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A Simple and General Operational Framework to
Deploy Optimal Routes with Source Routing

Quentin Bramas, Jean-Romain Luttringer, Pascal Mérindol

Abstract—Source Routing, currently facilitated by Segment
Routing (SR), enables precise control of forwarding paths by
specifying detours (or segments) to deviate IP packets along
routes with advanced properties beyond typical shortest IGP
paths. Computing the desired optimal segment lists, known
as encoding, leads to interesting challenges as the number of
detours is tightly constrained for hardware performance. Exist-
ing solutions either lack generality, correctness, optimality, or
practical computing efficiency – in particular for sparse realistic
networks. In this paper, we address all such challenges with
GOFOR-SR. Our framework extends usual path computation
algorithms to inherently look at optimal and feasible segment
lists, streamlining the deployment of TE-compliant paths. By
integrating encoding within the path computation itself and
modifying the distance comparison method, GOFOR allows
algorithms with various optimization objectives to efficiently
compute optimal segment lists. Despite the loss of substructure
optimality induced by SR, GOFOR proves particularly efficient,
inducing only a linear overhead at worst. It also offers different
strategies and path diversity options for intricate TE-aware load-
balancing. We formally prove the correctness and optimality of
GOFOR, implement our framework for various practical use-
cases, and demonstrate its performance and benefits on both
real and challenging topologies.

Index Terms—Segment Routing, Path Computation, Operator
Networks, Traffic Engineering, Optimization

I. INTRODUCTION

IP networks typically employ a best-effort, hop-by-hop
routing paradigm. Packets follow paths minimizing the IGP
cost, an additive metric considering link bandwidth, delay, or
some operator design intent. While this approach offers some
level of performance, it lacks more elaborated forwarding
guarantees.

Despite the scalability advantages of considering uni-
dimensional paths, some use cases require more robust or
intricate routes. For instance, specific paths are necessary for
circumventing failures (e.g., as computed by TI-LFA [1]).
Premium real-time flows may require specific paths ensuring
guarantees both in bandwidth and latency (e.g., as computed
by solving the Delay Constrained Least Cost problem, or
DCLC [2]).

Such paths may be deployed over best-effort ones through
Source routing. Source routing enables the source (e.g., an
edge provider router) to enforce paths with intricate properties.
Packets are encapsulated to convey forwarding instructions to
downstream routers, ensuring adherence to the desired path
instead of best-effort routes. These instructions typically do
not specify the path in its entirety, but encode it loosely as a
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list of mandatory checkpoints that the packet must go through
(following the shortest IGP paths between each checkpoint by
default).

Despite its benefits, the (loose) source-routing paradigm
encountered deployment challenges due to cumbersome trou-
bleshooting and significant protocol complexity in existing
control planes (e.g., RSVP-TE). Consequently, large-scale
adoption of fine-grained Traffic Engineering (TE) through
source routing was infrequent [3].

More recently, Segment Routing [4] (SR) introduced a
scalable and lightweight implementation of the loose source-
routing paradigm. SR sparked the interest from both academia
and the industry. As of now, the majority of network operators
deploy (or plan to deploy) SR for various use-cases, including
Traffic-Engineering [5].

SR allows the source to prepend segments to each packet.
These segments typically represent nodes or links within the
network, serving as mandatory detours from the standard IGP
paths. There are two main types of segments:
• An adjacency segment designates a specific link that the

packet should traverse.
• A node segment designates a particular node that the

packet should pass through. Packets are forwarded to the
node along the best path(s) on the IGP topology. SR
supports multi-topologies [4], allowing for example to
follow least-delay sub-paths rather than IGP ones.

Various types of segments can be combined to encode any
desired path. To deploy optimal paths with respect to the
Traffic Engineering (TE) objective, it thus becomes necessary
to compute the appropriate segment lists and not only the paths
themselves.

The computation of segment lists introduces an extra chal-
lenge: respecting the Maximum Segment Depth (MSD). This
limit varies based on hardware capabilities, ranging from as
few as 3 to up to 10 segments at line-rate [6]. Minimizing or
at least controlling the number of segments when computing
segment lists thus becomes critical.

In this paper we present our recipe to solve this problem
in a generic and efficient manner. Given any objectives, our
framework computes the optimal segment lists respecting the
MSD limit. Before presenting in detail our achievements, we
first illustrate the challenges raised by the problem we tackle.

Encoding optimal paths into segment lists is not enough:
Translating a given optimal path into a minimal segment
lists, known as the path encoding problem, leads to some
algorithmic challenges. The encoding itself is arguably not
the main one. However, encoding a (pre-computed) optimal
path may lead to a segment list exceeding the MSD limit,
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Figure 1. A Least-Delay use case highlighting the limit of an a posteriori
encoding scheme and the loss of isotonicity. The orange path may be pruned
at node 3 despite it becoming optimal if MSD is set to 2 on S.

as optimizing the number of segments may not align with
optimizing the TE objective. This implies that path encoding
must be performed during the path computation, in order to
account for the number of segments when extending paths.

This phenomenon is familiar within the context of comput-
ing multi-metric constrained paths. Considering the number of
segments as an additional metric, it is well-known that, to find
solutions satisfying a constraint on a metric, all non-dominated
paths must be extended for optimality correctness1. However,
it works only if the metrics are isotone (i.e., an optimal
path is composed of optimal subpaths), but this fundamental
property does not hold when considering source routing.
This issue being at the core of our contribution, we precisely
illustrate it in the following paragraph.

Illustration of the challenges: MSD constraint & Iso-
tonicity: We now show why ignoring some dominated dis-
tances may lead to incorrect (possibly infeasible, i.e., non-
deployable) solutions.

We illustrate this challenge motivating the use of GOFOR-
SR on a basic use-case (Fig. 1). The objective is to minimize
the delay (called Least-Delay in this paper). We restrict our
analysis to adjacency and IGP node segments. Fig. 1 shows
a multi-valuated graph, where each link exhibits both an IGP
cost and a delay. Possible distances to reach nodes 3 and

D are shown below said nodes, exhibiting the IGP cost, the
delay (and the required number of segments). The associated
segment lists can be seen on the right side of their respective
distances.

The first observation is that reaching D with a delay at
most 4 requires at least 3 segments, but if MSD is set to 2
at S , the orange path has to be chosen. Pre-computing the
blue or the green optimal paths (delay-wise) and applying an
encoding a posteriori would result in segment lists exceeding
a tight MSD constraint. The orange segment list, while being
dominated by the blue segment list at node 3 , becomes the
best option with at most 2 segments to reach D .

In general, distances being suboptimal at an intermediate
node are not supposed to be extended further (as the latter

1In a multi-criteria context, a path is optimal (or non-dominated) if it is
better on at least one metric than any other path towards the same node.
Intuitively, a dominated path, being worse on all metrics, cannot become
optimal later on and may be pruned from the exploration.

should not possibly lead to optimal distances towards down-
stream nodes). This fundamental property, called isotonicity
or subpath optimality, is essential to bound the worst-case
complexity of the path computation (as only a manageable
number of distances are extended).

In Fig. 1, when exploring the graph, this standard behavior
would thus dictate to only extend the blue distance from node

3 onward. Indeed, the orange distance is dominated as it has
a higher delay while not offering better options than the blue
distance on other metrics. The green distance has an optimal
delay, but also require more segments than its blue counterpart.

The surprising effect occurs when extending these inter-
mediate distances by the edge 3 D : the blue segment list
now requires an additional segment to encode the desired
distance while it is not the case for the two others. Starting
from the current detour 2 , adding a single node segment
to D does not encode the distance exhibited by the path

S 2 3 D , as flows will follow the link 2 D , which ex-
hibits a higher delay. Thus, while encoding the distances of the
path S 2 3 required 2 segments, encoding the distances
of the path S 2 3 D requires one more segment.

