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Abstract

Total value adjustment (XVA) is the change in value to be added to the price of a derivative to account for the

bilateral default risk and the funding costs. In this paper, we compute such a premium for American basket

derivatives whose payoff depends on multiple underlyings. In particular, in our model, those underlyings

are supposed to follow the multidimensional Black-Scholes stochastic model. In order to determine the

XVA, we follow the approach introduced by Burgard and Kjaer [9] and afterward applied by Arregui et al.

[2, 3] for the one-dimensional American derivatives. The evaluation of the XVA for basket derivatives is

particularly challenging as the presence of several underlings leads to a high-dimensional control problem.

We tackle such an obstacle by resorting to Gaussian Process Regression, a machine learning technique that

allows one to address the curse of dimensionality effectively. Moreover, the use of numerical techniques,

such as control variates, turns out to be a powerful tool to improve the accuracy of the proposed methods.

The paper includes the results of several numerical experiments that confirm the goodness of the proposed

methodologies.
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1 Introduction

After the financial crisis of 2007 and the default of several financial institutions, practitioners, regulators,

and finally, academics have turned increasing attention to counterparty risk. Currently, careful and weighted

management of counterparty risk is required at the legislative level by the Basel III agreements of 2010, as

well as codified by the IFRS standard starting from 2013. Consequently, when assessing the value of an OTC

derivative instrument, banks must apply a series of adjustments to the risk-free price, capable of accounting

for the costs associated with the effects of a possible default of any of the two counterparties. The entirety

of these corrections is known as the total credit value adjustment, usually indicated by the abbreviation

XVA. The main elements that contribute to the calculation of the XVA are the CVA, the DVA and the

FVA. The CVA, credit value adjustment, is the premium that an agent must charge to the counterparty

to cover the losses that could derive from the default of the same. In particular, these losses occur when

the value of the contract is positive for the agent and the counterparty, following a default, is unable to

comply with the contractual terms. The DVA, debit value adjustment, is the consideration of the CVA for

the counterparty: in the event of the bankruptcy of the agent, he is no longer obliged to comply with the

contractual responsibilities and, if the derivative has a negative value for the agent, then he draws a benefit,

to the detriment of the counterparty. Finally, the FVA, funding value adjustment, is the change in value in

the derivative that comes from the costs or benefits, which the agent obtains following the collateralization

of the contract.

Recently, these issues have attracted the attention of many academics and nowadays the literature on

credit value adjustment is large. The most common approach to XVA valuation consists in computing

the price of the contract subject to risk through a PDE. One of the first authors to suggest a PDE based

approach is Piterbarg [23], who introduces a model to include funding costs on derivative valuations when

collateral has to be posted. Burgard and Kjaer [9] propose a more general model for the evaluation of

bilateral counterparty risk and funding costs still based on the description of the value of European-type

derivatives in terms of PDE. De Graaf et al. [11, 12] propose the so-called finite-difference Monte Carlo

(FDMC) method, which exploits both finite-difference and Monte Carlo methods to compute the CVA and

to compute first and second-order sensitivities for counterparty credit risk. Feng [15] adapts the FDMC

method to deal with the case of an underlying evolving according to the Bates model: in this particular

case, the PDE to be solved is replaced by a partial integral differential equation (PIDE), which implies an

additional computational effort. Goudenège et al. [17] improve the method proposed by De Graaf et al. and

compute the CVA in the Bates model by solving coupled PIDEs.

Other authors have considered the Monte Carlo method. Ballotta et al. [4] use Monte Carlo and Fourier

transform based methods to study a structural model when the underlying follows a Lévy process. Brigo and

Vrins [8] use Monte Carlo to evaluate CVA in a model that effectively manages wrong-way risk. Antonelli

et al. [1] propose a procedure based on a Taylor approximation for evaluating XVA and compare it against

Monte Carlo simulations.

