 (𝑡 )−𝑑𝑤
𝑐 )

���
2
) in Eq. (3), the bandwidth (i.e., 𝐵 = 𝑁 · Δ𝑓 )

is inversely related to the path length range for SSNR enhancement.

As Fig. 4 shows, when we improve the bandwidth, there is a clear

narrowing trend in the path length range for SSNR enhancement.

To further quantify the relationship between effective enhancement

range and bandwidth, we introduce Half Power Beam Range

(HPBR) to express path length range, in which the amplitude of the

radiation pattern decreases by less than 50% from the peak of the

main beam. Therefore, the HPBR is regarded as the path length

range for effective sensing. Since Eq. (3) consists of two equally

important components regarding the path length and incident

angle, the HPBR, expressed as |𝑑𝑙 (𝑡) − 𝑑𝑤 |𝑚𝑎𝑥 (maximal value of

|𝑑𝑙 (𝑡) − 𝑑𝑤 | over time 𝑡 ), should satisfy the requirement as follows:

sinc(𝜋𝐵
|𝑑𝑙 (𝑡) − 𝑑𝑤 |𝑚𝑎𝑥

𝑐
)2 = 𝜆. (6)

where 𝜆 is set as
√
50%, which indicates that the power decrease by

50%. Hence, the optimal bandwidth can be calculated as:

𝐵 ≈ 0.32𝑐

|𝑑𝑙 (𝑡) − 𝑑𝑤 |𝑚𝑎𝑥
. (7)

This means that the SSNR of signals in HPBR will be enhanced, and

those outsides will be suppressed by selecting the bandwidth of

𝐵. In our system, since the path change caused by heartbeat due

to round-trip is about 0.2 − 1 mm (the chest displacement due to
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(a) Mic array width = 5 cm (b) Mic array width = 10 cm (c) Mic array width = 15 cm (d) Mic array width = 20 cm

Figure 6: Relationship between the mic array width and the enhancement range along different directions

(a) Mic spacing = 1 cm (b) Mic spacing = 2 cm (c) Mic spacing = 3 cm (d) Mic spacing = 4 cm

Figure 7: Relationship between the spacing and the grating lobes along various directions

heartbeat is 0.1 − 0.5 mm), we set HBPR to 1 mm and the band-

width is theoretically calculated as 11 kHz. However, the resultant

bandwidth requires subject to keep perfectly still, which may not

be practical for the elderly or patients. According to our observa-

tion, when the human body remains still, the chest moves slowly at

different degrees within 2.5 cm. Thus, we set HPBR to 5 cm (due to

round-trip), then set the bandwidth to 2.2 kHz. To make the signal

inaudible, we set the frequency range of the system from 17 to 19.2

kHz.

2.2.2 Frequency Interval Frequency interval has a direct impact

on the enhancement. As Fig. 5 shows, when frequency interval

increases, multiple peaks of beams appear obviously along the

direction of path length although only one peak corresponds to

the subject. The additional beams are often called grating lobes on

the path. We now explain the quantitative relationship between

frequency interval and grating lobes. In Eq. (2), we observe that

multiple peaks along the path will come into being when we have:

2𝜋Δ𝑓
𝑑 (𝑡) − 𝑑𝑤

𝑐
= 𝑘1 · 2𝜋, (8)

where 𝑘1 is an integer number and 𝑑 (𝑡) is the length of any path in

the environment. As the hotspot illustrated in Fig. 5(a), the main

beam is identified when 𝑘 equals to 0. Similarly, a grating lobe

exists when there is a non-zero 𝑘1 that satisfies Eq. (8). Obviously,
the interfering objects at the grating lobe position will seriously

degrade the enhancement. To avoid grating lobes, we should have:

Δ𝑓 <
𝑐

|𝑑 (𝑡) − 𝑑𝑤 |𝑚𝑎𝑥
. (9)

In this way, Eq. (8) is satisfied only when 𝑘1 is 0, indicating that

only one main beam corresponds to the subject. For example, to

ensure no grating lobes within the path length difference of 12 m

from the subject, the frequency interval should be less than 28.6

Hz.

Furthermore, as discussed in Section 2.1, the enhanced SSNR

is correlated with the number of subcarriers 𝑁 . With the band-

width determined in Section 2.2.1, the number of subcarriers equals

to 𝑁 = 𝐵
Δ𝑓 , which indicates that a lower frequency interval will

give rise to a higher SSNR. Ideally, SSNR should be improved as

much as possible. However, a lower frequency interval will lead

to a lower sampling rate of CFR, also defined as 𝑓 ′𝑠 = Δ𝑓 , which
may result in ambiguity in detecting signal changes according to

Nyquist–Shannon Sampling Theorem[21]. For Δ𝑓 , the maximum

frequency of the dynamic components should be lower than
Δ𝑓
2

to avoid aliasing. In this way, the sampling rate 𝑓 ′𝑠 should be high

enough to detect environmental vibration, including electric appli-

ances and vital signs. In our system, we set the frequency interval

to 25 Hz, which is sufficient to cover the heartbeat information.

Meanwhile, the SSNR at the bandwidth of 2.2 kHz will be nearly

88x stronger than that at the single frequency.