On their sides, the green and orange segment lists do not
evolve in the same fashion: they do not require more segments
to encode the additional edge. Let us consider the green
path: while encoding the distances of the path S 1 6 3

already required 3 segments, encoding the extended path
S 1 6 3 D just requires to modify the last node seg-

ment ( 3 ) by a node segment targeting D .
The fact that some (but not all) segment lists require an

additional segment when extended implies that at least some
dominated segment lists should be extended, as it is the case
for the orange one in the example. Moreover, if one aims
at retrieving all optimal segment lists (e.g., to perform TE-
aware load balancing), the green segment list should also be
extended, as it becomes equivalent to the blue one after the
extension by the edge 3 D .

This observation bears a drastic consequence: it seems
that to properly wrap SR around existing algorithms (i.e.,
augmenting them to compute minimal and optimal segment
lists), all paths should be extended to ensure that the optimal
solution is found. This challenge leads to the main research
question of this paper:

Research Question

How can we extend path computation methods (with
additive metrics and isotone properties), to correctly,
optimally and efficiently wrap SR around them?

Compared to the related works, we manage to answer this
research question while remaining efficient and avoiding the
use of heavy data-structures and graph transformation.

Main Achievements: Despite the practical interest of this
research question, there exists a clear gap in the literature for
generic means to augment path computation algorithms with
the ability to consider SR both properly and efficiently.

Our answer is GOFOR-SR, a General Operational
Framework for Optimal Routes with SR. GOFOR is a simple
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and generic framework that enables path computation algo-
rithms to efficiently compute optimal segment lists. Despite
the complexity of the problem, GOFOR allows their retrieval
with linear overhead at worst. As the first generic and optimal
solution for generic segment lists computation, GOFOR not
only paves the way for easy deployments of SR in various
use cases, but also for intricate TE-aware load balancing.

Our contributions are as follows:
1) The formalization of a new SR model for the problem(s)

we tackle. We introduce the notions of path encoding,
SR wrapping (constrained or lexicographical), multi-
topology segment lists, and path diversity strategies
in Sec. II;

2) A loose, ECMP-friendly, encoding scheme able to com-
pute minimal segment lists possessing a given set of
properties. This encoding is the first to handle multi-
topologies, and is performed with a linear time overhead
(wrt. #nodes) during path exploration (Sec. III-A);

3) An extended dominance function in order to re-ensure
an isotone relation (Sec. III-B). We define a new, SR-
aware dominance to correctly compare segment lists.
This relation can be implemented within any traditional
shortest path algorithm along with our encoding scheme
to ensure that the optimal deployable segment lists are
found for only a linear overhead (wrt. #nodes) (Sec. IV).

4) A C implementation of GOFOR and three modules
showing how our framework can be used to properly wrap
SR around algorithms computing (i) Delay Constrained
Least Cost paths, (ii) Least Delay paths, and (iii) Best
IGP paths avoiding a link failure. We experimentally
show that GOFOR-SR allows reaching better perfor-
mance than concurrent approaches (Sec. V). The code of
our implementation is available online [7] and a python
notebook is provided to ease the reproducibility of our
experiments [7].

II. THE SR-WRAPPED PROBLEM IN A FORMAL NUTSHELL

A. Notations & Models

Let G(E, V,w) be a directed graph with V the set of
vertices, E the set of edges, and w : Nk

+ as the weight function
mapping each edge to its weight vector (w1(e), . . . , wk(e)).
Observe that initial metrics are indexed from 1 to k; metric
with index 1 denotes the IGP distance – while, as formally
defined later, metric with index 0 will represent the number
of segments. Other components may be any desired additive
metrics. For a path p, p[i] denotes the i-th traversed node of
p and p[i : j] denotes the subpath of p from p[i] to p[j].

Segments: A segment S = Seg(Stype , Ssrc , Sdst) repre-
sents a set of paths from a source Ssrc to a destination Sdst .
The set depends also on its type Stype , defining the kind
of segment in use (either directly an adjacence or a subpath
satisfying a distance regarding a given metric). If no path exists
from Ssrc to Sdst with the property associated with Stype ,
we say that the segment is empty. Let S be a segment and
e = (Sdst , v) an edge. We say that S can be extended by e
if the segment Seg(Stype , Ssrc , v) is not empty and contains
a path (of type Stype ) from Ssrc to v passing through e. We

denote by S ◦ e = Seg(Stype , Ssrc , v) this extension of S by
e, otherwise we write S ◦ e = ∅.

A segment satisfies two properties: (a) if p is a
path in S, then its sub-segments are non-empty: ∀i <
j, (Stype , p[i], p[j]) 6= ∅; and (b) if a path p is in a segment S
and S ◦ e is not empty, then p ◦ e is in S ◦ e.

The most common types of segments are adjacency, denoted
Adj , and node, denoted Node . If Stype = Adj , S simply
represents the edge (Ssrc , Sdst) if it exists, and is empty
otherwise. By construction, an adjacency segment cannot be
extended, so it verifies the two properties above.

If Stype = Nodei, S represents the set of paths from Ssrc

to Sdst minimizing the i-th metric wi. In this context, Node
stands for “all the best paths towards the destination Sdst”.
Node segments satisfy the two properties above because sub-
paths of shortest paths are also shortest paths.

In this paper, and in particular in our examples, we mainly
consider segments with types Adj and Node1 (IGP based node
segments as they are the only ones provided by default with
SR), but our recipe works for any type of segments and their
combination. GOFOR can also support IPv6 segments through
the NodeAdj i segment type 2. A NodeAdj i segment between
u and v refers either (i) to the (Nodei, u, v) segment if it is
not empty, or (ii) to all the paths obtained by concatenated a
path in (Nodei, u, v

′) with the edge (v′, v), for an arbitrary
neighbor v′ of v. If no such neighbor exists, then the segment
is empty. In the first case, the segment satisfies its two required
properties because it is a node segment. In the second case,
the segment is not extendable3, so it also satisfies the two
properties (a and b). The set of types of segments (i.e., Nodei,
Adj and NodeAdj i) is denoted SegTypes .

Distances: We assume all the metrics are additive. There-
fore, the distance d(p) of a path p is simply the sum of
the weights of its edges, i.e., for each metric i we have
di(p) =

∑
e∈p wi(e).

As a segment S represents a set of paths, its distance d(S)
is defined as the maximum distance among all paths in S for
each metric. In other words, di(S) = maxp∈S di(p). Note that
d(S) may not correspond to the distance of a specific path in
S, since the maximum value for each metric might not be
attained by the same path. Furthermore, observe that all the
paths in a segment Seg(Nodei, u, v) have the same distance
for the metric i, since, by definition, they all minimize this
metric between u to v. Finally, we denote Γ the size of the
Pareto Front (i.e., the number of non-dominated paths) induced
by the set of the k metrics (at least with indexes 0 and 1).

Segment Lists: A segment list L is defined as a finite
sequence of non-empty segments L = (S1, S2, . . . , Sl). In a
segment list, each segment Si starts at the end of the previous
segment: more formally, for all 1 < i ≤ l, Sdst

i−1 = Ssrc
i .

The distance d(L) of a segment list L is the sum of the
distances of its segments, i.e., for each metric: di(L) =

2In SR-MPLS, guiding a packet through a link (u, v) involves two
segments: first, a node segment to direct the packet to u, then followed by the
relevant adjacency segment (whose local significance varies depending on the
interpreting node). With SRv6, accomplishing this task requires just a single
adjacency segment as the local ports of each node are globally broadcasted.