Recently, Arregui et al. [2, 3] extend the model of Burgard and Kjaer [9] to the analysis of American-

type derivatives. This line of research is taken up by Salvador and Oosterlee [26], who develop the stochastic

model for the underlying by considering stochastic volatility. Furthermore, Yuan et al. [29] present two

different numerical approaches to estimate the total value adjustments of the Bermudan option, under the

pure jump CGMY model.

Numerical techniques for option pricing that rely solely on PDEs generally suffer from the curse of

dimensionality, that is the explosion of computational cost in the presence of high dimensional problems,

whereas standard Monte Carlo methods are not effective in the case of American options. The previously
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discussed methods for calculating XVA are not exempt from this limitation.

Newer techniques for evaluating derivatives make use of machine learning methods. In this regard, some

authors employ neural networks. For example, Lapeyre and Lelong [20] study the Longstaff and Schwartz

algorithm when the standard least-square regression is replaced by a neural network approximation. Becker

et al. [5, 6, 7] develop deep learning methods for pricing and hedging American-style and, more generally,

for solving optimal control problems. Other authors exploit Gaussian Process Regression (GPR), a Machine

Learning technique that allows for estimations from scattered data in large dimensional spaces. In this

regard, we mention the work of Ludkovski [22], who evaluates Bermudan options by fitting the continuation

values through GPR. More recently, Goudenège et al. [18] propose three GPR-based algorithm, termed GPR-

MC, GPR-Tree and GPR-EI, for pricing American options on a basket of assets following multi-dimensional

Black-Scholes dynamics.

The literature on the computation of the XVA for high dimensional derivatives is rather sparse. As far

as the computation of the credit adjustments are concerned, She and Grecu [28] compute CVA and DVA by

employing neural network as a universal approximator. Crépey and Dixon [10] exploit GPR to speed up the

computation of the CVA for derivatives portfolios. Gnoatto et al. [16] exploit artificial neural network to

compute the XVA for large portfolios of derivatives. Despite the importance of this topic, to our knowledge,

no one has ever studied the calculation of XVA for American basket options, which are probably the most

popular option involving several assets.

In this paper, we aim to fill this gap, by proposing an approach based on a suitable probabilistic for-

mulation of the XVA, derived from the model of Burgard and Kjaer [9], which exploits the GPR-MC and

the GPR-EI algorithms for option pricing to overcome the curse of dimensionality. We point out that we

have chosen to consider Burgard and Kjaer’s model as it is particularly suitable as, unlike other models,

the American option exercise strategy is shaped to take into account the probability of default of any of

the agents. Moreover, depending on the choice of the mark-to market value, two possible kinds of models

are considered: a linear and a non-linear. Furthermore, the computation accuracy is increased by exploiting

suitable control variate for both the riskless and the risky price. Numerous numerical tests demonstrate the

reliability and accuracy of the proposed procedures when different derivatives are considered.

The remainder of the paper is organized as follows. In Section 2 we introduce the model for XVA

on American basket options. In Section 3 we describe the proposed procedures. In Section 4 we discuss

numerical results. Finally, in Section 5, we conclude.

2 Total value adjustment for American basket options

In this Section, we describe a PDE-based model for the total value adjustment when American options are

concerned and we discuss a probabilistic interpretation that we are going to exploit for our approaches. We

stress out that the model we develop here is inspired by the framework previously introduced by Burgard

and Kjaer [9] and developed by Arregui et al. [2, 3], which is very interesting among the others because

it allows the exercise strategy of the American option to be influenced by the possibility of default of each

agent. This phenomenon, which is certainly plausible in reality, is not present in other models. For example,

the model by De Graaf et al. [12, 11], which is usually employed be other authors, considers the strategy

for the risky option to be the same as the strategy for options without default risk but, in our opinion, this

does not seem to be the right choice. This aspect is pointed out in the following Remark.

