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A B S T R A C T

The reconstruction of diet, subsistence strategies and human-animal relationships are integral to understanding
past human societies, adaptations and resilience - especially in the circumpolar Arctic. Even in relatively recent
periods, climatic excursions may have posed specific challenges for hunter-gatherer groups living at latitudinal
and climatic extremes, and archaeological research in Arctic North America is increasingly looking to better
understand the impact of past climate change on human groups. Here, through a unique multi-proxy approach
(zooarchaeology, bone technology and stable isotope analysis), we explore human subsistence strategies,
adaptation and resilience at Nunalleq, a recently excavated pre-contact Yup'ik coastal site in southwest Alaska.
The main phase of occupation of the site (16th-17th centuries AD) corresponds with one of the coolest periods of
the Little Ice Age – a climatic interval from the early 14th century through the mid-19th associated with global
and more localised cooling events. The analyses reveal a subsistence strategy centred around the exploitation of
three major resources, including salmon, marine mammals and caribou, supplemented by secondary resources
such as birds and medium-sized mammals. This tripartite resource base (salmon, marine mammals, caribou) is
similar to that seen at other Thule-era sites in Alaska and likely permitted a flexibility in resource use in the face
of changes in resource availability (and competition over resources) during the Little Ice Age. Comparison of the
different datasets, however, reveals variability and nuance in the use of animals for both dietary and broader
subsistence needs. While caribou represent a vital and heavily-exploited resource at Nunalleq (evident from both
the zooarchaeology and the bone technology), they did not represent a key dietary resource (indicated by stable
isotope data). Instead, caribou played an integral and key part as a major source of raw material, especially
antler, in order to manufacture the necessary acquisition technology to exploit primary coastal resources.

1. Introduction

Arctic regions have been near-continuously inhabited by humans for
millennia (Rowley-Conwy, 1999; Hoffecker, 2005; Serreze and Barry,
2005), despite their extreme environments and unpredictable, highly
variable, conditions. In this sense, Arctic environments have borne
witness to the zenith of human adaptation and resilience, past and
present (Krupnik, 2000; Huntington et al., 2017). In addition to the

effects of long-term global climatic change, over recent years short-term
climatic excursions (‘bad years’ and localised climatic events) have had
a marked influence on the subsistence patterns of native communities
(e.g. Callaway et al., 1999; Craver, 2001). Given that similar climatic
scenarios occurred throughout the Holocene, understanding the
manner in which pre-contact populations responded to changes in en-
vironmental conditions has been a growing area of interest in Arctic
archaeological research (Mason and Gerlach, 1995; Darwent, 2004;
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West, 2009a; 2009b; Woollett, 2007; Sørensen, 2010; Grønnow et al.,
2011; Desjardins, 2018). Most previous studies focused on human
adaptive strategies during the Little Ice Age (LIA; 1350–1850 AD), a
period of rapid cooling and environmental unpredictability (Mann,
2002). Archaeological studies have demonstrated how people re-
sponded to climatic shifts across the Arctic, including changes in set-
tlement patterns and subsistence strategies, with responses often being
loci-specific rather than pan-Arctic. Few studies, however, have taken
place in South-West Alaska.

Present-day environmental change is not only having a major im-
pact upon available resources in the Arctic and the people who depend
on them, but is also serving to destroy the record of their past lifeways
in the circumpolar North. Today, arctic archaeological sites are under
constant threat of coastal and riverine erosion, melting permafrost,
marine inundation and increasing storm surges that are resulting in the
loss of a uniquely well-preserved archive (Murray et al., 2011). This is
particularly true for South-West (SW) Alaska, and the Yukon-Kus-
kokwim Delta (Y.-K. Delta), where archaeological sites are heavily da-
maged by coastal and fluvial erosion (VanStone, 1984a). This, com-
bined with logistical and transport difficulties, has impeded detailed
archaeological research in the region, resulting in a knowledge gap in
Arctic prehistory where comparatively little is known of pre-contact life
in the Y.-K. Delta (VanStone, 1984b; 1984a; Shaw, 1998).

The recent discovery of the late pre-contact site of Nunalleq, located
close to the village of Quinhagak in the Y.-K. Delta (Fig. 1) and its
subsequent large-scale and ongoing excavation (Britton et al., 2013;
McManus-Fry, 2015; Ledger et al., 2018; Masson-MacLean, 2018),
provides a unique opportunity to elucidate pre-contact lifeways in this
region. Whilst the site appears to have been occupied for a period of up
to 300 years (late 14th/15th to mid-late 17th centuries AD), the densest
occupation levels date to the early - mid-17th century (Ledger et al.,
2018), a time period coinciding with one of the coldest phases of the

LIA (the Maunder Minimum). Subsistence strategies and technologies
are the cornerstones of hunter-gatherer resilience (Solich and
Bradtmoller, 2017), and the large and well-preserved assemblages of in
situ artefacts and bioarchaeological materials from Nunalleq offer the
near-unique possibility to explore pre-contact lifeways in the Y.-K. Delta
and human adaptation during the LIA in SW Alaska.

In this study, we employ a range of methodological approaches to
reconstruct subsistence strategies at the height of the LIA in SW Alaska.
We combine zooarchaeological analyses with the examination of bone
technology as a means of exploring animal exploitation. These tandem
facets of subsistence strategy are analysed and interpreted alongside
localised climate records (Forbes et al. in review) and previously-pub-
lished human palaeodietary isotope data from the site (Britton et al.,
2013, 2018) to infer the exploitation of animal resources (from hunted
animal to primary and secondary product use), during the LIA. Our aim
is to illuminate foodways at the site during this crucial period and to
more closely examine human-animal relationships amongst the pre-
contact populations of the Y.-K. Delta.

