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COMPUTATIONAL COMPLEXITY OF MINIMAL TRAP SPACES IN1

BOOLEAN NETWORKS∗2

KYUNGDUK MOON† , KANGBOK LEE† , AND LOÏC PAULEVÉ‡3

Abstract. A Boolean network (BN) is a discrete dynamical system defined by a Boolean function4
that maps to the domain itself. A trap space of a BN is a generalization of a fixed point, which is5
defined as the sub-hypercubes closed by the function of the BN. A trap space is minimal if it does not6
contain any smaller trap space. Minimal trap spaces have applications for the analysis of attractors7
of BNs with various update modes. This paper establishes the computational complexity results8
of three decision problems related to minimal trap spaces: the decision of the trap space property9
of a sub-hypercube, the decision of its minimality, and the decision of the membership of a given10
configuration to a minimal trap space. Under several cases on Boolean function representations, we11
investigate the computational complexity of each problem. In the general case, we demonstrate that12
the trap space property is coNP-complete, and the minimality and the membership properties are13
ΠP

2 -complete. The complexities drop by one level in the polynomial hierarchy whenever the local14
functions of the BN are either unate, or are represented using truth-tables, binary decision diagrams,15
or double DNFs (Petri net encoding): the trap space property can be decided in a polynomial time,16
whereas deciding the minimality and the membership are coNP-complete. When the BN is given as17
its functional graph, all these problems are in P.18

Key words. Automata network, Trap space, Computational complexity, Boolean function19
representation, System dynamics, Attractors20

MSC codes. 68Q17, 68R07, 94C11, 37M22, 37N2521

1. Introduction. A Boolean network (BN) is a dynamical system defined by a22

function f of the Boolean domain with a fixed dimension n that maps to the domain23

itself, i.e., f : Bn → Bn with B = {0, 1}. The function mapping to a component of the24

image of f is called a local function. We denote the local function mapping to the i-th25

component of the image as fi : Bn → B for i ∈ {1, . . . , n}. Given a Boolean vector26

x ∈ Bn referred to as a configuration, one can define a set of succeeding configurations27

by f following an update mode [3, 14, 25, 34], leading to a dynamical system. For28

instance, the synchronous (or parallel) update mode associates f(x) as the unique29

succeeding configuration of x by f , while the fully asynchronous mode considers any30

configuration resulted from the update of a single component as successors, leading31

to non-deterministic dynamics. BNs are studied in various disciplines such as discrete32

mathematics [2, 28] and dynamical system theory [5, 12, 24]. They also have wide33

applications to the modeling of complex systems such as biological systems [1, 15, 18,34

31, 37], and social behaviors [13, 27], to name but a few.35

The literature addresses a vast zoo of update modes, generating possibly different36

dynamics from the same BN f [26]. In this context, the dynamical properties of BNs37

which are independent of the update mode are of particular interest because they38
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show inherent dynamical properties of a given BN. The prime example is the study of39

fixed points of f , i.e., the configurations x such that f(x) = x. Indeed, a fixed point40

of f can be assumed to be a stable state of dynamics that does not change after a41

transition with any update mode. Conversely, a stable state under the synchronous42

or the asynchronous update mode is a fixed point. Nevertheless, some specific update43

modes may exhibit additional stable states [26]. The notion of fixed points of f can44

be generalized to trap spaces. A trap space is a sub-hypercube (an n-dimensional45

sub-graph of the n-dimensional hypercube where some dimensions can be fixed to be46

singular values) closed by f such that for any vertex x of the trap space, f(x) is also47

one of its vertices. A minimal trap space is a trap space that contains no other trap48

spaces. Therefore, a fixed point of f is a specific case of minimal trap spaces where49

all dimensions are fixed.50

It is important to remark that trap spaces are independent of the update mode [23].51

Nevertheless, minimal trap spaces have also been studied with regard to attractors,52

which depend on the update mode and are important features of the long-term dy-53

namical properties of BNs [15]. Given an update mode, an attractor is defined as an54

inclusion-wise minimal set of configurations which are closed by transitions. Equiva-55

lently, an attractor is a set of configurations satisfying the following two conditions.56

First, there exists a sequence of transitions between any pair of its configurations.57

Second, if there exists a sequence of transitions from one of its configuration x to58

another configuration x′, then they belong to the same attractor. If an attractor is59

composed by a single configuration, it is a fixed point; otherwise, it is called a cyclic60

attractor. It appears that any minimal trap space necessarily encloses at least one61

attractor of any update mode [16, 23, 26]. Moreover, minimal trap space that are not62

fixed points enclose necessarily at least one (a)synchronous cyclic attractors. Actually,63

for a large range of models of biological networks, minimal trap spaces approximate64

well their asynchronous attractors [17]. Beside the synchronous and the asynchronous65

update mode, minimal trap spaces are exactly the attractors of BNs under the most66

permissive update mode [23, 25], which guarantees to capture all transitions realized67

by any multi-valued refinement of the BN.68

So far, the literature has essentially focused on algorithms and implementations69

for enumerating minimal trap spaces of BNs [16, 23, 35]. Nevertheless, whereas these70

algorithms indicate upper bounds for the computational complexity of decision prob-71

lems related to minimal trap spaces, no lower bound has been characterized. In72

this paper, we provide computational complexity results of problems related to the73

minimal trap spaces. We focus on three fundamental decisions problems:74

TRAPSPACE(f , h) :75

Given a BN f and a sub-hypercube h, h is a trap space of f .76

MINTRAP(f , h) :77

Given a BN f and a sub-hypercube h, h is a minimal trap space of f .78

IN-MINTRAP(f , x) :79

Given a BN f and a configuration x, x is a vertex of a minimal trap space of80

f .81

We study the computational complexity of these problems depending on Boolean82

function representations and on the unate property of local functions, as summarized83

in Table 1.1. The label “-c” indicates the completeness of the problem. In the case of84

Boolean functions represented as propositional formulas (PF), upper bounds of these85

three decisions problems have been determined in [23]: TRAPSPACE is in coNP,86

whereas MINTRAP and IN-MINTRAP are in ΠP
2 . Moreover, whenever the BN is lo-87

cally monotone, i.e., each of its local functions is unate (its expression does not contain88
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a variable appearing both positively and negatively), they showed that TRAPSPACE89

is in P, whereas MINTRAP and IN-MINTRAP are in coNP. We complete the results of90

