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Abstract
We present a novel rule-based semantics for causal
reasoning as well as a number of modal languages
interpreted over it. They enable us to represent
some fundamental concepts in the theory of causal-
ity including causal necessity and possibility, inter-
ventionist conditionals and Lewisian conditionals.
We provide complexity results for the satisfiabil-
ity checking and model checking problem for these
modal languages. Moreover, we study the rela-
tionship between our rule-based semantics and the
structural equation modeling (SEM) approach to
causal reasoning, as well as between our rule-based
semantics for causal conditionals and the standard
semantics for belief base change.

1 Introduction
Causal reasoning is a central topic for AI nowadays given the
importance of causal concepts such as (causal) explanation
and responsibility for AI applications. It is an area of research
at the crossroad of different disciplines ranging from logic
and philosophy to economics.

Two approaches to the formalization of causal reasoning
should be distinguished. On the one hand, we have the
rule-based (or syntactic) approach whereby causal laws are
seen as rules expressed in a given logical language, such as
propositional logic. This approach grounds on and is tightly
interconnected with earlier work on non-monotonic reason-
ing in the area of knowledge representation [Geffner, 1990;
Lifschitz, 1997; McCain and Turner, 1997; Bochman, 2003;
Giunchiglia et al., 2004]. The recent work by Bochman, cul-
minated in [Bochman, 2021], is representative of this ap-
proach. It relates the rule-based approach to the theory
of counterfactuals [Bochman, 2018b] and actual causality
[Bochman, 2018a].

On the other hand, we have the structural equation model-
ing (SEM) approach whereby the causal connections between
variables are expressed via a system of structural equations.
Pearl’s work on causality [Pearl, 2009] is probably the most
famous example. The SEM approach has been successfully
applied to formalizing a wide variety of concepts relevant to
AI including actual causality [Halpern, 2008; Halpern, 2016;
Beckers and Vennekens, 2017; Beckers, 2021], explanation

[Woodward, 2003; Woodward and Hitchcock, 2003; Halpern
and Pearl, 2005b], responsibility and blame [Chockler and
Halpern, 2004; Alechina et al., 2017; Halpern and Kleiman-
Weiner, 2018], discrimination [Chockler and Halpern, 2022].
The relationship between the rule-based and the SEM ap-
proach was explored in [Bochman and Lifschitz, 2015],
where it was shown that structural equation models are repre-
sentable in the causal calculus introduced in [Bochman, 2003;
Giunchiglia et al., 2004]. In the general SEM setting, for
every endogenous variable and for every value assignment
for the other variables (endogenous and exogenous ones), we
must specify the value that the variable will take.

In the present work, we introduce a novel rule-based se-
mantics for a number of modal languages that support rea-
soning about causality. It relies on the notion of causal base,
i.e., a set of explicit causal information in propositional form.
Our proposal is related to some recent work in the area of
epistemic logic devoted to comparing the extensional seman-
tics of epistemic logic based on Kripke models with a succinct
semantics using belief bases [Lorini, 2018; Lorini, 2019;
Lorini, 2020]. Here we make an analogous operation: we
compare the SEM semantics for modal languages of causal-
ity with a succinct semantics using causal bases.

The general purpose of this paper is twofold. First of
all, we want to show that, when variables are assumed to
be Boolean, causal reasoning can be performed via classical
deductive reasoning within a standard modal framework in
which causal information is expressed in propositional form.
We firmly believe that Boolean (or binary) causal models are
interesting per se since they cover, or at least are closely con-
nected with, a variety of interesting models and concepts in-
cluding propositional opinion diffusion [Grandi et al., 2015;
Christoff and Grossi, 2017], binary neural networks and dia-
grams [Lewis, 1986; Hubara et al., 2016; Narodytska et al.,
2018; Shi et al., 2020], Boolean networks [Kauffman, 1969].
Secondly, we want to shed light on the intimate connection
between causal reasoning and epistemic reasoning that, we
believe, is difficult to grasp using the SEM approach. Our
rule-based semantics, which leverages the concept of causal
base analogous to that of belief base, makes this task easier.

Outline. The paper is organized as follows. In Section 2,
we discuss related work in more detail. In Section 3, we
introduce our rule-based semantics as well as a modal lan-
guage for reasoning about the notions of causal necessity and
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possibility interpreted over it. We provide complexity results
for both satisfiability and model checking for this language.
Section 4 is devoted to exploring the relationship between
our rule-based semantics and the SEM semantics. We show
that the latter corresponds to a specific instance of the for-
mer where causal information is represented in an equational
form. In Section 5, we extend the basic framework by in-
terventionist conditional operators in Halpern & Pearl’s style
[Halpern, 2000; Halpern and Pearl, 2005a]. We introduce a
novel semantics for interventionist conditionals relying on the
concept of replacement and again compare it with the SEM
semantics. Our semantics helps to better understand the rela-
tionship between intervention and belief change. Intervention
is seen as a replacement operation, a kind of operation origi-
nally introduced in the theory of belief change to replace one
sentence by another in a belief base [Hansson, 2009]. Finally,
in Section 6, we present a second extension with Lewisian
conditional modalities [Lewis, 1973]. We interpret them by
means of a notion of comparative similarity that we compute
from the causal base. We compare the Lewisian conditional
modality with the interventionist modality and spell the con-
ditions under which the latter can be seen as a special case of
the former. Moreover, we elucidate the relationship between
our rule-based semantics for counterfactual conditionals and
the update semantics of belief base contraction and revision.