Remark 1. Consider an American call option, which is at the money at the time of issue. Now, suppose

an agent buys such an option from a counterparty that provides a null recovery rate and that is going to
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default before the maturity of the option almost sure. It is well known that if the underlying does not pay

dividends, and the counterparty does not default, it is never optimal to exercise an American call option

before maturity. So, if the agent employs the standard strategy, he will achieve a payoff equal to zero almost

sure, as the default of the counterparty will occur before maturity and the option will lose all its value (the

recovery rate is zero). On the other hand, if he exercises the option immediately, he will obtain a positive

payoff (the option is in-the-money), so this strategy is better than the classical one. This simple example

shows that the optimal strategy for exercising an American option must take the default risk into account.

Let

S = (St)t∈[0,T ] =
(

S1
t , . . . , S

d
t

)

t∈[0,T ]

denote a d-dimensional stochastic process following the multi-dimensional Black-Scholes model. Under the

risk neutral probability Q, the dynamics of each underlying is given by

dSi
t = (r − ηi) S

i
t dt+ σi S

i
t dW

i
t , i = 1, . . . , d, (2.1)

with S0 =
(

s10, . . . , s
d
0

)

∈ Rd
+ the spot price, r the (constant) interest rate, η = (η1, . . . , ηd) the vector of

dividend rates, σ = (σ1, . . . , σd) the vector of volatilities, W a d-dimensional correlated Brownian motion

and ρij the instantaneous correlation coefficient between W i
t and W j

t .

Let us consider an American option issued at time 0 with maturity T and let H : Rd
+ → R denote the

payoff function. Let us term B the issuer and C the buyer of the option. For the moment, we suppose

that none of the two agents can default. We approximate the value of the risk-less American option by a

Bermudan option which can be exercise at the times tn = n ·∆t for n = 0, . . . , N with ∆t = T/N and N ∈ N.

By employing standard arguments, one can prove that

V (tn,St) = max (C (t,St) , H (St)) ,

where C (t,St) stands for the continuation value. In particular, C (t,St) restricted to the time interval

]tn, tn+1[ is equal to Cn (t,St), the solution of the following PDE, defined in ]tn, tn+1[for n = 0, . . . , N − 1 :

∂Cn

∂t
+A (Cn)− rCn = 0,

with Cn = Cn (tn+1,x) for x = (x1, . . . ,xd) and

A (Cn) =

d
∑

i=1

(r − ηi)xi
∂Cn

∂xi
+

d
∑

i=1

σ2
i x

2
i

2

∂2Cn

∂x2
i

+

d−1
∑

i=1

d
∑

j=i+1

ρi,jσiσjxixj
∂2Cn

∂xi∂xj
.

The terminal condition is

Cn (tn+1,x) =

{

H (x) if n+ 1 = N,

V (tn+1,x) otherwise.

Now, let us suppose that both agents B and C can default. We take the point of B, and we denote the

risky option price by V̂
(

t,St, J
B
t , JC

t

)

, with JB and JC two independent jump processes that change value,

from 0 to 1, at the time the corresponding agent defaults.

Let Mt = M (t,St) represent the close-out mark-to-market value, that is, the monetary value of the

contract used as the basis for settlement. Let us define M+ = max (M, 0) and M− = min (M, 0). Following

Burgard and Kjaer [9], in case of default of one counterparty, the risky values are defined as follows:

• if the issuer B defaults first,

V̂ (t,St, 1, 0) = M+
t +RBM

−
t ,

with RB ∈ [0, 1] the recovery rate of C respect to the default of B;
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• if the buyer C defaults first,

V̂ (t,St, 0, 1) = RCM
+
t +M−

t ,

with RC ∈ [0, 1] the recovery rate of B respect to the default of C.

Let λB and λC be the constant default intensities of B and C, respectively, and sF the funding cost of B.