[23] by demonstrating the lower bound results for each corresponding case. We further91

consider three representations for local functions: truth tables (TT), binary decision92

diagrams (BDD), and double disjunctive normal forms (DDNFs). These representa-93

tions have practical relevance since binary decision diagrams are frequently employed94

by software [20] and double DNFs are employed by Petri nets [7, 21, 35]. For all95

three representations, the same computational complexities are demonstrated as the96

locally monotone case. Finally, we also consider a BN represented by its functional97

graph (FG), which matches with the state transition graph under the synchronous98

update mode: this graph associates each state in Bn to its image by f . Therefore, we99

consider two classes of representations of BNs: either by the representation of their100

local functions, or by the representation of the global function f .101

Table 1.1
The computational complexity of decision problems related to trap spaces

Boolean network Problems
Encoding Unate property TRAPSPACE MINTRAP IN-MINTRAP
Representation with local functions
PF General coNP-c† ΠP

2 -c
† ΠP

2 -c
†

PF Locally monotone P† coNP-c† coNP-c†

TT General P coNP-c coNP-c
BDD General P coNP-c coNP-c

DDNFs General P coNP-c coNP-c

Representation with a state transition graph

FG General P P P
†the upper bound results are presented in [23]

The rest of this paper is organized as follows. In Sec. 2, we introduce notations102

and terminologies that are used to define the problems and explain the results. In103

Sec. 3, we provide computational complexity results of these problems in different104

BN settings. Sec. 4 provides a concluding remark.105

2. Preliminaries. We denote integers ranging from 1 to n by [1, n] := {1, . . . , n}.106

We use an interval subscript of a vector to denote the list of components lying on the107

interval’s range. For example, x[1,n1] denotes the vector concatenating the first n1108

components of vector x.109

2.1. Representations and the unate property of local functions in Bool-110

ean networks. A Boolean function on n variables is of the form ϕ : Bn → B. In this111

context, the following decision problems are relevant to our study. The SAT problem112

is to decide whether there exists a configuration x ∈ Bn such that ϕ(x) = 1. We can113

generalize SAT by partitioning variables and alternately putting quantifiers ‘∃’ and114

‘∀’ on them. Given the number of quantifiers l ∈ Z+, and the number of indices of115

partitions n1, . . . , nl such that nj < nj+1 for each j ∈ [1, l − 1], we can define the116

following generalization to ΣlSAT:117

ΣlSAT: decide if ∃x[1,n1]∀x[n1+1,n2]∃x[n2+1,n3] · · ·ϕ(x) = 1.118

Analogously, we can define ΠlSAT as the complementary problem of ΣlSAT. Notably,119

ΣlSAT and ΠlSAT are together called the true quantified Boolean formula problem,120
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which is well known as a complete problem in the polynomial hierarchy; we refer121

to [4] and [32] for the details. Another relevant class is PNP, the group of prob-122

lems that are polynomial time solvable using an oracle for NP. It is well-known that123

PNP ⊆ ΣP
2 ∩ΠP

2 . In this paper, we limit our focus to SAT, Π1SAT, and Π2SAT. The124

computational complexity of these problems depends on the representation of ϕ and125

its unate property listed as follows.126

As propositional formula. Boolean function ϕ can be represented as a proposi-127

tional formula, which consists of Boolean variables x1, . . . ,xn and logical connectives128

∧ (conjunction), ∨ (disjunction), and ¬ (negation). The size of a formula is its length,129

which is proportional to the total count of variables and connectives appearing in the130

input string.131

As disjunctive normal form (DNF). Boolean function ϕ can be represented as a132

propositional formula consisting of a disjunction of conjunctive clauses. Negations are133

allowed only on variables and not on clauses. A DNF can be equivalently represented134

as a list of sets of literals, where a literal is either a variable or a negated variable.135

Any propositional formula can be represented in DNF with clauses consisting of at136

most three literals (3DNF), although its size may be exponentially large.137

Unate (monotone) case. Boolean function ϕ is unate if there exists an ordering138

of components ⪯∈ {≤,≥}n such that ∀x,y ∈ Bn,
(
(x1 ⪯1 y1)∧ · · · ∧ (xn ⪯n yn)

)
⇒139

ϕ(x) ≤ ϕ(y). In other words, for each component j ∈ [1, n] and every configuration140

x ∈ Bn, ϕ(x[1,j−1]0x[j+1,n]) ⪯j ϕ(x[1,j−1]1x[j+1,n]) holds.141

As truth table (TT). Boolean function ϕ can be encoded as binary vector t with142

2n rows, where for each row m ∈ [1, 2n], tm is the value of fi(bin(m−1)) with bin(m)143

being the binary representation of m.144

As binary decision diagram (BDD). A BDD has a directed acyclic graph structure145

with a unique root and at most two terminal nodes among 0 and 1 [10]. Each non-146

terminal node is associated to a component i ∈ [1, n] and has two out-going edges,147

one labeled with 0 and the other with 1. Moreover, any path from the root to a148

terminal node crosses at most one node associated to each component. Then, each149

configuration x corresponds to a single path from the root to a terminal node such150

that the edge emanating from a node associated with component i is labeled 1 if and151

only if xi = 1. This characterization captures common variants of BDDs, including152

reduced ordered BDDs [36].153

As double DNF (DDNF). Boolean function ϕ can be represented with two DNFs154

ϕ0 and ϕ1 of n variables x1, . . . ,xn such that ϕ0 is satisfied if and only if ϕ(x) = 0,155

and ϕ1 is satisfied if and only if ϕ(x) = 1. This representation is typically employed156

in Petri nets [6, 7] and automata networks [21].157

Example 2.1. We consider propositional formula f = x1 ∧ ¬(x2 ∧ ¬x3) and show158

its different representation schemes and related explanations.159

• (x1 ∧ ¬x2) ∨ (x1 ∧ x3) is an equivalent DNF representation of f .160

• f is unate with ⪯ being a vector ⟨≤,≥,≤⟩ ∈ {≤,≥}3. On the other hand,161

another Boolean formula (¬x1 ∧ x2) ∨ (x1 ∧ ¬x2) is not unate.162

• The truth table representation of f is t = 00001101, assuming that bin(1) =163

001.164

• One of the double DNF representations of f is (ϕ0, ϕ1) with ϕ0 = (¬x1) ∨165

(x2 ∧ ¬x3) and ϕ1 = (x1 ∧ ¬x2) ∨ (x1 ∧ x3);166

• An equivalent BDD representation of f is the graph in Figure 2.1:167

We use some known computational complexity results in the literature as follows.168
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Fig. 2.1. A binary decidion diagram representation of the Boolean network f in Example 2.1