2 Related Work
Structural equation models have been exploited as a seman-
tics for a number of modal languages of interventionist condi-
tionals [Galles and Pearl, 1998; Halpern, 2000; Halpern and
Pearl, 2005a]. Both the axiomatic and the complexity as-
pects of these modal languages have been investigated [Galles
and Pearl, 1998; Halpern, 2000] as well as their connection
with the logic of counterfactual conditionals [Halpern, 2013;
Zhang, 2013]. The SEM semantics used in these works is
more general than our ruled-based semantics, since variables
are not necessarily Boolean. However, it has the disadvan-
tage of not being succinct, thereby making model checking
for these modal languages of causality not exploitable in prac-
tice. Models used there are huge: every endogenous variable
is associated to a function that fully describes how the value
of the variable varies depending on the values of the other
(endogenous and exogenous) variables. This description of
the causal system is exponential in the number of variables.
For instance, in the Boolean case, if there are n endogenous

variables and m exogenous ones, a table with n× 2(n+m)−1

entries (i.e., 2(n+m)−1 entries for each endogenous variable)
is needed. Moreover, the description of the causal system
becomes infinite if there is an infinite number of variables.
Our rule-based semantics does not have this limitation. As
we will shown in Section 4, we can fully describe a causal
system with a set of equational formulas of polynomial size,
even in the infinite variable case. This is appealing from the
point of view of formal verification.

It is also important to underline some differences between
our approach to causal reasoning and Bochman’s approach
cited above. Ours is a classic work in modal logic. At the
syntactic level, we start with a basic modal language for rea-

soning about causal necessity. We borrow from [Burks, 1951]

the idea of modeling causal necessity by means of a normal
modality S5. Then, we extend it with dyadic modal oper-
ators for interventionist and Lewisian conditional. At the
semantic level, we use accessibility relations over possible
states/worlds for interpreting the different modal operators.
Bochman’s language presented in [Bochman, 2018b] is not
a modal language in the usual modal logic sense. Namely,
it is not an extension of the propositional language with dif-
ferent modal operators, in which we can write any Boolean
combination of propositional formulas and modal formulas as
well as formulas with nested modalities. His semantics does
not use accessibility relations over possible worlds/states. His
language consists of causal rules of the form A ⇒ B, where
A and B are propositional formulas. He uses a nonmono-
tonic semantics based on the notion of exact model for a set
of causal rules, that is, a consistent set of information that is
closed under the causal rules and in which every information
is explained by other information in the set. Given the sig-
nificant differences between the two approaches, we do not
know whether and how our concept of causal necessity, and
the satisfiability and model checking problem defined in our
framework can be “translated” into his framework.

3 Logical Framework
In this section, we introduce a simple modal language for rea-
soning about causality. Following [Lorini, 2020], the seman-
tics of our language uses the notion of “state” consisting of
(i) a causal base, including all causal information which reg-
ulates the physical world, and (ii) a valuation of propositional
facts that is compatible with the causal information. At the
syntactic level, our language extends propositional logic by
an operator for representing explicit causal information and
another operator for representing causal necessity of facts.

3.1 Semantics
Assume a countably infinite set of atomic propositions P =
{p, q, . . .} and let LPROP(P) be the propositional language
built from P. We assume the language LPROP(P) contains the
symbol � (“true”) as primitive, while ⊥ (“false”) is defined
from it as usual ⊥ =def ¬�.

Given a propositional formula ω ∈ LPROP(P), the set of
symbols from P occurring in ω is noted P(ω). The definition
extends to a set of propositional formulas X ⊆ LPROP(P) in
a straightforward manner: P(X) =

⋃
ω∈X P(ω). The main

constituent of our semantics is the following notion of state.

Definition 1 (State). A state is a pair S = (C,V ) where C ⊆
LPROP(P) is a causal base and V ⊆ P is a propositional
valuation such that

∀ω ∈ C, V |= ω,

with V |= ω meaning that the propositional formula ω is true
under the valuation V and defined inductively, as usual.

The set of all states is noted S. A state S = (C,V ) is said
to be finite if both C and V are finite. The set of finite states
is noted SFin .

The valuation V represents the actual environment and is
assumed to be compatible with the information of the actual
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causal base. That is, if ω is included in the actual causal base
(i.e., ω ∈ C) then it should be true in the actual environment
(i.e., V |= ω).

We use the generic term “causal information” to indicate
propositional formulas in a causal base. We use the more spe-
cific term “causal rule/law” for information in a causal base
expressed through single implication ω1 → ω2 or double im-
plication ω1 ↔ ω2. With a slight abuse of terminology, we
call our semantics a rule-based semantics. To be more pre-
cise, it should be called a semantics based on causal infor-
mation in propositional form. We stick to the former naming
since it is more concise. The following definition introduces
the notion of causal compatibility.

Definition 2 (Causal compatibility). We define ≡c to be
the binary relation on the set S such that, for every S =
(C,V ), S′ = (C ′,V ′) ∈ S:

S ≡c S
′ if and only if C = C ′.

S ≡c S
′ means that state S and state S′ are causally com-

patible since they share the same causal information. It is
easy to verify that ≡c is an equivalence relation and that the
following holds for every S =

(
C,V

)
, S′ =

(
C ′,V ′) ∈ S:

if S ≡c S
′ then ∀ω ∈ C,V ′ |= ω. (1)

The latter means that the causal information of the actual state
must be true at all states that are causally compatible with it.
To see this, suppose S ≡c S

′. Thus, by Definition 2, C ⊆ C ′.
Moreover, by definition of S, ∀ω ∈ C ′, we have V ′ |= ω.
Hence, since C ⊆ C ′, ∀ω ∈ C, V ′ |= ω.

