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The ionization effect on both the evolution and internal structure of a blast wave (BW) is determined in laboratory
conditions. In a first step, the Rankine-Hugoniot equations describing the structure of the shock front together with
the Saha equation modeling ionization are solved analytically in a consistent way for the conditions of a cold initial
atomic hydrogen gas. In a second step, a simplified approach is used by introducing an effective adiabatic index γ∗

that takes into account ionization arising at the shock front. Finally, γ∗ is used as input data in the self-similar model
derived formerly by Barenblatt to describe the structure and the dynamics of the ionizing BW. For the typical laboratory
conditions of blast wave experiments, ionization achieves a hydrogen gas compression up to about 11 times at the shock
front of the blast wave where a thin and dense shell forms. For such a compression, the value of the effective adiabatic
index is γ∗ ≃ 1.2 leading to a self-similar evolution of the BW where its radius R(t) varies according to R(t) ∝ tα∗

with
α∗ ≃ 0.33. This value of α∗ is lower than the adiabatic expansion stage α = 2/5 where the total energy of the BW is
conserved. Thus, ionization is found to act as a cooling effect at the shock front where a fraction of kinetic energy is
absorbed to ionize the gas.

I. INTRODUCTION

A blast wave (BW) results from the release of a huge
amount of energy in a small volume. Its study has been
of great interest from the expansion of a supernova remnant
(SNR) in the interstellar medium (ISM) to the experiments of
Z-pinch and laser-induced shocks in the laboratory. During
its time evolution, a BW experiences several stages with vari-
ous expansion rates α with R(t) ∝ tα where t is the time and
R(t) is the radius of the BW. Three main stages have been
identified and have been the subject of numerous publications
from the early 40’s until now. The most famous one is the Se-
dov – Taylor stage evidenced theoretically by Taylor 1,2 , von
Neumann 3 , von Neumann and Taub 4 and Sedov5,6, indepen-
dently. This regime takes place soon after the short ballis-
tic phase (R(t) ∝ t) and the expansion rate is α = 2/5. This
value comes out from the assumption of an adiabatic expan-
sion, i.e. the energy lost by the BW is supposed to be negligi-
ble compared to the initial energy released by the explosion.
Two more solutions are of great importance. In opposition
to the Sedov – Taylor (ST) solution, they take place in the
radiative regime of the BW, i.e. when the energy lost by ra-
diation (cooling) becomes a significant fraction of the initial
energy. Due to this cooling, the mass density at the BW front
becomes very large compared to the mass density of the am-
bient gas in which the BW propagates and, as a consequence,
the BW can be considered as formed of an outer dense and
thin shell enclosing a very low-density bubble with uniform
pressure PB(t) – notice that since the thickness of the shell is
very small compared to its radius, R(t) represents both the ra-

dius of the bubble and the radius of the shell. This situation
has been studied extensively for the radiative stage of a SNR.
The first solution is the so-called pressure-driven snowplow
(PDS) solution7–9 that corresponds to an adiabatically expand-
ing bubble, PB(t)R(t)3γ = constant where γ is the adiabatic
index of the gas, pushing the shell with the pressure PB(t).
Since, on the other hand, PB(t) ∝ (dR/dt)2, we conclude that
the radius obeys the law R(t)∝ tαPDS where αPDS = 2/(2+3γ)
and where αPDS = 2/7 for γ = 5/3. As expected, the expan-
sion is slower than for the ST solution because of the energy
losses at the surface of the BW. The second solution is the so-
lution by Oort8,10,11 also known as the momentum-conserving
snowplow (MCS) solution. In this stage, the pressure PB(t)
drops to zero due to some cooling effects in the bubble (like
radiation), and the shell is not pushed anymore by the inner
bubble. Therefore the momentum of the shell is preserved
and it can be shown that R(t) ∝ tαMCS where αMCS = 1/4. The
expansion of the BW is much more decelerated than for the
PDS solution and αMCS is the smallest value of the expansion
rate that can be achieved. However, this asymptotic regime
has not been observed during the simulation of SNR9,12 and
may not be able to occur before the SNR merges with the
ISM. The radiative stage of the BW has also been demon-
strated in the laboratory using z-pinch machines13–15 and high
energy lasers16–20. In the experiments by Grun et al. 16 , Riley
et al. 20 , Edens et al. 21 , the comparison between the propaga-
tion of a BW in nitrogen and in xenon ambient gas is made
to demonstrate the effect of radiation cooling on the evolution
and stability of the BW. Indeed the BW in nitrogen is found to
be non-radiative and stable with an adiabatic expansion rate
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α ≈ 2/5. In the xenon gas, strong radiation emissions are
measured and the BW becomes unstable with a lower expan-
sion rate α < 2/5. Also, the radiative shock is found to com-
press up to 35 times the ambient xenon gas in the experiment
by Reighard et al. 22 .

Apart from radiative cooling, other phenomena like phase
transitions, dissociation of molecules, or ionization (of
molecules and atoms) arising at the shock front also alter
the value of the expansion rate with α < 2/5. The physical
reason for such a deceleration comes out from the energy
absorption for these phenomena to happen. Indeed, the
absorbed energy is not anymore available to heat matter
behind the BW front and this process can be interpreted as a
cooling taking place at the shock discontinuity (see further).
In this paper, we study the special case of ionization that
takes place at the shock front of a BW. Indeed, for a BW
propagating in a gas of atomic hydrogen, the atoms are heated
at the BW front and they get ionized. Two main questions
can be raised: i) How significant is the density compression
C (or density contrast) at the shock front due to ionization
(potential formation of a dense shell which is a key issue in
BW evolution)? and ii) How much the expansion of the BW
is decelerated? Although ionization at shock fronts has been
widely investigated, the connection between C and α in BW
has been poorly studied in the literature. In a paper dated
1946, Sachs 23 derived properties of strong shocks where the
radiation pressure plays a role. In this regime, hydrogen is
fully ionized and because of photons, the maximum density
contrast is C = 7 irrespectively of the atomic density nH .
This maximum value has been recovered by Michaut et al. 24

for hypersonic shock waves. They also examined shocks at
lower Mach numbers (the radiation pressure becomes small
compared to the thermal one) and they found a density peak
with C ≈ 10 for nH ≈ 3×1020 cm−3. It appears therefore that
when the importance of radiation decreases, ionization has
the upper hand over photons and the gas is more compressed.
In the series of articles by Whitney and Skalafuris 25 and by
Skalafuris 26,27,28 , the authors investigated the propagation of
a shock in atomic hydrogen. By considering both ionization
and cooling effects, the structure of the shock is analyzed
for initial conditions of densities, temperatures, and shock
velocities relevant to stellar atmospheres. The compression
is found to reach C ≈ 12 in the internal relaxation region
(only ionization) and C ≈ 45 in the radiative relaxation region
(ionization plus radiation) behind the shock front. Another
approach has been performed by Nieuwenhuijzen et al. 29 ,
also in the context of stellar atmospheres. For nH ≈ 1012

