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COMPUTATIONAL COMPLEXITY OF MINIMAL TRAP SPACES IN
BOOLEAN NETWORKS*

KYUNGDUK MOON't, KANGBOK LEE', AND LOIC PAULEVE}

Abstract. A Boolean network (BN) is a discrete dynamical system defined by a Boolean function
that maps to the domain itself. A trap space of a BN is a generalization of a fixed point, which is
defined as the sub-hypercubes closed by the function of the BN. A trap space is minimal if it does not
contain any smaller trap space. Minimal trap spaces have applications for the analysis of attractors
of BNs with various update modes. This paper establishes the computational complexity results
of three decision problems related to minimal trap spaces: the decision of the trap space property
of a sub-hypercube, the decision of its minimality, and the decision of the membership of a given
configuration to a minimal trap space. Under several cases on Boolean function representations, we
investigate the computational complexity of each problem. In the general case, we demonstrate that
the trap space property is coNP-complete, and the minimality and the membership properties are
Hg-complete. The complexities drop by one level in the polynomial hierarchy whenever the local
functions of the BN are either unate, or are represented using truth-tables, binary decision diagrams,
or double DNFs (Petri net encoding): the trap space property can be decided in a polynomial time,
whereas deciding the minimality and the membership are coNP-complete. When the BN is given as
its functional graph, all these problems are in P.

Key words. Automata network, Trap space, Computational complexity, Boolean function
representation, System dynamics, Attractors

MSC codes. 68Q17, 68R07, 94C11, 37TM22, 37N25

1. Introduction. A Boolean network (BN) is a dynamical system defined by a
function f of the Boolean domain with a fixed dimension n that maps to the domain
itself, i.e., f : B" — B™ with B = {0,1}. The function mapping to a component of the
image of f is called a local function. We denote the local function mapping to the i-th
component of the image as f; : B* — B for ¢ € {1,...,n}. Given a Boolean vector
x € B” referred to as a configuration, one can define a set of succeeding configurations
by f following an update mode [3, 14, 25, 34], leading to a dynamical system. For
instance, the synchronous (or parallel) update mode associates f(x) as the unique
succeeding configuration of x by f, while the fully asynchronous mode considers any
configuration resulted from the update of a single component as successors, leading
to non-deterministic dynamics. BNs are studied in various disciplines such as discrete
mathematics [2, 28] and dynamical system theory [5, 12, 24]. They also have wide
applications to the modeling of complex systems such as biological systems [1, 15, 18,
31, 37], and social behaviors [13, 27], to name but a few.

The literature addresses a vast zoo of update modes, generating possibly different
dynamics from the same BN f [26]. In this context, the dynamical properties of BNs
which are independent of the update mode are of particular interest because they
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2 KYUNGDUK MOON, KANGBOK LEE, AND LOIC PAULEVE

show inherent dynamical properties of a given BN. The prime example is the study of
fixed points of f, i.e., the configurations x such that f(x) = x. Indeed, a fixed point
of f can be assumed to be a stable state of dynamics that does not change after a
transition with any update mode. Conversely, a stable state under the synchronous
or the asynchronous update mode is a fixed point. Nevertheless, some specific update
modes may exhibit additional stable states [26]. The notion of fixed points of f can
be generalized to trap spaces. A trap space is a sub-hypercube (an n-dimensional
sub-graph of the n-dimensional hypercube where some dimensions can be fixed to be
singular values) closed by f such that for any vertex x of the trap space, f(x) is also
one of its vertices. A minimal trap space is a trap space that contains no other trap
spaces. Therefore, a fixed point of f is a specific case of minimal trap spaces where
all dimensions are fixed.

It is important to remark that trap spaces are independent of the update mode [23].]]
Nevertheless, minimal trap spaces have also been studied with regard to attractors,
which depend on the update mode and are important features of the long-term dy-
namical properties of BNs [15]. Given an update mode, an attractor is defined as an
inclusion-wise minimal set of configurations which are closed by transitions. Equiva-
lently, an attractor is a set of configurations satisfying the following two conditions.
First, there exists a sequence of transitions between any pair of its configurations.
Second, if there exists a sequence of transitions from one of its configuration x to
another configuration x’, then they belong to the same attractor. If an attractor is
composed by a single configuration, it is a fixed point; otherwise, it is called a cyclic
attractor. It appears that any minimal trap space necessarily encloses at least one
attractor of any update mode [16, 23, 26]. Moreover, minimal trap space that are not
fixed points enclose necessarily at least one (a)synchronous cyclic attractors. Actually,
for a large range of models of biological networks, minimal trap spaces approximate
well their asynchronous attractors [17]. Beside the synchronous and the asynchronous
update mode, minimal trap spaces are exactly the attractors of BNs under the most
permissive update mode [23, 25], which guarantees to capture all transitions realized
by any multi-valued refinement of the BN.

So far, the literature has essentially focused on algorithms and implementations
for enumerating minimal trap spaces of BNs [16, 23, 35]. Nevertheless, whereas these
algorithms indicate upper bounds for the computational complexity of decision prob-
lems related to minimal trap spaces, no lower bound has been characterized. In
this paper, we provide computational complexity results of problems related to the
minimal trap spaces. We focus on three fundamental decisions problems:
TRAPSPACE(f, h) :

Given a BN f and a sub-hypercube h, h is a trap space of f.
MINTRAP(f, h) :

Given a BN f and a sub-hypercube h, h is a minimal trap space of f.
IN-MINTRAP(f, x) :