3.2 Language
In this section, we define a two-layer modal language for talk-
ing about explicit causal information and causal necessity. It
is defined by the following grammar:

LCI(P)
def
= α ::= p | � | ¬α | α ∧ α | �ω,

LCIN(P)
def
= ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | �ϕ,

where p ranges over P and ω ranges over LPROP(P). The
other Boolean connectives ∨,→ and ↔ are defined in the
usual way. The first layer language LCI(P) (Language for
Causal Information) is the language for talking about explicit
causal information. The formula �ω has to be read “the in-
formation ω is causally relevant” or “information α is part of
the causal description of the actual state”. The second layer
language LCIN(P) (Language for Causal Information and Ne-
cessity) extends the first layer by a modal operator � for
causal necessity in Burks’ style [Burks, 1951]. In particu-
lar the formula �ϕ has to be read “it is causally necessary
that ϕ” or, by adopting Burks’ reading, “ϕ is true on causal
grounds”. As usual, we define ♦ϕ =def ¬�¬ϕ, where the
formula ♦ϕ has to be read “it is causally possible that ϕ”.

The language LCN(P) (Language for Causal Necessity) is
the fragment of LCIN(P) in which we can only talk about
causal necessity:

LCN(P)
def
= ϕ ::= p | � | ¬ϕ | ϕ ∧ ϕ | �ϕ,

where p ranges over P. LPCN(P) (Language for Propositional
Causal Necessity) is the fragment of LCN(P) in which we can

only talk about the causal necessity of propositional facts. It
is defined by the following grammar:

LPCN(P)
def
= ϕ ::= p | � | ¬ϕ | ϕ ∧ ϕ | �ω,

where p ranges over P and ω ranges over LPROP(P).
To sum up, we consider four languages LCI(P), LCIN(P),

LCN(P) and LPCN(P) with the following inclusion relations:

LCI(P) ⊂ LCIN(P) and LPCN(P) ⊂ LCN(P) ⊂ LCIN(P).

LCIN(P) is the most general one. We interpret its formulas
relative to a set of states U and a specific state S included in
it. We call U context (or universe) of interpretation. (We omit
semantic interpretations for the Boolean connectives ¬,∧ and
for � since they are defined in the usual way.)

Definition 3 (Semantic interpretation). Let U ⊆ S and S =
(C,V ) ∈ U . Then:

(S,U ) |= p ⇐⇒ p ∈ V ,

(S,U ) |= �ω ⇐⇒ ω ∈ C,

(S,U ) |= �ϕ ⇐⇒ ∀S′ ∈ U : if S ≡c S
′

then (S′,U ) |= ϕ.

The causal necessity modality � is a so-called S5 modality.
According to the previous definition, it is causally necessary
that ϕ iff, ϕ is true at all states in the context that are causally
compatible with the actual state. The modality � has a set-
theoretic interpretation: the information ω is causally relevant
if it is included in the actual causal base. For notational con-
venience, we write S |= ϕ instead of (S,S) |= ϕ. S is also
called the global context.

As highlighted by the following proposition, the causal ne-
cessity of a propositional fact coincides with its deducibility
from a causal base.

Proposition 1. Let S = (C,V ) ∈ S and ω ∈ LPROP(P).
Then, S |= �ω iff ω ∈ Cn(C), with Cn the classical
deductive closure operator over the propositional language
LPROP(P).

As a simple example to illustrate the semantics, consider
the state S =

({ω1, ω2}, ∅
)

with ω1 = (p1 ∧ ¬p2) → p3 and
ω2 = p4 → ¬p2. We have that the causal information ω1

and ω2 are relevant at state S and this is a causal necessity,
that is, S |= (�ω1 ∧�ω2) ∧�

(�ω1 ∧�ω2

)
. Furthermore,

it is causally necessary that “if p1 and p4 then p3”, that is,
S |= �

(
(p1 ∧ p4) → p3

)
.

3.3 Satisfiability and Model Checking
A formula ϕ ∈ LCIN(P) is said to be satisfiable if there exists
a context U ⊆ S and a state S ∈ U such that (S,U ) |= ϕ.

Satisfiability checking problem

Given: ϕ ∈ LCIN(P).
Question: Is ϕ satisfiable?

We formulate model checking as the problem of verifying
whether a formula is true at a given finite state.

Model checking problem

Given: ϕ ∈ LCIN(P) and S ∈ SFin .
Question: Do we have S |= ϕ?
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The first result of this section highlights that satisfiability
checking for the language LCIN(P) as well as for its fragments
LCN(P) and LPCN(P) has the same complexity as SAT. The
proof of the theorem relies on the fact that for any satisfiable
formula we can construct a model of polynomial size which
satisfies it.

Theorem 1. Let Λ ∈ {CIN,CN,PCN}. Then, satisfiability
checking for LΛ(P)-formulas is NP-complete.

In our framework model checking has the same complexity
as satisfiability checking. This is due to its compact formula-
tion which makes it different from standard model checking
for the modal logic S5 over Kripke models which is known to
be polynomial with respect to the size of the input formula to
be checked and the size of the input model [Grädel and Otto,
1999].

In order to prove NP-hardness of model checking, we use
a a polynomial reduction of SAT to it. In order to prove its
NP-membership, we rely on the construction that we use for
proving Theorem 1.

Theorem 2. Let Λ ∈ {CIN,CN,PCN}. Then, model check-
ing for LΛ-formulas is NP-complete.