If ϕ is a general propositional formula, SAT is NP-c, Π1SAT is coNP-c, and Π2SAT is169

Π2-c [4]. If ϕ is a DNF or a 3DNF, SAT is P, Π1SAT is coNP-c [8]. If ϕ is represented170

as a locally monotone propositional formula, TT, BDD, or DDNFs, both SAT and171

Π1SAT are in P [8, 36].172

Boolean networks (BNs). Recall that a BN of dimension n is defined by a func-173

tion f : Bn → Bn with its local (Boolean) function of the i-th component fi : Bn → B174

for i ∈ [1, n]. For a locally monotone BN, we assume that the orderings of compo-175

nents leading to their unate property are given. The local Boolean functions of the176

BN can be encoded with any of the aforementioned representations. In the case of177

truth tables, the dimension of the truth table a local function follows the number of178

components which it depends on. A function fi depends on component j if there179

exists a configuration y ∈ Bn such that fi(y[1,j−1]0y[j+1,n]) ̸= fi(y[1,j−1]1y[j+1,n]).180

In practice, we can significantly reduce the dimension of fi from n in the following181

way. If k is the number of components that fi depends on, we define its corresponding182

integer vector p ∈ [1, n]k to list up the indices of such components in the BN. Then,183

a truth table t with 2k rows can be constructed to satisfy fi(x) = txp1 ...xpk
for any184

configuration x ∈ Bn of the BN. Finally, a BN can be represented by its functional185

graph, the digraph of the image by f . It is also known as the synchronous state tran-186

sition graph. The vertices of such a graph are all the configurations Bn, and there is187

an edge from x to y if and only if y = f(x).188

Example 2.2. The BN f : B3 → B3 with189

f1(x) = (¬x1 ∨ ¬x2) ∧ x3190

f2(x) = x1 ∧ x3191

f3(x) = x1 ∨ x2 ∨ x3192

is locally monotone since all its local functions are unate. The functional graph of f193

is illustrated in Figure 2.2.194

2.2. Sub-hypercubes and minimal trap spaces of BNs. A sub-hypercube195

is an n-dimensional sub-graph of the n-hypercube such that some dimensions can196

be fixed to be singular values. It can be represented as a vector h ∈ {0, 1, ∗}n,197

which specifies for each dimension i ∈ [1, n] whether it is at a fixed value (0 or 1),198

or free (∗) in the sub-hypercube. The vertices of a sub-hypercube h are denoted by199

v(h) := {x ∈ Bn : ∀i ∈ [1, n], (hi ̸= ∗) ⇒ (xi = hi)}. A sub-hypercube h is smaller200
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101 111

011001

100

000 010

110

the synchronous transition

minimal trap space

Fig. 2.2. The functional graph and minimal trap spaces of the Boolean network f in Example 2.2

than a sub-hypercube space h′ whenever v(h) ⊆ v(h′). We also write this condition201

as h ⊆ h′.202

A trap space of a BN f is a sub-hypercube h ∈ {0, 1, ∗}n which is closed by f ,203

i.e., for each vertex x ∈ v(h), f(x) ∈ v(h) implying the its image by f is also a vertex204

of h. Remark that ∗n is always a trap space. A trap space h is minimal if there is205

no different trap space h′ ̸= h within itself; i.e., there exists no trap space h′ such206

that v(h′) ⊊ v(h). We use T(h) to denote the minimal trap space that contains all207

configurations in v(h). In other words, T(h) must satisfy three properties:208

• T(h) is a trap space,209

• h ⊆ T(h),210

• There exists no trap space h′ such that h ⊆ h′ ⊊ T(h).211

Remark that if h is a minimal trap space, then, for any configuration x ∈ v(h),212

T(x) = h.213

Example 2.3. The BN f of Example 2.2 has a fixed point {000} and a cyclic214

attractor {011, 101, 111}. See Figure 2.2 for its functional graph representation and215

minimal trap spaces. It has two minimal trap spaces: 000 and ∗ ∗ 1. Moreover,216

T(010) = T(01∗) = T(0 ∗ 0) = ∗ ∗ ∗.217

2.3. Upper bounds results to the computational complexity. We present218

all the upper bound results when local functions are given. All the polynomial time219

solvable cases in Table 1.1 are also discussed here, except the ones with a functional220

graph. We later present polynomial time algorithms for the remaining cases in Sec.221

3.4. The basic ideas and previous upper bound results are adopted from [23], yet222

with some extensions to the representations we are considering. All new results are223

summarized in Theorem 2.4.224

Consider NOT-TRAPSPACE(f,h), the problem of deciding if the given hyper-225

cube h is not closed by f : it is equivalent to deciding if there exists component226

i ∈ [1, n] with hi ̸= ∗ and z ∈ v(h) such that fi(z) ̸= hi, which boils down to SAT.227

Thus, the complementary problem TRAPSPACE(f,h) is in coNP for the general case228

and in P for the locally monotone case. For the same reason, TRAPSPACE(f,h) is229

in P when the local functions are given as truth tables, BDDs, or double DNFs.230

Now, consider NOT-MINTRAP(f,h), the problem of deciding if the hypercube231

h is either not closed by f or is closed but not minimal. It can be decided by first232

checking if h is a trap space and then checking the existence of another trap space h′233

which is strictly included in h. This problem is at most NPTRAPSPACE because only234

the inclusion h′ ⊆ h needs to be decided with an oracle for TRAPSPACE, and it can235

be done in a polynomial time. Thus, the complementary problem MINTRAP(f,h)236
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is in coNPTRAPSPACE, which is at most coNPcoNP = ΠP
2 in the general case. For237

the locally monotone case, MINTRAP(f,h) is in coNP because TRAPSPACE can be238

solved in a polynomial time. For the same reason, MINTRAP(f,h) is in coNP when239

the local functions are represented as truth tables, BDDs, or double DNFs.240

Finally, consider IN-MINTRAP(f,x) the problem of deciding whether the con-241

figuration x is a vertex of a minimal trap space of f . It boils down to decide242

MINTRAP(f , T(x)). The computation ofT(x) can be performed using Algorithm 2.1.243