2.2.3 Mic Array Width According to the latter part (i.e.,���sinc(𝑀𝜋𝑓𝑛
Δ𝑑 (sin𝜃𝑙 (𝑡 )−sin𝜃𝑤 )

𝑐

���
2
) in Eq. (3), the mic array width

(i.e., 𝐿 = 𝑀 · Δ𝑑) is inversely related to the range of incident angle

for SSNR enhancement.

As Fig. 6 shows, with mic array width increases, there is a clear

narrowing trend in the range of incident angle for SSNR enhance-

ment. Similar to bandwidth, we introduce another term that is
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commonly used in beamforming [18], namely Half Power Beam

Width (HPBW), to further quantify the relationship between the

effective enhancement range of incident angle and the mic array

width. HPBW denotes a range of incident angle in which the ampli-

tude of the radiation pattern decreased by less than 50% from the

peak of the main beam, which is regarded as the range of incident

angle for effective sensing. Since Eq. (3) consists of two equally im-

portant components regarding the path length and incident angle,

|sin𝜃𝑙 (𝑡) − sin𝜃𝑤 |𝑚𝑎𝑥 (maximal value of |sin𝜃𝑙 (𝑡) − sin𝜃𝑤 |over
time 𝑡 ) should satisfy the following conditions similar to Eq. (6):

sinc(𝐿𝜋 𝑓𝑛
|sin𝜃𝑙 (𝑡) − sin𝜃𝑤 |𝑚𝑎𝑥

𝑐
) =

√
50%. (10)

Then, the mic array width can be approximated as:

𝐿 ≈ 0.32𝑐

𝑓𝑛 |sin𝜃𝑙 (𝑡) − sin𝜃𝑤 |𝑚𝑎𝑥
. (11)

According to L’Hospital’s rule [28], we have |sin𝜃𝑙 (𝑡) − sin𝜃𝑤 | ≈
|(𝜃𝑙 (𝑡) − 𝜃𝑤) cos𝜃𝑙 (𝑡) |. Since 𝜃𝑙 (𝑡) ∈ [−𝜋

3 ,
𝜋
3 ] covers most of the

sensing range, we have |sin𝜃𝑙 (𝑡) − sin𝜃𝑤 | ≥ 1
2 | (𝜃𝑙 (𝑡) − 𝜃𝑤) |. Be-

sides, we have 𝑓1 < 𝑓2 < . . . < 𝑓𝑁 since the frequency of 𝑛-th
subcarrier is given by 𝑓𝑛 = 𝑓1 + (𝑛 − 1)Δ𝑓 . Therefore, to ensure the

enhancement over 𝑁 subcarriers, the mic array width should be

set as follows:

𝐿 ≈ 0.64𝑐

𝑓1 |𝜃𝑙 (𝑡) − 𝜃𝑤 |𝑚𝑎𝑥
, (12)

where |𝜃𝑙 (𝑡) − 𝜃𝑤 |𝑚𝑎𝑥 is defined as HPBW. From Eq. (12), we infer

the optimal mic array width to enable effective sensing within the

given HPBW. In our system, we set the mic array width to 0.135 m

to effectively sense an object within an incident angle difference of

0.1 radians from a given location.

2.2.4 Mic Spacing Similar to the effect of frequency interval on

grating lobes on the path, there may also exist grating lobes along

with the incident direction, which are associated with the mic spac-

ing, i.e., Δ𝑑 . As shown in Fig. 7, when the mic spacing increases,

multiple peaks of beams arise, and the number is on the rise. Con-

sidering the latter part of Eq. (2), the peak of beam appears when:

2𝜋 𝑓𝑛
Δ𝑑 (sin𝜃𝑙 (𝑡) − sin𝜃𝑤)

𝑐
= 𝑘2 · 2𝜋, (13)

where 𝑘2 is an integer number. Obviously, the main lobe appears

when 𝑘2 equals to 0, and grating lobe appears when 𝑘2 is non-zero.
To avoid grating lobes along with the incident directions, the mic

spacing should be set to satisfy the requirement as follows:

Δ𝑑 <
𝑐

( |sin𝜃𝑙 (𝑡) − sin𝜃𝑤 | · 𝑓𝑛)
. (14)

Since both 𝜃𝑙 (𝑡) and 𝜃𝑤 belong to [−𝜋
3 ,

𝜋
3 ], we derive that

|sin𝜃𝑙 (𝑡) − sin𝜃𝑤 | ≤ √
3. In addition, due to 𝑓1 < 𝑓2 < . . . < 𝑓𝑁 , we

finally have Δ𝑑 < 𝑐√
3𝑓𝑁

. For the maximum frequency of 19.2 kHz,

we set the mic spacing to 0.9 cm to avoid spatial signal ambiguity.
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(b) MUS2IC

Figure 8: Spectrogram comparison between standard MUSIC

andMUS2IC.

2.3 Localization for Subjects with Subtle

Motions

The objective of Dualforming is to enhance the SNR of the long-

range target path for fine-grained activity sensing. However, with-

out the target’s physical location (i.e., incident angle and path

length), it is challenging to achieve the desired enhancement in

the presence of the abundant multipath reflections for the indoor

environment. To localize subjects, it is important to identify and

differentiate the target path with subtle motion from the interfering

paths. The MUSIC algorithm has been used to identify and estimate

the 2-D location of target [11, 14]. However, it requires target to be

either a source of signals or with large-scale movements such as

walking, to introduce intermittently appearing strong reflections.