2. Background

2.1. Site location and environment

The Nunalleq site (GDN-248) is located on the shores of the
Kuskokwim Bay between the Kanektok and Arolik rivers, approximately
5 km south of the modern Yup'ik village of Quinhagak (Fig. 1). The Y.-
K. Delta is an area of coastal wet tundra, but also includes interior
boreal forests, wetlands and areas of higher ground, and is bordered by
the Akhlun Mountains to the south and east. The vegetation is primarily
subarctic tundra supporting wet tundra plant communities of sedge
mats, moss, and low-growing shrubs (Raynolds et al., 2006). The re-
source-rich, but seasonal, landscape features some of the largest

Fig. 1. Site location map of the Nunalleq site.
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aggregations of waterbirds in the world and large runs of anadromous
fish. Year-round residents include certain birds such as ptarmigan or
owls, fur-bearing animals such as otters, beavers and small mustelids
and predators such as wolves and foxes (Alaska Department of Fish and
Game, 2006; US Department of the Interior, 2004). The riparian en-
vironment and migrating salmon also attract bears, and caribou are
found across the tundra seasonally. The coastlines and estuaries provide
feeding grounds for small cetaceans and pinnipeds (Alaska Department
of Fish and Game, 2006). Sea-ice formation on the Bering Sea con-
stitutes one of the other major physical elements of the region. Unlike
the Arctic Ocean, the Bering Sea is ice-free during the summer (Wendler
et al., 2013) and extends along the coast between November and March
or April (National Research Council, 1996, 41; Wang et al., 2009, 7;
Wendler et al., 2013).

The modern climate of southwest Alaska is Arctic and continental
with cold and snowy winters and cool damp summers (Kottek et al.,
2006), with average annual temperatures ranging from −4 °C to +3 °C
(Alaska Department of Fish and Game, 2006). The site of Nunalleq was
occupied during the Little Ice Age (14th - 19th centuries AD), a period
marked in North America and Alaska by generally colder conditions,
increased snowfall, reduced summer temperatures and the expansion of
sea-ice beyond its current extent - including in the Bering Sea (Pielou,
1992; Loso, 2009; Schiff et al., 2009; Miller et al., 2010; Mahoney et al.,
2011; Lehner et al., 2013). Recent paleoenvironmental research has
demonstrated that people living at Nunalleq did indeed experience
colder conditions than today, with lower average summer temperatures
by at least 1.3 °C (Forbes et al. in review). The main period of occu-
pation of the site coincided with one of the most inclement phases of
the LIA, marked by the greatest advances of glaciers and increased
storminess in Alaska (Mason and Gerlach, 1995) and by a period of
climatic and social unrest across the whole of the Northern Hemisphere
(Parker, 2013).

2.2. Archaeology of the Y.-K. Delta

The earliest occupations in the Y.-K. Delta have been attributed to
the Norton culture around 2500 years ago, though there is evidence of
Arctic Small Tool occupations in the Naknek drainage in the northern
Alaskan Peninsula (VanStone, 1984a). From approximately AD 1000,
the Thule culture spread to the Y.-K. Delta, replacing or incorporating
people of the earlier Norton Tradition (Dumond, 1987; McGhee 1996).
The Thule (referred to as Western Thule in Alaska) were coastal people
who exploited a variety of resources primarily focused on marine
mammals, large terrestrial herbivores and fish. They appear to have
mastered the use of (sled) dogs found across the Arctic from Alaska to
Greenland by the end of the first millennium AD (Sheppard, 2004).

Today the Y.K. Delta is the heartland of the Central Alaskan Yupiit,
of the Eskimo/Inuit-Aleut language group (Krauss et al., 2011;
Dallmann and Schweitzer, 2015), likely descendants of the Thule
(Raghavan et al., 2014). There is a rich post-contact ethnographic re-
cord documenting Yup'ik culture, but pre-contact lifeways in the region
are more difficult to discern, not least due to the lack of archaeological
research in the area. The consensus among scholars is that during the
prehistoric period, southwest Alaska was probably more influenced by
cultures from the Pacific Northwest coast than other regions further
north that were occupied by Inuit/Eskimo groups, in particular with
their more complex forms of social and ceremonial life (VanStone,
1984b 208). Amongst the historic Yup'ik, subsistence was focused on
the exploitation of maritime and inland resources. People lived in
permanent villages, but they also moved between seasonal hunting and
fishing camps. Coastal communities primarily hunted marine mammals
(particularly seals), with excursions to the tundra to hunt caribou and
to river mouths and rivers to harvest salmon. The assumption remains
that prehistoric subsistence in the Y.-K. Delta was likely similar to their
post-contact counterparts. By the arrival of the first ethnographers, the
Fur Trade and Christianity had already impacted Yup'ik communities,

influencing subsistence activities along with many other aspects of life
(VanStone, 1984b, 207–208, 1984a: 229). Furthermore, the climatic
excursions of the late Holocene - including the Medieval Warm Period
and Little Ice Age - may well have influenced the geographical and
seasonal distribution of resources and their abundance, influencing
subsistence activities (Mason and Gerlach, 1995; West, 2009a). With
access to key resources potentially restricted, increased competition for
those resources has even been linked to a period of regional warfare in
the Y.-K. Delta, known as the ‘Bow and Arrow War Days’ (Kurtz, 1985).
While the origins of the conflict are poorly understood, this tension
between riverine and coastal groups was part of a wider pan-Alaskan
period of inter-group violence (Funk, 2010; Fienup-Riordan and
Rearden, 2016) that finally ceased with the arrival in the region of
Russian explorers and traders during the 1840s.