According to Burgard and Kjaer [9], if the derivative can be used as a collateral, then sF = 0, and if it

cannot, then sF = (1−RB)λB . Following Arregui et al. [2, 3], the value V̂ (t,St, 0, 0) of the Bermudan

risky option, satisfies

V̂ (t,St, 0, 0) = max
(

Ĉ (t,St) , H (St)
)

,

with Ĉ the continuation value of the risky option. Similarly to what happens for the risk-free option, Ĉ (t,St)

restricted to the time interval ]tn, tn+1[ is equal to Ĉn (t,St), the solution of the following PDE, defined in

]tn, tn+1[ for n = 0, . . . , N − 1 :

∂Ĉn

∂t
+A

(

Ĉn
)

− rĈn = (λB + λC) Ĉ
n + sFM

+ − λB

(

RBM
− +M+

)

− λC

(

RCM
+ +M−) , (2.2)

with the terminal condition

Ĉn (tn+1,x) =

{

H (x) if n+ 1 = N,

V̂ (tn+1,x, 0, 0) otherwise.

We proceed backward in time. Suppose V̂ n (tn+1,x) is known and we aim to compute V̂ n (tn,x). By the

Feynman-Kac formula applied to equation (2.2), (see e.g. Platen and Heath [24]), we have

Ĉn (tn,x) = EQ

[∫ tn+1

tn

e−r0(u−tn)g (u,Su) du+ e−r0∆tĈn
(

tn+1,Stn+1

)

| Stn = x

]

, (2.3)

with

r0 = r + λB + λC ,

g (u,Su) = −
[

sFM
+
u − λB

(

RBM
−
u +M+

u

)

− λC

(

RCM
+
u +M−

u

)]

= M+
u (λB + λCRC − sF ) +M−

u (λC + λBRB)

= M+
u cp +M−

u cm,

cp = λB + λCRC − sF and cm = λC + λBRB . In particular, as λB, λC , RC and RB are positive quantities

and sF is equal to 0 or (1−RB) λB, thus cp and cm are positive values.

We approximate the integral in (2.3) by a two points trapezoidal quadrature rule:

Ĉn (tn,,x) ≈ EQ

[

e−r0∆tg
(

tn+1,,Stn+1

)

+ g (tn,,Stn)

2
∆t+ e−r0∆tĈn

(

tn+1,Stn+1

)

| Stn = x

]

= e−r0∆tEQ

[

∆t

2
g
(

tn+1,,Stn+1

)

+ Ĉn
(

tn+1,Stn+1

)

| Stn = x

]

+
∆t

2
g (tn,,Stn) ,

and thus

V̂ (tn,,x, 0, 0) ≈ max

{

e−r0∆tEQ

[

∆t

2
g
(

tn+1,,Stn+1

)

+ V̂
(

tn+1,Stn+1
, 0, 0

)

| Stn = S

]

+
∆t

2
g (tn,,x) , H (x)

}

(2.4)

Now, we distinguish two cases: Mu = V (u, Su), that is the value of the risk-free derivative, and Mu =

V̂ (u, Su, 0, 0) , that is the value of the defaultable derivative.
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2.1 Case M = V

We suppose that the values of V have already been computed in a suitable domain. If Mu = V (u,Su),

we can compute V̂
(

tn,,Stn,
, 0, 0

)

explicitly, by replacing M with the pre-computed values of V and by

approximating the expectation in (2.4) by a suitable numeric technique.

2.2 Case M = V̂

If Mu = V̂ (u,, Su), then

V̂ (tn,,x, 0, 0) ≈ max

{

E (x) +
∆t

2

(

V̂ (tn,,x, 0, 0)
+
cp + V̂ (tn,,x, 0, 0)

−
cm

)

, H (x)

}

, (2.5)

with

E (x) = e−r0∆tEQ

[

∆t

2

(

V̂
(

tn+1,Stn+1
, 0, 0

)+
cp + V̂

(

tn+1,Stn+1
, 0, 0

)−
cm

)

+ V̂
(

tn+1,Stn+1
, 0, 0

)

| Stn = x

]

.

(2.6)

We define Ṽ (tn,,x) as the solution of the implicit equation problem

Ṽ (tn,,x) = max

{

E (x) +
∆t

2

(

Ṽ (tn,,x)
+
cp + Ṽ (tn,,x)

−
cm

)

, H (x)

}

, (2.7)

and we employ it as an approximation of V̂ (tn,,x, 0, 0). Equation (2.7) is implicit – V̂ appears both on left

and the right side of the equation – and non linear. The following proposition discuss how to solve it.