Algorithm 2.1 The minimal trap space containing a configuration

Input: Local functions f , the initial configuration x
Output: The minimal trap space containing x (:= T(x))
1: h := x
2: for k ∈ [1, n] do
3: for i ∈ [1, n] with hi ̸= ∗ do
4: if ∃y ∈ v(h) s.t. fi(y) = 1− yi then
5: hi := ∗
6: return h

244

The procedure to check the existence in line 4 is equivalent to SAT. Thus, overall,245

this algorithm is in PNP in the general case, and in P for the locally monotone case.246

Analogously, T(x) can be computed in a polynomial time when the local functions are247

represented as truth tables, BDDs, or double DNFs. For all cases, the computational248

complexity for computing T(x) does not exceed that of MINTRAP. Therefore, the249

computational complexity of IN-MINTRAP is up to the complexity of MINTRAP for250

each.251

Theorem 2.4. Given hypercube h and BN f with its local functions represented252

as truth tables, BDDs, or double DNFs, TRAPSPACE(f,h) can be solved in a poly-253

nomial time.254

3. Results. In this section, we demonstrate computational complexity results255

for the TRAPSPACE, MINTRAP and IN-MINTRAP problems in BNs with different256

representations and the unate property. In Sec. 3.1, we present the exact computa-257

tional complexity for BNs with local functions given as propositional formulas, which258

is the most general case under our consideration. Results for the special case of locally259

monotone BNs are presented in Sec. 3.2. Those results are used in Sec. 3.3 to derive260

the computational complexity in the case of BNs with local functions represented261

with truth tables, binary decision diagrams, and double DNFs. The computational262

complexity for the BNs given as a functional graph is presented in Sec. 3.4.263

3.1. Local functions given as propositional formulas. Theorem 3.1 demon-264

strates that TRAPSPACE is coNP-hard when local functions are represented as gen-265

eral propositional formulas, which is the lower bound to the computational complexity.266

Combined with the previous upper bound results of [23], the completeness is shown.267

The reduction scheme is illustrated in Figure 3.1 as an interaction graph of the vari-268

ables in the reduced problem. A green arc with an arrow represents that the source269

variable positively affects the local function of the target variable (i.e., marginally270

increasing the source variable never decreases the value of the local function). A red271

arc with a bar represents that the source variable negatively affect the local function272

of the target variable. A blue arc with a circle represents that the interaction may273
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8 KYUNGDUK MOON, KANGBOK LEE, AND LOÏC PAULEVÉ

be either positive or negative according to a Boolean function involved in the local274

function. Otherwise, variables are not involved in the local function. Variables are275

grouped to either match with the variables of the original SAT problem or to indicate276

they are auxiliary variables.277

· · · xj · · · xn1+1

· · · ¬xj · · ·

ϕ(x[1,n1])

x

f(x)

∃y[1,n1]

j ∈ [1, n1]

Auxiliary

Positive literal

Negative literal

Interaction depending on literals

Fig. 3.1. Reduction from Π1SAT to TRAPSPACE for propositional formulas (Theorem 3.1).

Theorem 3.1. Given hypercube h and BN f with its local functions represented278

as propositional formulas, TRAPSPACE(f,h) is coNP-hard.279

Proof. Consider a Boolean function ϕ : Bn1 → B for n1 ∈ Z+ and the associated280

Π1SAT problem of deciding ∀y ϕ(y) = 1, which is coNP-complete. We construct BN281

f : Bn1+1 → Bn1+1 as282

∀i ∈ [1, n1], fi(x) = ¬xi283

fn1+1(x) = ϕ(x[1,n1])284

and hypercube h = ∗n11. We prove this theorem by showing that this Π1SAT problem285

is true if and only if TRAPSPACE(f,h) is true. If TRAPSPACE(f,h) is true, then286

∀z ∈ v(h), ϕ(z[1,n1]) = 1. Since z[1,n1] can have an arbitrary configuration in Bn1 ,287

∀y ϕ(y) must be true. On the other hand, if TRAPSPACE(f,h) is false, we can288

find configuration z ∈ Bn1 that satisfies fn1+1(z1) = ϕ(z) = 0. This can be used289

as a certificate that ∀y ϕ(y) is not true, and it can be verified in a polynomial time.290

Hence, the theorem holds.291

Theorem 3.6 and Theorem 3.7 demonstrate that MINTRAP and IN-MINTRAP292

are ΠP
2 -hard, respectively. Combined with the previous upper bound results in [23],293

their completeness is shown. Our proofs show that MINTRAP and IN-MINTRAP294

can be used to solve ΠP
2 SAT based on several tricks. First, a component xi with295

its local function fi = ¬xi always becomes free in a minimal trap space; see Remark296

3.2. We use this trick to encode Boolean variables quantified with ∀ to the BN we297

construct. Second, given a Boolean formula ϕ to be proven its satisfiability, we employ298

two auxiliary components that have a full control to override other local functions as299

either 0 or 1 whenever ϕ is true. We use this trick to construct a BN that has300
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00

01

1011

Fig. 3.2. The transition graph of g from z[n+1,n+2] to g(z)[n+1,n+2]

the full dimensional hypercube as its unique minimal trap space if and only if ϕ is301

satisfied. Note that those auxiliary components will be always presented as the last302

two components of the BN we construct; see Remarks 3.3–3.4 for details. Figure 3.3303

illustrates the reduction scheme.304

Remark 3.2. Let f : Bn → Bn with n ∈ Z+ be a BN. Given I ⊆ [1, n], suppose305

fi(x) = ¬xi for ∀i ∈ [1, n]. Then, any hypercube h ∈ {0, 1, ∗}n must satisfy T(h)i = ∗306

for all i ∈ I.307

Proof. For all i ∈ I, component xi can be updated to ¬xi and realized as both 0308

and 1. Therefore, T(h)i = ∗ for all i ∈ I to ensure that T(h) is closed by f .309

Remark 3.3. For a given Boolean function ϕ : Bn → B with n ∈ Z+, let f :310

Bn+2 → Bn+2 be a BN satisfying

{
fn+1(x) = ϕ(x[1,n]) ∧ ¬xn+2

fn+2(x) = xn+1 ∧ ¬xn+2

. Suppose hy-311

percube h ∈ {0, 1, ∗}n+2 contains z ∈ v(h) that satisfies ϕ(z[1,n]) = 1. Then,312