3. Materials and methods

All materials included in this study originate from the Nunalleq site
(“Old Village” in Yup'ik). Over the past decade, the site has been the
subject of both rescue (2009–2010) and research (2012 onwards) ex-
cavations, led by the University of Aberdeen and the local native cor-
poration - Qanirtuuq Inc. Investigations at the site have revealed the
remains of a semi-subterranean sod and timber dwelling (Areas A, C
and D; see Figs. 2 and 3), occupied primarily between AD 1570 and
1675 (Ledger et al., 2016, 2018), along with refuse deposits (Area B).
To date, at least three occupation phases have been identified at the site
in Area A (Fig. 2; see Ledger et al. (2018)): Phase II represents the latest
occupation at the site, beginning somewhere in the interval AD
1640–1660, prior to the site being attacked (likely during the Bow and
Arrow War Days) and then finally abandoned. Several rooms were
identified, along with a main passageway leading to them (evidenced
by a well-preserved boardwalk) and a possible entrance at its eastern
extremity. Phase III is an earlier occupation, which began in the interval
AD 1620–1650 and lasted for up to 35 years, during which the layout of
the dwelling was very similar to Phase II, though appears to cover a
greater area and include a bigger central room in lieu of smaller in-
ternal spaces. Phase IV has been identified as a possible older dwelling,
existing prior to a remodelling event and later occupation phase, but
has not yet been fully excavated. Bayesian modelling suggests that the
beginning of Phase IV dates from between AD 1570 and 1630 (Ledger
et al., 2018).

The preservation of most remains at the site is exceptional due to
the presence of permafrost in the Y.-K. Delta (Black, 1958) and wa-
terlogged soils. This has led to the recovery of an extensive assemblage
of material culture (i.e., more than 60,000 items – many of them or-
ganic) and a large bioarchaeological collection that included bones (i.e.,
30,000 fragments), animal fur and human hair, as well as plant and
insect remains, providing detailed evidence of human diet and past
living conditions at the site (Britton et al., 2013, 2018; Forbes et al.,
2015). The recovery of zoomorphic wooden masks, animal bone car-
vings, hunting and fishing equipment and animal figurines attest to the
central economic and cultural role animals played in pre-contact Yup'ik
society. The zooarchaeological assemblage and technological bone and
antler material analysed for this study originates from the 2012 to 2015
field seasons.

3.1. Analysis of the vertebrate remains

The animal bone was recovered from both hand-collecting and on-
site dry-screening using a 1.27 cm (1/2 inch) mesh. In addition, bulk
samples from house floors were taken for the recovery of small bones
etc. (after Dobney et al., 1992) and wet-sieved to 3 mm. The Nunalleq
vertebrate assemblage is stored at the University of Aberdeen. The
sample presented here comprises 9273 bone fragments, excluding
unidentifiable small fragments of limited or no interpretative value. The
sample originates from Areas A, B and D (Fig. 3) and does not include
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material from the 2009–2010 rescue excavations in Area C nor material
from the 2017-2018 field seasons. . Based on surface preservation, most
of the assemblage was in excellent condition and the presence of
otherwise fragile bird bones was also indicative of a well-preserved
assemblage (Serjeantson, 2009).

Identifications of the vertebrate remains were made using modern
comparative reference collections (O'Connor, 2000; Reitz and Wing,
2008) held at the University of Alaska Museum of the North in Fair-
banks (UAMN) for pinnipeds and cetaceans; the Muséum National
d’Histoire Naturelle in Paris (MNHN) for birds; the National Museum of
Scotland (NMS) in Edinburgh for terrestrial and marine mammals; and
from the University of Aberdeen for other fish, birds and medium-sized
mammals. The osteological identifications were supplemented by the
use of illustrated and photographic guides including Smith (1979),

Gilbert (1990) and the Virtual Zooarchaeology Arctic Project database
(Betts et al., 2011) for mammals, Cohen and Serjeantson (1996) for
avian remains combined with references to Armstrong (1995) for the
geographic distribution of Alaskan birds, and Cannon (1987) for fish
remains.

3.2. Bone technology

To better understand the role of vertebrate resources in technology
at the site, the use of bone, tooth/ivory and antler. was also assessed as
part of this study. This included the identification and analysis of a
large sample of finished objects (e.g. tools, weapons and other acces-
sories) manufactured from bone and related materials (but also the
assessment of blanks, preforms and debitage (n = 1320)), as well as the

Fig. 2. Site plan of Nunalleq showing occupation phases II & III and schematic stratigraphic diagram.
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faunal assemblage itself in order to identify modifications of associated
raw materials. This approach to technology, from raw materials to
finished object, uses the concept of the chaîne opératoire (Leroi-
Gourhan, 1964) to map the reduction sequence as raw material is
shaped to produce a finished tool, and provides greater insight into
manufacture than analysis of the finished object alone. For example,
understanding the production pathway can illuminate factors behind
raw material selection and the constraints related to the use of specific
materials/technological approaches. Furthermore, relating such factors
to the wider zooarchaeological assemblage and to diet (through in-
tegrating zooarchaeology with e.g. human stable isotope data) helps
contextualise material selection within the framework of broader eco-
nomic and cultural choice. The identification and characterization of
technologies related to subsistence has also the potential to inform on
human adaptations to stress, whether of environmental or of other
origin, as hunter-gatherer toolkit complexity and diversity appear to be
related to the risk of resource failure and shifts in subsistence strategies
(Torrence, 1983: 21; Collard et al., 2005). In order to explore this
particular aspect of technology at Nunalleq, a detailed diachronic and
technological analysis of the osseous material would be necessary,
which is beyond the scope of this study. Here, our inclusion of pre-
liminary data from the osseous industry aims to provide a more com-
plete picture and understanding of animal use at the site as technolo-
gical analyses can also infer on the differential us e and availability of
raw materials, something that is particularly useful at Arctic sites
(Corbin, 1975; Lemoine, 2005; Houmard, 2011, 2016, 2018). All ar-
tefacts have now been returned to the newly-established Nunalleq
Culture & Archaeology Center in Quinhagak.