Given a BN f and a configuration x, x is a vertex of a minimal trap space of

f-

We study the computational complexity of these problems depending on Boolean
function representations and on the unate property of local functions, as summarized
in Table 1.1. The label “-¢” indicates the completeness of the problem. In the case of
Boolean functions represented as propositional formulas (PF), upper bounds of these
three decisions problems have been determined in [23]: TRAPSPACE is in coNP,
whereas MINTRAP and IN-MINTRAP are in II¥. Moreover, whenever the BN is lo-
cally monotone, i.e., each of its local functions is unate (its expression does not contain
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a variable appearing both positively and negatively), they showed that TRAPSPACE
isin P, whereas MINTRAP and IN-MINTRAP are in coNP. We complete the results of
[23] by demonstrating the lower bound results for each corresponding case. We further
consider three representations for local functions: truth tables (TT), binary decision
diagrams (BDD), and double disjunctive normal forms (DDNFs). These representa-
tions have practical relevance since binary decision diagrams are frequently employed
by software [20] and double DNFs are employed by Petri nets [7, 21, 35]. For all
three representations, the same computational complexities are demonstrated as the
locally monotone case. Finally, we also consider a BN represented by its functional
graph (FG), which matches with the state transition graph under the synchronous
update mode: this graph associates each state in B™ to its image by f. Therefore, we
consider two classes of representations of BNs: either by the representation of their
local functions, or by the representation of the global function f.

TABLE 1.1
The computational complexity of decision problems related to trap spaces

Boolean network Problems
Encoding  Unate property TRAPSPACE MINTRAP IN-MINTRAP
Representation with local functions
PF General coNP-cf 5 -ct 15 -cf
PF Locally monotone pf coNP-cf coNP-cf
TT General P coNP-c coNP-c
BDD General P coNP-c coNP-c
DDNFs General P coNP-c coNP-c
Representation with a state transition graph
FG General P P P

fthe upper bound results are presented in [23]

The rest of this paper is organized as follows. In Sec. 2, we introduce notations
and terminologies that are used to define the problems and explain the results. In
Sec. 3, we provide computational complexity results of these problems in different
BN settings. Sec. 4 provides a concluding remark.

2. Preliminaries. We denote integers ranging from 1 ton by [1,n] :={1,...,n}J}
We use an interval subscript of a vector to denote the list of components lying on the
interval’s range. For example, x[; ,,] denotes the vector concatenating the first ny
components of vector x.

2.1. Representations and the unate property of local functions in Bool-
ean networks. A Boolean function on n variables is of the form ¢ : B™ — B. In this
context, the following decision problems are relevant to our study. The SAT problem
is to decide whether there exists a configuration x € B™ such that ¢(x) = 1. We can
generalize SAT by partitioning variables and alternately putting quantifiers ‘3’ and
‘Y’ on them. Given the number of quantifiers [ € Z™, and the number of indices of
partitions nq,...,n; such that n; < nj;; for each j € [1,1 — 1], we can define the
following generalization to X;SAT:

YSAT: decide if 3X[1 7,1 YX [0, 41,n0) X [no+1,n) - - P(X) = 1.

Analogously, we can define I[;SAT as the complementary problem of 3;SAT. Notably,
3SAT and II;SAT are together called the true quantified Boolean formula problem,

This manuscript is for review purposes only.



122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
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which is well known as a complete problem in the polynomial hierarchy; we refer
to [4] and [32] for the details. Another relevant class is PN the group of prob-
lems that are polynomial time solvable using an oracle for NP. It is well-known that
PNP C Y5 NIIE. In this paper, we limit our focus to SAT, II;SAT, and TI,SAT. The
computational complexity of these problems depends on the representation of ¢ and
its unate property listed as follows.

As propositional formula. Boolean function ¢ can be represented as a proposi-
tional formula, which consists of Boolean variables x1,...,x, and logical connectives
A (conjunction), V (disjunction), and — (negation). The size of a formula is its length,
which is proportional to the total count of variables and connectives appearing in the
input string.

As disjunctive normal form (DNF). Boolean function ¢ can be represented as a
propositional formula consisting of a disjunction of conjunctive clauses. Negations are
allowed only on variables and not on clauses. A DNF can be equivalently represented
as a list of sets of literals, where a literal is either a variable or a negated variable.
Any propositional formula can be represented in DNF with clauses consisting of at
most three literals (3DNF), although its size may be exponentially large.

Unate (monotone) case. Boolean function ¢ is unate if there exists an ordering
of components <€ {<, >}" such that Vx,y € B", ((x1 1Y)A A (X = yn)> =
#(x) < ¢(y). In other words, for each component j € [1,n] and every configuration
x € B", ¢(X[1,j71]0X[j+1,n]) =j ¢(X[1,j71]1x[j+1,n]) holds.

As truth table (TT). Boolean function ¢ can be encoded as binary vector ¢ with
2" rows, where for each row m € [1,2"], ., is the value of f;(bin(m — 1)) with bin(m)
being the binary representation of m.

As binary decision diagram (BDD). A BDD has a directed acyclic graph structure
with a unique root and at most two terminal nodes among 0 and 1 [10]. Each non-
terminal node is associated to a component i € [1,n] and has two out-going edges,
one labeled with 0 and the other with 1. Moreover, any path from the root to a
terminal node crosses at most one node associated to each component. Then, each
configuration x corresponds to a single path from the root to a terminal node such
that the edge emanating from a node associated with component 7 is labeled 1 if and
only if x; = 1. This characterization captures common variants of BDDs, including
reduced ordered BDDs [36].

As double DNF' (DDNF'). Boolean function ¢ can be represented with two DNF's
#° and @' of n variables x1,...,x, such that ¢° is satisfied if and only if ¢(x) = 0,
and ¢! is satisfied if and only if ¢(x) = 1. This representation is typically employed
in Petri nets [6, 7] and automata networks [21].