cm−3 and removing radiation contributions, the authors show
that the logarithmic derivative of pressure P w.r.t density ρ ,
(d lnP/d lnρ)ad , drops as low as 1.1 during the ionization
process, evidencing high compressibility (actually, they get
C ≈ 3.5 although the Mach number M is as small as M = 2 –
we will consider in the further sections BW with M ≫ 1) of
the gas under a mechanical process like the one produced by
the passage of a shock wave. The ratio of the specific heats
CP/CV for a gas undergoing ionization (notice that CP/CV
differs from (d lnP/d lnρ)ad) has been plotted a few years
ago in a paper by Robinson and Pasley 30 for nH ≈ 2× 1019

cm−3. They have obtained CP/CV ≡ γheat ≈ 1.36 during
ionization and C ≈ 8 which is larger than the classical value
(γheat +1)/(γheat −1)≈ 6.5 for strong shocks. More recently,
the structure of a shock wave in fully ionized plasmas,
including hydrogen plasma (as the authors work with dimen-
sionless quantities, the value of nH is not provided), has been
considered by Domínguez-Vázquez and Fernandez-Feria 31 .
They have shown that a transition region occurs between the
steady upstream and downstream flows. However, as the
authors restrict themselves to 1 < M < 1.5, the transposition
of this result to a high Mach number BW is uncertain. This
question is going to be studied in a dedicated section of our
article.

In our work, we are going to derive analytically the value
of C produced by ionization and make a direct relationship
between C and the associated expansion rate α . For that
purpose, we are going to use a former model developed by
Sedov 6 and by Barenblatt 32 accounting for cooling at the
shock front and leading to the value of α . These authors
derived self-similar solutions (SSS) where the expansion rate
α is computed numerically from an eigenvalue problem and
has a non-analytic dependence on both the adiabatic index of
the ideal gas γ = (d lnP/d lnρ)ad = CP/CV = (ℓ+ 2)/ℓ (ℓ
is the number of degrees of freedom of a particle) and the
magnitude of the cooling represented by a parameter γ∗ sat-
isfying 1 ≤ γ∗ ≤ γ (for γ∗ = 1, the cooling goes to infinity
and α → 2/(2+ 3γ) and for γ∗ = γ there is no cooling and
α = 2/5). The evolution of the ionizing BW is resumed in
Figure 1. In the early stage (shell on the left), the expansion
velocity is high, the Mach number M is large and ionization
effects are small. In the intermediate stage (shell in the mid-
dle), the Mach number gets closer to the critical Mach num-
ber Mcrit where ionization effects are strong (see the defini-
tion (27) later in II C) and the ionization cooling at the shock
front compresses the matter to form a thin and dense shell.
Finally, the Mach number is low at late stages (shell in the
right). Thus, the ionization effects can be neglected again and
the compression of the shell decreases.

M ≫ Mcrit M ∼ Mcrit M ≪ Mcrit

FIG. 1. Sketch of the BW expansion. Three different stages of the
shell are represented from left to right. When the Mach number M
gets closer to the critical Mach number (see the definition (27) in
II C), the ionization cooling is strong and forms a thin and dense
shell (shell in the middle).

This paper is organized as follows. In section II, we derive
the modified Rankine-Hugoniot relations including ionization
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processes and we solve these relations coupled to the Saha
equation providing the degree of ionization for a steady ioniz-
ing shock wave. We derive the ratios for the thermodynamic
and hydrodynamic quantities at the shock front and emphasis
is given to the value of the density contrast C in terms of the
shock Mach number M. In addition, a critical value of the
Mach number, Mcrit is evidenced. In section III, the model
is simplified and the ionization effects are taken into account
using an effective adiabatic index only. It is seen that for laser
energies from 10J to 1kJ, ionization can lead to the formation
of a thin and dense shell with a high value of C. In section IV,
the dynamics of the BW is studied. Referring to a model de-
veloped by Sedov 6 and Barenblatt 32 , we derive the value of
the expansion rate α driven by ionization and the whole down-
stream flow (velocity, density and pressure profiles) within the
BW is calculated. Our conclusions follow in Section V and
special comments about the stability of the ionizing shells and
the role of the magnetic field are raised.

II. THE IONIZING SHOCK JUMP EQUATIONS

A. Ionization model for hydrogen gas

First of all, we give the characteristics of the gas in which
the BW propagates due to the explosion. In what follows,
we will consider a standard laboratory initial condition with
a neutral gas of atomic hydrogen where mass density is
ρ1 = 10−3 kg/m3 (the corresponding particle density is n1 ≈
6×1017 cm−3 ) and temperature is T1 = 300K. These values
are representative of typical experimental conditions16,17,20,21.
Now that the initial medium is defined we suppose the prop-
agation of a locally plane stationary shock in it using a hy-
drodynamical description. In the following, we consider the
gas as ideal. When the shock wave is strong enough, the hot
postshock medium can be ionized. Although the gas is found
in the form of H2 in the laboratory, for the sake of clarity and
simplicity, we will not discuss the dissociation of molecules
because it occurs at lower temperatures than ionization and
can be neglected at first approximation during the lifetime of
the BW. Actually, we will see later (see (27) in Section II C)
that the shock velocity at which the ionization effects are im-
portant is only proportional to the ionization energy of hy-
drogen (independently of the initial density and temperature
of the gas). We would find in the same way that this is also
true during the dissociation of the molecule. Thus, dissoci-
ation effects are strong for lower shock velocities indepen-
dently of the initial state of the gas as the dissociation en-
ergy is about three times smaller than the ionization one. We
will also suppose that the gas is at local thermodynamic equi-
librium (LTE)33,34, and, therefore, the populations for each
species are determined by collisions and they obey a Boltz-
mann distribution. The same assumption is used by Robinson
and Pasley 30 in their numerical study. From the equation of
Saha, the populations of atoms, H, protons, H+, and electrons,

e, in the postshock medium satisfy33,

nenH+

nH
=

(2πmekT )3/2

hP
3 exp(−Eion

kT
) (1)

where ne, nH+ and nH are respectively the numerical den-
sities of electrons, protons (ne = nH+) and hydrogen atoms,
me is the mass of the electron, hP the Planck constant, k is
the Boltzmann constant, T is the temperature and Eion is the
ionization energy of hydrogen, namely Eion = 13.6eV, for
numerical application. When the shock propagates into the
gas, the shocked medium is partially or totally ionized for a
strong enough shock wave. A part of the energy transmitted
by the shock will be used to ionize the gas instead of heating
it. Moreover, the equation of state for an ideal gas gives the
relation P ∝ ρT where P is the pressure and ρ is the mass den-
sity. Therefore, the temperature drop will be compensated by
an increase in density in order to keep an almost uniform pres-
sure. This compression can be applied to the BW where we
expect the shell to be dense and thin due to ionization effects.