Furthermore, they have limited capability of identifying a small

number of high-energy targets. Unlike the prior studies, we need to

differentiate multiple passive targets with subtle motions from rich

indoor multipath simultaneously, which is more challenging. In-

spired by theMUSIC algorithm, we propose a novel method, namely

MUS2IC, to identify and accurately estimate the incident angle and

path length of subjects with subtle motions. In what follows, we

describe the process of the MUSIC algorithm and then present our

scheme.

2.3.1 Estimation with MUSIC The basic idea of the MUSIC algo-

rithm is that the specific path length and incident angle will intro-

duce different amount of phase differences across different subcar-

riers and mics at the receiver. Assume that there are 𝑀 mics and 𝑁
subcarriers at the receiver, where the frequency interval between

adjacent subcarriers is Δ𝑓 , and the adjacent mic spacing is Δ𝑑 . For a
subject located with the incident angle of 𝜃 and path length of 𝑑 , the
introduced phase difference of two consecutive mics can be express

in the form of complex exponent as Φ𝜃 = 𝑒− 𝑗2𝜋 𝑓𝑛
Δ𝑑 sin𝜃

𝑐 , where 𝑓𝑛
is the frequency of 𝑛-th subcarrier. Similarly, the phase difference of

two adjacent mics can be represented as Ω𝑑 = 𝑒− 𝑗2𝜋Δ𝑓 𝑑
𝑐 . Thus, for

an incident angle of 𝜃 and path length of 𝑑 , steering vector, which

is denoted as virtual joint array consisting of phase differences

introduced at 𝑀 mics and 𝑁 subcarriers, is given by:

a(𝜃, 𝑑) = [1, . . . ,Ω𝑁−1
𝑑

,Φ𝜃 , . . . ,Φ𝜃Ω
𝑁−1
𝑑

, . . . ,Φ𝑀−1
𝜃

,

. . . ,Φ𝑀−1
𝜃

Ω𝑁−1
𝑑

]T . (15)

When there are 𝐾 incident signals which can be represented as

S(𝑡) = [𝑠𝑖 (𝑡), 𝑠𝑖 (𝑡), . . . , 𝑠𝐾 (𝑡)]T at the first mic and subcarrier, the
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received signal at the joint array can be further written as:

X(𝑡) = AS(𝑡) + N(𝑡), (16)

where N(𝑡) is a 𝑀𝑁 -by-1 noise vector and A =
[a(𝜃1, 𝑑1), a(𝜃2, 𝑑2), . . . , a(𝜃𝐾 , 𝑑𝐾 )]T.

MUSIC essentially decomposes the covariancematrixX(𝑡)X(𝑡)𝐻
(𝐻 denotes the conjugate transpose operation) into multiple eigen-

vectors corresponding to the signal space and noise space, all

of which are orthogonal to each other. Accordingly, MUSIC ar-

ranges the eigenvectors in an ascending order of eigenvalues

and then uses the eigenvectors corresponding to the smallest

(𝑀𝑁 − 𝐾) eigenvalues to form the noise vector subspace UN (𝑡) =
[u1 (𝑡), u2 (𝑡), . . . , u𝑀𝑁−𝐾 (𝑡)]T. Due to the orthogonality of signal

and noise space, the spectrum function related to incident angle 𝜃
and path length 𝑑 can be expressed as:

𝑃𝑀 (𝜃, 𝑑) = 1

a(𝜃, 𝑑)𝐻UN (𝑡)UN (𝑡)𝐻 a(𝜃, 𝑑) . (17)

Theoretically, subjects can be clearly distinguished by looking for

the peak in the spectrogram.

2.3.2 Limitations of MUSIC The MUSIC algorithm is not able to

measure strong light-of-sight (LOS) paths or strong reflective ob-

jects when LOS is relatively weak. However, when a subject is

further away from the transceiver or always keeps still, the prior

method will be disabled. For example, we ask two subjects to sit

4.5 m away from the transceiver and 1 m away from each other

and breathe normally. As shown in Fig. 8(a), the peak indicating a

strong LOS path can be clearly identified, while the peak referring

to subjects is completely buried into the background noise. We an-

alyze two causes that lead to such ambiguity. First, received signals

vector X(𝑡) in the MUSIC algorithm comes from the same timing

points with a size of (𝑀𝑁, 1). According to linear algebra [26], the

rank of X(𝑡)X(𝑡)𝐻 (i.e., 𝑅 [X(𝑡)X(𝑡)𝐻 )] follows the relationship as:

𝑅 [X(𝑡)X(𝑡)𝐻 )] ≤ 𝑅 [X(𝑡)] . (18)

It indicates that only one non-zero eigenvalue corresponds to the

strongest incident signal, and the remaining zero eigenvalues cor-

respond to the noise. This implies that MUSIC has the capacity of

detecting the only strongest path. Second, the subject reflection is

weak and can be easily drowned into stronger reflections in the en-

vironment. Although Dynamic-MUSIC [14] distinguishes the target

path based on an observation that the large-scale mobile reflection

(with strong reflection) may disappear intermittently. However, this

scheme fails when the subject keeps still with only subtle motions

(e.g., respiration and heartbeat).