Ezample 2.1. We consider propositional formula f = x; A =(x2 A =x3) and show
its different representation schemes and related explanations.

o (x1 A —X2)V (x1 Ax3) is an equivalent DNF representation of f.

e f is unate with < being a vector (<,>,<) € {<,>}%. On the other hand,
another Boolean formula (—x; A X2) V (x1 A =X2) is not unate.

e The truth table representation of f is t = 00001101, assuming that bin(1) =
001.

e One of the double DNF representations of f is (¢%, ¢') with ¢° = (=x;) V
(x2 A =x3) and ¢! = (x1 A =x2) V (x1 A X3);

e An equivalent BDD representation of f is the graph in Figure 2.1:

We use some known computational complexity results in the literature as follows.
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Fic. 2.1. A binary decidion diagram representation of the Boolean network f in Example 2.1

If ¢ is a general propositional formula, SAT is NP-c, II; SAT is coNP-c, and I1,SAT is
IIo-c [4]. If ¢ is a DNF or a 3DNF, SAT is P, II; SAT is coNP-c [8]. If ¢ is represented
as a locally monotone propositional formula, TT, BDD, or DDNFs, both SAT and
IT; SAT are in P [8, 36].

Boolean networks (BNs). Recall that a BN of dimension n is defined by a func-
tion f : B™ — B" with its local (Boolean) function of the i-th component f; : B — B
for i € [1,n]. For a locally monotone BN, we assume that the orderings of compo-
nents leading to their unate property are given. The local Boolean functions of the
BN can be encoded with any of the aforementioned representations. In the case of
truth tables, the dimension of the truth table a local function follows the number of
components which it depends on. A function f; depends on component j if there
exists a configuration y € B" such that fi(y;1,;—1)0¥[+1,0)) # fi(Yi-111Y[+1,n])-
In practice, we can significantly reduce the dimension of f; from n in the following
way. If k is the number of components that f; depends on, we define its corresponding
integer vector p € [1,7n] to list up the indices of such components in the BN. Then,
a truth table ¢ with 2* rows can be constructed to satisfy f; (x) = bxp, o xp, for any
configuration x € B™ of the BN. Finally, a BN can be represented by its functional
graph, the digraph of the image by f. It is also known as the synchronous state tran-
sition graph. The vertices of such a graph are all the configurations B”, and there is
an edge from x to y if and only if y = f(x).

Ezample 2.2. The BN f : B3 — B? with

f1(x) = (%1 V =%x2) A X3
fQ(X) :Xl/\Xg
f3(X) :Xl\/Xg\/Xg

is locally monotone since all its local functions are unate. The functional graph of f
is illustrated in Figure 2.2.

2.2. Sub-hypercubes and minimal trap spaces of BNs. A sub-hypercube
is an m-dimensional sub-graph of the n-hypercube such that some dimensions can
be fixed to be singular values. It can be represented as a vector h € {0,1,x}",
which specifies for each dimension i € [1,n] whether it is at a fixed value (0 or 1),
or free () in the sub-hypercube. The vertices of a sub-hypercube h are denoted by
v(h) := {x € B" : Vi € [1,n], (h; # *) = (x; = h;)}. A sub-hypercube h is smaller

This manuscript is for review purposes only.
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100 110

010 the synchronous transition
001011 |:| minimal trap space

101 111

Fic. 2.2. The functional graph and minimal trap spaces of the Boolean network f in Example 2.2

than a sub-hypercube space h’ whenever v(h) C v(h"). We also write this condition
ash Ch’.

A trap space of a BN f is a sub-hypercube h € {0, 1, %}™ which is closed by f,
i.e., for each vertex x € v(h), f(x) € v(h) implying the its image by f is also a vertex
of h. Remark that %™ is always a trap space. A trap space h is minimal if there is
no different trap space h’ # h within itself; i.e., there exists no trap space h’ such
that v(h") C v(h). We use T(h) to denote the minimal trap space that contains all
configurations in v(h). In other words, T(h) must satisfy three properties:

e T(h) is a trap space,

e hC T(h),

e There exists no trap space h’ such that h C h’/ C T(h).
Remark that if h is a minimal trap space, then, for any configuration x € wv(h),
T(x) = h.

Ezample 2.3. The BN f of Ezample 2.2 has a fixed point {000} and a cyclic
attractor {011, 101, 111}. See Figure 2.2 for its functional graph representation and
minimal trap spaces. It has two minimal trap spaces: 000 and * x 1. Moreover,
T(010) = T(01%) = T(0 % 0) = = * *.

2.3. Upper bounds results to the computational complexity. We present
all the upper bound results when local functions are given. All the polynomial time
solvable cases in Table 1.1 are also discussed here, except the ones with a functional
graph. We later present polynomial time algorithms for the remaining cases in Sec.
3.4. The basic ideas and previous upper bound results are adopted from [23], yet
with some extensions to the representations we are considering. All new results are
summarized in Theorem 2.4.

Consider NOT-TRAPSPACE(f, h), the problem of deciding if the given hyper-
cube h is not closed by f: it is equivalent to deciding if there exists component
i € [1,n] with h; # % and z € v(h) such that f;(z) # h;, which boils down to SAT.
Thus, the complementary problem TRAPSPACE(f, h) is in coNP for the general case
and in P for the locally monotone case. For the same reason, TRAPSPACE(f, h) is
in P when the local functions are given as truth tables, BDDs, or double DNF's.

Now, consider NOT-MINTRAP(f, h), the problem of deciding if the hypercube
h is either not closed by f or is closed but not minimal. It can be decided by first
checking if h is a trap space and then checking the existence of another trap space h’
which is strictly included in h. This problem is at most NPTRAPSPACE hocayse only
the inclusion h’ C h needs to be decided with an oracle for TRAPSPACE, and it can
be done in a polynomial time. Thus, the complementary problem MINTRAP(f, h)

This manuscript is for review purposes only.
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237 is in coNPTRAPSPACE " which is at most coNP®NP = TIY in the general case. For
238 the locally monotone case, MINTRAP(f, h) is in coNP because TRAPSPACE can be
239 solved in a polynomial time. For the same reason, MINTRAP(f, h) is in coNP when
240 the local functions are represented as truth tables, BDDs, or double DNF's.