3Otherwise it implies that the corresponding node segment is non-empty
and thus contradicts the fact that the second case is considered.
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∑l
j=1 di(Sj). Moreover, we consider the number of segments

as the 0-th metric, so that d0(L) = l (d0 not being defined
for paths). Note that d0(L) must be lower than MSD if the
number of segments is constrained. A segment list distance
d(.) is a vector in Nk+1

+ .
We say that a segment list L can be edge-extended by an

edge e if e can be concatenated to the last segment of L i.e.,
Sl ◦ e is not empty. In this case the resulting segment list is
denoted L◦e = (S1, S2, . . . , Sl ◦e). Two segment lists L1 and
L2 can be concatenated if the destination of the last segment
in L1 matches the source of the first segment in L2. This
concatenation is denoted L1 ⊕ L2.

Two Encoding Paradigms: Encoding a path p consists in
finding a list of detours encoding paths exhibiting properties of
which p is a representative. We define two types of encoding.

Definition 1 (Strict Encoding). We say a segment list L strictly
encodes a path p if L is a partition of p. In other words, each
segment in L contains only one subpath of p and L has the
same source and destination as p.

Definition 2 (Loose Encoding). We say that a segment list
L loosely encodes a path p if each segment in L contains a
subpath of p, L has the same source and destination as p,
and d(L) = d(p) (in this equality we ignore the number of
segments, since it is not defined for paths).

Strict encoding is useful when considering use-cases such
as monitoring or services chaining, in which the structure of
the path must be enforced. While this type of encoding is
commonly found in the literature [8], [9], loose encoding is
better suited for most usual use-cases as it enables shorter
segment lists benefiting from multiple load balanced paths
(ECMP) having all bounded guarantees.

On the contrary to the strict paradigm, a packet that is
source-routed through the loose encoding of a path p may
not follow p (or just partially) but its effective route will
have the same (or better) distance(s). For example, when
relying on the loose paradigm to encode a least-delay path
p (typically without using node segments of this type), this
encoding ensures that any path in the resulting segment list L
will possess the same delay as p, or a better one. Note that p
remains within the set of paths encoded by L.

This paradigm is the most suited when the distance(s) matter
more than the structure of the path itself, which is often the
case in practice, and enables to mitigate d0(L). Note that
topological properties (e.g., avoiding a failed component) can
also be enforced, and many other usecases can be enforced
too (e.g., applying a given instruction on a given node such
as a firewall – or just going through an arbitrary node).

The SR Graph: SR-aware routers need network-wide
knowledge of available segments to build paths. As segments
encode shortest paths, computing all possible segments re-
quires running an All-Pair-Shortest-Path algorithm.

The resulting segment database can be organized as a
graph, commonly referred to as the SR Graph, where an edge
(u, v) represents either a node segment (Node1, u, v) or an
adjacency segment (Adj, u, v) (the edge weights being set as
d(S) within the graph) [2], [10].

Associated algorithms usually explore the SR Graph di-
rectly, exploiting the fact that paths computed on this graph
are, in fact and by design, segment lists. This eliminates the
need for a loose conversion algorithm to convert paths to
segment lists, and allows them to terminate exploration once
paths exceed MSD hops.

However, inherently if originally connected, the SR Graph
is fully-meshed and so has a quadratic number of edges
(|E| = |V |2), significantly denser than the underlying initial
network graph (where |E| is generally similar to |V | up to a
multiplicative scalar factor). Exploring the SR Graph is costly
and requires specialized algorithms not easily generalized to
all use-cases.

GOFOR takes a different approach. It doesn’t mandate the
algorithms it extends to handle the complete density of an
SR Graph. Instead, SR-wrapped algorithms can still explore
the original (sparse) network graph. GOFOR uses the SR
Graph indirectly as an efficient lookup table to facilitate the
conversion of paths to segment lists. This approach enables
our framework to be the most efficient in realistic cases as it
leverages the sparsity of the initial network graph.

B. Problem Statement: How to SR-Wrap a given Path Com-
putation Algorithm ?

Our main goal with GOFOR is to adapt an algorithm
capable of solving a given (non-SR) problem to its SR-related
version. We call this process SR-wrapping as it adds the SR
metric (i.e., the number of segments) and MSD constraint to
the initial problem. Generally, a path computation problem
is defined by a set of (optional) properties (e.g., avoiding a
link or a node), (optional) constraints that the solutions should
verify (e.g., keeping the delay under a given threshold), plus
an objective function that the operator aims to optimize (e.g.,
minimizing the delay).

Properties, Initial Constraint(s) and Objective(s): We
define the set of properties as a predicate Properties . Con-
sidering a graph G and a destination v, Properties takes as
input a path p and returns true if p has destination v and
is a valid solution to the problem in G. For a segment S,
Properties(S) is true if the predicate is verified ∀p ∈ S. We
assume Properties to be isotonic: if Properties(p) is true,
then Properties(p′) is true for any subpath p′ of p. The typical
example we have in mind is: the sequence of edges in p does
not include any failed components.

The initial constraints, if any, are defined as a vector C\0 =
(c1, . . . , ck), where each ci sets an upper bound on the distance
di that must be satisfied for all returned path p. Formally,
we have d(p) < C\0. Only minimizing a given di, without
constraining it, is equivalent to set ci =∞.

The objective function can be defined as a comparison
relation 6\0, that applies to the distances, hence define the
paths’ distances ranking in the initial problem. The relation
6\0 could either represent a totally ordered relation with a
given lexicographical ranking (e.g., sorting paths according
to their delay or cost, or both one after the other), or more
intricate partially ordered relations such as Pareto-optimality
(inducing a non-trivial Pareto front, i.e., Γ > 1), in particular
when considering multi-constrained problems.
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Overall, 6\0 denotes the initial ordered relation (partial or
total)4 , while <\0 denotes its associated strict counterpart.

Towards the SR-Wrapped Problem: From the inputs
described above – covering most of the basic path computation
problems – we will now define P , as a problem consisting
in finding the optimal segment lists compliant with the initial
problem characteristics (properties, constraints and objectives).

Several steps are necessary to formulate such an SR-
wrapped problem. While the set of Properties does not need
to be modified (as considering SR does not affect them), the
constraints C\0 have to be extended to C = (c0, c1, . . . , ck),
where c0 = MSD represents an (optional) upper bound on
the number of segments. More importantly, the comparison
relation, 6\0, also has to be modified to consider the number
of segment as a new metric: the goal is now to compare the
distances of segment lists (rather than paths’).

Two Main Strategies to Extend 6\0: There exist several
ways to wrap SR around P , leading to different SR-wrapped
variants of 6\0. The two most relevant strategies are to
consider the number of segments either in a lexicographical or
in a constrained fashion. With a lexicographical wrapped com-
parison, one aims at finding the minimal segment list(s) among
the distance(s) optimizing the initial objective(s) (defined by
6\0, under constraints C\0 and verifying Properties). MSD is
thus technically ignored, and d0 is minimized as a secondary
objective (meaning that the results may exceed MSD).

The constrained strategy aims to return a deployable seg-
ment list(s) L (i.e., verifying d0(L) < c0 = MSD) whose
underlying paths are optimal with respect to the initial prob-
lem. This method ensures that the returned segments lists are
deployable, although the TE objective may have to be relaxed
to find such a solution as a segment list that is not optimal with
respect to the initial problem may become the only feasible
solution for a subsequent destination.

Table 2 shows the formal definitions of the relations associ-
ated to these strategies. Several relations can be derived from a
single strategy, depending on the chosen path diversity option.