4. Results and data interpretation

4.1. Species representation

Fish (27.9% NISP) and marine mammals (27% NISP) dominated the
Nunalleq faunal assemblage in terms of numbers of identifiable frag-
ments, followed by caribou (17.2% NISP) and domestic dog (16.9%

NISP). Birds (6.6%) and other terrestrial mammals (2.7% NISP) and
bivalves (1.3%) comprise the remaining taxa (Fig. 3; Table 1). Whilst
not all fish remains were identified to genus/species, initial assessment,
not surprisingly, underscores the predominance of salmonid (Oncor-
hynchus spp.) vertebrae (81.9% fish NISP) and thus a quasi-absence of
other fish species. Though not analysed at this stage, remains from
other fish species are present in bulk samples but in low frequencies.
Among marine mammals (93.6% marine mammal NISP), true seals
(Phocidae) are far more frequent than larger taxa such as beluga or
walrus. However, the low representation of these species may be re-
lated to butchery at the kill site and transport decisions given the re-
latively large size of these animals (Betts, 2016). Small ice seals, in-
cluding ringed and spotted seal and the larger bearded seal, were also
identified in the assemblage. The near-absence of large cetaceans is
likely either a direct result of whales avoiding the shallow waters and
the sea-ice of the Kuskokwim Bay or (again) transport decisions linked
to the large size of carcasses. The data for caribou presented in Table 1
excludes the vast amounts of antler recovered from the site. Bird re-
mains included mainly migratory waterfowl and other marine birds,
while other mammals identified included primarily mustelids and
beaver. Bear and wolf were represented by a few elements. In total, at
least 25 taxa were identified suggesting a wide variety of species were
available and that people at the site benefited from a certain degree of
ecological stability and abundance (Desjardins, 2018).

A preliminary diachronic analysis of possible differences in taxo-
nomic representation between Phases II & III was undertaken using
material from selected house floors in Area A (Fig. 4). Results show an
apparent decrease in fish remains between the two phases, with fish
appearing less frequent in the later Phase II. Inversely, caribou, dog and
marine mammals all appear to be better represented in Phase II in
comparison to earlier Phase III, although the rank order of resources
does not change. Marine mammals were less well represented than
caribou in house floor deposits, which differs from the overall taxo-
nomic representation at the site. This may be the consequence of spe-
cies-specific discarding practices influencing faunal composition across
the site (Friesen and Betts, 2002), or perhaps related to different species

Fig. 3. Histogram showing the different wild animal resource categories exploited at Nunalleq (excluding domestic dog).
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being targeted for further processing activities (e.g. tool making) that
took place on the house floors.

The technological sample studied (n = 1320) consisted mostly of
antler, and comprised debitage (615 pieces), blanks (47) and preforms
(20), along with 349 artefacts (including 134 weapons, and 157 tools).
Among the faunal assemblage, 3321 specimens showed evidence for
manufacture, with a predominance of caribou antler fragments in-
volved (n = 2317). Bone (n = 594) and teeth (n = 357) fragments
belonging to both terrestrial (caribou, dog, fox, wolf, mammoth) and

marine species (walrus, beluga, sea birds) were identified. Although
potentially available and in large quantities, with the exception of a few
modified bearded seal ribs , seal bones do not appear to have been used
in the bone technology at the site.

4.2. Dietary reconstruction at Nunalleq

To better reflect the true dietary contribution of each of the different
animal resources at Nunalleq during the LIA, meat weight estimates
were calculated (Needs-Howarth, 1995; Reitz and Wing, 2008) using
average live weights derived from Alaska Department Fish & Game
(www.adfg.Alaska.gov) and the published literature (Sale, 2006;
MacDonald and Cook, 2009 and Fig. 5). Meat weight estimates were not
calculated for fish or other non-mammalian species. In combination
with the previously-published stable isotope data from human hair
from Area C (directly inferring diet) and associated mixing models
(suggesting the composition of dietary protein), a fuller picture of diet –
including the contribution of fish – can be inferred (see Britton et al.,
2018; McManus-Fry et al., 2018 and Fig. 6).

According to the stable isotope mixing model, salmon were amongst
the most important vertebrate resources consumed at Nunalleq, pro-
viding up to 50% of the dietary protein (Britton et al., 2018 and Fig. 7).
It is likely that salmon was not only consumed fresh but also as stored
food (likely dried) based on the predominance of vertebrae in the as-
semblage (Hoffman et al., 2000). The storage of food is a critical
component of prehistoric Arctic hunter-gatherer lifeways and the ex-
ploitation and curing of salmon in particular enables the production of
storable surplus (Rowley-Conwy and Zvelebil, 1989). Of the mamma-
lian species exploited, marine mammals, seals (28.9% estimated meat
weight) and beluga (31.4%), were also important contributors to the
diet based both on meat weights and the isotopic mixing model, where
they ranked second behind salmon (Britton et al., 2018, Fig. 7). Marine
mammals would also have provided significant amounts of fat and oil
(Cachel, 2000; Kennett, 2005; Betts, 2016). Caribou (14.4% estimated
meat weight) may not have been as important a source of protein in the
diet as marine mammals and are secondary compared to salmon, seals
or beluga, according to the isotope data. Caribou and large herbivores
can also be an important source of fat to prehistoric hunter-gatherers in
the form of body fat or marrow extracted from their bones (Speth and
Spielmann, 1983). Though some spiral fracturing was observed on
caribou long bones suggesting the extraction of marrow, smaller bones
such as phalanges were not specifically fractured, most being recovered
complete (Table 2), and there was no evidence of the preparation of
‘bone broth’ (Saint-Germain, 1997) suggesting that people at Nunalleq
had access to sufficient amounts of fat from other sources, most likely
marine mammals, and potentially did not suffer from severe dietary

Table 1
List of taxa identified in the faunal assemblage.