4 Relation with Structural Equation Models
In this section we study the connection between our rule-
based semantics for causal reasoning and the SEM seman-
tics. We first define a subclass of states in the sense of Defini-
tion 1, called equational states, in which an information in a
causal base can only be expressed in equational form: a rule
specifying the necessary and sufficient condition for making
a certain atomic proposition true. Then, we define a variant
of structural equation models in which variables are assumed
to be binary (viz. Boolean). We call them binary causal mod-
els (BCMs). We show that BCMs are essentially equivalent
to equational states as far as reasoning about propositional
causal necessity is concerned.

4.1 Equational States
Let LEQ(P) be the the fragment of the propositional language
LPROP(P) which contains equational formulas:

LEQ(P) =
{
p ↔ ω : p ∈ P and ω ∈ LPROP

(
P \ {p})

}
.

An equational state is finite state whose causal information is
expressed in equational form and which includes at most one
equational formula for each variable.

Definition 4 (Equational state). A state S = (C,V ) is said to
be in equational form if and only if C is finite, C ⊆ LEQ(P),
V ⊆ P(C) and

∀p ∈ P, ∀p ↔ ω, p ↔ ω′ ∈ C,ω = ω′.

The set of states in equational form, or equational states, is
noted SEq .

As a side note, model checking for equational states is also
NP-complete. NP-membership is evident because of Theo-
rem 2. The proof of NP-hardness uses the same argument as
the proof of NP-hardness for Theorem 2: polynomial reduc-
tion of SAT to model checking.

An interesting aspect of equational states is their graphi-
cal counterpart. Specifically, given an equational state S =
(C,V ), we can extract the causal graph ΓS =

(
NS ,PS

)
with NS = P(C) and where the causal parent function
PS : N −→ 2N is defined as follows, for every p ∈ N :

(i) PS(p) = P
+(ω) if ∃ω ∈ LPROP

(
P \ {p}) s.t. p ↔ ω ∈ C,

(ii) PS(p) = ∅ otherwise,

where P
+(ω) = P(ω) ∪ {�} if � occurs in ω, and P

+(ω) =
P(ω) if � does not occur in ω. In equational states we can
partition the set of variables into two sets: the set of exoge-
nous variables and the set of endogenous ones. Specifically,
a variable p is said to be exogenous in state S if it has no par-
ents in the corresponding causal graph ΓS (i.e., PS(p) = ∅),
it is said to be endogenous in S otherwise. As the following
proposition highlights, an endogenous variable behaves func-
tionally, i.e., its truth value is entirely determined by the truth
values of the other variables.

Proposition 2. Let S = (C,V ) ∈ SEq , p ∈ P(C) and X,X ′

such that X ∪X ′ =
(
P(C) \ {p}) and X ∩X ′ = ∅. Then,

if p is endogenous in S then S |=�(conX,X′ → p)∨
�(conX,X′ → ¬p),

with conX,X′ =def

∧
q∈X q ∧∧

q∈X′ ¬q.

Let us focus on an example of social influence in a multi-
agent setting in order to illustrate the concept of equational
state and its graphical counterpart.

Example 1. Consider a set of five agents Agt =
{Ann,Bob,Cath,Mary ,Ted}. Each agent has an opinion
about the use of nuclear energy for electricity production. In
particular, she/he can be either in favor of or against it. An
agent’s opinion may be influenced by and depend on other
agents’ opinions. In order to represent agents’ opinions, we
suppose P includes atomic propositions of type pro(x) with
x ∈ Agt , pro(x) meaning that x is favor and ¬pro(x) mean-
ing that x is against the use of nuclear energy for electricity
production. We assume we have perfect information about
the dependency relations between the variables. In partic-
ular, we know that variables pro(Ann) and pro(Ted) are
exogenous (i.e., Ann and Ted’s opinions are independent of
the other agents’ opinions), while all other variables are ex-
ogenous. The causal connections between the variables are
described by the following three equational formulas:

ω1 = pro(Cath) ↔ (
pro(Ann) ∧ pro(Bob)

)
,

ω2 = pro(Mary) ↔ (
pro(Cath) → pro(Ted)

)
,

ω3 = pro(Bob) ↔ pro(Mary).

The three formulas express, respectively, that (i) Cath will be
in favor of the use of nuclear energy if and only if Ann and
Bob are unanimously in favor (ω1), (ii) Mary will be in favor
if and only if Ted is in favor in case Cath is in favor too (ω2),
and (iii) Bob is in favor if and only if Mary is in favor (ω3).
Consider the state S =

({ω1, ω2, ω3}, {pro(x) : x ∈ Agt}).
It is straightforward to verify that S is an equational state.
The (influence) causal graph induced by it is represented in
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pro(Ted)pro(Ann)

pro(Bob)

pro(Cath)

pro(Mary)

Figure 1: Influence causal graph

Figure 1. Clearly, there exists at least one state which is com-
patible with the causal information ω1, ω2, ω3:

S |= ♦�.

Moreover, at state S it is causally necessary that Bob is in
favor of the use of nuclear energy. In other words, Bob has
no freedom, he is trapped in the influence process:

S |= �pro(Bob).

Moreover, it is not causally possible that Cath is in favor
while Ted is against:

S |= ¬♦(pro(Cath) ∧ ¬pro(Ted)).
As the following theorem indicates, for every formula of

the language of causal necessity, there exists a mapping from
finite states to equational states such that the input state satis-
fies the formula if and only if the output state satisfies it too.

Theorem 3. Let ϕ ∈ LCN(P). Then, there exists a function
g : SFin −→ SEq such that

S |= ϕ iff g(S) |= ϕ.

From Theorem 3 we can conclude that for every formula
of the language of causal necessity to be checked relative to
a finite state, we can transform the latter into an equational
state and check the formula relative to it. In other words, the
general model checking problem defined in Section 3.3 can
be reduced to model checking relative to equational states.