Proposition 2.1. Let Ṽ (tn,,x) be the unique solution of the implicit equation (2.7). Then, if H (x) ≤ 0:

• if E (x) ≤ H (x)
(

1− ∆t
2 cm

)

≤ 0 then Ṽ (tn,,x) = H (x);

• if H (x)
(

1− ∆t
2 cm

)

< E (x) ≤ 0 then Ṽ (tn,,x) =
E(x)

1−∆t
2
cm

;

• if E (x) > 0 then Ṽ (tn,,x) =
E(x)

1−∆t
2
cp

.

If H (x) > 0:

• if E (x) ≤ H (x)
(

1− ∆t
2 cp

)

then Ṽ (tn,,x) = H (x);

• if E (x) > H (x)
(

1− ∆t
2 cp

)

then Ṽ (tn,,x) =
E(x)

1−∆t
2
cp

.

The proof of Proposition 2.1 is discussed in the Appendix A.

3 Gaussian Process Regression for computing XVA

According to the previous Section, the calculation of XVA requires the computation of an expected value,

both in the case M = V and in the case M = V̂ , see (2.4). This calculation involves a stochastic underlying

which is a multidimensional process, potentially high dimensional. We propose to use two techniques, already

successfully applied by Goudenège et al. [18] for multidimensional option pricing problems: GPR-MC and

GPR-EI.

Below, we recall the main aspects of these two methods, and we refer the interested reader to [18] for

more information.
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3.1 GPR-MC

The GPR Monte Carlo approach employs Monte Carlo simulations to compute the continuation value of a

Bermudan option and GPR to learn the option value at each time step.

The algorithm starts by simulating a set of trajectories of the underlyings. Let Xn represent the set of P

points whose coordinates represent certain possible values for the underlyings at time tn, for n = 0, . . . , N,

that is

Xn = {xn,p = (xn,p
1 , . . . , xn,p

d ) , p = 1, . . . , P} ⊂ Rd. (3.1)

The points of the sets Xn are computed by employing the Halton’s low-discrepancy sequence in Rd and

standard algorithms for simulating the undelying values in the multidimensional Black-Scholes model.

Now, suppose we want to compute the continuation value of an Bermudan option but only for Stn =

x
n,p ∈ Xn. This goal can be achieved by means of a one step Monte Carlo simulation. In particular, for

each x
n,p ∈ Xn, we simulate a set of M points

X̃n
p = {x̃n,p,m = (x̃n,p,m

1 , . . . , x̃n,p,m
d ) ,m = 1, . . . ,M} ⊂ Rd,

which are possible values for Stn+1
according to the law of Stn+1

|Stn = x
n,p . In particular, for i = 1, . . . , d,

n = 1, . . . , N , p = 1, . . . , P , m = 1, . . . ,M , we define

x̃n,p,m
i = xn,p

i e(r−ηi− 1
2
σ2
i )∆t+

√
∆tσiΣiG

n,p,m

, (3.2)

where G
n,p,m ∼ N (0, Id) is a standard Gaussian random vector and Σi is the i-th row of the matrix Σ,

which is defined as a square root of the correlation matrix Γ of the multidimensional Brownian increments.

Thus, the risk-less option value can be approximated for each x
n,p ∈ Xn by the following scheme:







V MC
n (xn,p) = max

(

e−r∆t

M

∑M
m=1 V

MC
n+1 (x̃n,p,m) , H (xn,p)

)

if n < N,

V MC (tn,x
n,p) = H (xn,p) if n = N.