Taxon NISP % NISP MNI % MNI

Cariboua Rangifer tarandus 1593 17.2% 31 10.2%
Domestic dog Canis familiaris 1567 16.9% 59 19.5%
Fox Vulpes sp. 67 0.7% 11 3.6%
Beaver Castor canadensis 50 0.5% 8 2.6%
Hare Lepus sp. 19 0.2% 2 0.7%
Lemming/vole Arvicolinae 18 0.2%
Porcupine Erethizon dorsatum 18 0.2% 4 1.3%
American mink Neovison vison 13 0.1% 6 2.0%
American marten Martes americana 12 0.1% 4 1.3%
Wolf Canis lupus 11 0.1% 1 0.3%
Bear Ursus sp. 11 0.1% 1 0.3%
Dog/Fox Canidae 9 0.1% 0.0%
Otter cf. Lutra canadensis 8 0.1% 4 1.3%
Muskrat Ondatra zibethicus 7 0.1% 3 1.0%
Mustelid (small) Mustelidae 4 0.0%
Mustelid ind. Mustelidae 1 0.0%
Wolverine Gulo gulo 1 0.0% 1 0.3%
Land mammal NISP 3409 36.8% 135 44.6%
Seal ind. Phocidae 1592 17.2%
Bearded seal Erignathus barbatus 239 2.6% 12 4.0%
Ringed seal Phoca hispida 217 2.3% 26 8.6%
Seal (small/medium) Phocini 212 2.3%
Harbour/Spotted seal Phoca sp. 66 0.7% 10 3.3%
Ribbon seal Histriophoca fasciata 15 0.2% 3 1.0%
Seal NISP 2341 25.2% 51 16.8%
Walrus Odobenus rosmarus 72 0.8% 3 1.0%
Beluga Delphinapterus leucas 48 0.5% 9 3.0%
Whale ind. Cetacea 24 0.3%
Whale (small) Cetacea 9 0.1% 1 0.3%
Whale (large) Cetacea 4 0.0% 1 0.3%
Porpoise Phocoenidae 2 0.0% 1 0.3%
Marine mammal NISP 2500 27.0% 66 21.8%
Pacific salmon/trout Oncorhynchus spp. 2118 22.8%
Fish indeterminate Osteichthyes 468 5.0%
Fish NISP 2586 27.9%
Duck ind. Anatinae 186 2.0% 23 7.6%
Gull (large) Larus sp. 102 1.1% 23 7.6%
Grouse/ptarmigan Tetraonidae 55 0.6% 6 2.0%
Swan Cygnus sp. 50 0.5% 12 4.0%
Murre Uria sp. 37 0.4% 7 2.3%
Goose Anser sp./Branta sp./

Chen sp.
33 0.4% 10 3.3%

Loon (small) Gavia stellata/Gavia
pacifica

28 0.3% 7 2.3%

Common raven Corvus corax 26 0.3% 2 0.7%
Jaeger/Gull/Tern Laridae 8 0.1%
Puffin Fratercula sp. 8 0.1% 3 1.0%
Loon (large) Gavia immer/Gavia

adamsii
7 0.1% 3 1.0%

Cormorant Phalacrocorax sp. 6 0.1% 2 0.7%
Murre? cf. uria sp. 5 0.1%
Snowy owl Nyctea scandiaca 4 0.0% 1 0.3%
Alcid ind. Alcidae 3 0.0%
Gull (medium) Larus sp. 2 0.0% 1 0.3%
Puffin? cf. Fratercula sp. 2 0.0%
Sandhill crane Grus canadensis 1 0.0% 1 0.3%
Short-eared owl Asio flammeus 1 0.0% 1 0.3%
Bird ind. Aves 82 0.9%
Bird NISP 646 7.0% 102 33.7%
Molluscs Bivalvia sp. 132 1.4%
Total 9273 100% 303 100%

a Excl. antler.

Fig. 4. Taxonomic spectrum in Phases II & III.
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stress (Outram, 2004). VanStone has already suggested that the abun-
dance of natural resources in the Y.-K. Delta would have meant food
shortages were likely to be less frequent and less severe than further
north (VanStone, 1984b: 206).

The lack of marine fish other than salmon in the diet, based on the
isotope mixing model, and the absence of their remains in the faunal
record, infers that people exploited mainly the shallow coastal waters of
the Kuskokwim Bay and fishing further out in the ocean was either not
necessary or not viable. The latter may be particularly relevant during
the harshest decades of the Little Ice Age and periods of increased

Fig. 5. Estimated dietary contribution of non-fish resources at Nunalleq based on meat weights (adapted from Masson-MacLean (2018)).

Fig. 6. Probability distribution of human diet composition, as estimated by
FRUITS mixing model (adapted from McManus et al. 2018). Marine fish data
taken from Byers et al. (2011).

Fig. 7. Caribou skeletal representation at Nunalleq based on Minimal Animal Unit (MAU).

Table 2
MNE of complete caribou phalanges.

Element MNE %MNE

Phalanx I Complete 77 82.8
Proximal 8 8.6
Distal 8 8.6
Total 93 100

Phalanx II Complete 82 94.3
Proximal 2 2.3
Distal 3 3.4
Total 87 100
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storminess (Mason and Gerlach, 1995; West, 2009b). While birds do not
figure in the mixing model and their contribution to the overall yearly
diet may have been minimal, it is likely that their availability and
consumption at specific times of the year (including eggs) might have
been crucial (Moss and Bowers, 2007; Miisaq/Andrew, 2008).