T(h)n+1 = T(h)n+2 = ∗.313

314

Proof. Let g : Bn+2 → Bn+2 that maps x 7→ x[1,n]f(x)[n+1,n+2]. Since z, f(z) ∈315

T(h) by the definition of a trap space, g(z) = z[1,n]f(z)[n+1,n+2] ∈ T(h). Therefore,316

T(h)n+1 = T(h)n+2 = ∗ if there exists k1, k2 ∈ Z such that gk1(z)n+1 = (1 −317

zn+1) and gk2(z)n+2 = (1− zn+2). Figure 3.2 shows projected transitions by g from318

z[n+1,n+2] to g(z)[n+1,n+2] constructed using ϕ(z[1,n]) = 1. Starting at any vector,319

there exists a transition path through which the (n+ 1)-th and (n+ 2)-th values are320

converted from the initial ones. Hence, the claim holds.321

Remark 3.4. Let f : Bn+2 → Bn+2 with n ∈ Z+ be a BN. For some i ∈ [1, n]322

and a given Boolean function ϕi : Bn → B, suppose the local function fi(x) is in the323

form of (ϕi(x[1,n])∧¬xn+1)∨xn+2. If hypercube h ∈ {0, 1, ∗}n+2 satisfies T(h)n+1 =324

T(h)n+2 = ∗, then T(h)i = ∗.325

Proof. Since T(h)n+1 = T(h)n+2 = ∗, there exists a configuration z ∈ v(T(h))326

such that (zn+1, zn+2) = (1, 0), which can be evaluated as fi(z) = 0. In addition, there327

exists another configuration z′ ∈ v(T(h)) such that z′n+2 = 1, which can be evaluated328

as fi(z) = 1. Hence, the image of fi can be both 0 and 1, implying T(h)i = ∗ to329

ensure that T(h) is closed by f .330

Lemma 3.5. Consider n1, n2 ∈ Z+ with n1 ≤ n2 and a Boolean function ϕ :331

Bn2 → B given as a propositional formula. Boolean formula ∀y[1,n1]∃y[n1+1,n2]ϕ(y)332

is true if and only if BN f : Bn2+2 → Bn2+2 with the local functions defined by333
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· · · xj · · · · · · xj · · · xn2+1 xn2+2

· · ·

(xj ∧ ¬xn2+1) ∨ xn2+2

· · · · · · ¬xj · · ·

xn2+1 ∧ ¬xn2+2

ϕ(x[1,n2]) ∧ ¬xn2+2

x

f(x)

∃y[1,n1]

j ∈ [1, n1]

∀y[n1+1,n2]

j ∈ [n1 + 1, n2]

Auxiliary

Positive literal

Negative literal

Interaction depending on literals

Fig. 3.3. Reduction from Π2SAT to MINTRAP and IN-MINTRAP for propositional formulas
(Lemma 3.5).

(3.1)–(3.4) has the unique trap space ∗n2+2.334

∀j ∈ [1, n1], fj(x) = (xj ∧ ¬xn2+1) ∨ xn2+2(3.1)335

∀j ∈ [n1 + 1, n2], fj(x) = ¬xj(3.2)336

fn2+1(x) = ϕ(x[1,n2]) ∧ ¬xn2+2(3.3)337

fn2+2(x) = xn2+1 ∧ ¬xn2+2(3.4)338

Proof. If ∀y[1,n1]∃y[n1+1,n2]ϕ(y) is true, any hypercube h ∈ {0, 1, ∗}n2+2
satisfies339

T(h) ⊇T(h[1,n1] ∗
n2−n1 h[n2+1,n2+2]) ∵ Remark 3.2340

⊇T(h[1,n1]∗
n2−n1+2) ∵ Remark 3.3341

⊇T(∗n2+2) ∵ Remark 3.4342

=∗n2+2
343

Therefore, ∗n2+2 is the unique (and thus minimal) trap space. For the remaining case344

where ∃y[1,n1]∀y[n1+1,n2]¬ϕ(y), ∗n2+2 is not a minimal trap space because a smaller345

trap space h′ = y[1,n1] ∗n2−n1 02 exists. This completes the proof.346

Theorem 3.6. Given hypercube h and BN f with its local functions represented347

as propositional formulas, MINTRAP(f,h) is ΠP
2 -hard.348

Proof. Given n1, n2 ∈ Z+ with n1 ≤ n2 and a Boolean function ϕ : Bn2 → B,349

consider the associated Π2SAT problem that deciding whether ∀y[1,n1]∃y[n1+1,n2]ϕ(y)350

is true, which is ΠP
2 -complete. By Lemma 3.5, this Π2SAT problem is true if and only351

if MINTRAP
(
f, ∗n2+2

)
is true for f defined by (3.1)–(3.4). Hence, the theorem holds.352

Theorem 3.7. Given configuration x and BN f with its local functions repre-353

sented as propositional formulas, IN-MINTRAP(f,x) is ΠP
2 -hard.354
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· · · xi · · · · · · xn+j · · · xn+k+1 xn+k+2

· · ·

(xi ∧ ¬xn+k+1) ∨ xn+k+2

· · · · · ·

(
cj

(
x[1,n]

)
∧ ¬xn+k+1

)
∨ xn+k+2

· · ·

xn+k+1 ∧ ¬xn+k+2

(∨k
j=1 xn+j

)
∧ ¬xn+k+2

x

f(x)

∃y[1,n]

i ∈ [1, n]

cj(y[1,n])

j ∈ [1, k]

Auxiliary

Positive literal

Negative literal

Interaction depending on literals

Fig. 3.4. Reduction from Π1SAT to MINTRAP and IN-MINTRAP for locally-monotone propo-
sitional formulas(Lemma 3.8).