B. The generalized jump equations

In contrast to a situation with no ionization, the determi-
nation of the physical quantities (mass density, pressure, ve-
locity, temperature, electron density . . . ) in an ionizing post-
shock gas is not a trivial matter. Indeed, for a material un-
dergoing no ionization, the modeling is quite simple because
the pressure, density, temperature, and velocity in the down-
stream flow just behind the shock front can be derived from
the so-called three Rankine–Hugoniot equations33 once the
equation of state (EoS) is specified. These three equations ac-
count for the mass, momentum, and energy conservation and
in a frame attached to the shock front they read (the subscripts
"1" and "2" stand respectively for the non-shocked (upstream
flow) and for the shocked gas (downstream flow)),

ρ2u2 = ρ1u1 (2)

ρ2u2
2 +P2 = ρ1u2

1 +P1 (3)

h2 +
1
2

u2
2 = h1 +

1
2

u2
1 (4)

where ρ , u, P and h represent respectively the mass density,
the velocity, the pressure and the enthalpy per unit mass in
the flow. The EoS provides a relation between ρ , P and the
internal energy per unit mass, ε , which is always connected to
h through the equation,

h = ε +
P
ρ
. (5)

As a result, for simple EoS and especially for an ideal gas,
ρ2, P2, T2 and u2 can be written analytically in terms of the
upstream flow quantities ρ1, P1, T1 and u1 = −D where D
corresponds to the shock front velocity.
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For a gas experiencing ionization, Eqs. (2)–(4) actually still
holds, however, the resolution is no longer analytical because
one faces two additional difficulties. On the one hand, the
Rankine–Hugoniot and the Saha equations should be solved
numerically at the same time in order to get values of ne, nH+

and nH in the shocked material consistent with its tempera-
ture, and, on the other hand, ε should contain a term (and so is
the same for h in Eq. (5)) that accounts, first for the amount of
energy used to ionize the post-shock gas and which depends
upon ne and, second, for the thermal energy of the free elec-
trons. With the above assumption of an ideal gas, the EoS
writes,

Pi =
ρikTi

mi
, i = 1,2 (6)

where mi is the average mass per particle. In the ambient gas,
we have m1 = mp where mp is the mass of the proton, while
in the downstream flow, m2 is given by,

m2 =
mp + f2 me

1+ f2
≈

mp

1+ f2
(7)

where me has been neglected with respect to mp and where the
ionization fraction f2 is defined as:

f2 =
ne

nH +nH+
=

nH+

nH +nH+
. (8)

In this equation, the particle densities ne, nH+ and nH are cal-
culated in the shocked material "2" and the ionization fraction
satisfies 0 ≤ f2 ≤ 1 (for f2 = 0, no ionization occurs and for
f2 = 1 the plasma is fully ionized). Moreover, since the gas
is composed of atoms, electrons and protons, with only three
degrees of freedom for each of them (mono-atomic gas), we
get,

ε1 =
3P1

2ρ1
. (9)

and Eq. (5) gives,

h1 =
5P1

2ρ1
. (10)

However, in the downstream flow, the ionization energy
should be included in the internal energy, i.e.,

ε2 =
3P2

2ρ2
+ εion (11)

leading to:

h2 =
5P2

2ρ2
+ εion (12)

where the requested amount of energy, εion, to ionize a unit
mass of gas behind the shock front writes,

εion =
f2Eion

mp
. (13)

Finally, the dependence of f2 upon ρ2 and T2 can be derived
from the Saha equation (Eq. (1)). Using (7) and (8) and the
standard equality ρ2 = (nH + nH+ + ne)m2, one obtains the
relation,

f2
2

1− f2
=

mp

ρ2

(2πmekT2)
3/2

hP
3 exp(−Eion

kT2
). (14)

Together with (14), Eqs. (2), (3) and (4) provide four equa-
tions for the four quantities u2, ρ2, T2 (the elimination of P2
can be made by using the EoS (6)) and f2 that depend upon ρ1,
T1 and the shock front velocity D. The major difficulty arising
in the above-mentioned four equations comes from the self-
consistent, implicit character of the solution. For instance, f2
is a function of T2 from (14) (it depends also on ρ2) but, on
the other hand, the determination of T2 from the energy equa-
tion (4) depends upon f2 through the energy εion in h2. In
our approach, we are going to simplify as much as possible
the derivation of the solution and we are going to reduce the
system of four equations to a single equation governing the
temperature T2 just behind the shock. This equation comes
out from (14) provided both the ionization fraction f2 and the
mass density ρ2 are expressed in terms of T2. This proce-
dure is explained in Appendix A. Once T2 is obtained in terms
of ρ1, T1 and D, the derivation of f2, ρ2 (and P2), and u2 is
straightforward (see after). For the sake of clarity, let us re-
mind the dimensionless quantities (A1) defined in Appendix
A,

η2 =
ρ1

ρ2
, θ2 =

T2

T1
, M =

D
c1
, (15)

where M is the Mach number and c1 is the sound speed.
From their definitions, M, θ2 and η2 satisfy the inequalities
M ≥ 1, θ2 ≥ 1 but η2 ≤ 1, and a strong shock wave obeys
the condition M ≫ 1. From Appendix A, we can eliminate
f2 between the equations (A4) and (A5) and we are left with
a second-degree equation, the solution of which provides the
expression of η2 in terms of θ2,

η2 ≡ F1(θ2) =

1
20M2(aion +2θ2)

{
(3+5M2)(2aion +5θ2)−

√
G

}
,

(16)

where the dimensionless ionization energy aion is given by
(A6) and where G writes

G = 15(15M4 −2(16aion +15)M2 +15)θ 2
2

+60aion(5M4 −4aionM2 +3)θ2

+4a2
ion(5M2 +3)2.

(17)

The solution goes to η2 = 1/4 for M →+∞. This is consis-
tent with the compression ratio of an adiabatic strong shock in
an ideal mono-atomic gas. Indeed the effect of ionization is
negligible in this asymptotic case (this will be discussed later
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with the results). In order to get f2 as a function of θ2, we use
(16) into (A7) and get,

f2 ≡ F2(θ2) =
1

120M2(aion +2θ2)2

{
−480M2

θ
2
2

+15(5M4 +2(15−8aion)M2 −3)θ2

+2aion(25M4 +120M2 −9)+(5M2 +3)
√

G

}
.

(18)

In the last step of the calculation, we use Saha equation (14)
the solution of which is (the solution with a minus sign in front
of the square root is unphysical),

f2 =
A(θ2,η2)

2
[−1+

√
1+4/A(θ2,η2)], (19)

where A(θ2,η2) is given by the expression (we have used def-
initions (15)),

A(θ2,η2) = κη2θ2
3/2 exp(−aion/θ2), (20)

with

κ = (mp/ρ1)(2πmekT1)
3/2/hP

3. (21)

In equation (20), the constants κ and aion depend only on the
physical characteristics of the upstream gas. Finally, the equa-
tion governing the dimensionless temperature θ2 is obtained
from (19) by replacing η2 and f2 by their expressions F1(θ2)
(see Eq. (16)) and F2(θ2) (see Eq. (18)), respectively. This
non-linear equation for θ2 which reads,

F2(θ2)+
A[θ2,F1(θ2)]

2
{1−√

1+4/A[θ2,F1(θ2)]}= 0,

(22)

is solved numerically and the solution provides the down-
stream temperature θ2 in terms of the Mach number M.