While some changes in the composition of the faunal assemblage
were noted between the different phases of the site, actual dietary
changes during the occupation of the site are more difficult to infer.
While there is better representation of both caribou and marine mam-
mals in the later phase (II), along with a decrease in fish remains, the
rank order of resources does not change. Furthermore, Friesen and Betts
(2002) have demonstrated intra-site variations in the composition of
Thule-era faunal assemblages depending on on-site provenience. Future
work should include integrating data from earlier phases recently ex-
cavated at the site, as well as further diachronic isotope analysis on
human hair. It is nevertheless interesting that this apparent decline in a
major subsistence resource (salmon) occurred during the Little Ice Age,
a well-documented period of harsher conditions across the globe
(Parker, 2013) that could also have had a negative effect on salmon
populations (Finney et al. 2000).

4.3. The importance of caribou bone and antler in the manufacturing of
objects and hunting implements

Except for beluga (represented primarily by mandibular fragments
and isolated teeth) other major taxa such as seals and caribou were
represented by most body parts, suggesting they may have been hunted
relatively close to the site (Masson-MacLean, 2018). Of interest for this
study was the over-representation (other than of antler) of certain
caribou elements such as scapulae and metapodials (Fig. 8), which also
showed the highest frequencies of working (Table 3). Furthermore, the
assessment of worked bone at the site highlighted the importance of
caribou elements in the bone-working industry in general (58% of total
worked bone in the assemblage). This differed significantly to seals
whose main function appears to have been primarily dietary, though, in
the ethnographic record, their hides are known to be valuable
(VanStone, 1984a; Fienup-Riordan, 2007). Except for very few mod-
ified ribs of the large bearded seal, possibly used as root picks, and
small wedges, seal bones were generally not used as raw material for
manufacturing tool or objects.

The amount of worked bone, however, is dwarfed by the vast
amount of worked antler pieces recovered from the assemblage. Both
cut antler from freshly slaughtered caribou (MNE = 37; MNI = 18) and
naturally shed antler (MNE = 87; MNI = 43) were present. Shed antler
predominates (twice as frequent as cut antler), indicating the need to
supplement the amount of antler acquired from hunted caribou by
collecting additional antler from the tundra. The distribution of cut
antler is evenly distributed across the various size categories (i.e. small

to large sets), contrasting with that of the naturally shed antler, which is
dominated by medium to large antler (Fig. 8). It appears, therefore, that
when collecting naturally shed antler from the surrounding environ-
ment, there was a preference to select larger specimens.

These data highlight the importance of antler as a raw material. This
is also confirmed by the study of the antler debitage, which revealed the
multiple uses of antler for manufacturing various objects and imple-
ments for subsistence and warfare, as well as for domestic and social
purposes (Fig. 9). Of the 2867 pieces of worked animal remains for
which the material could be identified, just over 80% (2317) was antler.
Thus, the technology used for the hunting of key animal resources such
as seals (harpoons), caribou (arrowheads) and birds/fish (prongs) were
predominantly made from antler (Table 4) emphasizing the importance
of antler in the Y.-K. Delta during pre-contact times.

5. Discussion: pre-contact adaptations to the Little Ice Age in the
Y.-K. Delta

5.1. Site location: a tripartite resource-base

Based on the faunal and technological data explored above, com-
bined with stable isotope data from the site, the inhabitants of Nunalleq
were engaged in a tripartite resource-based economy focused primarily
on the exploitation of salmon, marine mammals (mainly seals) and
caribou. These animal resources provided the bulk of the diet, as well as
being a critical source of raw materials for making clothes, tools and
hunting equipment. Caribou antler was a vital raw material resource in
non-dietary aspects of subsistence. This pattern has also been observed
for other archaeological coastal groups in Southwest Alaska whose
economy was defined by a lack of larger sea mammals and a focus on
salmon, seals and caribou (Bockstoce, 1979, 89). These resources most
likely reflect what was available locally, as late prehistoric and historic
Arctic hunter-gatherers generally tended to exploit what was available
within a relatively close radius from a winter settlement (Betts, 2008:
140–144). People at Nunalleq had nearby access to two highly pro-
ductive salmon rivers in the Kanektok and Arolik. The location of the
site on the shores of the Kuskokwim Bay would also have provided easy
access to marine mammals and non-salmonid fish, although the latter
do not seem to have played a major role in diet at the site.

Caribou appear to have been hunted sufficiently close to the site for
complete caribou carcasses to have been brought back to the settle-
ment. There is ethnographic evidence of large migrating caribou herds
along the Bering Sea coast in the 19th century (Burch Jr. 2012). This
was also likely to have been the case during the pre-contact period
based on recent strontium isotope data obtained from caribou teeth
from Nunalleq, which indicate caribou hunted at the site were sea-
sonally migratory and possibly present on the coast during winter
(Gigleux et al., 2019). The lack of squirrel remains is in contrast to

Fig. 8. Antler acquisition at Nunalleq.
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ethnographic accounts of the importance of this species in the recent
historic period (a likely consequence of the fur trade) and suggests
limited excursions to mountainous areas. The low representation of
taxa occupying tundra and riverine habitats also emphasises the coastal
focus of subsistence at Nunalleq. It is, therefore, likely that the location
of the Nunalleq site was influenced by access to multiple high-ranking
animal resources that could provide critical raw materials and food
(including the necessary amounts of fat - mainly acquired from marine
mammals) needed to survive in Arctic environments (Speth and
Spielmann, 1983; Cachel, 2000), not least during the Little Ice Age.
However, access to non-animal resources such as driftwood may also
have been a factor in site location decisions, given its economic and
cultural importance amongst Yup'ik coastal communities (Wheeler and
Alix, 2004). The location of the Nunalleq site on a resource hotspot
mirrors settlement patterns observed among Mackenzie Delta Inuit in
Arctic Canada (Betts, 2008) and in pre-contact Southwest Alaskan
contexts (Crowell et al., 2011) and can be considered a key adaptive
strategy of Arctic foragers, especially during periods of climatic in-
stability and inclemency.