(3.3)

Furthermore, the risky value V̂ MC
n (xn,p) for M = V , t = tn and Stn = x

n,p is approximated by the following

scheme:






V̂ MC
n (xn,p) = max

{

ĈMC
n (xn,p) , H (xn,p)

}

if n < N,

V̂ MC
n (xn,p) = H (xn,p) if n = N,

(3.4)

with

ĈMC
n (xn,p) =

e−r0∆t

M

M
∑

m=1

[

∆t

2

(

V MC
n+1 (x̃n,p,m)

+
cp + V MC

n+1 (x̃n,p,m)
−
cm

)

+ V̂ MC
n+1 (x̃n,p,m)

]

+

+
∆t

2

(

VMC
n (xn,p)+ cp + V MC

n (xn,p)− cm

)

.

Finally, the risky value V̂ MC
n (xn,p), for M = V̂ , t = tn and Stn = x

n,p, is computed according to Proposition

2.1, with E (xn,p) approximated by

EMC (xn,p) =
e−r0∆t

M

M
∑

m=1

[

∆t

2

(

V̂ MC
n+1 (x̃n,p,m)+ cp + V̂MC

n+1 (x̃n,p,m)− cm

)

+ V̂ MC
n+1 (x̃n,p,m)

]

. (3.5)

If we proceed backward, the functions V MC
N and V̂ MC

N are known since they are equal to the payoff of

the option H , so one can compute both V MC
N−1 and V̂ MC

N−1 at X̃n
p by exploiting equations (3.3), (3.4) or (3.5).
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Similarly, such a computation at a time step tn with n < N requires the knowledge of the value functions

V MC
n+1 and V̂ MC

n+1 at the next time step tn+1 at all the points of the set
⋃

p=1,...,P X̃n+1
p , but, following the

procedure just described, those functions are known only at the points of the set Xn+1: a multidimensional

extrapolation tool is required to extending the value functions from Xn to a suitable neighbourhood of such

a set. For this purpose, we exploit Gaussian Process Regression, a class of non-parametric kernel-based

probabilistic models that represents the input data as the random observations of a Gaussian stochastic

process and it employs a Bayesian approach to perform estimation of the process at new input data. This

Machine Learning techniques is well suited to our problem, as it is capable of handling randomly scattered

input data and, generally, only a few input observations are needed to obtain accurate predictions. For a

brief introduction to GPR, we refer the interested reader to De Spiegeleer et al. [13] or to Goudenège et al.

[18], while for a more in-depth discussion, we suggest Rasmussen and Williams [25].

Let V GPR−MC
n and V̂ GPR−MC

n be the GPR approximations of the functions V MC
n and V̂ MC

n , obtained

from the observations
{(

x
n,p, V MC

n (xn,p)
)

, p = 1, . . . , P
}

and
{(

x
n,p, V̂MC

n (xn,p)
)

, p = 1, . . . , P
}

respec-

tively. The GPR-MC algorithm requires the replacement of V MC
n+1 and V̂ MC

n+1 in the right side on (3.3), (3.4)

or (3.5) with V GPR−MC
n+1 and V̂ GPR−MC

n+1 respectively.

3.2 GPR-EI

The GPR-Exact Integration method is similar to the GPR-MC method but the continuation value is esti-

mated through an exact computation of the expectation, based on the Gaussian distribution. By contrast

with the GPR-MC method, the predictors employed in the GPR step are related to the logarithms of the

underlyings. Secondly, the continuation value at these points is computed through a closed formula which

comes from an exact integration.

Here, for the sake of brevity, we limit ourselves to pointing out the main elements of this algorithm, and

we refer the interested readers to [18]. The computation of the continuation value, for both risky or riskless

options, is a particular case of the computation of an expectation as

EQ [Ψ (St+τ ) |St = x] ,

with Ψ a certain function, t, t+ τ ∈ [0, T ] and τ > 0.

Let us define the input set

Z = {zp, p = 1, . . . , P}

consisting of P points in Rd quasi-randomly distributed according to the law of the vector
(

σ1W
1
τ , . . . , σdW

d
τ

)⊤
.