C. The results for the postshock medium

The results for the postshock medium "2" are presented in
figures 2 - 5. Figure 2 shows the temperature ratio θ2 as a
function of the Mach number M. The dashed curve corre-
sponds to the solution of the classical Rankine – Hugoniot
equations, i.e. adiabatic shock where ionization is dropped
(Eion = 0). Setting f2 = 0 in Eqs. (A4) and (A5), and elimi-
nating η2 between the two equations, one obtains,

θ2 =
(5M2 −1)(M2 +3)

16M2 (23)

and asymptotically (M →+∞), θ2 behaves like,

θ2 ≈
5

16
M2 . (24)

θ2
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FIG. 2. Temperature ratio θ2 with ionization (Eion = 13.6 eV, solid
line) and without ionization (Eion = 0, dashed line) versus Mach
number M for standard experiment conditions (T1 = 300K and ρ1 =
10−3 kg/m3).

This formula gives θ2 = 3125 for M = 100 in agreement
with the dashed curve. The solid line gives the solution of
the Rankine – Hugoniot equations when ionization is included
(Eion = 13.6 eV). For M < 10, the two curves superimpose
(see the inset) implying that the fraction of ionized atoms
is negligible, f2 ≃ 0 (see Fig. 3 just after). For increasing
M (M ≥ 10), the temperature increases much less than for a
shock without ionizing effects. This result is interpreted phys-
ically by the fact that ionization consumes a part of the energy
delivered by the shock wave which should normally be used to
heat the gas. Finally, for M →+∞, we have again θ2 ∝ M2 like
in an adiabatic shock because the energy requested to ionize
the atoms becomes negligible compared to the thermal energy
in the medium "2". Nevertheless, in comparison to Eq. (24)
the proportionality coefficient is twice smaller because when
the gas is totally ionized, there are twice more particles to heat
(the coefficient 5/32 instead of 5/16 is easily recovered from
Eqs. (A4) and (A5) where we set f2 = 1 and where we neglect
the term 2 f2 aion/5). Indeed, for M = 100, we get θ2 ∼ 1500.
Figure 3 exhibits the ionization fraction f2 as a function of M
for various values of the density ρ1 and the ionization energy
Eion. On the one hand, it is clear that the denser the gas is,
the smaller the ionization fraction is. This property comes out
from Eq. (21) where we see that for increasing values of ρ1,
κ decreases and so does f2. For ρ1 = 10−3 kg/m3 (solid line),
the gas is fully ionized for M ≈ 35 while for ρ1 = 0.1kg/m3

(dotted line) complete ionization occurs for M ≈ 55. On the
other hand, if the ionization energy is decreased (Eion = 9eV,
dashed line), full ionization happens for a smaller M because
less energy is needed to ionize medium "2".

The compression ratio C2 is defined as C2 = 1/η2 = ρ2/ρ1
and it is exhibited in Fig.4 for three values of the ionization
energy plus a curve for the case without ionization which is
given by,

C2 =
4M2

3+M2 . (25)
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FIG. 3. Ionization fraction f2 versus Mach number M for different
value of ionization energy and initial density: Eion = 13.6eV and
ρ1 = 10−3 kg/m3 (solid line), Eion = 13.6eV and ρ1 = 0.1kg/m3

(dotted line) and Eion = 9eV and ρ1 = 10−3 kg/m3 (dashed line).
For the three cases the upstream temperature is T1 = 300K.
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FIG. 4. Compression ratio C2 versus Mach number M for different
value of ionization energy: Eion = 13.6eV (solid line), Eion = 9eV
(dashed line), Eion = 4.5eV (dotted line) and Eion = 0 (dotted-dashed
line) with standard initial experiment conditions (T1 = 300K and
ρ1 = 10−3 kg/m3).

This expression comes directly from the classical Rankine-
Hugoniot equations ( f2 = 0). For M ≫ 1, we recover C2 = 4
which corresponds to the value for an adiabatic shock into
a mono-atomic gas as mentioned earlier. The three other
curves show a high peak from 8.5 to 9.5 for a Mach number
in the range 17 ≤ M ≤ 30. This behavior is directly due to
ionization and the physical interpretation is similar to the one
we have explained for the temperature in Fig. 2. Indeed,
since a non-negligible fraction of the energy released by
the shock wave is used to remove electrons from the atoms,
the downstream flow is not heated as it should be with no
ionization and, consequently, the compressibility becomes
very large. From Fig.4, it turns out that the peak value is
slightly sensitive to the ionization energy Eion where the
compression increases with increasing values of Eion. Also, it
is evidenced that the value of the Mach number for which C2

C2
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FIG. 5. Compression ratio C2 versus Mach number M for dif-
ferent value of the initial density: ρ1 = 10−4 kg/m3 (solid line),
ρ1 = 10−3 kg/m3 (dashed line) and ρ1 = 0.1kg/m3 (dotted line) for
T1 = 300K and ionization energy Eion = 13.6eV.

has its peak increases with Eion. For Eion = 13.6eV, C2 ≈ 9.5
at M ≈ 30 and for such a value of the Mach number, full
ionization is achieved (see Fig. 3). For Eion = 4.5eV (resp.
Eion = 9eV) the peak occurs at M ≈ 17 (resp. M ≈ 25).
For actual ionization of hydrogen (Eion = 13.6 eV), the peak
arises for a shock front velocity D ≈ 60km/s (we have used
the sound velocity c1 ≈ 2030m/s from Eq. (A2)). Finally,
when the Mach number becomes very large (M ≃ 100), the
energy used to ionize the atoms becomes small compared to
the thermal energy and C2 tends to 4 (see above). Although f2
does not satisfy anymore f2 = 0 like for an adiabatic shock,
this result is again immediately derived from (A4) and (A5)
where the product (1+ f2)θ2 is eliminated between the two
equations and where 2 f2 aion/5 is neglected with respect to
the term proportional to M2. Besides, the effect of the initial
mass density of the gas is studied in Fig. 5. It is seen that the
magnitude of the peak increases for decreasing mass density
and C2 reaches a value of 11 (resp. 7) for ρ1 = 10−4 kg/m3

(resp. ρ1 = 0.1kg/m3). In a similar way to what happens in
figure 3, when ρ1 increases, f2 decreases. As a consequence,
the amount of energy used to ionize the material remains
small compared to the thermal energy and the compression is
low. The high value C2 ≈ 11 shown in Fig. 4 is therefore due
to the low density of the gas. However one has to be careful
that there is a lower limit of initial density below which the
validity of the LTE would fall in the shocked medium. This
lower threshold is rather complicated to find and also depends
on the plasma temperature. Although its determination goes
beyond the scope of this article, below ρ1 ∼ 10−5 kg/m3, the
LTE assumption would probably be already incorrect behind
the shock35.

Let us come back to the value of M (this value is called Mcrit
hereafter) for which C2 shows a peak. We give a rough estima-
tion of Mcrit from elementary theoretical considerations. We
introduce the ratio δ between the ionization energy Eion and
the kinetic energy of an atom that is roughly given by mpD2/2.
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Using the equalities D = Mc1 and c1 ≈ (kT1/mp)
1/2 (see Eq.