241 Finally, consider IN-MINTRAP(f,x) the problem of deciding whether the con-
242 figuration x is a vertex of a minimal trap space of f. It boils down to decide
243 MINTRAP(f, T(x)). The computation of T(x) can be performed using Algorithm 2.1.J]

Algorithm 2.1 The minimal trap space containing a configuration

Input: Local functions f, the initial configuration x
Output: The minimal trap space containing x (:= T(x))

1: h:=x
2: for k € [1,n] do
3 for i € [1,n] with h; # x do
4: if dy € v(h) s.t. fi(y) =1—y; then
5: h; == %
6: return h
244
245 The procedure to check the existence in line 4 is equivalent to SAT. Thus, overall,

246 this algorithm is in PNP in the general case, and in P for the locally monotone case.
247 Analogously, T(x) can be computed in a polynomial time when the local functions are
248 represented as truth tables, BDDs, or double DNFs. For all cases, the computational
249 complexity for computing T(x) does not exceed that of MINTRAP. Therefore, the
250 computational complexity of IN-MINTRAP is up to the complexity of MINTRAP for
251 each.

2 THEOREM 2.4. Given hypercube h and BN f with its local functions represented
3 as truth tables, BDDs, or double DNFs, TRAPSPACE(f,h) can be solved in a poly-
254 momaal time.

55 3. Results. In this section, we demonstrate computational complexity results
56 for the TRAPSPACE, MINTRAP and IN-MINTRAP problems in BNs with different
257 representations and the unate property. In Sec. 3.1, we present the exact computa-
58 tional complexity for BNs with local functions given as propositional formulas, which
59 is the most general case under our consideration. Results for the special case of locally
260  monotone BNs are presented in Sec. 3.2. Those results are used in Sec. 3.3 to derive
261 the computational complexity in the case of BNs with local functions represented
262  with truth tables, binary decision diagrams, and double DNFs. The computational
263 complexity for the BNs given as a functional graph is presented in Sec. 3.4.

264 3.1. Local functions given as propositional formulas. Theorem 3.1 demon-
265 strates that TRAPSPACE is coNP-hard when local functions are represented as gen-
266 eral propositional formulas, which is the lower bound to the computational complexity.

267 Combined with the previous upper bound results of [23], the completeness is shown.
268 The reduction scheme is illustrated in Figure 3.1 as an interaction graph of the vari-
269 ables in the reduced problem. A green arc with an arrow represents that the source

270 variable positively affects the local function of the target variable (i.e., marginally
271 increasing the source variable never decreases the value of the local function). A red
272 arc with a bar represents that the source variable negatively affect the local function
273  of the target variable. A blue arc with a circle represents that the interaction may
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be either positive or negative according to a Boolean function involved in the local
function. Otherwise, variables are not involved in the local function. Variables are
grouped to either match with the variables of the original SAT problem or to indicate
they are auxiliary variables.

3y, Auxiliary
f—/% f—/%
j S [1,711]
X e X] e xn1+1

f(X) oo | x5

{
A(X[1,n,])

—» Positive literal
— Negative literal

——e Interaction depending on literals

F1G. 3.1. Reduction from II1SAT to TRAPSPACE for propositional formulas (Theorem 3.1).

THEOREM 3.1. Given hypercube h and BN f with its local functions represented
as propositional formulas, TRAPSPACE(f,h) is coNP-hard.

Proof. Consider a Boolean function ¢ : B — B for n; € ZT and the associated
IT; SAT problem of deciding Yy ¢(y) = 1, which is coNP-complete. We construct BN
fiBmtl 5 Butl g

Vi € [1777'1]’ fz(x)
Jr+1(%) = ¢(X[1,n1))

and hypercube h = x™11. We prove this theorem by showing that this IT; SAT problem
is true if and only if TRAPSPACE(f, h) is true. If TRAPSPACE(f, h) is true, then
Vz € v(h),#(2[1,n,]) = 1. Since z ,,) can have an arbitrary configuration in B™,
Vy ¢(y) must be true. On the other hand, if TRAPSPACE(f,h) is false, we can
find configuration z € B™ that satisfies f,,+1(z1) = ¢(z) = 0. This can be used
as a certificate that Vy ¢(y) is not true, and it can be verified in a polynomial time.
Hence, the theorem holds. 0

Theorem 3.6 and Theorem 3.7 demonstrate that MINTRAP and IN-MINTRAP
are I15-hard, respectively. Combined with the previous upper bound results in [23],
their completeness is shown. Our proofs show that MINTRAP and IN-MINTRAP
can be used to solve II} SAT based on several tricks. First, a component x; with
its local function f; = —x; always becomes free in a minimal trap space; see Remark
3.2. We use this trick to encode Boolean variables quantified with V to the BN we
construct. Second, given a Boolean formula ¢ to be proven its satisfiability, we employ
two auxiliary components that have a full control to override other local functions as
either 0 or 1 whenever ¢ is true. We use this trick to construct a BN that has

—X;
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FI1G. 3.2. The transition graph of g from 2,41 ny2) 10 9(2)[n+1,n+2)

the full dimensional hypercube as its unique minimal trap space if and only if ¢ is
satisfied. Note that those auxiliary components will be always presented as the last
two components of the BN we construct; see Remarks 3.3-3.4 for details. Figure 3.3
illustrates the reduction scheme.