The theorem relies on the fact that, given a formula ϕ, we
can transform a finite causal base C into a causal base C ′ con-
taining a single equational formula ωeq such that the set of
propositional interpretations for the atoms in P(ϕ) satisfying
all formulas in C is the same as the set of propositional inter-
pretations for the atoms in P(ϕ) satisfying ωeq . This guaran-
tees that from a finite state S = (C,V ) we can build an equa-
tional state S′ = ({ωeq},V ′) such that S |= ϕ iff S′ |= ϕ.
However, the transformation is exponential. The equational
formula ωeq uses the canonical DNF of the Boolean function
representing the set of interpretations for the atoms in P(C)
that satisfy all formulas in C. The size of a such a canonical
DNF is exponential in the size of P(C). We believe it is not
possible to find a polynomial transformation of a finite state
into an equational state that guarantees equisatisfaction of ϕ.

Note that Theorem 3 cannot be generalized to the more
general language LCIN(P) since states in SEq only allow
causal information to be expressed in an equational form.

4.2 Binary Causal Model
Before defining the notion of binary causal model some pre-
liminary notions are needed. A binary assignment for the set
of variables X ⊆ P is a function

IX : X −→ {0, 1}.
The set of binary assignments for X is noted AsgX. Interpre-
tation |.| of propositional formulas in LPROP(X) relative to
assignments in AsgX is as usual: |p|Asg

X
= {IX ∈ AsgX :

IX(p) = 1} for p ∈ X; |�|Asg
X

= AsgX; |¬ω|Asg
X

=
AsgX \ |ω|Asg

X
; |ω ∧ ω′|Asg

X
= |ω|Asg

X
∩ |ω′|Asg

X
.

Definition 5 (Binary causal model). A binary causal model
(BCM) is a tuple Θ =

(
Vexo ,Vend , (Fp)p∈Vend

)
where Vexo

is a finite set of exogenous variables, Vend is a finite set of
endogenous variables such that Vend ,Vexo ⊆ P and Vend ∩
Vexo = ∅, and, for every p ∈ Vend :

Fp : AsgV\{p} −→ {0, 1}
with V = Vexo ∪ Vend .

For notational convenience, we sometimes abbreviate V \
{p} as p. Moreover, when the context is unambigous, we
write Asg instead of AsgV and note I, I ′, . . . its elements.

Definition 6 (Solutions of a BCM). Let Θ =(
Vexo ,Vend , (Fp)p∈Vend

)
be a BCM and let I ∈ Asg .

We say that I is a solution of Θ if and only if, for every
p ∈ Vend :

I(p) = Fp

(I|p
)
,

where I|p is the restriction of function I to p. The set of
solutions of Θ is noted Sol(Θ).
Definition 7 (Pointed BCM). A pointed BCM is a pair (Θ, I)
with Θ =

(
Vexo ,Vend , (Fp)p∈Vend

)
a BCM and I ∈ Sol(Θ).

The class of pointed BCMs is noted B.
Pointed BCMs provide a natural semantics for interpret-

ing formulas of the language of propositional causal neces-
sity. In particular, given a pointed BCM (Θ, I) with Θ =(
Vexo ,Vend , (Fp)p∈Vend

)
we can interpret formulas of the

language LPCN(V), as follows. (Boolean cases and � are
again omitted since they are defined in the standard way.)

(Θ, I) |= p ⇐⇒ I(p) = 1,

(Θ, I) |= �ω ⇐⇒ Sol(Θ) ⊆ |ω|Asg .

Notice in particular the interpretation of the causal necessity
modality �: it is causally necessary that ω if ω is true for all
solutions of the actual causal model.

The following theorem highlights the tight similarity be-
tween equational states and pointed BCMs. Every equational
state can be mapped into a pointed BCM and, conversely, ev-
ery pointed BCM can be mapped into an equational state such
that the truth of the formulas in the language of propositional
causal necessity is invariant between them.

Theorem 4. There exists a surjection f : SEq −→ B such
that if f(S) = (Θ, I) with Θ =

(
Vexo ,Vend , (Fp)p∈Vend

)
then

∀ϕ ∈ LPCN(V), S |= ϕ iff (Θ, I) |= ϕ.

Note that Theorem 4 is conceptually stronger than The-
orem 3 since the function f works for all formulas in the
language LPCN(V), while the function g in Theorem 3 only
works for a single formula in the language LCN(P).
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5 Interventionist Conditionals
In this section, we are going to define a semantics for inter-
ventions which relies on a replacement operation on causal
bases in Hansson’s style [Hansson, 2009]. We will show
that, when restricting to equational states, it corresponds
to the SEM semantics for interventions [Halpern, 2000;
Halpern and Pearl, 2005a]. Before introducing the seman-
tics, we first define the syntax of interventionist conditional
modalities.

5.1 Syntax
The antecedent of an interventionist conditional is an event,
namely, a set of basic interventions on propositional variables
of the form p=1 (the variable p is set to ‘true’) or p=0 (the
variable p is set to ‘false’) with at most one intervention per
variable. The set of basic interventions is defined as follows:

Int =
{
p=τ : p ∈ P and τ ∈ {0, 1}},

while the set of events is defined as follows:

Evt =
{{p1=τ1, . . . , pk=τk} ⊂ Int :

∀k′, k′′ ∈ {0, . . . , k}, if k′ �= k′′ then pk′ �= pk′′
}
.