In particular, we define

z
p
i =

√
τσiΣih

p, (3.6)

where Σi is i-th row of the matrix Σ and h
p is the q-th point of the Halton’s low-discrepancy sequence in

Rd. Let u : Z → R be the function defined by

u (z) := Ψ

(

x exp

((

r − η − 1

2
σ

2

)

τ + z

))

. (3.7)

The first step is to approximate the function u by training the GPR method with a Squared Exponential

kernel on the set Z, so that the GPR approximation of the function u is given by

uGPR (z) =

P
∑

p=1

kSE (zq, z)ωp, (3.8)
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where ω1, . . . , ωP are weights. The continuation value can be computed by integrating the function uGPR

against a d-dimensional probability density. The use of the Squared Exponential kernel allows one to easily

perform such a calculation by means of a closed formula, that is:

EQ [Ψ (St+τ ) |St = x] ≈
P
∑

p=1

ωqσ
2
fσ

d
l

e−
1
2
(zp)⊤(τ ·Π+σ2

l Id)
−1

(zp)

√

det (τ · Π+ σ2
l Id)

, (3.9)

where σf , σl, and ω1, . . . , ωQ are certain constants determined by the GPR approximation of the function

z 7→ u (z) considering Z as the predictor set, and Π = (Πi,j) is the d × d covariance matrix of the vector
(

σ1W
1
T , . . . , σdW

d
T

)⊤
, that is Πi,j = ρi,jσiσj .

3.3 Control Variates

As suggested by Goudenège et al. [19], control variates technique is a usefull tool to improve the accuracy of

pricing methods based on GRP. Specifically, we use the European risk-less price V EU as the control variate

for the American risk-less price, and the American risk-less price for the American risky price. In particular,

we compute the European risk-less price by Monte Carlo simulations with antithetic variates. We explain

the use of control variates technique for the computation of the risk-less American option price V , and we

leave the appropriate adjustments for the risky price V̂ to the reader.

Let V EU represent the risk-less price of the European option. For a fixed time t and an underlying

stocks value x, the American-European price gap is defined as the difference between the American and the

European price, that is:

v (t,x) = V (t,x, 0, 0)− V EU (t,x, 0, 0) . (3.10)

The price gap is equal to zero at maturity and, at a general time t, it can be computed as

v (t,x) = sup
τ∈Tt,T

EQ
[

e−r(τ−t)K (τ,Sτ ) |St = x

]

, (3.11)

where Tt,T stands for the set of all stopping times taking values in [t, T ] and K is the exercise value gap,

defined by

K (t,x) = H (x)− V EU (t,x, 0, 0) . (3.12)

Therefore, the function v (t,x) can be estimated by exploiting a dynamic programming principle based on

Bermudan approximation. In particular, one can use GPR-MC and GPR-EI, by replacing H with K. Finally,

after computing the initial price gap v (0,S0), by inverting relation (3.10), one can obtain the American price

as

V (0,S0, 0, 0) = v (0,S0) + V EU (0,S0, 0, 0) . (3.13)

Remark 2. The computation of the European prices for the control variates technique and the expectation

(2.4) are the most time demanding steps. However, these steps can easily be parallelised, thus reducing the

total computational time.

4 Numerical experiments

In this Section we propose the results of some numerical experiments. The algorithms have been implemented

in MATLAB and computations have been preformed on a server which employs a 2.40 GHz Intelr Xeonr

processor (Gold 6148, Skylake) and 64 GB of RAM. In the remainder of this Section, we discuss 3 American

derivatives: a Geometric Put, a Call on the maximum and a Swaption with floor. Table 1 lists all the

9



Symbol Meaning Value Symbol Meaning Value

Si
0 initial spot value 100 T maturity 1.0

r risk free i.r. 0.03 λB = λC default intensities 0.04

ηi dividend rate 0.00 RB = RC recovery rates 0.3

σi volatility 0.25 sF funding cost 0.028

ρi,j correlation 0.2 K strike price 100

Table 1: Parameters employed for the numerical experiments in the multi-dimensional Black-Scholes model.