Remark 3.2. Let f : B® — B" with n € ZT be a BN. Given Z C [1, n], suppose
fi(x) = =x; for Vi € [1,n]. Then, any hypercube h € {0, 1, *}" must satisfy T(h), = *
for all i € 7.

Proof. For all i € Z, component x; can be updated to —x; and realized as both 0
and 1. Therefore, T(h), = * for all i € T to ensure that T(h) is closed by f. d

Remark 3.3. For a given Boolean function ¢ : B® — B with n € Z*, let f :
fn1(X) = o(X(1n)) A Xpg2
far2(%) =Xp41 AXng2
percube h € {0,1,%}""2 contains z € v(h) that satisfies ¢(z ) = 1. Then,
T(h),,, = T(h)

B"t2 — B"*2 be a BN satisfying { Suppose hy-

n+2:*'

Proof. Let g : B"*2 — B"*? that maps x — X[ 5 f(X)[nt1,n42). Since z, f(z) €
T(h) by the definition of a trap space, g(z) = 21 1) f(2)n+1,n+2] € T(h). Therefore,
T(h),+1 = T(h),4o = * if there exists ki, ks € Z such that ¢ (z),.1 = (1 —
Znt1) and g*2(z), 12 = (1 — z,42). Figure 3.2 shows projected transitions by g from
Zint1,n+2] 10 9(2)[n41,n42) constructed using ¢(z1,)) = 1. Starting at any vector,
there exists a transition path through which the (n + 1)-th and (n + 2)-th values are
converted from the initial ones. Hence, the claim holds. ]

Remark 3.4. Let f : B"*2 — B"*2 with n € Z* be a BN. For some i € [1,n)]
and a given Boolean function ¢; : B™ — B, suppose the local function f;(x) is in the
form of (¢i(X[1,n)) A=Xn41)VXnyo. If hypercube h € {0,1,%}"*? satisfies T(h),,,, =
T(h), 5 = *, then T(h), = *.

Proof. Since T(h), ., = T(h), , = *, there exists a configuration z € v(T(h))
such that (zp+1,2zn+2) = (1,0), which can be evaluated as f;(z) = 0. In addition, there
exists another configuration z" € v(T(h)) such that z;, , , = 1, which can be evaluated
as fi(z) = 1. Hence, the image of f; can be both 0 and 1, implying T(h), = * to
ensure that T(h) is closed by f. |

LEMMA 3.5. Consider ny,ny € ZT with ny < ny and a Boolean function ¢ :
B"2 — B given as a propositional formula. Boolean formula Yy »,13Y [, +1,n,]0(Y)
is true if and only if BN f : B"%2 — B™*2 with the local functions defined by

This manuscript is for review purposes only.
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IV 1) VY [n1+1,n2) Auxiliary
Jj € 1,ni] § € [n1 +1,n0]
X x| x| Xngt1 | Xngt2

X

fx) |- o
{ { {

(Xj A _'Xn2+1) V Xng42 ¢(X[1,n2]) N T Xy 42

Xng+1 A TXny42

— Positive literal
— Negative literal
——e Interaction depending on literals

Fic. 3.3. Reduction from II2SAT to MINTRAP and IN-MINTRAP for propositional formulas
(Lemma 3.5).

(3.1)~(3.4) has the unique trap space x"272.

(3.1) Vielim], fi(x)= (% A "Xny41) V Xnypo
(3.2) Vi€ n+1,n, fi(x)=-x;

(3.3) frat1(%) = A(X(1,15]) A ~Xny 42
(3.4) frat2(X) = Xpgi1 A =Xn, 12

no+2

Proof. I Vy[1 0,13V [n,+1,n,)@(Y) is true, any hypercube h € {0, 1, *} satisfies

T(h) 2T (b ) *" 7™ By 41,0, 42]) " Remark 3.2
2T(h[lm]"‘nz_nﬁg) . Remark 3.3
:—DT(*MH) . Remark 3.4
:*n2+2

Therefore, ¥"272 is the unique (and thus minimal) trap space. For the remaining case
where 3y(1 1YY [0, +1,n0] 7P(Y), %212 is not a minimal trap space because a smaller
trap space h' = ypq ,,,) "2 7™ 02 exists. This completes the proof. O

THEOREM 3.6. Given hypercube h and BN f with its local functions represented
as propositional formulas, MINTRAP(f,h) is II5 -hard.

Proof. Given ni,ne € Z* with n; < no and a Boolean function ¢ : B"2 — B,
consider the associated I3 SAT problem that deciding whether Yy 1 ,13Y 1, +1,n,]0(Y)
is true, which is IT}-complete. By Lemma 3.5, this [I;SAT problem is true if and only
if MINTRAP (f, *"272) is true for f defined by (3.1)=(3.4). Hence, the theorem holds.O

THEOREM 3.7. Given configuration x and BN f with its local functions repre-
sented as propositional formulas, IN-MINTRAP(f, x) is I15-hard.

This manuscript is for review purposes only.
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=\ Cj(y[m}) Auxiliary
i€ [1,n] j e,k
X N R o X | Xnahil | Xnohto
f(x)
‘ ‘ ‘
(Xi A " Xnpkt1) V Xntkt2 (szl Xn+j) N ~Xnp 2

|
(Cj (X[1,n]) A _‘Xn+k+1) VXntk+2  Xntk+1 N T Xntpkt2

—> Positive literal
— Negative literal

——e Interaction depending on literals

F1a. 3.4. Reduction from I11SAT to MINTRAP and IN-MINTRAP for locally-monotone propo-
sitional formulas(Lemma 3.8 ).

Proof. Given ni,no € Z* with n; < ny and a Boolean function ¢ : B"2 — B,
consider the associated I3 SAT problem that deciding whether Yy 1 .13V 1, +1,n,]0(¥)
is true, which is I1Y-complete. We prove the theorem by showing that the IT;SAT is
true if and only if IN-MINTRAP(f,1"2%2) is true for f defined by (3.1)-(3.4).