Elements of Evt are noted E ,E ′, . . . For notational con-
venience, given p=τ ∈ Int , we define its correspond-
ing equational formula as follows: eq(p=1) = p ↔
� and eq(p=0) = p ↔ ⊥. We extend function eq
to sets in the expected way: eq

({p1=τ1, . . . , pk=τk}
)

={
eq(p1=τ1), . . . , eq(pk=τk)

}
. Moreover, for each E ∈

Evt , we define the partial function valE with domain P and
codomain {0, 1}: valE (p) = 1 if p=1 ∈ E , valE (p) = 0 if
p=0 ∈ E , and undefined otherwise.

We consider the following extension of the language
LPCN(P) by interventionist conditional operators of the form
[E ] and their negation:

LPCN−Int(P)
def
= γ ::= ϕ | [E ]ω | ¬[E ]ω | γ ∧ γ,

with ϕ ranging over LPCN(P), ω ranging over LPROP(P)
and E ∈ Evt . LPCN−Int stands for “Language for Propo-
sitional Causal Necessity plus Interventions”. The new for-
mula [E ]ω has to be read “it will be causally necessary that
ω, after the occurrence of the event E” or “if the event E
occurred, ω would be necessarily true”. As usual, we define
〈E 〉ω =def ¬[E ]¬ω. Note we only allow negation over arbi-
trary formulas in LPCN(P) and over the modality [E ]. Indeed,
we are merely interested in talking about causal necessity
(i.e., [E ]) and causal possibility (i.e., 〈E 〉) of propositional
facts after intervention. Negation over arbitrary formulas in
LPCN−Int(P) (i.e., ¬γ) would add unnecessary complications
that we prefer to leave aside for the moment.

Note also we could have built the extension with interven-
tionist conditionals on the top of the language LCIN(P) in-
stead of the more restricted language LPCN(P). We did not do
this since the language LPCN−Int(P) is sufficient to achieve
our goal of comparing the interpretation of the concept of
intervention in the rule-based semantics with its interpreta-
tion in the SEM semantics. The complexity upper bound for
model checking we will provide in the next section general-
izes straightforwardly to the more general language for inter-
ventionist conditionals built on the top of LCIN(P).

5.2 Semantics
In order to define interventionist conditionals semantically,
some preliminary notions are needed. The effect of an event
(a set of interventions) is to add information about the truth
values of certain propositional variables to the causal base
and to remove from the causal base all equational formulas
about those variables. The latter is called the revocable part
of the causal base in the light of the event. In other words,
the revocable part of a causal base C in the light of an event
E , noted Rev(C,E ), includes all causal information that is
superseded by some intervention in E .

Definition 8 (Revocable part of a causal base). Let C ⊆
LPROP(P) and E ∈ Evt . We define

Rev(C,E ) =
{
p ↔ ω ∈ (

C ∩ LEQ(P)
)
: p=1 ∈ E or

p=0 ∈ E
}
.

The following definition introduces the notion of causal
compatibility post intervention.

Definition 9 (Causal compatibility post intervention). Let
E ∈ Evt . We define ⇒E to be the binary relation on the set of
states S such that, for every S = (C,V ), S′ = (C ′,V ′) ∈ S:

S ⇒E S′ if and only if C ′ =
(
C \ Rev(C,E )

) ∪ eq(E ).

S ⇒E S′ means that state S′ = (C ′,V ′) is compati-
ble with state S = (C,V ) after the occurrence of event E .
According to previous definition, the latter is the case if the
causal base C ′ is the result of the following replacement oper-
ation applied to the causal base C: (i) remove from the causal
base C all formulas which are revocable in the light of the
event E , and then (ii) add to the resulting base the equational
formulas corresponding to the interventions in E .

By means of the relation ⇒E , we can provide a seman-
tic interpretation of the interventionist modalities [E ]. They,
too, are interpreted relative to a set of states (a context) and a
specific state S included in it. Let U ⊆ S and S ∈ U . Then,

(S,U ) |= [E ]ω ⇐⇒ ∀S′ ∈ U : if S ⇒E S′

then (S′,U ) |= ω.

The other constructs of the language LPCN−Int(P) (i.e., ϕ,
¬[E ]ω and γ ∧ γ) are interpreted in the usual way. Again,
to simplify notation, we write S |= γ instead of (S,S) |= γ.
Note that the interventionist modality with the empty event
coincides with the causal necessity operator, i.e., the formula
[∅]ω ↔ �ω is valid.

The following theorem provides a complexity upper bound
of model checking for the language extended with interven-
tionist modalities. Its proof relies on two facts: (i) the for-
mula to be checked is a conjunction of the form γ1∧ . . .∧γm
where each conjunct is of the form ϕ, [E ]ω or ¬[E ]ω with
ϕ ∈ LPCN(P), (ii) model checking the formula [E ]ω relative
to a finite state is reducible to model checking the formula
�
(∧

p=τ∈E eq(p=τ) → ω
) ∈ LPCN(P) relative to the fi-

nite state obtained from the input state through the removal
of all causal information which is revocable in the light of
the event E . Thus, thanks to Theorem 2, model checking for
LPCN−Int(P)-formulas is solvable by a poly-time determinis-
tic Turing machine querying an NP-oracle.
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Theorem 5. Model checking for LPCN−Int(P)-formulas is in
PNP = ΔP

2 .
Let us go back to our running example.