2.3.3 Estimation with MUS2IC To address the limitation in dis-

tinguishing the subject with the subtle motion from the stronger

static signals such as the LOS and other static reflections (e.g., walls,

doors, tables, etc.), we proposeMUS2IC to discover the time-varying

correlations between receiving signals among joint array. The key

idea of MUS2IC is to track the principal dynamic components of

change from the signal at multiple consecutive instants.

We describe the process of MUS2IC in detail as follows. First,

we obtain the CFR streams at the virtual joint array from multiple

consecutive instants and form a new 𝑀𝑁 -by-𝐿 matrix X, where

X = [X(𝑡1),X(𝑡2), . . . ,X(𝑡𝐿)]. The interval of the CFR streams is

set to 1 s to ensure sufficient dynamic components can be captured.
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Figure 9: Illustration for heartbeat monitoring when holding

breath

Meanwhile, the number of samples 𝐿 should be greater than that of

the subjects to ensure accurate identification of multiple subjects.

Second, we concentrate on removing the influence of the static path

component from each CFR stream. In detail, we calculate the con-

stant offset, representing the static path component, by averaging

each row of samples in matrix X (i.e., each CFR stream). Then, by

subtracting the constant offset from each CFR stream, we obtain

the residual matrix X′, which is dominated by the principal com-

ponents indicating the dynamic changes. Third, similar to steps

in the MUSIC algorithm, we take the Eigen analysis on the new

correlation matrix X′
X
′𝐻 and derive the corresponding noise vec-

tor subspace U′
N
(𝑡) = [u′1 (𝑡), u′2 (𝑡), . . . , u′𝑀𝑁−𝐾 (𝑡)]T. Finally, we

derive the spectrum function of incident angle and path length as:

𝑃 ′𝑀 (𝜃, 𝑑) = 1

a(𝜃, 𝑑)𝐻U
′
N
(𝑡)U′

N
(𝑡)𝐻 a(𝜃, 𝑑) . (19)

To explore the capability of MUS2IC in detecting multiple sub-

jects, we process the same signals in Fig. 8(a) withMUS2IC, and the

results are shown in Fig. 8(b). Compared to Fig. 8(a), we observe

that the strong LOS path is severely suppressed, while in contrast,

the weak reflection paths representing the two volunteers far away

from the transceiver are clearly identified. This clearly indicates

the benefits from the superiority of MUS2IC in extracting small-

scale change in chest displacement caused by respiration as well as

eliminating the strong static components. Beyond that, these two

close-by subjects do not interfere with each other, further demon-

strating the capacity ofMUS2IC in localizing multiple subjects with

subtle motions.

3 Heartbeat Extraction

3.1 User Identification

MUS2IC can detect multiple subjects with subtle motions, how-

ever, it may also detects vibration of home appliances such as fridge
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or microwave oven. To address this issue, we analyze frequency dis-

tribution to avoid environmental influence. Human respiration is a

quasi-periodical movement with dominant frequency components

in a range of 0.16 ∼ 0.33 Hz, and the frequency components of appli-

ances are usually much higher. Based on this observation, we divide

the sum of the power within the frequency range of 0.16 ∼ 0.33 by
the sum of the frequency of 0.1 ∼ 5 Hz. When the ratio exceeds 0.6,

the pattern should correspond to the subject. Additionally, there

may be interference from appliances that share similar frequencies.

However, mechanical vibrations exhibit higher stability and distinc-

tive vibration amplitudes, allowing for differentiation from human

vital signs.

3.2 Sensing Heartbeat

Using MUS2IC to calculate the 2-D location of subject, DF-Sense

can theoretically employ the Dualforming model to quantitatively

boost the SSNR of the area near a subject to improve sensing per-

formance. To explore the capability of DF-Sense in sensing subtle

heartbeat, we first carry out a benchmark experiment. We use the

same setup as in Fig. 8. We ask two subjects to breathe normally

while keeping still. Due to displacement change induced by respira-

tion, we obtain the incident angle and path length of two subjects

from MUS2IC. We then ask them to hold their breath while remain-

ing still. Consequently, the SNR in the area around the subjects can

be boosted using the Dualforming technique, as shown in Fig. 9.

We observe that the original signal waveform fluctuates irregularly

while Dualforming outputs the heartbeat patterns corresponding to

each subject, respectively, demonstrating its capability of heartbeat

monitoring.

3.3 Heartbeat Pattern Extraction

To discover heartbeat pattern, intuitively we can apply a low-

range band-pass filter to CFR measurements since respiration and

heartbeat differ in frequency. Respiration and heartbeat have a fre-

quency range of (0.16 − 0.33) Hz and (1 − 2) Hz, respectively, thus
a band-pass filter in the passband frequency range of (0.8− 2.2) Hz
may be a feasible solution. This indeedworkswhen subject keeps ab-

solutely still without any body movements. In reality, human body

may have tiny body motions such as leaning forward/backward and

shrugging shoulders which will introduce noise to the frequency

range of (0.1− 2) Hz. We observe that the above three components

in CFR measurements overlap in frequency, therefore, a simple

band-pass filter cannot effectively filter out the noise.