Proof. Given n1, n2 ∈ Z+ with n1 ≤ n2 and a Boolean function ϕ : Bn2 → B,355

consider the associated Π2SAT problem that deciding whether ∀y[1,n1]∃y[n1+1,n2]ϕ(y)356

is true, which is ΠP
2 -complete. We prove the theorem by showing that the Π2SAT is357

true if and only if IN-MINTRAP(f,1n2+2) is true for f defined by (3.1)–(3.4).358

If ∀y[1,n1]∃y[n1+1,n2]ϕ(y), ∗n2+2 is the unique minimal trap space by Lemma359

3.5 and thus 1n2+2 belongs to a minimal trap space. For the remaining case where360

∃y[1,n1]∀y[n1+1,n2] ¬ϕ(y), we have361

T(1n2+2) ⊇T(1n1 ∗n2−n1 12) ∵ Remark 3.2362

⊇T(1n1∗n2−n1+2) ∵ xn2+2 = 1363

⊇T(∗n2+2) ∵ Remark 3.4364

= ∗n2+2 .365

However, ∗n2+2 is not a minimal trap space because there is a smaller trap space366

h′ = y[1,n1] ∗n2−n1 02. This completes the proof.367

3.2. Locally-monotone BNs with local functions given as propositional368

formulas. We show a polynomial-time encoding of any DNF as a BN such that369

Π1SAT problem reduces to MINTRAP and IN-MINTRAP problems as illustrated370

in Figure 3.4. The proofs are given in Theorem 3.9 and 3.10, respectively. Let us371

consider any Boolean function ϕ : Bn → B represented in DNF as a list of k conjunctive372

clauses. For j ∈ [1, k], we use cj(y) to denote the j-th clause of ϕ evaluated with373

y ∈ Bn. Whenever k = 0, ϕ is considered to be false. Whenever a clause is empty374

it is equivalent to be true. We can assume that each clause cj(y) does not contain a375

contradiction caused by the same component (e.g., yi ∧ ¬yi). Therefore, all clauses376

are unate.377

Lemma 3.8. Let us consider n, k ∈ Z+ and a Boolean function ϕ : Bn → B given378
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as a DNF with k conjunctive clauses; i.e., ϕ(y) :=
∨k

j=1 cj(y). Boolean formula379

∀yϕ(y) is true if and only if BN f : Bn+k+2 → Bn+k+2 with the local functions380

defined by (3.5)–(3.8) has the unique minimal trap space ∗n+k+2.381

∀i ∈ [1, n], fi(x) = (xi ∧ ¬xn+k+1) ∨ xn+k+2(3.5)382

∀j ∈ [1, k], fn+j(x) = (cj(x[1,n]) ∧ ¬xn+k+1) ∨ xn+k+2(3.6)383

fn+k+1(x) =
(∨k

j=1 xn+j

)
∧ ¬xn+k+2(3.7)384

fn+k+2(x) = xn+k+1 ∧ ¬xn+k+2(3.8)385

Proof. If ∀y ϕ(y) is true, any hypercube h ∈ {0, 1, ∗}n+k+2
satisfies T(h) =386

∗n+k+2 by the Case (i) and Case (ii).387

Case (i) : When hn+k+1 = 0,388

Eq. (3.6) can be simplified to cj(x[1,n]) ∨ xn+k+2. For an arbitrary element389

z ∈ v(h), we can find j∗ ∈ [1, k] such that cj∗(x[1,n]) = 1 since ∀y ϕ(y) is390

true. Consequently,391

T(h) ⊇T(h[1,n+j∗−1]1h[n+j∗+1,n+k+2]) ∵ xn+j∗ can be evaluated to be 1392

⊇T(h[1,n+j∗−1]1h[n+j∗+1,n+k]∗2) ∵ Remark 3.3393

⊇T(∗n+k+2) ∵ Remark 3.4394

= ∗n+k+2 .395

Case (ii) : When hn+k+1 ∈ {1, ∗},396

Eq. (3.8) simplifies to ¬xn+k+2. Consequently,397

T(h) ⊇T(h[1,n+k+1]∗) ∵ Remark 3.2398

⊇T(h[1,n]1
khn+k+1∗) ∵ xn+k+2 can be evaluated to be 1399

⊇T(h[1,n]1
k∗2) ∵ Remark 3.3400

⊇T(∗n+k+2) ∵ Remark 3.4401

= ∗n+k+2 .402

Therefore, ∗n+k+2 is the unique minimal trap space if ∀y ϕ(y) is true. On the other403

hand, if ∃y¬ϕ(y) is true, then ∗n+k+2 is not a minimal trap space because there is a404

smaller trap space h′ = y0k+2. Hence the lemma holds.405

Theorem 3.9. Given hypercube h and locally-monotone BN f with local functions406

represented as propositional formulas, MINTRAP(f,h) is coNP-hard.407

Proof. Given n ∈ Z+ and a Boolean function ϕ : Bn → B in a DNF with k408

conjunctive clauses; i.e., ϕ(y) :=
∨k

j=1 cj(y), consider the associated Π1SAT problem409

∀y ϕ(y), which is coNP-complete. By Lemma 3.8, this Π1SAT problem is true if410

and only if MINTRAP(f ,∗n+k+2) is true for f defined by (3.5)–(3.8). Since all local411

functions are unate, the theorem holds.412

Theorem 3.10. Given configuration x and locally-monotone BN f with local413

functions represented as propositional formulas, IN-MINTRAP(f,x) is coNP-hard.414

Proof. Suppose n ∈ Z+ and a Boolean function ϕ : Bn → B in a DNF with415

k conjunctive clauses are given (i.e., ϕ(y) :=
∨k

j=1 cj(y)). Consider the associated416

Π1SAT problem ∀y ϕ(y), which is coNP-complete. We prove the theorem by showing417
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that this Π1SAT problem is true if and only if IN-MINTRAP(f ,1n+k+2) is true for f418

defined by (3.5)–(3.8).419

If ∀y ϕ(y) is true, then ∗n+k+2 is the unique trap space by Lemma 3.8 and thus420

1n+k+2 belongs to a minimal trap space. For the remaining case where ∃y¬ϕ(y) is421

true,422

T(1n+k+2) ⊇T(1n+k∗2) ∵ xn+k+2 = 1423

⊇T(∗n+k+2) ∵ Remark 3.4424

= ∗n+k+2 .425

However, ∗n+k+2 is not a minimal trap space because there is a smaller trap space426

h′ = y0k+2. This completes the proof.427

3.3. With local functions represented as truth tables, BDDs, and dou-428

ble DNFs. We now consider any BN whose local functions are represented either429

as truth tables, BDDs, or double DNFs. In Theorem 3.13, we prove the lower bound430

results to the computational complexity of MINTRAP and IN-MINTRAP problems431

by reduction of 3DNF-Π1SAT. Combined with the upper bound results presented in432