(A2)), one gets,

δ ≈ 2Eion

M2 kT1
(26)

Clearly, full ionization occurs for δ ≈ 1 and, therefore, Mcrit
satisfies,

Mcrit =

√
2Eion

kT1
. (27)

For the standard conditions of the gas we have taken in this
paper (T1 = 300K and ρ1 = 10−3 kg/m3) with Eion = 13.6 eV,
Eq. (27) gives

Mcrit ≈ 32. (28)

This value is actually close to the value derived from the solid
curve in Fig. 4.

III. SIMPLIFIED ANALYSIS OF IONIZING SHOCKS AND
APPLICATION TO BW IN LABORATORY

A. The evolution of the BW in laboratory

From section II, it turns out that a key value of the Mach
number is Mmax ≈ 30 (this value is close to the value Mcrit )
since it achieves the maximum compression ratio (C ≈ 9.5 in
Fig. 5) and, therefore it can potentially alter the evolution of
the BW. As shown earlier, the calculation of this value is how-
ever not trivial because the procedure should take into account
the temperature and the ionization fraction in the postshock
material in a self-consistent way. The purpose of this section
is twofold. First, we examine how much such a value of M
is relevant for experimental conditions of a laser-induced BW.
Second, an alternative approach to the procedure developed in
Section II is presented. This second approach is first fully an-
alytic and second, although it is somewhat less accurate than
the first one, especially regarding the value of the postshock
temperature, a rather exact value of the compression ratio at
the shock front can be obtained once the ratio of the specific
heats (at constant pressure and at constant volume) of the par-
tially (or fully) ionized material has been calculated. Finally,
this derivation is going to be used in the next section (Section
IV) in order to implement a model developed by Barenblatt
and Sivashinskii 36 several years ago. In the experiments by
Grun et al. 16 , Edens et al. 18 , Riley et al. 20 , Edens et al. 21 , the
propagation of a laser-induced BW is observed for a typical
duration of a few nano-seconds using energy laser from 10J
to 1kJ. In all those papers, the authors demonstrate the strong
effects of radiative cooling on the evolution, internal structure
and stability of the BW. This scenario has been studied first in
the context of SNR radiative stage37–39. The major effects of
cooling are, first, an expansion of the SNR that is more decel-
erated than in the adiabatic Sedov-Taylor regime12,38,40 and,
second, the presence of internal shocks inside the SNR38,41,42

and the formation of a dense shell at its outer border38,43,44. In

what follows, we will only consider the case of a non-radiative
BW. Under this assumption, the time variation of the BW ra-
dius is given by the Sedov-Taylor law :

RST = ξ0(
E0

ρ1
)1/5t2/5 (29)

where ξ0 ≈ 1.15 is a dimensionless number45 and E0 ≈ 1kJ is
the laser energy release. For the conditions of the standard am-
bient gas that we consider (T1 = 300K and ρ1 = 10−3 kg/m−3,
see section II), we find that the Mach number evolves as

M(t)≈ 3.5×10−5t−3/5 (30)

where t should be expressed in second. Therefore, when M =
Mcrit ≈ 30 (strongest ionization effects), the age of the BW
is around tcrit ≈ 300ns and the radius is around 40mm. This
result is close to the experiment in nitrogen by Edens et al. 21

where the radius is 30mm at 300ns for similar conditions of
the initial gas state and laser energy. Notice that the similar-
ity property of (29) implies that the same BW configuration
(duration, size, velocity and Mach number) can be achieved
for the same initial ratio E0/ρ1. As the decrease in the initial
density is limited to order of magnitude ρ1 ∼ 10−5 kg/m−3

to stay in the LTE regime (see in section II C), the minimum
laser energy can decrease to about 10J.

B. Simplified ionizations jump condition for the BW

The purpose of this paragraph is to propose a simplified an-
alytical approach to reduce the complexity of the model. As
we suppose that the gas is composed of hydrogen atoms, the
partially ionized shocked medium is then composed of hy-
drogen atoms, protons, and electrons, and the adiabatic index
of medium "1" and "2" equals 5/3 which is the value for a
mono-atomic gas. Indeed, the adiabatic index is related to the
number of degrees of freedom ℓ of the gas particles. In the
present case, ℓ = 3 so γ = (ℓ+ 2)/ℓ = 5/3. However, due to
ionization, deviations to the mono-atomic ideal gas arise in the
energy balance (see for instance Eq. (11)). As a consequence,
we define a new effective adiabatic index γ∗33,46 which takes
into account the ionization effects in medium "2" through the
equation,

ε2 =
1

γ∗−1
p2

ρ2
=

3
2

p2

ρ2
+ εion (31)

where the adiabatic index γ∗ ̸= 5/3. In general, the function
γ∗(T2,ρ2) depends on the temperature and the density of the
shocked medium. Nevertheless, instead of T2 and ρ2, it can be
shown that γ∗ can be expressed actually in terms of the tem-
perature ratio θ2 and the ionization fraction f2 only. Indeed,
using the ionization energy definition (13) and (31), we finally
obtain the analytical formula,

γ
∗ =

5(1+ f2)θ2 +2aion f2

3(1+ f2)θ2 +2aion f2
. (32)
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One can notice that when we suppress ionization (either
f2 = 0 or aion = 0), we recover the value γ∗ = 5/3 for a
mono-atomic gas. Similarly, when the thermal energy of the
shocked medium is high compared to the ionization energy
θ2 >> aion we also find γ∗ ≃ 5/3. We are going to make an ad-
ditional assumption noticing that for a given temperature, the
ionization fraction varies slowly with the density in the range
ρ1 < ρ < ρ2. Indeed, the density ρ2 is bounded by the upper
value ρ2 = ρ1M2 which corresponds to γ∗ = 1 and the varia-
tions of f2 when ρ varies from ρ1 to ρ2 can be neglected in
first approximation (see the variations of f2 in figure 3 where
ρ1 is changed). Thus, we can write f2(θ2,η2) ≃ f2(θ2,1)
(see Eq.(19)) and as a consequence the quantity γ∗ only de-
pends on the dimensionless temperature θ2. The effective adi-
abatic index is plotted for the standard experiment conditions
in figure 6 where as expected we recover the value 5/3 for
θ2 → 1 and θ2 → +∞. Notice that γ∗ reaches the minimal
value 1.2, which gets closer to the limit γ = 1 where all the
shock energy is used to ionize the gas instead of heating it
(θ2 << aion). This limit corresponds to the so-called isother-
mal shock for which T2 ≃ T1 (θ2 ≃ 1). The variation of γ∗

is very sharp for 30 < θ2 < 40 but the index increases rather
slowly in the range 50 < θ2 < 200. As it can be deduced
from Fig. 2, this range is achieved for a Mach number about
M ≃ 20− 50 which is relevant to a laser-induced BW in the
laboratory as explained from Eq. (30). Consequently, we can
consider in the first approximation that γ∗ is almost constant
during the evolution of the ionizing BW. This assumption will
be discussed in the next section. Now that we have defined
a new effective adiabatic index γ∗ for medium "2" different
from the adiabatic index (denoted γ1 = 5/3) for medium "1",
we will determine again the state of the shocked medium us-
ing the classical Rankine-Hugoniot equations with different
adiabatic indices for medium "1" and "2". In the present case,
the ionization energy is still taken into account in the energy
equation (4) (in the enthalpy h2) but it contributes implicitly
through the value of γ∗. Then, combining (31) and (5), the
downstream enthalpy writes,