In DF-Sense, we apply Empirical mode decomposition (EMD)

[10], an adaptive technique for analyzing non-stationary signals,

to effectively decompose CFR streams into a series of independent

time-frequency components (i.e., various modes corresponding to

different motion patterns), which are called intrinsic mode function

(IMF). However, it gives rise to a potential issue––“mode mixing”

in EMD. Multiple oscillations with disparate scales may arise in

the same mode or the oscillation with similar scales may appear in

different modes, creating difficulty in extracting heartbeat patterns.

To address the mode mixing problem, Ensemble EMD (EEMD) [37]

adds different realizations of white Gaussian noise. However, it may

result in instability in the number of modes and incompleteness

of the decomposition due to the white noise. By extending EEMD,

Complete Ensemble Empirical mode Decomposition with Adaptive
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Figure 10: Recovered heartbeat signal via ICEEMDAN

Noise (CEEMDAN) [29] has been proposed to solve the instability

of the number of modes and achieve the completeness. We adopt

an extended method––Improved CEEMDAN (ICEEMDAN) [5] to

extract heartbeat patterns in DF-Sense.

Let operator 𝐸𝑘 (.) denote the𝑘-th IMF obtained from EMD, 𝜀𝑘 de-

notes the SSNR coefficient,𝑀 (.) denotes the operator that produces
a local average on the signal, · and 𝑛𝑖 (𝑡) denotes the 𝑖-th realization

of the Gaussian white noise. Then, heartbeat pattern extraction un-

dergoes the following steps. (1) Add the Gaussian white noise on the

enhanced CFR signal 𝐻𝑤 (𝑡) and repeat this process 𝐼 times to get

a realization sequence: {𝐻𝑖 (𝑡) = 𝐻𝑤 (𝑡) + 𝜀0𝐸0 (𝑛𝑖 (𝑡)), 𝑖 = 1, . . . , 𝐼 }.
Apply EMD (the detailed procedure can be found in [10]) on the

sequence to compute the local mean of 𝐼 realizations, then the first

residue can be achieved as: 𝑟1 (𝑡) =
𝑖=𝐼∑
𝑖=1

𝑀 (𝐻𝑖 (𝑡)). (2) Compute the

first IMF mode as: 𝑑1 (𝑡) = 𝐻𝑤 (𝑡) − 𝑟1 (𝑡). (3) Compute the second

residue by performing EMD on the realization of 𝑟1 (𝑡) +𝜀1𝐸2 (𝑛𝑖 (𝑡))
as 𝑟2 (𝑡) =

𝑖=𝐼∑
𝑖=1

𝑀 (𝑟1 (𝑡) + 𝜀1𝐸2 (𝑛𝑖 (𝑡)). Then, the second IMF mode

can be expressed as: 𝑑2 (𝑡) = 𝑟1 (𝑡) − 𝑟2 (𝑡). (4) Compute the 𝑘-th

residue as 𝑟𝑘 (𝑡) =
𝑖=𝐼∑
𝑖=1

𝑀 (𝑟𝑘−1 (𝑡)+𝜀𝑘−1𝐸𝑘 (𝑛𝑖 (𝑡)) when 𝑘 = 3, . . . , 𝐾 .

(5) Compute the 𝑘-th IMF mode as 𝑑𝑘 (𝑡) = 𝑟𝑘−1 (𝑡) − 𝑟𝑘 (𝑡). (6) It-
erate the process from Step 4 to 5 for the next 𝑘 . The coefficient

𝜀𝑘 = 𝜀 · std(𝑟𝑘 (𝑡)) is set to allow adjusting the SNR at each iteration.

To verify the effectiveness of ICEEMDAN, we conduct an experi-

ment by asking a subject to sit and breathe normally at a distance of

4.5 m from the transceiver. Fig. 10 plots the raw heartbeat waveform

obtained from the ECG device, and the heartbeat patterns extracted

by ICEEMDAN, and the results show that the heart rate is identical

to the ground truth.

After the decomposition process, we perform peak detection by

localizing the extreme points from the decomposed CFR sequence.

Note that the interval of two detected neighboring peaks should

be in the range of 0.5 ∼ 1 s, which corresponds to the cardiac

cycle, to avoid a false alarm. The instantaneous heart rate can be

8



DF-Sense: Multi-user Acoustic Sensing for

Heartbeat Monitoring with Dualforming MobiSys ’23, June 18–22, 2023, Helsinki, Finland

(a) Device (b) Hall (c) Meeting room

Figure 11: Experimental settings

further estimated accordingly. Note that to preserve the potential

loss features of chest motion, respiration, and anomalous heartbeat

patterns, the IMF component that corresponds to the heartbeat can

be replaced with a zero sequence, enabling the recovery of loss

features using ICEEMDAN.

4 Evaluation

4.1 Experimental Setup

We implement DF-Sense using an array of 16 MEMS mics (In-

venSense ICS-40730) and loudspeaker PHILIPS SPA710, as shown

in Fig. 11(a). The spacing between the adjacent mics is 0.9 cm, and

the system works with the bandwidth from 17 to 19.2 kHz, which

is inaudible to humans [24]. It is important to note that the present

system operates on a commercial audio system featuring a 48 kHz

sampling rate. However, the techniques can be readily adapted to

other audio systems with a higher sampling frequency. The mic

array and speaker are placed close to each other so that the round-

trip paths to remote subjects have approximately the same length.