5.2. A flexible subsistence strategy and coping mechanisms

The location of Nunalleq would have provided its inhabitants with
the means to practice a flexible subsistence strategy with access to
several key resources, as well as potentially important secondary re-
sources such as migratory birds. This exploitative pattern would have
provided the ability to cope with changes in environmental conditions
affecting species availability and distribution with environmental or
climatic anomalies unlikely to have had the same effect on all species
equally. Resource flexibility and storage are considered a risk-mini-
mising strategy, providing a buffer against potential pitfalls in resource
availability (Hayden, 1981; Rowley-Conwy and Zvelebil, 1989). The
storage of food, and salmon in particular - a relatively resilient and
predictable resource (Campbell and Butler, 2010) - and a tripartite
subsistence strategy, most likely provided pre-contact populations in
the Y.-K. Delta with the necessary tools to cope with rapid fluctuations
in environmental conditions characteristic of Arctic habitats (Rowley-
Conwy, 1999, 353), which may have potentially been exacerbated by
the Little Ice Age.

Hunter-gatherers tend to manage risk by diversifying their resource
base, allowing them to substitute a failing resource by another as they
possess the knowledge and skills to do so (Kelly, 2013, 69). This
strategy appears to have been mastered by Thule-era foragers across the

Table 3
Worked bone at Nunalleq per taxon (Sample studied = 238 out of 594).

Taxon Cranium/
Teeth

Rib Scapula Humerus Radius/Ulna Baculum Femur Tibia/
Fibula

Metapodials Carpals/
Tarsals

Other wNISP %wNISP

Beaver Castor canadensis 1 1 0.4%
Beluga Delphinapterus leucas 5 5 2.1%
Domestic dog Canis familiaris 3 1 4 1.7%
Caribou Rangifer tarandus 4 37 1 1 65 5 113 47.5%
Wolf Canis lupus 2 2 4 1.7%
American mink Neovison vison 1 1 0.4%
Porcupine Erethizon dorsatum 17 17 7.1%
Bear Ursus sp. 1 1 2 0.8%
Fox Vulpes sp. 13 13 5.5%
Walrus Odobenus rosmarus 3 2 1 1 5 12 5.0%
Gull Larus sp. 8 1 9 3.8%
Goose Anserini sp. 7 7 2.9%
Loon Gavidae sp. 15 1 16 6.7%
Puffin/Murre Fratercula sp. 1 1 0.4%
Swan Cygnus sp. 26 2 28 11.8%
Common raven Corvus corax 3 3 1.3%
Cormorant Phalacrocoracidae 1 1 0.4%
Murrre Uria sp. 1 1 0.4%

Total 49 2 38 59 3 1 4 1 70 5 6 238 100.0%

Fig. 9. The debitage reduction process and use of antler at Nunalleq.

Table 4
Subsistence equipment at Nunalleq.

Artefact type Antler Bone Ivory Lithic Total

Arrow point 145 3 1 149
Bola 1 1 2
Bow 2 1 3
Fish hook 1 3 4
Fish lure 5 4 10 5 24
Harpoon head 87 12 1 100
Lance 8 8
Prong 224 9 37 270
Sinker 3 13 16
Socket piece for harpoon 16 28 17 61
Total 490 75 68 21 654
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Arctic (Betts, 2008, 2016) - including at Nunalleq whose inhabitants
possessed the necessary fishing and hunting technology to acquire
multiple key resources and, therefore, take advantage of their en-
vironment. Along with settlement patterns and a flexible subsistence
strategy, technology is considered a major component of prehistoric
hunter-gatherer resilience (Solich and Bradtmoller, 2017). The material
cultural assemblage at Nunalleq, including bone technology, highlights
a well-adapted, sophisticated technology. Furthermore, the presence of
loose and fixed harpoon foreshafts as well as barbed and toggling
harpoons suggests the ability to hunt seals from kayaks in open water,
from the ice edge and at breathing holes in the ice (Morrison 1983),
thus taking advantage of the different ocean and sea-ice conditions that
may have been both more extensive and more variable during the Little
Ice Age than today. The widespread use of caribou antler for manu-
facturing fishing, sea mammal and bird hunting implements – including
evidence for collecting significant amounts of shed antler from the
tundra – not only highlights the importance of this material but also its
availability. The lack of worked seal bones may indicate that people at
Nunalleq had sufficient access to more attractive sources of raw mate-
rial in the form of antler or walrus ivory. Antler, in particular, is tougher
and has superior mechanical properties than bone (MacGregor and
Currey, 1983). Besides, seal bones are morphologically difficult to work
and it also seems unlikely that taboos prevented their use for making
tools as at least some bearded seal ribs were modified. Caribou are
indeed often an integral part of Arctic prehistoric economies, not only
as a source of food (meat, fat), but also (and often more so) as a source
of raw materials for clothing and the manufacture of objects and tools
(Burch, 1972; Binford, 1978; Gerlach, 1989; Betts, 2016, 92). Winter
clothing is a vital component of Arctic lifeways and the importance of
caribou skin to Arctic societies results mainly from its high insulating
qualities with ethnographic accounts suggesting that the value of car-
ibou as a source of skin was equal, if not higher, than its value as a
source of food (Stenton 1991: 18). Though the material has yet to be
fully analysed, evidence of skin working and sewing has also been re-
covered at Nunalleq - including leather garments and fragments with
stitches, made of caribou and other animals skin (pers. comm. J.
Masson-MacLean), awls, skin scrapers and needles. Furthermore, it has
been argued in Arctic environments that effective coastal adaptations
were possible by relying on terrestrial resources (Stenton 1991: 17,
Hodgetts, 2000). It can, therefore, be suggested that caribou, and car-
ibou antler and hide in particular, as valuable raw materials, may have
been central for supporting a maritime-based economy along the Kus-
kokwim Bay coast, especially considering that the shallow waters of the
bay restricts access to large cetaceans and walrus.