γ *

0 2000 4000 6000 8000 10000
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 50 100 150 200

1.1

1.2

1.3

1.4

1.5

1.6

1.7

θ2

FIG. 6. Effective adiabatic index γ∗ versus the dimensionless tem-
perature θ2 for the experiment conditions (T1 = 300K and ρ1 =
10−3 kg/m−3).

h2 =
γ∗

γ∗−1
P2

ρ2
. (33)

Finally, the state of medium "2" can be determined from
the Rankine-Hugoniot equations following the calculations by
Sedov6 or by Drake46 and, especially, the compression ratio
reads,

C2 =
γ∗(γ1 −1)(1+ γ1M2)+

√
J

γ1(γ∗−1)[2+(γ1 −1)M2]
(34)

where

J = (γ1 −1)[(γ1 −1)(γ∗2 + γ
2
1 M4)+2γ1(γ1 − γ

∗2)M2] . (35)

At this stage, we should specify that the state of the shocked
medium is not completely determined. Indeed, the function
γ∗(θ2) still depends on the temperature of the medium "2".
Thus, similarly to the previous section, the algebraic system
is non-linear and needs to be solved numerically. However, it
is important to notice two points. First, if the shock is strong
enough (M ≫ 1), which is the case for a BW considered here,
equation (34) reduces to the asymptotic expression C2 = (γ∗+
1)/(γ∗− 1) irrespectively of the value of γ1. This expression
is the same as the one derived for an adiabatic strong shock
except that γ∗ ̸= γ1. We can deduce that for a strong shock,
the compression ratio only depends on the adiabatic index of
the shocked medium. If this index drops to a value close to 1,
the compression ratio will become very large. Moreover, we
know the analytical expression for γ∗ in terms of temperature
ratio θ2. Inserting (32) in the above asymptotic expression of
C2, one gets,

C2(θ2)≃
γ∗(θ2)+1
γ∗(θ2)−1

= 4+
2aion f2(θ2)

[1+ f2(θ2)]θ2
, (36)

for M >> 1 and γ1 = 5/3. In this analytical formula, the
second term on the right-hand side highlights the properties
that need to be satisfied in the initial medium "1" to increase
the compression ratio at the shock front. A similar formula
is also found in the book by Zel’Dovich and Raizer 33 . First,
for a given dimensionless ionization energy aion, the dimen-
sionless temperature θ2 needs to be low enough to verify the
condition aion/θ2 ≫ 1 (ionization energy greater than ther-
mal energy). The ionization also needs to operate at this low
temperature to verify the second condition f2(θ2) ∼ 1. Thus,
having both the combination of high ionization energies and
ionization processes occurring at low temperatures, the term
2aion f2/[(1+ f2)θ2] will be large and the compression ratio
will be large as well. These conditions can be fulfilled for
rarefied gas. In figure 7, we compare the compression ratio
computed numerically from section 2 and the analytical for-
mula (36) (assuming a high Mach number) using the same
initial conditions for the ambient gas. Notice the good agree-
ment between the two curves when the Mach number becomes
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high (M > 50), i.e. for large values of θ2. The difference
in the two curves at the maximum of compression is due to
the assumption f2(θ2,η2) ≃ f2(θ2,1). By not taking into ac-
count the compression in the shocked medium (η2 = 1), we
slightly overestimate the degree of ionization in this medium
and from (36) this implies a greater compression. If we use
the minimum value of γ∗ ≃ 1.2 (see figure 6) in the standard
experiment conditions, we find the maximum compression ra-
tio C2 = 11. Finally, one could go further in the simplification
of the model and consider that γ∗ is constant in a given range
of θ2 (here between 40 and 200)33. We recognize that this ap-
proximation of the shocked medium for a Mach number close
to Mcrit is rather drastic, however, we will see in the next sec-
tion this is the price to pay for applying the model by Baren-
blatt 32 for a self-similar description of the BW including ion-
ization. In a more realistic one-dimensional model taking into
account the change of γ∗ according to the decrease of the BW
Mach number M(t), the numerical solution would move con-
tinuously from a self-similar solution to another with a differ-
ent coefficient γ∗. This is likely to happen because the solution
of Barenblatt is stable in the simulations by Andrushchenko,
Barenblatt, and Chudov 47 . Thus, the solution will be differ-
ent from the Sedov-Taylor solution only in the region close to
M = Mcrit .
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FIG. 7. Comparison between the compression ratio C2 computed nu-
merically in section II C (solid line) and the formula C2 (36) (dashed
line) versus the dimensionless temperature θ2.

IV. EVOLUTION AND INTERNAL STRUCTURE OF THE
IONIZING BW

In the original model of Barenblatt 32 and an earlier work
by Sedov6, the idea was to describe a blast wave that loses en-
ergy by cooling only at the shock front. This is exactly what
happens when the shock front of a BW ionizes the ambient
gas. To account for this process, the authors introduce an ad-
ditional constant quantity q in the energy equation according
to,

γ

γ −1
p2

ρ2
+

1
2

u2
2 −q =

γ

γ −1
p1

ρ1
+

1
2

u2
1, (37)

where q represents an energy per unit mass. In this section,
the pressure will be denoted by p. Notice that in this model,
both sides of the front have the same arbitrary adiabatic index
gamma. In the present case q< 0 as the BW cools at the shock
front due to the thermal energy lost to ionize the gas. In order
to find self-similar solutions the quantity q should obey the
special form32,

q = Q
p2

ρ2
, (38)

where Q is a dimensionless negative constant. Plugging this
expression in (37), one gets the simplified energy equation,

γ∗

γ∗−1
p2

ρ2
+

1
2

u2
2 =

γ

γ −1
p1

ρ1
+

1
2

u2
1, (39)

with

γ
∗ =

(γ −1)Q− γ

(γ −1)Q−1
. (40)

Eq. (39) exhibits two interesting properties. It describes
an adiabatic shock wave where the adiabatic index is γ∗ ̸= γ

in the downstream flow on the one hand, and, on the other
hand, it is the same equation as the one derived in the
previous section where (33) is inserted in Eq. (4) and where
h1 = [γ/(γ −1)] p1/ρ1. This result shows that ionization can
be described by this model provided the approximation of a
constant effective adiabatic index at the shock front of the
ionizing BW.