The received signal is sent to a laptop (DELL XPS 15 9500) through

WiFi for further processing using MATLAB. The ground truth of

heartbeat signal is collected with a 3-lead Electrocardiogram (ECG)

(Heal Force PC-80B) that is used for recording and measuring the

actual heart rhythm. If not specified, all experiments are conducted

in the hall, as shown in Fig. 11(b), and the environmental noise level

keeps at 40 dBA. We recruit ten university students with ages from

21 to 32 years to participate in our experiments. In all experiments,

all subjects are required to breathe normally. For each subject, we

collect samples for 2 minutes and repeat ten times to reduce the

impact of random errors. The subject stays at a fixed distance of 5

m and an incident angle of 0 ° relative to the transceiver throughout

each experiment. Note that all experiments are conducted upon

approval of the institutional review board (IRB) at our institute.

4.2 System Performance

Monitoring at different distances: DF-Sense achieves an average

heartbeat measurement error of less than 0.92 BPM when the subject

is less than 10 m away from the transceiver. As shown in Fig. 12,

we observe that the measurement error stays relatively low and

stable when the distance is less than 4 m. For a longer distance (i.e.,

≥ 5 m), there is a slight increase in the measurement error. This is

probably due to the degradation of energy at a longer distance. In

reality, a range of 10 m may be more than sufficient for most home

environments. In addition, we compare DF-Sense with the state-

of-the-art space-domain beamforming method [31, 36]. As shown

in Fig. 12, beamforming achieves similar low errors at a distance

of less than 3 m, but dramatically decreases in performance as the

distance increases, demonstrating the superiority of DF-Sense over

space-beamforming.

Monitoring at different incident angles: DF-Sense achieves an

average heartbeat measurement error of less than 0.92 and 1.14 BPM

when the subject is at a distance of 3 m and 5 m from the transceiver,

respectively. In this experiment, we ask the subject to stay at a fixed

distance of 3 and 5 m, and repeat the measurement several times

with various angles of incidence ranging from 0 ° to 60 °. As shown

in Fig. 13, DF-Sense accurately extracts heart rate with an angle

range of 100 ° (50 ° for each side). The degradation of heartbeat

signal at a large angle of incidence is entailed by both a weaker

signal reflected from the human body, as well as the directionality

limit of the mic array (i.e., signals close to the normal have the

highest gain).

Monitoring at different spacing: DF-Sense achieves an average

error of less than 1.18 BPM in measuring heartbeat when the radical

spacing between two subjects is greater than 0.5 m. In this experi-

ment, we ask two subjects to sit in an approximate line along the

transceiver and the subject in front does not block the signal re-

ceived by the latter subject. We keep the front subject stationary

and then move the other subject radially to increase the spacing

between them. Fig. 14 compares Dualforming with beamforming

in terms of accuracy under various spacings. We observe that Du-

alforming accurately extracts the heartbeat of each subject while

beamforming ends up with unacceptable measurement errors.

Monitoring at various incident angle differences: DF-Sense

achieves an average measuring error of less than 1.21 when the in-

cident angle difference between two subjects is greater than 15 °. To

explore the performance when subjects have various incident angle

differences at different distances, in this experiment, we ask two

subjects to sit at a distance of 3 and 5 m, respectively. The experi-

ment is repeated with different angles from 0 ° up to 30 ° with a step

of 5 °. Fig. 15 shows that the angle difference of less than 10 ° ( ≤ 10

°) incurs a considerable error in measurement for both distances.

In comparison, a higher difference (≥ 15 °) results in an acceptable

accuracy for both distances and tends to be stable after 20 °. Note

that at the distance of 3 m, the angle difference of 15 ° corresponds

to a spacing of about 0.8 m, which is acceptable for most users.
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Monitoring at different orientations: DF-Sense achieves an aver-

age measuring error of less than 1.29 BPM when the user orientation

range is within 120 ° (60 ° for each side). Fig. 16 shows the heart-

beat measurement error when subject is at different orientations

toward the transceiver. Results show that our system has a good

orientation tolerance of up to 120 °, although the measurement

error slightly increases with orientation increases. We also observe

that an unacceptable error occurs when the orientation is greater

than 150 ° (75 ° for each side). This is reasonable since the dynamic

reflection from the body side is relatively weak so thatMUS2IC may

fail to localize the subject accurately. The tiny displacement change

of the chest caused by the heartbeat from the body side will lead

to a lower SNR, making it more difficult to extract the heartbeat

pattern from the original signal. Overall, the orientation tolerance

of DF-Sense should be sufficient in practice.

Monitoring multiple users: DF-Sense achieves excellent perfor-

mance in monitoring heartbeats of multiple subjects at the same time.