Sec. 2.3, the completeness is shown.433

Consider the encoding of the clauses ϕ as the BN f defined by (3.5)–(3.8). Remark434

that all local functions but fn+k+1 in (3.7) depend on at most 5 variables, and thus435

each of them can be encoded in constant space and time as a truth table, a BDD,436

or double DNFs. However, the local function fn+k+1 in (3.7) depends on k + 1437

variables, where k is the number of clauses in the DNFs. Therefore, converting this438

local function may require an exponential time and space. We resolve this issue by439

appending a small number of auxiliary variables that correspond to local functions440

having a constant size. Note that (3.7) is true whenever at least one of the clauses441

can be evaluated to be true and the component xn+k+2 is false. This definition can442

be incorporated by appending k additional components with at most two literals to443

the BN so that the j-th element of the new components is evaluated to be true if444

either cj or the (j − 1)-th element of the new components can be true for j ∈ [1, k].445

As a consequence, the k-th of the additional components is true whenever at least446

one clause of ϕ can be evaluated to be true. We adapt this idea by expanding locally447

monotone BN (3.5)–(3.8) to (3.9)–(3.13), which can be encoded in constant space448

and time as truth table, BDD, or double DNFs. This reduction scheme is illustrated449

in Figure 3.5. We employ Remark 3.11 and Lemma 3.12 to prove Theorem 3.13.450

∀i ∈ [1, n] fi(x) = (xi ∧ ¬xn+2k+1) ∨ xn+2k+2(3.9)451

∀j ∈ [1, k], fn+j(x) = (cj(x[1,n]) ∧ ¬xn+2k+1) ∨ xn+2k+2(3.10)452

∀j ∈ [1, k], fn+k+j(x) = xn+j ∨ (xn+k+j−1 ∧ (j > 1))(3.11)453

fn+2k+1(x) = xn+2k ∧ ¬xn+2k+2(3.12)454

fn+2k+2(x) = xn+2k+1 ∧ ¬xn+2k+2(3.13)455

456

Remark 3.11. Consider a BN f given as (3.9)–(3.13). If T(h)i = ∗ for all457

i ∈ [n+ 1, n+ k], we can sequentially show that T(h)n+k+j = ∗ by increasing j from458

1 to k. This is because T(h)n+j and T(h)n+k+j−1 are both ∗ and thus Eq.(3.11) can459

be evaluated to be both 0 and 1.460

461
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· · · xi · · · · · · xn+j · · · · · · xn+k+j · · · xn+2k+1 xn+2k+2

· · ·

(xi ∧ ¬xn+2k+1) ∨ xn+2k+2

· · · · · ·

(
cj

(
x[1,n]

)
∧ ¬xn+2k+1

)
∨ xn+2k+2

· · · · · ·

xn+j ∨ (xn+k+j−1 ∧ (j > 1))

· · ·

xn+2k ∧ ¬xn+2k+2

xn+2k+1 ∧ ¬xn+2k+2

x

f(x)

∃y[1,n]

i ∈ [1, n]

cj(y[1,n])

j ∈ [1, k]

∨j
j′=1 cj′(y[1,n])

j ∈ [1, k]

Auxiliary

Positive literal

Negative literal

Sign depending on input expression

Fig. 3.5. Reduction from Π1SAT to MINTRAP and IN-MINTRAP for truth table, binary
decision diagrams, and double DNFs (Lemma 3.12).

Lemma 3.12. Consider n ∈ Z+ and a Boolean function ϕ : Bn → B given as462

a 3DNF with k conjunctive clauses that contain at most three literals, i.e., ϕ(y) :=463 ∨k
j=1 cj(y). Boolean formula ∀yϕ(y) is true if and only if BN f : Bn+2k+2 → Bn+2k+2464

with the local functions defined by (3.9)–(3.13) has the unique minimal trap space465

∗n+2k+2.466

Proof. If ∀y ϕ(y) is true, any hypercube h ∈ {0, 1, ∗}n+2k+2
satisfies T(h) =467

∗n+2k+2 by the Case (i) and Case (ii).468

Case (i) : When hn+2k+1 = 0,469

Eq. (3.10) can be simplified to cj(x[1,n])∨xn+2k+2 because every configuration470

satisfies xn+2k+1 = 0. For an arbitrary element z ∈ v(h), we can find j∗ ∈471

[1, k] such that cj∗(x[1,n]) = 1 since ∀y ϕ(y) is true. Therefore, T(h)n+j∗ ∈472

{1, ∗} and subsequently,473

T(h) ⊇T(h[1,n+k+j∗−1]1h[n+k+j∗+1,n+2k+2])474

∵ xn+k+j∗ can be evaluated to be 1475

⊇T(h[1,n+k+j∗−1]1
(k−j∗+1)h[n+2k+1,n+2k+2])476

∵ Increasing j from (j∗ + 1) to k,xn+k+j477

can be sequentially evaluated to be 1478

⊇T(h[1,n+k+j∗−1]1
(k−j∗+1)∗2) ∵ Remark 3.3479

⊇T(∗n+kh[n+k+1,n+k+j∗−1]1
(k−j∗+1)∗2) ∵ Remark 3.4480

⊇T(∗n+2k+2) ∵ Remark 3.11481

= ∗n+2k+2 .482
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Case (ii) : When hn+2k+1 ∈ {1, ∗},483

Eq. (3.13) simplifies to ¬xn+2k+2. Consequently,484

T(h) ⊇T(h[1,n+2k+1]∗) ∵ Remark 3.2485

⊇T(h[1,n]1
kh[n+k+1,n+2k+1]∗) ∵ xn+2k+2 can be evaluated to be 1486

⊇T(h[1,n]1
2khn+2k+1∗)487

∵ ∀j ∈ [1, k],xn+k+j can be evaluated to be 1 by xn+j = 1488

⊇T(h[1,n]1
2k∗2) ∵ Remark 3.3489

⊇T(∗n+k1k∗2) ∵ Remark 3.4490

⊇T(∗n+2k+2) ∵ Remark 3.11491

= ∗n+2k+2 .492

Therefore, ∗n+2k+2 is the unique minimal trap space. On the other hand, if ∃y¬ϕ(y)493

is true, ∗n+2k+2 is not a minimal trap space because there is a smaller trap space494

h′ = y02k+2. Hence the lemma holds.495

Theorem 3.13. MINTRAP and IN-MINTRAP are coNP-hard for BNs with local496

functions represented with truth tables, binary decision diagrams, and double DNFs.497