When Q = 0, Eq. (40) gives γ∗ = γ and the problem is re-
duced to the classical strong explosion of Sedov-Taylor where
the total energy is conserved during the expansion of the BW.
When Q → +∞, γ∗ → 1 and corresponds to an infinite cool-
ing at the shock front (we will come back to that point). In
this case, the shock is isothermal as described in Sect. III. Fi-
nally, as it is done by Barenblatt 32 , and as it turns out from the
Rankine-Hugoniot equation for a strong shock, the boundary
conditions of the BW at the shock front are given by,

ρ2 =
γ∗+1
γ∗−1

ρ1, v2 =
2

γ∗+1
D, p2 =

2
γ∗+1

ρ1D2.(41)

One can again notice that the state of the shocked medium
only depends on the effective adiabatic index which takes into
account the effects of ionization in the present situation. It is
important to notice that the adiabatic index is γ = 5/3 inside
the BW and is different from γ∗ at the shock. Indeed, the tem-
perature in the interior is much higher than the temperature at
the shock front. Thus, the index comes back to the adiabatic
value of mono-atomic and fully ionized gas (see Figure 6 at
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high temperature). The one-dimensional and spherically sym-
metric hydrodynamic conservation equations of mass, mo-
mentum, and energy are,

∂tρ +
1
r2 ∂r(r2

ρv) = 0, (42)

∂tv+ v∂rv+
1
ρ

∂r p = 0, (43)

∂t(
1
2

ρv2 + ε)+
1
r2 ∂r[r2v(

1
2

ρv2 + ε + p)] = 0. (44)

Following6,32,48,49, we use the self-similar approach to
transform the partial differential equations (42) – (44) in three
ordinary differential equations (ODE) – see below. The trans-
formation is

ρ =
γ∗+1
γ∗−1

ρ1R(ξ ,γ,γ∗)

v =
2α

(γ∗+1)
r
t
V (ξ ,γ,γ∗)

p = ρ1
2α2

(γ∗+1)
r2

t2 P(ξ ,γ,γ∗)

(45)

where R, V , and P are the self-similar density, velocity, and
pressure, respectively, and ξ = r/r0(t) is the self-similar co-
ordinate where r0(t) is the time-dependent radius of the BW.
Following32, we assume r0(t) = Atα where A is a constant
and where the constant α is called the decelerating parameter.
This behavior is similar to the evolution of the Sedov-Taylor
blast wave except that α < 2/5 when γ∗ < γ . Using the trans-
formations (45) in (42)-(44), one gets the three ODE,

[
2V − (γ∗+1)

2R
]

dR
d lnξ

+
dV

d lnξ
=−3V (46)

[
2V − (γ∗+1)

V
]

dV
d lnξ

+
γ∗−1

RV
dP

d lnξ

= (
γ∗+1

α
−2V )−2

γ∗−1
RV

P

(47)

[
2V − (γ∗+1)

2P
]

dP
d lnξ

− γ[
2V − (γ∗+1)

2R
]

dR
d lnξ

= (
γ∗+1

α
−2V )

(48)

with the boundary conditions R(1,γ,γ∗) = V (1,γ,γ∗) =
P(1,γ,γ∗) = 1. The resolution of these ODE is described by

Barenblatt 32 . It is shown that for a given value of the effec-
tive adiabatic index γ∗, there is a unique solution of the de-
celerating parameter α where the solution is integrated from
the shock front to the center of the BW. This solution with
α = α∗ is the physically relevant solution obtained from an
eigenvalue problem (see below). Indeed, in the simulation
by Andrushchenko, Barenblatt, and Chudov 47 , the authors
demonstrate that a blast wave generated by the release of a
huge amount of energy in a small volume using a value of
γ∗ < γ at the shock front converges to the special solution
α = α∗. Close to the center, the asymptotic expansion of the
solution reads,

R = R0ξ
s +O(ξ 2s+2), s =

6(1−α∗)

α∗(2+3γ)−2

V =V0 +O(ξ s+2), V0 =
γ∗+1

2γ
+

(2−5α∗)(γ∗+1)
6α∗γ

P =
P0

ξ 2 +O(ξ s),

(49)

where R0 and P0 are constants which depend on the parame-
ters γ , γ∗ and α∗. Thus, the eigenvalue problem can be defined
as follows. For a given γ∗, one needs to find the unique solu-
tion with the exponent α = α∗(γ∗) that goes from the central
boundary given by (49) to the boundary at the shock front.
We can also see from (49) that the critical expression of the
exponent α∗

crit = 2/(2+3γ) corresponds to the singular limit-
ing case s → +∞ (Gintrand et al. 48 ). Actually, Barenblatt 32

shows that α∗
crit corresponds to the lower value of α∗(γ∗) and

it is achieved for γ∗ → 1. As a consequence, the density R
satisfies R → 0 for ξ → 0 and the closer to one γ∗ is, the more
rarefied the inner part of the BW is: the matter that is swept
up by the shock front becomes concentrated in an infinitely
thin shell of infinite compression ratio at the front shock. For
γ = 5/3, one gets α∗

crit = 2/7, i.e. r0(t) ∝ t2/7, modeling the
so-called pressure-driven snowplow (PDS) regime – see the
Introduction – which has been extensively studied in the lit-
erature since the seventies7–9 and has been recently recovered
analytically for a BW experiencing radiative cooling48. Sev-
eral solutions are plotted in figure 8 for different values of the
effective adiabatic index. The lower case γ∗ = 1.2 < γ = 5/3
(solid lines) is the minimum value from the previous section.
Then the corresponding values of α∗ are found through the
eigenvalue problem using a trial and error method to converge
to the special solution. The compression ratio at the front
shock is high with ρ2/ρ1 ≈ 11 and ρ2/ρ1 ≈ 6 for the solid and
dashed lines respectively. This is due to the ionization cooling
effects and as expected, the shell becomes thinner and denser
compared to the Sedov–Taylor case (dotted lines) for which it
is reminded that ρ2/ρ1 = (γ + 1)/(γ − 1) = 4. Also, the di-
mensionless thermal pressure in the hot interior decreases to
p/p2 = 0.24 (solid line) and p/p2 = 0.27 (dashed line) at the
center compared to the value 0.3 for the Sedov–Taylor solu-
tion. In addition, as the total energy of the BW decreases with
time, the decelerating parameter α∗ = 0.329 (solid lines) and
α∗ = 0.361 (dashed lines) are smaller than 2/5. The lowest
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FIG. 8. Normalized profiles of density ρ/ρ2 (top panel), velocity
v/v2 (middle) and pressure p/p2 (bottom panel) versus the dimen-
sionless position ξ = r/r0 for different values of the effective coeffi-
cient γ∗.

value of α∗ is actually similar to the values derived by Blondin
et al. 38 from the numerical simulations of SNR experiencing
energy losses by radiation.