Option R Segment list x R-dominates y, iff:
Constrained-SR
oneBest 4 d(x) 6\0 d(y) ∧ d0(x) ≤ d0(y)
allBest ≺ x 4 y ∧ d(x) 6= d(y)
all ≺≺ d(x) <\0 d(y) ∧ d0(x) ≤ d0(y)

Lexicographic-SR

oneBest 6p d(x) <\0 d(y)∨(
d(x) =\0 d(y) ∧ d0(x) ≤ d0(y)

)
allBest C

d(x) <\0 d(y)∨(
d(x) =\0 d(y) ∧ d0(x) < d0(y)

)
all CC d(x) <\0 d(y)

Figure 2. Definitions of the set of relations supported by GOFOR. Each
corresponds to a given SR-wrapping strategy and path diversity option.

And Three Options for Path Diversity: GOFOR sup-
ports various path diversity options, in order to adapt to
the operator’s needs, e.g., regarding load-balancing. Each of

4More precisely, any order relation that contains the component-wise order
i.e., ∀i, xi ≤ yi ⇒ x 6\0 y. We assume monotone and isotone relations by
construction (additive strictly increasing metrics because of the nature of w).

D
el

ay

Number of segments
0 1 2 3 4 5 6 7 8

Strict
Loose

allallBest

1Best

Lex.all
Lex.allBest

Lex.1Best

Figure 3. Optimal distances towards a given destination, depending on the
SR-wrapping strategy (constrained or lexicographic), the path diversity option
(1best, allBest or all) and the encoding scheme (loose or strict).

these options are applicable to both the lexicographical and
the constrained strategies. We call the three diversity options
1best, allBest and all. With respect to the initial problem
and the chosen strategy; 1best returns at least one optimal
solution, allBest returns all optimal solutions, and all returns
all solutions that are encodable with less than c0 segments. The
two last options allow the operator to perform source-routed
load-balancing.

All the resulting relations are shown in Table 2. The desired
form of the relation, noted R, is to be chosen according to
the operator’s wishes and based on the initial relation 6\0.
Solutions that are not optimal with respect to R are said to
be R-dominated.

Figure 3 illustrates graphically the solutions returned by
each strategy and option. We consider the minimization of the
delay as the initial objective (using IGP node segments). For
a given (hypothetical) destination, each cross (resp. triangle)
represents a non-R-dominated, loose-encoded (resp. strict-
encoded), segment lists. The y-axis shows the delay of the
computed segment lists while the x-axis shows the required
number of segments considering MSD = 4 (excluded). The
constrained options return only segment lists that are below
the MSD constraint. On the contrary, the lex strategies only
focus on the best delays. With the all case, GOFOR returns
either all optimal distances encodable in fewer than 4 segments
(with the constrained strategy), or all optimal distances with
respect to 6\0 when considering the lex strategy.

Each pair (strategy, option) corresponds to a different SR-
wrapped dominance relation R (crafted by modifying 6\0),
as defined in each row of Table 2. For instance, for the allBest
option of the constrained strategy (≺), GOFOR relies on the
relation 4, that itself combines the relation 6\0 and the simple
scalar comparison ≤, to rely on the number of segments and
so discriminate equal distances with respect to 6\0.

From Properties , constraints C, the SR-wrapping strategy
and the diversity option leading to R, we can now formally
define the SR-wrapped problem for a given source.

Definition 3. A problem P(Properties, C,R) consists in find-
ing, ∀v ∈ V , the minimal lists of segments towards v, under
the constraints C, verifying some properties Properties , and
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that are non-dominated with respect to a given dominance
relation R (the SR wrapping of 6\0).

GOFOR solves P , the SR-wrapped problem. More pre-
cisely, GOFOR is able to efficiently extend an algorithm
designed for a given initial problem to solve P (with R
and other parameters set to the operator needs among all
options). The main challenges lie in the SR encoding and
the extension of an extra subset of dominated distances, as
introduced in Section I. Our framework not only provides
correct and optimal solutions, it retrieves them with an efficient
path exploration avoiding superfluous computations.

III. TWO MAIN INGREDIENTS: ENCODING, ISOTONOCITY

A. Encoding Distances & Properties: Paths and Segment Lists

To solve P , it is necessary to compute the segment list(s)
encoding the paths being explored during the initial explo-
ration to properly take SR into consideration. In particular, a
loose encoding scheme5 is necessary to translate the distances
explored in order to guide the search accordingly and consider
MSD. Unlike existing loose encoding schemes, our algorithm
is not only efficient (as it does not directly rely on an SR-
graph), but also handles multiple topologies (node segments
of distinct types in practice).

Greedily and Loosely Updating Segment Lists: Our
encoding algorithm (Algorithm 1 with its subroutine 2) follows
an efficient approach. Given a path p as input (the one
currently explored), it incrementally translates p into a segment
list L using a greedy strategy. Initially, all possible segments
able to encode the first edge of p (which may be either
Node or Adj segments) are stored in LastSeg (Line 3 in
Alg. 1). These segments are then extended to include more
and more edges of p as long as it is possible (i.e., the segment
lists verify the desired properties and match, or are better
than, the path’s metrics). The extension process is outlined in
Alg. 2. Segments that cannot be further extended correctly are
removed from LastSeg. If no more segments can be extended
to include properly the new edge e, a new segment is required.
Among the remaining segments failing at e, one of them, say
S, is added to the segment list L 6, and LastSeg is reset
with all possible segments that can encode edge e (Line 8
in Alg. 2). While path p is used to guide the search, the
segments lists may include other paths as well, but only if they
verify the same properties and are equal or better than p with
respect to its distances. While our approach encodes logical
characteristics rather than structural ones, p is nevertheless part
of the set of paths encoded by the resulting segment list.

Algorithm 1 returns a minimal encoding (Theorem 1). To
ease the reading all proofs are given in the appendix, we
here only provide lemmas to highlight their constructions. In
particular, Lemma 2 states that loose encoding is isotonic, i.e.,

5We focus on loose encoding as we are interested in distances and properties
rather than structure. Strict encoding schemes are straight-forward to design,
do not offer minimal segment lists and can be found in the literature [10].

6All segments lists can still be retrieved during the backtracking post-
processing phase used to re-construct the desired set of segment lists (ac-
cording to a given path diversity option).

Algorithm 1: ENCODE(G,Properties, p)

1 L := [ ]
2 e := first edge of p
3 LastSeg := {S = Seg(t, e) |

e ∈ S ∧ d(S) = d(e) ∧ Properties(G,S), ∀t ∈ SegTypes}
4 for e ∈ p[1: ] do
5 L, LastSeg := EXTEND(L, LastSeg, e)

6 Let S be any segment in LastSeg
7 return L⊕ S

Algorithm 2: EXTEND(L, LastSeg, e)

1 NewLastSeg := ∅
2 for S ∈ LastSeg do
3 if S ◦ e 6= ∅ ∧ d(S ◦ e) = d(S) + d(e) ∧ Properties(S ◦ e)

then
4 NewLastSeg := NewLastSeg ∪ {S ◦ e}

5 if NewLastSeg = ∅ then
6 Let S be any segment in LastSeg
7 L := L⊕ S
8 LastSeg := {S = Seg(t, e) |

e ∈ S ∧ d(S) = d(e) ∧ Properties(G,S), ∀t ∈ SegTypes}
9 else

10 LastSeg := NewLastSeg

11 return L, LastSeg

when a segment loosely encodes a path, then a restriction of
this segment loosely encodes a sub-path.

Lemma 1. ENCODE(p) returns a loose encoding of p.

Lemma 2. Let S = Seg(Stype , p[0], p[l]) be a single segment
that loosely encodes a path p of length l. Then, for any i, j in
[0, l], i < j, Seg(Stype , p[i], p[j]) loosely encodes p[i : j].

Theorem 1. ENCODE(p) returns a loose encoding of p with
a minimal number of segments.

Our innovative encoding scheme seamlessly integrates with
most path computation algorithms, making them aware of
the number of segments needed for the paths they explore.
By invoking these algorithms incrementally at each edge
relaxation in practice, this method provides a highly efficient
encoding scheme (no significant overhead as node segment
information is retrieved in constant time). However, as detailed
in Sec. I, maintaining the number of segments required during
exploration is not sufficient: certain dominated distances must
also be extended.