To evaluate the capacity of DF-Sense in monitoring heartbeats of

multiple subjects, in this experiment, we ask a number of subjects

to randomly sit at different positions in a room. In addition, the

spacing of adjacent subjects is set to 1 m and 2 m, respectively, in

order to study the impact of spacing. Fig. 17 shows that DF-Sense

supports simultaneous measurements of up to 5 subjects and 6

subjects for the spacings of 1 m and 2 m, respectively. Number of

subjects exceeding 6 may result in performance degradation. This is

due to heartbeat signals drowned into the accumulation of dynamic

signals caused by irrelevant activities. We also observe that the per-

formance under the spacing of 1 m is slightly worse than that under

the spacing of 2 m. This is reasonable since the mutual interference

at a closer range is stronger than that at a longer range. In our

future work, we will develop an advanced denoising algorithm that

minimizes mutual interference, enabling the inclusion of a larger

number of subjects simultaneously.

Accuracy in localization: MUS2IC achieves a median localization

error of 0.025 m in 1-D scenario and 0.047 m in 2-D scenario. In this

experiment, we evaluate the localization accuracy ofMUS2IC in 1-D

and 2-D scenarios. The localization under the 1-D scenario refers to

the measurement of path length. We use the Euclidean distance as

a localization metric. For each scenario, we repeat the experiment

at different locations 500 times. Fig. 18 shows the cumulative dis-

tribution function (CDF) of localization errors. For both scenarios,

the third quartile falls below 0.08 m, demonstrating that MUS2IC is

capable of accurately locating subject.

4.3 System Robustness

Impact of appliance: DF-Sense is robust to interference from house-

hold appliances. To evaluate the impact of appliances, in this exper-

iment, we place five different types of household appliances (i.e.,

microwave oven, refrigerator, fan, juicer, and washer) 1 m and 2 m

away from the subject, respectively. As shown in Fig. 19, DF-Sense

performs well in the presence of microwave, refrigerator, and juicer,

but experiences minor error increases for fan and washer. This may

be due to non-negligible dynamic reflection caused by the large

displacement of the fan blades and the washer. Overall, DF-Sense
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achieves a median error of less than 0.75 BPM for all appliances at

1 m and 2 m away.

Impact of other movements: DF-Sense achieves robust heartbeat

monitoring when there exists small movement at more than 2 m from

the subject. To evaluate the impact of movements from nearby sub-

jects, in this experiment, we ask another participant to perform both

small and large movements at various distances from the subject.

Note that the term “small movemen” describes small-amplitude

movements (e.g., performing hand gestures), and “large movemen”

describes large-amplitude movements (e.g., walking, raising legs).

As shown in Fig. 20, while the small movement has little impact,

large movement results in a severe error even if the subject is 6

m away. When the subject is 2 m away, the average measurement

error is 0.83 BPM, and the error decreases with distance.

Impact of environmental noise: DF-Sense is capable of monitor-

ing heartbeat under environmental noises. In this experiment, we

simulate three types of noise, i.e., human voice, background music,

and keyboard typing, to evaluate the impact of environmental noise.

We ask a subject to sit 3 m and 5 m away from the transceiver. The

noise source is played at 3 m away from the subject. Fig. 21 shows

that the measurement errors in presence of different noise are low.

This is reasonable since the frequency range of the ultrasound sig-

nals used in our system is much higher than that of the audible

sound.

Impact of indoor environments: DF-Sense is robust to different

indoor environments and achieves an average error of less than 0.43

BPM for all environments. To evaluate the robustness of DF-Sense

in different environments, in this experiment, we select three in-

door environments––hall, meeting room, and office. Fig. 11(b) and

Fig. 11(c) show the sample experimental environments. For each en-

vironment, we ask a subject to sit at two positions––the corner and

the middle of the room. Fig. 22 shows that different environments

have a negligible impact on the performance of our system.

Impact of clothing type: DF-Sense is robust to different types of

clothes. To evaluate the impact of clothing, in this experiment, we

ask a subject to wear different clothes (i.e., T-shirt, business shirt,

coat, and jacket) and sit 3 m and 5 m away from the transceiver,

respectively. As shown in Fig. 23, DF-Sense achieves an average

measurement error of less than 1.22 BPM for both distances except

for wearing a jacket. We observe that with the slight increase in

clothes thickness, the performance gradually degrades for both dis-

tances. This may be due to small chest displacement overwhelmed

and blocked by the thick texture of clothing.

Impact of typing and speaking: DF-Sense is robust to physical

activities, such as speaking and typing on a keyboard. To compre-

hensively investigate the effects of these two activities, we conduct

experiments in which users were asked to perform both activities

at varying distances from the transceiver end. We allow the users

to simulate tapping movements over the air. The results, shown

in Figure 24, indicate that DF-Sense achieves an average measure-

ment error of less than 0.95 and 0.51 BPM for speaking and typing,

respectively, at a distance of up to 6 m. Note that the system’s

performance in the speaking scenario is slightly weaker than in

the typing scenario. The difference is mainly due to the spatial

proximity between the mouth and the heart in the 2-D space, which

results in mutual interference.
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Platform MUS2IC
Dual

Forming

Heart Ex-

traction
Total

Laptop 19.69 ms 5.15 ms 1.55 ms 26.39 ms

Raspberry

Pi 3B+
25.06 ms 8.12 ms 3.34 ms 36.52 ms

Table 1: Time consumption
4.4 System Latency

DF-Sense achieves small latency and it is suitable for real-time

monitoring. In this experiment, we measure the processing time of

DF-Sense on two types of platforms––a Raspberry Pi 3B+ and a

laptop with an i7-10750H CPU and 16 GB memory. DF-Sense pro-

cesses one frame consisting of 1920 samples under a sampling rate

of 48 kHz. The process involves three steps––MUS2IC, Dualforming,

and heartbeat extraction, executed in order. As the duration of each

audio frame is 40 ms, ideally, the processing latency has to be less

than 40 ms to enable real-time processing. As shown in Tab. 1, DF-

Sense achieves a total latency of 26.39 ms and 36.52 ms on average

for the laptop and Raspberry Pi, respectively. Note that theMUS2IC

algorithm is triggered to obtain the subject location within a few

seconds on system startup. Therefore, only Dualforming and heart

extraction are involved in regular monitoring.