Proof. The local functions defined by (3.9)–(3.13) can be encoded in a polynomial498

time as truth tables, BDDs, or double DNFs. Therefore, the theorem holds by Lemma499

3.12.500

3.4. Functional graphs of BNs . Now consider the case when the BN f :501

Bn → Bn is represented by its functional digraph G = (V,E) with V = Bn and502

E = {(x, f(x)) | x ∈ Bn}. Given a vertex x ∈ V , we write out(x) = {y | (x,y) ∈ E}.503

Note that in the case of the functional graph, out(x) = {f(x)}, which is a singleton504

set. Given a set of vertices V ′ ⊆ V , we can consider a subgraph GV ′ = (V ′, {(u,w) ∈505

E | u ∈ V ′, w ∈ V ′}).506

For a given sub-hypercube h ∈ {0, 1, ∗}n to be a trap space, each x ∈ v(h) must507

verify that out(x) ⊆ v(h). Therefore, TRAPSPACE can be solved in time linear to508

the size of G (number of vertices plus edges, |V |+ |E|).509

Algorithm 3.3 for the decision of MINTRAP uses two auxiliary functions:510

SUB-HYPERCUBE (Algorithm 3.1) and SATURATE (Algorithm 3.2). The function511

SUB-HYPERCUBE returns the smallest enclosing sub-hypercube for a given a non-empty512

sublist of vertices W ⊆ V . From the resulting sub-hypercube, the function SATURATE513

computes its smallest enclosing trap space.514

Algorithm 3.1 SUB-HYPERCUBE

Input: Sublist of vertices W
Output: The smallest sub-hypercube enclosing W (:= h)
1: h = W1

2: for x ∈ W do
3: for i ∈ [1, n] do
4: if (hi ∈ B) and (hi ̸= xi) then
5: hi := ∗
6: return h
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Algorithm 3.2 SATURATE

Input: Sublist of vertices W
Output: The smallest sub-hypercube enclosing W closed by f (:= h)
1: h := SUB-HYPERCUBE(W )
2: repeat
3: h′ := h
4: W := v(h) ∪

⋃
u∈v(h) out(u)

5: h := SUB-HYPERCUBE(W )
6: until h = h′

7: return h

Remark that SATURATE runs in a polynomial time to the size of G as the loop in515

line 2-5 is performed at most n times.516

One can decide whether the sub-hypercube h is a minimal trap space by com-517

puting the terminal strongly connected components of G which are enclosed in h518

and verify that their smallest enclosing trap space is h. Indeed, consider that h is a519

trap space. By definition, the saturation of any set of its vertices gives a trap spaces520

which is either equal to or smaller than h. Then, remark that any trap space within521

h contains at least one terminal strongly connected component of Gv(h). Therefore,522

it is sufficient to verify that the saturation of all these terminal strongly connected523

components are not strictly smaller than h to determine that h is minimal.524

We call the algorithm computing the terminal strongly connected components525

terminal-SCCs and it can be done in a polynomial time to the size of G (e.g., with526

Tarjan’s algorithm [33]).527

Algorithm 3.3 MINTRAP (functional graph)

Input: The BN G, a candidate minimal trap space h
Output: Whether h is a minimal trap space of G
1: if not TRAPSPACE(G, h) then
2: return False
3: tSCCs := terminal-SCCs(Gv(h))
4: for each W in tSCCs do
5: if SATURATE(W ) ̸= h then
6: return False
7: return True

This algorithm runs in a polynomial time to the size of G. Finally, remark that528

IN-MINTRAP(f , x) can be decided using IS MINTRAP(G, SATURATE({x})), which also529

runs in a polynomial time to the size of G.530

Theorem 3.14. TRAPSPACE, MINTRAP, and IN-MINTRAP are in P for BNs531

given as their functional graph.532

The functional graph of f corresponds to the so-called state transition graph with533

the synchronous (parallel) update mode: each edge corresponds to a synchronous534

transition. One can remark that the above algorithms give equivalent results with the535

fully asynchronous state transition graph where out′(x) = {y ∈ Bn | ∃i ∈ [1, n],yi =536

fi(x),∀j ∈ [1, n], j ̸= i,xj = yj}. Indeed, SUB-HYPERCUBE({x, f(x)}) is always equal537

to SUB-HYPERCUBE({x} ∪ out′(x)); remark that, for any i ∈ [1, n], fi(x) ̸= xi if and538
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only if there exists y ∈ out′(x) such that yi ̸= xi.539

4. Conclusion. In this paper, we characterized the computational complexity540

of three important decision problems related to trap spaces in Boolean networks con-541

sidering various representations and the locally monotone case. We demonstrated542

that, in general, determining minimal trap space properties and the membership of543

configurations to minimal trap spaces are equivalent to solving the satisfiability of544

Boolean formulas with two alternating quantifiers ∀ and ∃. Hence, our results show545

that they are ΠP
2 -complete. However, whenever restricting to the cases whenever BN546

is locally monotone, or whenever its local functions are encoded as truth tables, bi-547

nary decision diagrams, or double DNFs (such as Petri nets encodings of BNs), the548

complexity drops by one level in the polynomial hierarchy and becomes equivalent to549

Π1SAT. These three latter encodings are well-known representations for which SAT550

and Π1SAT decisions are in P. Future work may consider other encodings sharing these551

complexity properties, such as deterministic decomposable negation normal forms [9],552

and deriving more generic proofs to this class of encodings. Finally, whenever the553

BN is given by its functional graph (corresponding to its synchronous state transition554

graph), minimal trap space properties can be decided by deterministic algorithms in555

a polynomial time.556

In practice, solving coNP problems can be tackled with SAT solvers, whereas557

solving ΠP
2 necessitates more elaborated approaches, such as Answer-Set Program-558

ming [11]. Another recent approach is to decompose the problem into two parts and559

alternately solving them; one seeks for a candidate solution by relaxing quantifier ∀ as560

∃, and then another verifies whether the candidate is valid to the original problem. If561

not, a proper constraint is added to the prior problem to remove the candidate from562

the solution space, and the procedure is repeated. This approach has been used to563

control minimal trap spaces [29] or fixed points [19].564

Future direction may consider studying the computational complexity of problems565

related to the set of minimal trap spaces of a BN, such as deciding whether all the566

minimal trap spaces satisfy a given property. This will give insight into the complexity567

for control problems related to minimal trap spaces in BNs, as tackled in [22, 30].568
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