Example 2 (cont.). Let us consider again the equational state
S =

({ω1, ω2, ω3}, {pro(x) : x ∈ Agt}) as defined in Ex-
ample 1. We have shown that in this state Bob cannot be
against the use of nuclear energy and that Cath cannot be in
favor while Ted is against. It is interesting to observe that,
by forcing Cath to be in favor of the use of nuclear energy
through intervention on her opinion we cut the influence of
Ann and Bob’s opinions on her opinion. Consequently, (i) it
becomes possible for Bob to be against the use of nuclear en-
ergy, and (ii) it becomes possible for Cath to be in favor while
Ted is against. Formally, we have:

S |=〈{pro(Cath)=1}〉¬pro(Bob)∧
〈{pro(Cath)=1}〉(pro(Cath) ∧ ¬pro(Ted)).

However, the intervention pro(Mary)=1 does not open the
possibility for Bob to be against when Ted is in favor:

S �|=〈{pro(Cath)=1}〉(¬pro(Bob ∧ pro(Ted)
)
.

5.3 Back to Structural Equational Models
Before concluding, it is worthwhile to explore the connection
between the rule-based semantics for interventionist condi-
tionals defined in the previous section and the standard SEM
semantics. The following definition specifies the way a BCM
is updated through an event. Our definition is slightly dif-
ferent from the update semantics used in the SEM literature
whereby interventions only apply to endogenous variables,
and the partition of the set of variables into exogenous and
endogenous ones does not change under intervention. We
assume interventions can also apply to exogenous variables
thereby transforming them into endogenous ones. The justi-
fication is that we take exogenous and endogenous variables
as part of the BCM relative to which formulas are evaluated.

Definition 10 (BCM after intervention). Let
Θ =

(
Vexo ,Vend , (Fp)p∈Vend

)
be a BCM and

E = {p1=τ1, . . . , pk=τk} ∈ Evt . We define the
BCM resulting from the update of Θ by E as the tuple
ΘE =

(
V

E
exo ,V

E
end , (FE

p )p∈VE
end

)
such that

V
E
exo = Vexo \ {p1, . . . , pk},

V
E
end = Vend ∪ {p1, . . . , pk},

∀p ∈ (
V

E
end \ {p1, . . . , pk}

)
,FE

p = Fp, and

∀p ∈ {p1, . . . , pk},Range(FE
p ) =

{
valE (p)

}
.

The condition Range(FE
p ) = {valE (p)} just means that

FE
p (Ip) = valE (p) for every Ip ∈ Asgp.

The modality [E ] has the following interpretation relative
to a pointed BCM:

(Θ, I) |= [E ]ω ⇐⇒ Sol(ΘE ) ⊆ |ω|Asg .

This means that the conditional expression [E ]ω holds if the
consequent ω is true for all solutions of the actual BCM up-
dated by the event E .

The following theorem is a generalization of Theorem 4
to the language LPCN−Int(V): there exists a truth preserving
onto relation between equational states and BCMs for the lan-
guage extended by interventionist modalities.

Theorem 6. There exists a surjection f : SEq −→ B such
that if f(S) = (Θ, I) with Θ =

(
Vexo ,Vend , (Fp)p∈Vend

)
then

∀ϕ ∈ LPCN−Int(V), S |= ϕ iff (Θ, I) |= ϕ.

6 Lewisian Conditionals
In this section, we introduce a notion of counterfactual con-
ditional interpreted by means of a comparative similarity re-
lation. In the standard analysis of counterfactual conditionals
the notion of similarity is given as a primitive [Lewis, 1973]

or replaced by an abstract selection function [Stalnaker, 1968]

which selects for every world and formula ϕ the set of most
similar ϕ-worlds to it. In line with Ginsberg’s earlier work
on the computationally grounded semantics for counterfactu-
als [Ginsberg, 1986], we compute the comparative similarity
relation from causal bases.

6.1 Semantics
A straightforward way to compute the comparative similarity
relation between states relative to a causal base is by compar-
ing the causal information of the causal base that is relevant
in each state. This idea is made precise by the following def-
inition.

Definition 11 (Similarity relation between states). Let S =
(C,V ), S′ = (C ′,V ′), S′′ = (C ′′,V ′′) ∈ S. We say that
state S′ is at least as similar to state S as state S′′ is, noted
S′′ �S S′, if

(C ∩ C ′′) ⊆ (C ∩ C ′).

According to the previous definition, state S′ is at least as
similar to state S as state S′′ is, if the set of causal infor-
mation shared by S and S′′ is included in the set of causal
information shared by S and S′. In other words, state S′ is at
least as causally compatible with state S as state S′′ is. This
criterion is qualitative since it relies on set inclusion. A quan-
titative criterion, which is not studied here, would be based on
comparing the two cardinalities |(C ∩ C ′′)| and |(C ∩ C ′)|.

Following Lewis, we use the similarity relation to define
the set of closest (or most similar) states to a given state sat-
isfying a given property ϕ.

Definition 12 (Set of ϕ-closest states). Let U ⊆ S, S =
(C,V ) ∈ U and ϕ ∈ LCIN(P). We define

Closest(ϕ,S,U ) =
{
S′ ∈ U : S′ |= ϕ and � ∃S′′ ∈ U

s.t. S′′ |= ϕ and S′ ≺S S′′},
where S′ ≺S S′′ iff S′ �S S′′ and S′′ ��S S′.
Closest(ϕ,S,U ) is the set of closest ϕ-states to S in U ,

according to the similarity relation �S . For notational conve-
nience, we write Closest(ϕ,S) instead of Closest(ϕ,S,S).

On the syntactic side, we extend the modal language
LCIN(P) introduced in Section 3.2 by counterfactual condi-
tional modalities in Lewis’ style of the form ϕ1 � ϕ2, with

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3292



ϕ1, ϕ2 ∈ LCIN(P), and interpret them relative to a context
U ⊆ S and a state S ∈ U :

(S,U ) |= ϕ1� ϕ2 ⇐⇒ ∀S′ ∈ Closest(ϕ1,S,U ) :

(S′,U ) |= ϕ2.