B. An Extended Relation to Regain the Isotonicity

As already showcased in the introduction, extending only
the optimal segment lists (according to the chosen R) is not
enough to find a solution to the SR-wrapped problem P .
Indeed, the dominance function R is not isotonic anymore.
Although optimal solutions are not R-dominated (by defini-
tion), a prefix of an optimal solution could be R-dominated,
due to the peculiar way the number of segments evolves after
an extension (as emphasized with the example of Fig. 1) 7.

7Interestingly, algorithms that directly explore the SR Graph do not require
such a scheme. The transformation of the graph makes the SR metric isotonic
and predictable by converting it into a simple hop count metric.
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Extend the Dominance Relation R to
♦
R: Our goal here is

to define a new dominance relation, called extended dominance
relation, in order to regain the isotonicity property and define
which distances should be extended to prevent compromising
either the optimality or the efficiency of our framework. One
possible but costly solution would indeed be to treat all the
lists as non-dominated. While returning optimal and correct
solutions, this method would result in a huge overhead. Our
extended dominance function is not only correct, but limits the
induced overhead to ×|V | at worst when updating distances
(at each edge relaxation). Such an overhead is minimal as any
weaker solution would miss valid solutions.

Our extension is formally defined in the following defini-
tion. Note that, for a segment S, u ∈ S abusively means that
there exists a path in S passing through u.

Definition 4. Let R be a dominance relation over SR-
distances. The extended relation

♦
R associated with R is

defined over segment lists as follows. For any segment lists

L and L′, we have L
♦
RL′, i.e., L′ is

♦
R-dominated by L, if

either
(i) d(L)R d(L′) ∧ Ltype

last = L′typelast ∧ Lsrc
last ∈ L′last

(ii) or d(L)R (d0(L′)− 1, d\0(L′))

where Llast denotes the last segment of L and Lsrc
last its source.

Notation d\0 refers to the exclusion of metric d0 in the vector
of considered metrics.

This extended relation applies directly to segment lists and
not to distances. It is used to check whether a given relation
could hold after the segment lists are extended, and ensure that
only segment lists that are not currently R-dominated or could
potentially become non-dominated are extended. Informally,

L′ is
♦
R-dominated by L if it is dominated by L regarding

relation R and either (i) the source of the last segment of L is
contained within the paths encoded by L′last (also considering
the same type of last segments), or (ii), L does have strictly
fewer segments. Indeed, if segment list L′ verifies case (i), one
can show that if L′last can be extended by an edge e, so can
L, meaning that L will remain better than L′ (see Lemma 3
and its proof).

This isotonic property of this extended relation is stated in
Theorem 2 (for any relation R wrapped around 6\0 or <\0),
after exhibiting said Lemma. Again, the associated proofs are
given in the appendix.

Lemma 3. Let S and S′ be two segments such that S
′src ∈ S,

S
′dst = Sdst , and S

′type = Stype . We have that, if S can be
extended by an edge e, then S′ can also be extended by e.

Theorem 2. The extended dominance
♦
R is isotonic, i.e., the

extension of an
♦
R-dominated path remains R-dominated, even

after extensions.

Thus far, with a peculiar attention to the computing com-
plexity, we have shown how paths and their characteristics
should be loosely encoded into segment lists (Sec. III-A),
and which extra segments lists should be extended in order
to guarantee optimality with respect to R (Sec. III-B). From

these two ingredients, we now describe how GOFOR turns an
initial algorithm solving a non-SR problem into its extended
version, solving its related SR-wrapped problem P .

IV. GOFOR-SR, AN EFFICIENT RECIPE TO SOLVE P
Given a shortest path algorithmA(6\0), looking for optimal

paths with respect to a comparison relation 6\0 (modeling an
arbitrary initial problem), we present here our recipe to create

A(Loose|Strict,
♦
R)

That is an algorithm solving P , the SR-wrapped version of
the initial problem, with a flexible configuration: the operator
can plug SR with the most suited encoding paradigm (loose
or strict) and SR-wrapped relation R according to its needs.

A. Wrapping SR Around A(6\0)

We assume that A(6\0) solves an additive routing problem
– possibly already multi-dimensional, based on an isotonic
relation 6\0, and overall aiming to optimize given distances,
verify Properties and respect some constraints C\0. GO-
FOR enhances A(6\0) to take SR into account and solve
P(Properties, C,R).

The crucial operation in all shortest path algorithms is to
decide whether a path or rather its distance should be stored
or not in the Priority Queue (denoted PQ) to be extended later
on. For any relation R, we denote by e

R
↪→ E the operation

of storing the element e in the set E of all current optimal
elements (with respect to the relation R). In more formal
words, we have e

R
↪→ E ⇔ @e′ ∈ E such that e′R e.

Note that the operation carried by A(6\0) when extending
a path p, and its distance, can be expressed as

d(p)
6\0
↪→ D

This means that non-dominated distances with respect to
6\0 are stored in the priority-queue D to be extended further.

GOFOR replaces this operation in A(Loose|Strict,
♦
R) to

ENCODE(p)

♦
R
↪→ DL,

The segment list (loosely or strictly) encoding p (as defined
in Sec. III-A) is stored within the priority-queue DL to be
extended further (the PQ, DL, is now segment-list-based), if it
is non-dominated with respect to the chosen extended relation
♦
R defined in Sections II and III-B.

B. Complexity of the Priority Queue Updates

Overall, our main computational challenge lies in the per-
formance of the PQ with our extended dominance relation,

i.e., the R
♦

↪→ operation. Since we consider a Dijkstra-like
algorithm, the complexity overhead indeed comes from the
management of the underlying PQ. In the worst case, the PQ
contains an entire distance Pareto-front to all the destinations,
i.e., n.Γ.c0 entries, where n = |V |. Observe that the PQ
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does not contain each non-dominated segment lists but only
non-dominated distances, whatever the path diversity option.
Segment lists having the same distance are grouped into a
single entry. Thus, the complexity of the extract_min
operation (i.e., retrieving the segment list to extend from the
queue) is O (n.Γ.c0 × log(n.Γ.c0)).

Once extracted, each distance (and their underlying seg-
ment lists) in the Pareto-front are extended to all adjacent
neighbors. We extend O(m.Γ.c0) distances, where m = |E|.
The complexity of this extension depends on the number of
segments lists: as the behavior of the extension depends on
the last segment of the segment list, each one has to be
extended individually, even if they share the same distance.
The complexity to perform all extensions is O(m.Γ.c0.r)
where r is the maximum number of segment lists for a given
distance. The number r is bounded by n × |SegTypes|, but
empirical evaluation suggests that in practice, 1 ≤ r < 2,
resulting in a very limited overhead.

After extending a distance and its underlying segment lists
to a neighboring node, we compare them to the existing
distances towards this node, keeping only non-dominated
distances. Comparing each newly extended distance to the
existing ones has a complexity of O(m.(Γ.c0)2). If the new
distance already exists towards the considered node, we merge
the associated segment lists (the newly extended ones and the
existing ones) into a single distance entry.

In summary, the worst-case complexity of GOFOR is in

O (n.Γ.c0 × log(n.Γ.c0) +m.Γ.c0.(Γ.c0 + r))

Note that with the lex strategy, the term c0 can be ignored in
the complexity as such a strategy does not plug the SR metric
as a constraint in the problem. Thus, if the initial problem is
not multi-dimensionnal in itself (Γ = 1), one can just ignore
the term Γ.c0 overall.