The technology and knowledge to rely on multiple key resources,
but also the ability to exploit a wide range of resources such as birds
and a variety of land mammals at Nunalleq, further increases the ca-
pacity of hunter-gatherers to cope with fluctuations in primary animal
resource availability (Kelly, 2013: 69). For example, in the Canadian
Arctic pre-Dorset people increased their intake of secondary resources
such as foxes and Arctic hare as a response to decreasing availability of
high benefit seals and large herbivores (Darwent, 2004). In the Y.-K.
Delta, according to the Yup'ik ethnographic record, migratory birds
were a critical resource at specific times of the year such as the early
spring, when winter stored supplies were low and people were waiting
for the arrival of seals (Miisaq/Andrew, 2008) and this may also have
been the case prior to contact. Another fall-back resource available
year-round for Thule-era people across the Arctic would also have been
dogs. The dog remains at Nunalleq, including the high ratio of juveniles
(McManus-Fry, 2015; Masson-MacLean, 2018), and associated
butchery, is indicative of their at least occasional consumption, most
likely during episodes of food scarcity and hardship, as observed in
other Arctic prehistoric and historic contexts (Park, 1987). Indeed, dogs
would have formed a readily available source of protein that could be
acquired with minimum energy expenditure acting as a supplementary
buffer when encountering difficulties in food procurement. Given the

additional pressure dogs placed upon other subsistence-acquired re-
sources, population control through culling would also have been an
important aspect of animal and resource management during periods of
hardship.

5.3. A successful adaptation during the Little Ice Age?

The apparent decline in salmon exploitation during the latest oc-
cupation phase of the site could perhaps be related to episodic extreme
conditions during the Little Ice Age affecting salmon populations and
spawning (Brannon et al., 2004). Although further diachronic isotope
analyses at the site are required to infer a more detailed picture of diet
through time, the inhabitants of Nunalleq appear to have compensated
for the decline in salmon by relying more on other major resources such
as seals and caribou but also by increasing their consumption of dogs.
However, the lack of fractured caribou phalanges may provide evidence
that people at Nunalleq did not experience extreme dietary stress nor
had the necessity to exploit animal fat from bones with low marrow
extraction efficiency (Outram, 2004: 77).

The coastal location of the site on a resource hotspot, a flexible
tripartite subsistence strategy and the knowledge and technology to
exploit a variety of species, suggests that the coping mechanisms were
efficient with dealing with potential severe conditions and localised
disruptions to resource availability that are perhaps more likely to have
occurred at the height of the LIA during the 17th century (Parker,
2013). Unlike some parts of Alaska, or the Arctic, where people re-
located or migrated as a response mechanism to harsher environmental
conditions during the LIA (Mason and Gerlach, 1995; Sørensen, 2010),
people at Nunalleq seemed to have benefited from good access to re-
sources from a ‘central place,’ enabling them to occupy the site for at a
least a century (Ledger et al., 2018). Even today, people in Quinhagak –
the modern settlement close to the archaeological site – consider their
village to be located on a better “spot” for accessing multiple animal
resources than other villages in the area (Warren Jones pers. comm.). It
may be that the location of the site on the coast, with ready access also
to inland and riverine resources, may explain the warfare-related de-
struction of Nunalleq as competing groups vied for access to this re-
source-rich prime settlement location (Kurtz, 1985; Fienup-Riordan and
Rearden, 2016).

6. Conclusions

People at Nunalleq practiced a flexible tripartite subsistence
strategy focused on the acquisition of salmon, marine mammals (spe-
cifically seals) and caribou, with a range of secondary resources such as
migratory waterfowl also exploited. The knowledge and technology
necessary to exploit a variety of resources, the ability to switch the
focus from one key resource to another, and the possibility to store food
surplus provided people with the necessary coping and buffering me-
chanisms to avoid dietary stress effectively during one of the most se-
vere episodes of the Little Ice Age. Furthermore, at this coastal site, the
technological record highlights that one of the most important aspects
of successful coastal adaptation in SW Alaska during this period was the
exploitation of caribou as a source of raw material for manufacturing
associated acquisition technologies. The decision to locate at the site
may well have been dictated by the possibility to simultaneously exploit
multiple key animal resources, accessing the coast and the seasonally
migrating salmon and herds of caribou. However, access to other re-
sources, such as driftwood, may also have played a role in site location,
and future investigations of pre-contact Yup'ik settlement patterns
should include all resource types.

The apparent advantageous location of Nunalleq may also have
been a reason for its demise, as the Little Ice Age could have affected the
distribution and abundance of certain key species, possibly increasing
stress and competition between groups over key resources. It is only by
further developing interdisciplinary approaches and combining
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multiple lines of evidence such as biological remains, technology and
isotopes, as well as ecological and climatic modelling, that human
adaptations and the effects of the Little Ice Age on both people and
resources in SW Alaska and beyond will be more fully understood.
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