5 Related Work

Fine-grained acoustic sensing: Acoustic signals have the ad-

vantage of sensing fine-grained movements. AcuTe [2] and PACE

[3] leverage propagation features to accurately compute time and

distance. Mao et al. [15] develop an FMCW-based acoustic track-

ing system, achieving an accuracy of 5 mm. VSkin [27] enables an

acoustic-based solution to detect finger tapping movement with

high accuracy. FingerIO [20] tracks subcentimeter-level finger mo-

tion using acoustic signals. Strata [40] tracks a fine-grained finger

by selecting the corresponding channel tap. LLAP [35] tracks finger

movement direction and distance by exploring the phase changes

of ultrasound signals with centimeter-level accuracy. In addition

to finger gesture sensing, many studies leverage acoustic signals

to sense respiration [19, 25, 32, 34, 38]. However, all these sensing

systems work in a short range.

Long-range acoustic sensing:Many efforts have been made to

extend the acoustic sensing range. Mao et al. [17] enable hand

tracking within 4.5 m, achieving an average error of centimeters.

DeepRange [16] develops a ranging system with a single speaker

and mic, and the ranging error is within 1 cm at 4 m from the

transceiver. FM-Track [12] enables tracking of a hand-sized target

with an error of about 4 cm. However, the ranging resolution of

these approaches is at centimeter-level, which cannot be applied

for subtle motions such as heartbeat and respiration. Two recent

studies, i.e., RespTracker [30] and LASense [13], increase the sensing

range for respiration monitoring from 2 m to 6 m. However, they

fail to monitor multiple users at different distances.

Contact-free heartbeat monitoring: Many efforts have been de-

voted to contact-free approaches, including vision-based [9], RF-

based [1, 4, 8, 23, 39, 43–45]. Vision-based approaches use video

signals collected by camera to infer the change of blood oxygen

in response to heartbeat [9]. However, this approach needs good

lighting and may raise privacy concerns. RF-based approaches, in-

cluding FMCW radar [1, 8], millimeter wave (mmWave) radar [39],

and UWB radar[4, 23, 43, 45], have shown their advantages in mon-

itoring heartbeat. However, these solutions require dedicated and

expensive devices [22, 42]. In addition, the effective sensing range

for heartbeat monitoring in existing systems is insufficient for large-

scale deployment of acoustic sensing application [22, 33, 42], and

existing systems focus on single user only.

6 Discussion and Future Work

Array shape: Our system exhibits versatile deployment capabili-

ties, accommodating not only linear arrays but also arrays of various

shapes. For instance, in the case of a circular array, the phase of

each subcarrier microphone is influenced by three critical factors:

the yaw angle, pitch angle, and path length. To achieve precise

calculation of an object’s position in 3-D space using the MUS2IC

algorithm, we can redefine the virtual joint array to incorporate

these three parameters. Subsequently, we can calculate the phase

differences induced by these factors in different microphones, fa-

cilitating the constructive superposition of CFR and enabling Dual

Forming. We will evaluate the system performance with a circular

array in our future work.

Number of microphones: The incident angle resolution is in-

versely proportional to the number of microphones, while the dis-

tance resolution for the targeted region is directly affected by the

number of subcarriers. Theoretically, the effective mitigation of

interference from sources with distinct distances can be achieved

even when the number of microphones is limited, provided that a

sufficient number of subcarriers is available. Subsequently, our plan

is to empirically investigate the performance of the system with

different numbers of microphones to corroborate the inference.

Occlusion issue: Acoustic waves experience a significant decay

when propagating through thick obstacles, the system performance

may be drastically reduced in an occluded scenario.

Therefore, in this scenario, we may resort to other wireless sig-

nals such as WiFi, LoRa, and mmWave which we leave for our

future work.

Future application potential: The fundamental principle of our

system lies in employing multiple subcarriers and receivers to fa-

cilitate the enhancement of SSNR. This strategy can be seamlessly

extended to other similar sensing modalities, including WiFi and

Long-term Evolution (LTE) signals. We believe that the proposed

methods can benefit sensing technologies that utilize OFDM-based

signals in the future.

7 Conclusion

In this paper, we present DF-Sense, a Dualforming based multi-

user acoustic sensing system for heartbeat monitoring in a range

of 10 m in 2-D space. We take a systematic approach to address

the challenges associated with high-resolution acoustic sensing in

distance, and sense heartbeat for multiple subjects in a 2-D sce-

nario. Evaluation results show that DF-Sense is capable of sensing

heartbeat accurately and robustly in different home scenarios.
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