C. A Meta-DAG to Perform Source-Based Load Balancing

The last remaining challenge is to effectively utilize the set
of computed solutions thanks to a condensed data structure.
Most shortest path algorithms return a shortest path DAG, from
which all optimal solutions can be easily reconstructed and
used by routers.

In our case, representing the set of solutions through a
logical (segment-lists level) DAG, with edges representing seg-
ments instead of physical edges, is also suitable for structuring
the computed optimal segment lists. However, subtleties arise
when considering multi-metric problems, where Γ > 1. In
such cases, segment lists that are solutions for a node v, even if
they have the same distance, can pass through an intermediary
node u with different intermediary non-dominated distances.
This introduces ambiguity when reconstructing segment lists.
To address this, extra information must be stored within the
segment-list DAG to ensure proper and coherent reconstruction
of the segment lists.

Backtracking on a Logical DAG of Segment Lists: To
effectively present the calculated solutions towards a node v,
we introduce a "meta-DAG" (named as such because each edge
represents a segment list that may encode multiple paths, and

each node now possibly supports multiple distances). In this
representation, each node u is replaced by at most Γ nodes
u0, . . . , uΓ−1, with each node corresponding to an occurrence
of u in different solutions. In the worst case, u appears in every
non-dominated solution. A directed link between ud and u′d′

represents a segment that is part of a solution, where d and d′

are the intermediary distances of the solution at nodes u and
u′, respectively.

The meta-DAG serves as a tool to retrieve one or all segment
lists from the set of solutions. In Figure 4, we provide an
illustration of such a meta-DAG along with its initial network
for a complex use-case, DCLC-SR (wrapping SR on DCLC).
The objective is to retrieve all the best IGP paths, encoded
with their best segment lists, from node S to node D

while adhering to a delay constraint of 7 ms, for example.
The DCLC problem itself generates multiple non-dominated
optimal solutions with its two initial metrics.

In the meta-DAG on the left, we represent the node and
adjacency segments used between nodes. Some nodes can be
reached with distinct non-dominated distances (because DCLC
is itself a multi-metric problem): for instance the physical
node 4 has two corresponding nodes in the meta-DAG: 4(7,4)

and 4(8,3). In fact, there exists several optimal segment lists
passing through 4 to reach D , e.g., S 3 1 4 D and

S 4 5 D . This structure, thanks to the added information
described, allow reconstructing the desired segment lists.

In practice, this meta-DAG can be built by backward
induction from the destination D to the source S , by listing,
for all segments lists ending at u and with distance d, the
source of their last segment (which become the predecessors
of ud in the meta-DAG).

In practice, this Meta-DAG could be used by the edge router,
the source itself, to perform source-routed load-balancing
across segment lists, e.g., by choosing among optimal solutions
through random walks in the Meta-DAG for each given flow.
Such a feature allows to load-balance the traffic even if the
latter is subject to complex traffic-engineering requirements
(taking into account each node having multiple successors on
the lists). Further studies on the possibilities offered by such
advanced load-balancing methods, and practical investigations
regarding its feasibility directly in the data-plane of real
hardware/software, is left for future work.

V. SR-WRAPPED TI-LFA, LEAST-DELAY & DCLC

In this section, we use GOFOR to wrap SR around three
problems and algorithms: TI-LFA (a Fast-ReRoute, FRR,
use-case), Least-Delay (LD) and Delay-Constrained-Least-
Cost (DCLC). We aim to demonstrate the genericity and
performance of our framework. In particular, we focus on the
evaluation of the efficiency of GOFOR on DCLC (the most
computationally complex use-case). The source code of GO-
FOR and the experimental materials are available online [7].

A. Performance Analysis: Three Use-cases, a Single Recipe

Examples of General Settings for Defining P: We
consider three use-cases (DCLC, FRR, and LD) with the
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Figure 4. A raw network (at the right), and its resulting meta-DAG of all the segment lists from S towards node D having distance (12, 6).

objective of transforming these problems into their correspond-
ing SR-wrapped versions (DCLC-SR, FRR-SR, and LD-SR,
respectively). As an example of strategy, let us first assume
that the operator aims to ensure the deployability of the
retrieved segments, indicating a preference for the Constrained
alternative to deploy SR. Additionally, the operator expresses
an interest in obtaining all optimal solutions, implying that
the allBest diversity option should be used. Therefore, the
operator should set the relation R to ≺ (refer to Table 2),

and implement the associated extended relation
♦
R to compare

the segments lists.
For the DCLC-SR use-case, where the initial goal is to

find paths towards any destination with a delay bounded by
cdel and minimizing the IGP distance, the related SR-wrapped
problem can be formulated as: optimally encoding the DCLC
paths requiring fewer than MSD segments. One would set
C = (MSD,∞, cdel) and leave Properties empty. With such
settings, the desired ≺ is expressed as follows:

(nbSeg1, cost1, delay1) ≺ (nbSeg2, cost2, delay2)

⇔
{
nbSeg1 ≤ nbSeg2 ∧ cost1 ≤ cost2 ∧ delay1 ≤ delay2

nbSeg1 < nbSeg2 ∨ cost1 < cost2 ∨ delay1 < delay2

For the FRR-SR use-case, the delay metric should be
ignored8, and the IGP cost should be optimized. However,
the predicate Properties(S) should be considered false if a
path in S uses the given failed link. The constraint should be
set to C = (MSD,∞).

For the LD-SR use-case, the IGP cost should be ignored,
and no specific Properties are required, as the only objective
is minimizing the delay. Constraints should be set to C =
(MSD,∞,∞).

In practice, the modifications required for path computation
algorithms are relatively light, involving only the implemen-
tation of the encoding scheme and the choice of the path

comparison function to the relation
♦
R, as associated with

the chosen R (and adjusted with the wrapping strategy and
its options). While this section provides only a sample of
possible use-cases, its purpose is to illustrate how GOFOR can
transform almost any path computation problem into its SR-
wrapped version, accommodating the operator’s requirements
in terms of optimization strategies and path diversity options.

8Mimicking a standard FRR use-case. GOFOR can also return DCLC-SR
or LD-SR solutions avoiding a failed link.

We will now proceed to evaluate GOFOR on our three use-
cases, considering several strategies and path diversity options.

A SAMCRA-Based Implementation for GOFOR: Recall
that GOFOR, is a framework that transforms an existing algo-
rithm to handle SR. Since we tackle use-cases encompassing
several metrics, we used a generic multi-metric shortest path
algorithm as a basis. We decide to rely on SAMCRA [11] for
its flexible PQ implementation. Although SAMCRA can return
DCLC paths, it does not support any encoding paradigm nor
extended comparison relation. We thus modified it according
to our framework. The resulting code for all use-cases is
available online [7].

Lattices and Realistic Topologies: In the following, we
start with an analysis highlighting the advantages of the
loose encoding paradigm. We use specific graphs having two
key properties: strong resilience and coarse valuation metrics
that promote ECMP. These graphs are modified lattices with
redundant links, created by doubling each link in a King’s
graph with a 0.3 probability. The metrics assigned to the
graph weights are uniformly random, with five possible values
ranging from 1 to 5. These topologies are not intended to
replicate real-world scenarios but rather to emphasize the
benefits (reduction in the number of segments) of the loose
encoding in extreme cases. The second evaluated criteria is the
computation time performance (on DCLC-SR). For this, we
use both the synthetic lattices described, and realistic topolo-
gies. The latter are primarily extracted from the REPETITA
framework [12].

Experiments were conducted on a MacBook Pro Laptop,
equipped with an Apple M1 Pro Chip and 16GB of RAM.

B. Encoding Paradigms: a Look at the Number of Segments

We first study how well our loose encoding leverages ECMP
compared to strict encoding.