According to the previous semantic interpretation, the condi-
tional ϕ1 � ϕ2 (read “if ϕ1 were true, ϕ2 would be true”)
holds at a given state S relative to the context U in case ϕ2 is
true at all the closest ϕ1-states to S in U .

6.2 Relationship with Belief Change
There is a tight correspondence between counterfactual con-
ditionals whose antecedents and consequents are expressed
by propositional formulas and causal base change operations.
In order to elucidate this correspondence the notion of ω-
remainder, borrowed from formal models of theory change
[Alchourrón et al., 1985] and belief base change [Hansson,
1993], is needed.

Definition 13 (ω-remainder). Let C ⊆ LPROP(P), ω ∈
LPROP(P) and C ′ ⊆ C. We say that C ′ is a ω-remainder
of C if

(i) ω �∈ Cn(C ′),

(ii) ∀C ′′ ⊆ C, if C ′ ⊂ C ′′ then ω ∈ Cn(C ′′),

where we recall that Cn is the classical deductive closure
operator over the propositional language LPROP(P). We note
C⊥ω the set of all ω-remainders of C.

According to the previous definition, an ω-remainder of a
causal base C is a maximal subset of the original causal base
from which the propositional fact ω is not deducible. The
following theorem is the first key result of this section. It
highlights the strong connection between counterfactual con-
ditionals and the notions of base contraction and revision.

Theorem 7. Let S = (C,V ) ∈ S and ω1, ω2 ∈ LPROP(P).
Then, the following three items are equivalent:

1. S |= ω1� ω2,
2. ∀C ′ ∈ C⊥¬ω1, (C

′,V ) |= �(ω1 → ω2),
3. ω2 ∈ ⋂

C′∈C⊥¬ω1
Cn(C ′ ∪ {ω1}).

According to the previous theorem, declaring that a coun-
terfactual statement ω1 � ω2 with propositional ante-
cendent ω1 and consequent ω2 be true at a certain state
is the same as stating the causal necessity of the fact that
the antecedent implies the consequent relative to every ω1-
remainder of the actual causal base. Moreover, by virtue of
Proposition 1, the latter is equivalent to declaring that the con-
sequent ω2 is included in the deductive closure of each ω1-
remainder of the actual causal base after expanding it by ω1.
This operation is called full meet belief base revision scheme
or simple base revision in the belief revision literature [Fa-
gin et al., 1983; Ginsberg, 1986; Nebel, 1989; Nebel, 1991;
del Val, 1992; Rott, 1993].

The equivalence between items 1 and 3 in Theorem 7 is
in line with the so-called Ramsey test [Stalnaker, 1968]. Ac-
cording to the latter, the validity of an epistemic conditional
can be verified by adding the antecedent to a stock of beliefs,
revising it if necessary, and checking whether the consequent
is deducible from the resulting epistemic state.

6.3 Relationship with Interventionist Conditionals
The second key result of this section relates interventionist
conditionals to Lewisian conditionals. It pinpoints a con-
dition under which an interventionist conditional can be re-
duced to a Lewisian conditional.

Theorem 8. Let S ∈ SEq . Then,

if (S,SEq) |= 〈E 〉� then(
(S,SEq) |= [E ]ω iff (S,SEq) |=

( ∧
p=τ∈E

�eq(p=τ)
)
� ω

)
.

According to the previous theorem, when considering
equational states, if after the intervention there exists at least
one state which is compatible with the causal base, then
declaring that “ω will be causally necessary after interven-
tion” is the same as declaring that “if all information corre-
sponding to the intervention holds, ω would be true”. More
generally, if we restrict to equational states — that as shown
in Sections 4.2 and 5.3 correspond to BCMs — the existence
of a solution after intervention guarantees the reducibility of
the interventionist conditional to a Lewisian conditional.

7 Conclusion
We hope we have successfully shown that our rule-based se-
mantics offers a natural framework (i) for modeling some
crucial concepts in the theory of causality including causal
necessity and possibility, interventionist and counterfactual
conditional, and (ii) for elucidating the connection between
causal reasoning and epistemic reasoning, with special em-
phasis on belief base change. We have mainly focused on the
complexity of satisfiability and model checking.

Future work will be devoted to studying the proof-theoretic
aspects of the different modal languages introduced in the pa-
per. We also intend to explore the practical implications of
our work. We have shown that reasoning in our framework
is in NP when dealing with causal necessity and possibility

and in PNP in the extension by interventionist conditionals.
We plan to come up with reductions of our satisfiability and
model checking problems to SAT with the aim of automating
causal reasoning.

Last but not least, we plan to use our framework for for-
malizing some interesting causal concepts with special atten-
tion to actual causality and causal explanation. As recently
shown in [Beckers, 2021], the SEM semantics can success-
fully formalize different notions of actual cause including the
Halpern & Pearl’s definition [Halpern and Pearl, 2005a], the
famous NESS (Necessary Element of a Sufficient Set) defini-
tion [Wright, 1988] and a counterfactual variant of the NESS
definition. The correspondence results between equational
states and binary SEMs we proved (Theorems 4 and 6) guar-
antee that all these definitions can be formalized in our se-
mantics as well, provided that the variables are binary. In
order to model causal explanation, we will extend our modal
languages for causal reasoning with epistemic operators. In-
deed, we conceive an explanation as a causal attribution by an
explainer, namely, as a belief of the explainer about the actual
cause of a given fact or event.
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