If YY[1,0003Y [y 1,001 (Y ) x"2+2 ig the unique minimal trap space by Lemma
3.5 and thus 1272 belongs to a minimal trap space. For the remaining case where
HY[l,nl]Vy[Tn-‘rl,nz] —¢(y), we have

T(17’L2+2) ;)T(l’l’bl *712_711 12> Rema'r‘k 32
DT (1™ %2 F2) L Xtz =1
QT(*”2+2) " Remark 3.4
= 5212

However, *™%2 is not a minimal trap space because there is a smaller trap space
h' =y ,,,) *">7™ 0%, This completes the proof. 0

3.2. Locally-monotone BNs with local functions given as propositional
formulas. We show a polynomial-time encoding of any DNF as a BN such that
II;SAT problem reduces to MINTRAP and IN-MINTRAP problems as illustrated
in Figure 3.4. The proofs are given in Theorem 3.9 and 3.10, respectively. Let us
consider any Boolean function ¢ : B"™ — B represented in DNF as a list of k£ conjunctive
clauses. For j € [1,k], we use ¢;(y) to denote the j-th clause of ¢ evaluated with
y € B”. Whenever k = 0, ¢ is considered to be false. Whenever a clause is empty
it is equivalent to be true. We can assume that each clause ¢;(y) does not contain a
contradiction caused by the same component (e.g., y; A —y;). Therefore, all clauses
are unate.

LEMMA 3.8. Let us consider n,k € Z™ and a Boolean function ¢ : B™ — B given

This manuscript is for review purposes only.
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as a DNF with k conjunctive clauses; i.e., ¢(y) = \/?:1 ¢;(y). Boolean formula
Vyo(y) is true if and only if BN f : B"tE+2 — BE+2 with the local functions
defined by (3.5)~(3.8) has the unique minimal trap space *"+k+2,

(3.5) Vie [Ln], fi(x)= (XA Xpirt1) V Xnprio
(36) VJ € [17 k]) fn+j (X) ( (X[l n) ) _‘Xn-i-k-‘rl) V Xp4k+2
(3.7) Pt () = (Vi Xty ) A =i
(3.8) frrk42(X) = Xnqhr1 A "Xpppgo
Proof. If Yy ¢(y) is true, any hypercube h € {(),1,>1<}n"'k+2 satisfies T(h) =

#"+tF+2 by the Case (i) and Case (ii).

Case (i) : When h, 541 =0,
Eq. (3.6) can be simplified to ¢;(X[1,n]) V Xp4ry2. For an arbitrary element
z € v(h), we can find j* € [1,k] such that c;-(x[ ) = 1 since Vy ¢(y) is
true. Consequently,

T(h) DT (hpy 45+ —1110p4 41 nqkt2) - Xngj= can be evaluated to be 1
QT(h[Lm—j*—l]1h[n+j*+1,n+k]*2) .» Remark 3.3
DT (x"HF+2) - Remark 3.4
_ *n+k+2 )

Case (ii) : When h,, 141 € {1, %},
Eq. (3.8) simplifies to =X, 1x+2. Consequently,

T(h) DT (hp nirs1*) “* Remark 3.2
2T(h[l n]l hy 1) . Xp+k+2 can be evaluated to be 1
OT(hy, n]l *2) - Remark 3.3
OT(x n+k+2) . Remark 3.4
_ *n+k+2 .

Therefore, *"*¥+2 is the unique minimal trap space if Yy ¢(y) is true. On the other
hand, if 3y ~¢(y) is true, then +"**+2 is not a minimal trap space because there is a
smaller trap space h’ = y0**2. Hence the lemma holds. ]

THEOREM 3.9. Given hypercube h and locally-monotone BN f with local functions
represented as propositional formulas, MINTRAP(f, h) is coNP-hard.

Proof. Given n € Z™ and a Boolean function ¢ : B® — B in a DNF with k
conjunctive clauses; i.e., ¢(y) := \/;7:1 ¢;(y), consider the associated II; SAT problem
Vy ¢(y), which is coNP-complete. By Lemma 3.8, this II;SAT problem is true if
and only if MINTRAP(f,x""**2) is true for f defined by (3.5)—(3.8). Since all local
functions are unate, the theorem holds. 0

THEOREM 3.10. Given configuration x and locally-monotone BN f with local
functions represented as propositional formulas, IN-MINTRAP(f,x) is coNP-hard.

Proof. Suppose n € ZT and a Boolean function ¢ : B® — B in a DNF with
k conjunctive clauses are given (i.e., ¢(y) := \/?:1 ¢;j(y)). Consider the associated
IT; SAT problem Yy ¢(y), which is coNP-complete. We prove the theorem by showing

This manuscript is for review purposes only.
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that this II; SAT problem is true if and only if IN-MINTRAP(f,1""**2) is true for f
defined by (3.5)—(3.8).

If Vy é(y) is true, then +"*¥*2 is the unique trap space by Lemma 3.8 and thus
1"+k+2 belongs to a minimal trap space. For the remaining case where Jy —¢(y) is
true,

T(1"HEF2) DT (17 HF4?) CXpgpao =1
DT (x"Hr+2) *.* Remark 3.4
— *n+k+2 .

However, «"1t*%2 is not a minimal trap space because there is a smaller trap space
h’/ = y0**2. This completes the proof. ]

3.3. With local functions represented as truth tables, BDDs, and dou-
ble DNFs. We now consider any BN whose local functions are represented either
as truth tables, BDDs, or double DNFs. In Theorem 3.13, we prove the lower bound
results to the computational complexity of MINTRAP and IN-MINTRAP problems
by reduction of 3DNF-II; SAT. Combined with the upper bound results presented in
Sec. 2.3, the completeness is shown.