Strict vs. Loose Encoding: We compared the length of
segment lists of the two paradigms in two use-cases. Figures
5 and 6 show the differences from these two perspectives.
The first perspective illustrates the resulting Pareto Fronts for
a specific source-destination pair in our graph set, focusing
on LD-SR (with ≺). Relying on loose encoding significantly
reduces the overhead induced by pushing segments to the
packet.

The second figure conveys the same message but for FRR-
SR, using the Lexicographical strategy and all diversity op-
tions ( CC ). The figure shows the number of solutions (avoid-
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Figure 6. Distribution of the number of segments for the solutions found
using loose encoding and strict encoding for FRR-SR (with Lex.all).

ing the failed link) for each number of segments, summed for
all the destinations.

As our graphs have symmetric valuation, only between
2 or 3 segments are required [1] to avoid a link failure
(we include the final destination segment, and consider that
each basic local LFA requires an adjacency segment). This
limit is indeed satisfied by our loose encoding scheme, while
strictly encoded solutions require much more segments to
encode unique backup paths (as ECMP is frequent). The loose
encoding paradigm is thus necessary to retrieve all feasible
segments lists (e.g., with MSD=10).

C. Experimental Complexity: GOFOR-SR is Lightweight

We now investigate how GOFOR performs compared to SR-
graph-based frameworks with respect to the execution times
of the transformed algorithm. We restrict here our study to
DCLC-SR as it is the most challenging use case.

A Limited Computing Time Overhead: Figure 7 provides
a comparison of the computing time required by GOFOR with
a Constrained strategy (≺); GOFOR with a Lexicographical
strategy (C); SAMCRA as baseline (without SR); and SAM-
CRA on top of the fully meshed SR-Graph given as input. We
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Figure 7. Comparison of the execution time overhead to solve DCLC-SR.
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Figure 8. Execution times on realistic topologies of around 2000, 1000, 370
and 300 edges respectively.

rely on the allBest diversity option in each of these setups. We
consider lattices of variable sizes to plot the computing time
evolution according to their dimensions. The figure shows the
average and standard deviation among 100 runs for each size.

Finally, we perform the same experience on realistic topolo-
gies from the REPETITA framework, on ASes ranging in size
from 2000 edges to only 300. The results are shown in Fig 8.
Note that there is a break in the y-axis of the figure.

Both figures show a clear tendency: GOFOR Lex. has a
negligible overhead (regarding the initial algorithm ignoring
SR) and GOFOR Cons. outperforms the best existing methods
relying directly on the SR-Graph. While the performance of
Cons. compared to Lex. looks significant at first glance, it is
worth recalling that Cons. fully adds the SR dimension to the
initial problem (the MSD constraint is effective and cannot be
ignored: c0 > 1).

Furthermore, this result is particularly obvious with the
tested lattices, intentionally designed to amplify such ef-
fects (as Γ becomes not negligible). However, on realistic
topologies where problem instances are generally simpler, our
SR-wrapped algorithm consistently solves this multi-metric
problem in under 4ms. Experimental results on these realistic
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topologies not only showcase the superior performance of
GOFOR compared to other frameworks but also demonstrate
the minimal overhead introduced by our framework. We exper-
imentally observe that r < 2 on average on our realistic cases,
while we also only have r < 3 with our lattices. We envision
to theoretically investigate the distribution of r in future works,
e.g., with an average complexity analysis on random graphs.

VI. RELATED WORK

SR has generated a lot of traction, leading to contributions
from both the industry and academia [13]. It has been used
to perform fine-grained monitoring [8], [14], increase network
resiliency [15], [16] or perform traffic-engineering [17]. Rather
than solving a specific routing use-case with SR, we proposed
a general framework allowing to easily adapt existing (and
future) path-computing algorithms to SR, streamlining the
deployment of SR.

Some work aims to mitigate the limitations induced by
MSD, making SR more scalable. For example, uSIDs carry
several instructions in a single segment [18]. Similarly, binding
segments (BSID) can be used to create a one-to-one mapping
relationship between a segment and a segment list. These
solutions can be used in conjunction with our schemes.

Several SR-related contributions indirectly address the path
encoding problem, although it is not their primary focus. Some
use generic optimization frameworks to combine segments and
create compliant segment lists [19], [20]. Aubry proposed a
dynamic programming approach, computing paths incremen-
tally based on segment list size [10]. Another option consists
in exposing segments into a SR-graph, treating segments as
edges, and execute algorithms on this inflated fully-meshed
graph while limiting the exploration dept to MSD [2], [21], or
just encoding a specific input path [22]. While these techniques
also support loose encoding, they suffer from performance
drawbacks due to the density of the graph they explore.
Exploring the SR-graph or using dynamic programming leads
to n2 operations while GOFOR mitigates this issue when the
network graph is sparse, as it is often the case in practice.
Other generic optimization frameworks generally need to
heavily restrict MSD (often to 2 or 3) to reduce the exploration
space.

Several works propose to strictly encode a specific path
given as input to iteratively find the longest subpath encodable
in a single segment [10], [9], [23], [24]. While such schemes
follow the same greedy approach as ours, these schemes are
meant to be used a posteriori, and thus neither leverage
ECMP, nor ensure that the segment list found is deployable
and/or minimal with respect to the operator needs. Finally,
although the basic principles of GOFOR were mentioned in
our previous work [2], the latter were neither complete nor
were they proven, and were not generic nor evaluated. In
this paper, we also add the support of distinct strategies,
multi-topology and several path diversity models (enabling so
fine-grained source-controlled load balancing) for various use-
cases.

With GOFOR, we tackle the path encoding problem in a
generic and optimal fashion, considering nearly all basic use-
cases and offering many key operational features. By tying

together the paths and the segment lists computation, GOFOR
returns all the relevant solutions. GOFOR performs better than
concurrent approaches as it leverages the sparsity, and overall
characteristics, of real IP networks as shown in Sec. V.

VII. CONCLUSION

The conventional best-effort routing paradigm, while scal-
able, falls short of meeting all the requirements of IP networks.
Certain use-cases demand deviations from basic shortest routes
to navigate failures or consider multiple metrics as additional
constraints and objectives. Segment Routing (SR) stands out as
one of the most popular options for deploying flexible routes
loosely guided from the source.

However, the introduction of SR adds an operational metric,
the number of segments (or detours), and a new challenge,
efficiently retrieving all optimal segment lists. Minimizing
these detours is crucial to ensure line-rate speed packet pro-
cessing. Existing encoding schemes, which convert paths to
segment lists, often overlook this aspect. They either convert
paths a posteriori and/or fail to leverage Equal-Cost Multi-Path
(ECMP), resulting in inflated segment lists. Alternatively, they
impose a quadratic overhead in the number of nodes by relying
on a complete SR-graph.

In this paper, we introduce a novel approach that enhances
existing algorithms to return optimal and deployable segment
lists instead of paths. Our initial step involves the design of
a loose encoding scheme, which seamlessly integrates into
current path computation algorithms. This scheme computes
minimal segment lists for the paths being explored, utilizing
all available segment types and leveraging ECMP. We then
address the transformation of the path comparison relation to
ensure the discovery of the optimal segment list, despite the
loss of isotonicity (i.e., substructure optimality) induced by the
SR metric. The newly proposed relation, able to accommodate
various optimization strategies and path diversity options based
on the operator’s requirements, minimizes the computation
overhead to a strict minimum. We show that algorithms
extended by our resulting framework, GOFOR, remain par-
ticularly efficient compared to existing SR-aware approaches,
even facing challenging multi-criteria routing problems.

As a promising future work, we aim to investigate whether
our meta-DAG of optimal solutions could be fitted into the
data-plane directly to perform efficient source-driven, TE-
aware load-balancing across all segment lists.
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APPENDIX

Lemma 1. ENCODE(p) returns a loose encoding of p.