V. CONCLUSION & DISCUSSION

In this article, we have studied the ionization of cold atomic
hydrogen by a blast wave (BW). The equations of the analyt-
ical model, i.e. Rankine–Hugoniot and Saha equations, have
been solved in a self-consistent way. In agreement with our

expectations raised in the introduction, we have shown that
ionization has a significant role in the dynamics and the struc-
ture of laboratory BW as the one by Grun et al. 16 , Edens
et al. 18,21 and Riley et al. 20 using laser energy from 10J to
1kJ. We have found that the compression ratio C for an ioniz-
ing shock can reach high values (the maximal compression ra-
tio we found is C ≃ 11) around a critical Mach number Mcrit ≃
30 where the gas is almost fully ionized. Indeed, as a fraction
of the shock energy is used to ionize the gas instead of heating
it, the density needs to increase behind the shock to maintain
the value of the pressure in the downstream flow. As a con-
sequence, we might say that ionization is equivalent to some
cooling. This ionizing cooling effect gets stronger when the
ratio of ionization energy over thermal energy in the shocked
region is large during ionization. Thus, for given ionization
energy, the ionization needs to be done at low temperatures
and this can only be achieved by decreasing the gas density. In
the second part, we have introduced an effective adiabatic in-
dex γ∗ accounting for ionization and we have shown the well-
known result that its value drops below 5/3. Actually, for-
mula (32) gives γ∗ = 5/3−4aion f2/{3[3(1+ f2)θ2+2aion f2]}
where index 2 represents the downstream shocked medium.
Assuming the strong shock approximation, the compression
C is given by C = (γ∗+ 1)/(γ∗− 1) > 4 and it is shown that
this expression provides a value close to the one derived from
the exact solution of the Rankine–Hugoniot equations includ-
ing ionization. The minimum value of the effective index is
γ∗ = 1.2 and is achieved for θ2 ≃ 60. Besides, for M = Mcrit
which corresponds to θ2 ≃ 80 we get γ∗ ≃ 1.23. As a con-
sequence, for M ≃ Mcrit , i.e. when ionization dominates the
structure and the dynamics of the BW, the variation of γ∗ is
so little that it can be neglected and we can take a constant
value γ∗ = 1.2. Under these circumstances, the structure and
the dynamics of the flow inside the whole BW can be de-
scribed by the self-similar solution derived from the point ex-
plosion model of Barenblatt 32 where a uniform pressure but
extremely low-density bubble bounded at the shock front by a
thin and dense shell are evidenced. The position r0(t) of the
shock front, i.e. the radius of the BW, writes r0(t) ∝ tα∗

where
the value of the deceleration parameter is α∗ = 0.329. Since
it was shown that ionization plays a role equivalent to cooling
at the shock front, this value is smaller than α = 2/5 corre-
sponding to the Sedov–Taylor BW, as expected. If one can
find a configuration of the initial gas state that would increase
the post-shock ratio f2Eion/((1+ f2)kT2) (see (36)), the value
of the effective index γ∗ could decrease even closer to one.
The asymptotic regime γ∗ = 1 corresponds to the so-called
Pressure-Driven Snowplow (PDS) stage of the BW where the
exponent 2/7 ≈ 0.286 is obtained from the theoretical for-
mula 2/(2+ 3γ) with γ = 5/3. Moreover, although α = 1/4
(Momentum-Conserving Snowplow (MCS) stage of the BW)
comes out when radiative cooling takes place48, this value
does not arise for the case of ionization as there is not any
cooling in the BW hot interior but only at the shock front.
Also, although the linear stability of this self-similar solu-
tion has not been performed yet, it is likely unstable against
the so-called Vishniac and Ryu–Vishniac instabilities40,50–53

which predict unstable evolution for γ < 1.2. The ionizing
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cooling BW may be a better candidate for the study of the
Vishniac instability than the radiative cooling as the radiative
one may be dominated by thermal and convective instabili-
ties due to the change in the internal structure of the radia-
tive BW39,48. In the experiment by Edens et al. 18 , the 1kJ
laser-induced BW in Nitrogen is simulated using HYADES
code with multigroup diffusion for the radiation transport and
SESAME tabulated EoS. The results give an effective index
γ∗ = 1.36. Even if the ionization cooling of Nitrogen may
have played a role in the drop of the effective index, the
value of γ∗ is still larger than the Vishniac instability thresh-
old (γ = 1.2) and the perturbed BW seems stable from exper-
imental diagnostics. However, it is important to notice that
the stability analysis performed in Ryu and Vishniac 51 , Sanz
et al. 52 is different than the stability of the Barenblatt model
discussed in this article where (γ∗ < γ). In addition, these
ionizing shock waves are liable to the D’yakov–Kontorovich
instability arising from the spontaneous emission of acoustic
waves at the shock front54–57. This instability is also discussed
in the experiment by Nilson et al. 58 where ultra-high veloc-
ity ionizing shocks are generated using Petawatt-class laser
pulses. According to our theory, a rather small value of the
velocity as small as about 60km/s produces full ionization
and no ultra-high power laser needs to be used. Finally, it is
interesting to discuss the effect of the magnetic fields B on
ionizing cooling shocks. In the case of radiative cooling, it
has been demonstrated that the presence of a weak magnetic
field in the ISM (B ∼ 1 µG) can be compressed up to high val-
ues inside the shell of a radiative SNR59,60. The tension of
magnetic lines tends to decrease the density compression and
increase the thickness of the shell. Thus the magnetic field
limits the lower value of exponent α and the development of
instabilities61. The case of ionizing cooling is different. In-
deed, the presence of an ambient perpendicular magnetic field
B should not affect the present results where the compression
at the shock is ρ2/ρ1 = B2/B1 ≈ (γ∗ + 1)/(γ∗ − 1) as long
as the Alfven Mach number and the Mach number remain
high enough46,62,63. This property is also a consequence of
the ionizing cooling spatial distribution where all the cooling
is localized at the shock front while the radiative cooling is
present in the bulk of the plasma with a maximum near the
inner boundary of the shell.
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Appendix A: Reduction of the generalized Rankine-Hugoniot
equations

Here, we reduce the three jump equations (2), (3) and (4)
to two coupled equations on the new dimensionless unknowns
η2, θ2 and M defined as,

η2 =
ρ1

ρ2
, θ2 =

T2

T1
, M =

D
c1
, (A1)

where c1 is the sound speed in the ambient gas,

c1 =

√
5P1

3ρ1
=

√
5kT1

3mp
. (A2)

Using (2), we find the velocity u2 in terms of η2, M and c1,

u2 =−η2D =−η2Mc1. (A3)

Then, we inject this relation into (3) and (4) to obtain the
two equations,

(1+ f2)θ2 −
5M2

3
(1−η2)η2 −η2 = 0 (A4)

(1+ f2)θ2 −
M2

3
(1−η2

2)+
2
5

f2aion −1 = 0 (A5)

where aion represent the dimensionless ionization energy,

aion =
Eion

kT1
. (A6)

Then, using (A4), one finds,

f2 =
3+5M2

3θ2
η2 −

5M2

3θ2
η

2
2 −1. (A7)

By injecting (A7) in (A5), we obtain an equation for the
unknown η2,

10M2(2+
aion

θ2
)η2

2 − (3+5M2)(5+2
aion

θ2
)η2

+6aion +5(M2 +3) = 0

(A8)

Only one of the two solutions of this second-degree polyno-
mial has a physical meaning and is given by (16).
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