Consider the encoding of the clauses ¢ as the BN f defined by (3.5)—(3.8). Remark
that all local functions but f, 11 in (3.7) depend on at most 5 variables, and thus
each of them can be encoded in constant space and time as a truth table, a BDD,
or double DNFs. However, the local function f,4r41 in (3.7) depends on k + 1
variables, where k is the number of clauses in the DNFs. Therefore, converting this
local function may require an exponential time and space. We resolve this issue by
appending a small number of auxiliary variables that correspond to local functions
having a constant size. Note that (3.7) is true whenever at least one of the clauses
can be evaluated to be true and the component x, 4542 is false. This definition can
be incorporated by appending k additional components with at most two literals to
the BN so that the j-th element of the new components is evaluated to be true if
either ¢; or the (j — 1)-th element of the new components can be true for j € [1,k].
As a consequence, the k-th of the additional components is true whenever at least
one clause of ¢ can be evaluated to be true. We adapt this idea by expanding locally
monotone BN (3.5)—(3.8) to (3.9)—(3.13), which can be encoded in constant space
and time as truth table, BDD, or double DNF's. This reduction scheme is illustrated
in Figure 3.5. We employ Remark 3.11 and Lemma 3.12 to prove Theorem 3.13.

(3.9) Vie [ln] fi(x)= (XA "Xpi2k41) V Xntokt2

(3.10) Vi€ [LE],  fari(x) = (¢ (X[1 ) A " Xny2k+1) V Xntokto
(3.11) Vi€ LKL farrs;(X) =Xn4j V (Xngrtj—1 A (G > 1))
(3.12) frt2k41(X) = Xnpor A "Xnpopt2

(3.13) frt2k42(X) = Xnyort1 A "Xny2k+2

Remark 3.11. Consider a BN f given as (3.9)-(3.13). If T(h); = * for all
i € [n+1,n+ k], we can sequentially show that T(h),4x4; = * by increasing j from
1 to k. This is because T'(h),+; and T(h),,4x4,—1 are both % and thus Eq.(3.11) can
be evaluated to be both 0 and 1.

This manuscript is for review purposes only.
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3y ¢ (Ym) \/§,:1 ¢ (Yim)) Auxiliary
i€[1n] j € [LK] j € [1,K]
X ol X Xntj |- | Xtk Xn+2k+1 | Xnt2k+2

(%i A Xnt2k+1) V Xnt2kt2

{

(¢j (Xp,n)) A "Xnt2kt1) V Xni2kt2

— Positive literal
— Negative literal

—e Sign depending on input expression

Xntj V Xntkri—1 A (G > 1))

!

Xn42k N T Xp2kt2

Xn4+2k+1 N\ 7 Xnt2k+2

F1a. 3.5. Reduction from II;SAT to MINTRAP and IN-MINTRAP for truth table, binary
decision diagrams, and double DNFs (Lemma 3.12).

LEMMA 3.12. Consider n € Z+ and a Boolean function ¢ : B® — B given as
a SDNF with k conjunctive clauses that contain at most three literals, i.e., ¢(y) :=
\/f:1 ¢j(y). Boolean formula Vy¢(y) is true if and only if BN f : Br+2k+2 _ Bnt2k+2
with the local functions defined by (3.9)—(3.13) has the unique minimal trap space

*n+2k+2

Proof. If Vy ¢(y) is true, any hypercube h € {0,1,>|<}n+2k'~'2 satisfies T(h) =
#"1T2k+2 1y the Case (i) and Case (ii).
Case (i) : When h, 9541 =0,

Eq. (3.10) can be simplified to ¢;(X[1,n]) VXp42k12 because every configuration
satisfies X, +2r+1 = 0. For an arbitrary element z € v(h), we can find j* €
[1, k] such that c;(x[1,,)) = 1 since Yy ¢(y) is true. Therefore, T(h), ;- €
{1, *} and subsequently,

T(h) 2T (hy1, bty —1) Wkt = +1,n+2k+2])

" Xp4k+j+ can be evaluated to be 1

OT(hj g ktje—1] l(kfj*#»l)h[n+2k+1,n+2k+2])

(O IORNIV)

T(hi1 i kpse—1]
T(*n+k

T(*n+2k+2)

" Increasing j from (j* + 1) to k, Xy4k+;
can be sequentially evaluated to be 1
1(k—j*+1)*2)

Btk 177 T42)

— k42

This manuscript is for review purposes only.
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Case (ii) : When h,, 1041 € {1, %},
Eq. (3.13) simplifies to =X, 12x+2. Consequently,

T(h) DT (h{y 4 2841)%) .~ Remark 3.2
Z_)T(h[lm]1kh[n+k+1,n+2k+1]*) " Xp+2k+2 can be evaluated to be 1
DT (hy 1% hy 2k 41%)
Vel k], Xntkt can be evaluated to be 1 by x,,4; =1
Z_)T(h[lm]l%*z) " Remark 3.3
DT (x"F1k42) "~ Remark 3.4
DT (x"+2k+2) . Remark 3.11
— nh2kt2
n+2k+2

Therefore, * is the unique minimal trap space. On the other hand, if Iy —¢(y)
is true, *"T2**2 is not a minimal trap space because there is a smaller trap space
h’ = y0?**2, Hence the lemma holds. O

THEOREM 3.13. MINTRAP and IN-MINTRAP are coNP-hard for BNs with local
functions represented with truth tables, binary decision diagrams, and double DNFs.