Proof of Lemma 1. We prove by induction the following loop
invariant: at the end of the l-th iteration, for any segment S
in LastSeg, L⊕ S is a loose encoding of p[0 : l].

Assume that at the beginning of the l-th iteration L is a
loose encoding of p[0 : l′], with l′ ∈ [0, l] and LastSeg is a
set of segments that loosely encode p[l′ : l].

In particular d(L) = d(p[0 : l′]) and d(S) = d(p[l′ : l]).
In the function Extend, there are two cases:

1) If NewLastSeg = ∅ in Line 5, then the returned variable
L is a loose encoding of p[0 : l] by assumption (L
concatenated with a segment in LastSeg). Moreover, the
returned value of LastSeg contains only segments that
loosely encode p[l : l + 1].

2) Otherwise, by condition Line 3, each segment S ◦ e
in NewLastSeg loosely encodes p[l′, l + 1]. Indeed, (i)
S ◦ e contains p[l′, l + 1] because S contains p[l′, l] by
assumption and S ◦ e contains e = p[l : l + 1] (by
definition); and (ii) it verifies d(S ◦ e) = d(p[l′, l + 1])
because d(S) = d(p[l′, l]) by assumption and from the
condition we have

d(S ◦ e) = d(p[l′, l]) + d(p[l : l + 1]) = d(p[l′, l + 1]).

Lemma 2. Let S = Seg(Stype , p[0], p[l]) be a single segment
that loosely encodes a path p of length l. Then, for any i, j in
[0, l], i < j, Seg(Stype , p[i], p[j]) loosely encodes p[i : j].

Proof of Lemma 2. Recall that we required that p[i : j] ∈
Seg(Stype , p[i], p[j]), so we have to show that d(p[i : j]) =
d(Seg(Stype , p[i], p[j])).

Let k be any metric. By definition of segment

dk(Seg(Stype , p[0], p[i])) ≥ dk(p[0 : i]),

dk(Seg(Stype , p[i], p[j])) ≥ dk(p[i : j]),

dk(Seg(Stype , p[j], p[l])) ≥ dk(p[j : l]).

So we have

dk(Seg(Stype , p[0], p[i]))

+dk(Seg(Stype , p[i], p[j]))

+dk(Seg(Stype , p[j], p[l])) ≥ dk(p)

On the other side, the second property of segments implies
that any path in Seg(Stype , p[0], p[i]) can be extended to a
path in Seg(Stype , p[0], p[j]) (extended through the edges of
p[i : j]) and to Seg(Stype , p[0], p[l]) (extended through the
edges of p[j : l]). Thus by definition of the distance of a
segment, the distance of Seg(Stype , p[0], p[l]) is at least the
sum of distances of the partial segments i.e., we have

dk(S) ≥dk(Seg(Stype , p[0], p[i]))+

dk(Seg(Stype , p[i], p[j]))+

dk(Seg(Stype , p[j], p[l]))

https://www.rfc-editor.org/info/rfc8402
https://www.ciena.com/insights/white-papers/acg-segment-routing-survey
https://www.ciena.com/insights/white-papers/acg-segment-routing-survey
https://doi.org/10.5281/zenodo.7643270
https://doi.org/10.1109/INFOCOM.2016.7524410
https://doi.org/10.1109/INFOCOM.2016.7524410
https://arxiv.org/abs/1904.03471
https://doi.org/10.1145/3281411.3281426
https://doi.org/10.1145/3281411.3281424
https://doi.org/10.1145/2829988.2787495
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On the other side, we have dk(p) = dk(S) by definition of
loose encoding. So we obtain that the inequalities are in fact
equalities, and we have

d(Seg(Stype , p[i], p[j])) = d(p[i : j])

So Seg(Stype , p[i], p[j]) loosely encodes p[i : j]

Theorem 1. ENCODE(p) returns a loose encoding of p with
a minimal number of segments.

Proof of Theorem 1. From Lemma 1, we know that the re-
turned segment list L is a loose encoding of p. We now
prove that L has a minimal number of segments. Assume by
contradiction that there exists a segment lists L′ that is a loose
encoding of p and that has a smaller number of segments than
L = ENCODE(p). Since L′ has fewer segments, there must
be a segment S′ ∈ L′ that encodes a subpath p[l′1 : l′2] of p
such that a segment S ∈ L encodes p[l1 : l2] with l1 ≥ l′1 and
l2 < l′2.

Let S′ = Seg(Stype , p[l′1], p[l′2]). By Lemma 2, we know
that Seg(Stype , p[l1], p[l2 + 1]) loosely encodes p[l1 : l2 +
1] (and it also verifies Properties as any sub-path does by
assumption), which contradicts the fact that no segment that
encodes p[l1 : l2] can be extended by the edge p[l2 : l2 + 1]
(Line 3).

Lemma 3. Let S and S′ be two segments such that S
′src ∈ S,

S
′dst = Sdst , and S

′type = Stype . We have that, if S can be
extended by an edge e, then S′ can also be extended by e.

Proof of Lemma 3. Consider a path p ∈ S that passes through
node S

′src . The Lemma follows from the two properties of
segments. Indeed, if S ◦ e is not empty, then, by the second
property, p ◦ e is in S ◦ e. By the first property the sub path
of p ◦ e starting from S

′src is in S′ ◦ e so S′ ◦ e is not empty.

Theorem 2. The extended dominance
♦
R is isotonic, i.e., the

extension of an
♦
R-dominated path remains R-dominated, even

after extensions.

Proof of Theorem 2. For simplicity, we assume that R is the
relation ≺.

Let L be a segment list that is
♦
≺-dominated by a segment

list L′. Let S, resp. S′ be the last segment of L, resp. L′. Let
us denote L+1, resp. L′+1, the segment list L, resp L′, once
extended by an additional edge (u, v).

By assumption, L′
♦
≺ L, which means, either

(i) d(L′) ≺ (d0(L)− 1, d\0(L)) or
(ii) d(L′) ≺ d(L), Stype = S

′type , and S
′src ∈ S. In both

cases, we have L′ ≺ L, hence we have d(L′) <\0 d(L).
We know that, after the extension, the distance of the

segment list L increases by (δS , d\0(u, v)), where δS is 0 or
1 depending on whether S can be extended by (u, v) or not.
So the ≺-dominance between L+1 and L′+1 depends only on
δS and δS′ .

Case (i) and S cannot be extended by (u, v): Then, we
have δS′ ≤ δS = 1 and (i), which implies that

d(L′+1) ≺ (d0(L+1)−1, d\0(L+1)), and in turn L′+1
♦
≺ L+1.

Case (ii) and S cannot be extended by (u, v): Then, either
δS′ = δS−1 (S′ can be extended) and (ii), which implies that

d(L′+1) ≺ (d0(L+1)−1, d\0(L+1)), and in turn L′+1
♦
≺ L+1.

or δS′ = δS = 1 and (ii), which implies d(L′+1) ≺ d(L+1).

Also, the last segment of L+1 and L′+1 are equal, so L′+1
♦
≺

L+1.
Case (i) and S can be extended by (u, v): If S′ can also

be extended, then again, δS′ = δS = 0 and (i), implies L+1
♦
≺

L′+1. Otherwise, if S′ cannot be extended, (i) still implies that
d(L′+1) ≺ d(L+1), and since S′ is not extended, the source
of last segment of L+1 is node u and in included in the last

segment of L′+1, so L′+1
♦
≺ L+1.

Case (ii) and S can be extended by (u, v): Then, since
S′src ∈ S and S′type = Stype , S′ can also be extended (by
Lemma 3), so we still have d(L′+1) ≺ d(L+1). Also, we still
have S′srcext ∈ Sext and S′typeext = Stype

ext , where Sext and S′ext are

the extension of S and S′, respectively, so L′+1
♦
≺ L+1.
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