Proof. The local functions defined by (3.9)—(3.13) can be encoded in a polynomial
time as truth tables, BDDs, or double DNFs. Therefore, the theorem holds by Lemma,
3.12. d

3.4. Functional graphs of BNs . Now consider the case when the BN f :
B™ — B"™ is represented by its functional digraph G = (V,E) with V = B" and
E ={(x, f(x)) | x € B"}. Given a vertex x € V, we write out(x) = {y | (x,y) € E}.
Note that in the case of the functional graph, out(x) = {f(x)}, which is a singleton
set. Given a set of vertices V/ C V| we can consider a subgraph Gy = (V' {(u,w) €
ElueV iweV'}).

For a given sub-hypercube h € {0, 1, *}"™ to be a trap space, each x € v(h) must
verify that out(x) C v(h). Therefore, TRAPSPACE can be solved in time linear to
the size of G (number of vertices plus edges, |V| + |E|).

Algorithm 3.3 for the decision of MINTRAP uses two auxiliary functions:
SUB-HYPERCUBE (Algorithm 3.1) and SATURATE (Algorithm 3.2). The function
SUB-HYPERCUBE returns the smallest enclosing sub-hypercube for a given a non-empty
sublist of vertices W C V. From the resulting sub-hypercube, the function SATURATE
computes its smallest enclosing trap space.

Algorithm 3.1 SUB-HYPERCUBE

Input: Sublist of vertices W
Output: The smallest sub-hypercube enclosing W (:= h)
1: h=W,
2: for x € W do
3 for i € [1,n] do
4: if (h; € B) and (h; # x;) then
5: h; == %
6: return h

This manuscript is for review purposes only.
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Algorithm 3.2 SATURATE

Input: Sublist of vertices W

Output: The smallest sub-hypercube enclosing W closed by f (:= h)
1: h := SUB-HYPERCUBE(W)
2: repeat
3: h':=h

4: W= v(h) UU,cpm) out(u)

5 h := SUB-HYPERCUBE (W)

6: until h = h’

7: return h

Remark that SATURATE runs in a polynomial time to the size of G as the loop in
line 2-5 is performed at most n times.

One can decide whether the sub-hypercube h is a minimal trap space by com-
puting the terminal strongly connected components of G which are enclosed in h
and verify that their smallest enclosing trap space is h. Indeed, consider that h is a
trap space. By definition, the saturation of any set of its vertices gives a trap spaces
which is either equal to or smaller than h. Then, remark that any trap space within
h contains at least one terminal strongly connected component of G, ). Therefore,
it is sufficient to verify that the saturation of all these terminal strongly connected
components are not strictly smaller than h to determine that h is minimal.

We call the algorithm computing the terminal strongly connected components
terminal-SCCs and it can be done in a polynomial time to the size of G (e.g., with
Tarjan’s algorithm [33]).

Algorithm 3.3 MINTRAP (functional graph)

Input: The BN G, a candidate minimal trap space h
Output: Whether h is a minimal trap space of G

1: if not TRAPSPACE(G, h) then

2 return False

3: tSCCs := terminal-SCCs(Gyn))

4: for each W in tSCCs do

5 if SATURATE(W) # h then

6 return False

7: return True

This algorithm runs in a polynomial time to the size of G. Finally, remark that
IN-MINTRAP(f, x) can be decided using IS_MINTRAP(G, SATURATE({x})), which also
runs in a polynomial time to the size of G.

THEOREM 3.14. TRAPSPACE, MINTRAP, and IN-MINTRAP are in P for BNs

given as their functional graph.

The functional graph of f corresponds to the so-called state transition graph with
the synchronous (parallel) update mode: each edge corresponds to a synchronous
transition. One can remark that the above algorithms give equivalent results with the
fully asynchronous state transition graph where out’(x) = {y € B" | 3i € [1,n],y; =
fi(x),¥5 € [1,n],j #1,x; = y;}. Indeed, SUB-HYPERCUBE({x, f(x)}) is always equal
to SUB-HYPERCUBE({x} U out’(x)); remark that, for any i € [1,n], fi(x) # x; if and

This manuscript is for review purposes only.
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only if there exists y € out’(x) such that y; # x;.

4. Conclusion. In this paper, we characterized the computational complexity
of three important decision problems related to trap spaces in Boolean networks con-
sidering various representations and the locally monotone case. We demonstrated
that, in general, determining minimal trap space properties and the membership of
configurations to minimal trap spaces are equivalent to solving the satisfiability of
Boolean formulas with two alternating quantifiers V and 3. Hence, our results show
that they are IIY-complete. However, whenever restricting to the cases whenever BN
is locally monotone, or whenever its local functions are encoded as truth tables, bi-
nary decision diagrams, or double DNFs (such as Petri nets encodings of BNs), the
complexity drops by one level in the polynomial hierarchy and becomes equivalent to
II;SAT. These three latter encodings are well-known representations for which SAT
and IT; SAT decisions are in P. Future work may consider other encodings sharing these
complexity properties, such as deterministic decomposable negation normal forms [9],
and deriving more generic proofs to this class of encodings. Finally, whenever the
BN is given by its functional graph (corresponding to its synchronous state transition
graph), minimal trap space properties can be decided by deterministic algorithms in
a polynomial time.

In practice, solving coNP problems can be tackled with SAT solvers, whereas
solving I} necessitates more elaborated approaches, such as Answer-Set Program-
ming [11]. Another recent approach is to decompose the problem into two parts and
alternately solving them; one seeks for a candidate solution by relaxing quantifier V as
3, and then another verifies whether the candidate is valid to the original problem. If
not, a proper constraint is added to the prior problem to remove the candidate from
the solution space, and the procedure is repeated. This approach has been used to
control minimal trap spaces [29] or fixed points [19].

Future direction may consider studying the computational complexity of problems
related to the set of minimal trap spaces of a BN, such as deciding whether all the
minimal trap spaces satisfy a given property. This will give insight into the complexity
for control problems related to minimal trap spaces in BNs, as tackled in [22, 30].
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