In particular, sF = (1−RB)λB .

parameters of the stochastic model, with the exception of the dimension d, which takes on different values

from d = 2 up to d = 80. Based on the results discussed in this Section, one can observe that the two

proposed methods are very accurate in the various cases considered. The quality of the results degrades

slightly as the size of the problem increases, but the quality of the results is still acceptable, successfully

limiting the effects of the curse of dimensionality. Overall, the results proposed by the two methods are

always in agreement and very close to the benchmark (when available).

Finally, we stress that obtaining accurate values (in terms of relative error) for the XVA is not an easy

task. The XVA is in fact obtained as the difference between two prices that are usually very close to each

other. A small estimation error on prices can have a significant weight in relative terms on their difference.

Geometric Put

We start by considering a Geometric Put option, whose payoff is

H(ST ) =



K −
(

d
∏

i=1

Si
T

)

1
d





+

.

This is a very particularly interesting case since the value of this d-dimensional option is equal to the value

an appropriate one dimensional American Put option in the Black-Scholes model, as pointed out in [18, 19].

So, by using one-dimensional standard techniques, such as the CRR tree or a finite difference algorithm, one

can obtain very accurate prices for both risk and risk-less American option. In particular, we compute the

American benchmark by using both the CRR model with 4000 time steps and a PDE approach with 4000

time steps and 4000 space steps. The obtained values with these two algorithms are equal to three decimal

places, so that they can be assumed reliable. The Bermudan benchmark is computed as the American one,

but the option has only 41 possible exercise dates, that is t0 = 0, t1 = 1/40, . . . , t40 = 1. The GPR-MC

method employs 40 time steps, 2000 points and 104 Monte Carlo simulations, while the GPR-EI method

employs 40 time steps and 2000 points.

Table 2 shows the numerical results, which appear to be very accurate and reliable. As far as the price

calculation is considered, the relative errors compared to the American benchmark never exceed (in absolute

value) 0.14%, which is a very small value. The results are even more interesting when compared to the

Bermudian benchmark: in this case, the relative error is always below 0.07%. We can therefore say that, in

general, the Bermudian approximation and the algorithmic approximations have a similar contribution to

the total error with respect to the American price. The relative error with respect to the XVA are generally

larger because the XVA is obtained as the difference of almost equal quantities, so the absolute error must be

related to a smaller quantity. However, for the cases considered, the absolute error on the XVA never exceeds

10



Option prices XVA

Risk-free With default risk

d M = V M = V̂ M = V M = V̂

American benchmark

2 6.901 6.659 6.657 0.242 0.244

10 4.866 4.689 4.688 0.177 0.178

20 4.530 4.364 4.363 0.166 0.167

40 4.350 4.190 4.189 0.160 0.161

80 4.257 4.100 4.099 0.157 0.158

Bermudan benchmark

2 6.895
(−0.09%)

6.651
(−0.12%)

6.649
(−0.12%)

0.244
(0.83%)

0.246
(0.82%)

10 4.863
(−0.06%)

4.685
(−0.09%)

4.683
(−0.11%)

0.178
(0.56%)

0.180
(1.12%)

20 4.527
(−0.07%)

4.360
(−0.09%)

4.358
(−0.11%)

0.167
(0.60%)

0.169
(1.20%)

40 4.347
(−0.07%)

4.186
(−0.10%)

4.185
(−0.10%)

0.161
(0.63%)

0.163
(1.24%)

80 4.254
(−0.07%)

4.096
(-0.10%)

4.095
(−0.10%)

0.158
(0.64%)

0.159
(0.63%)

GPR-MC

2 6.894
(−0.10%)

6.650
(−0.14%)

6.648
(−0.14%)

0.244
(0.83%)

0.246
(0.82%)

10 4.864
(−0.04%)

4.685
(−0.09%)

4.684
(−0.09%)

0.179
(1.13%)

0.181
(1.69%)

20 4.530
(0.00%)

4.360
(−0.09%)

4.359
(−0.09%)

0.169
(1.81%)

0.171
(2.40%)

40 4.350
(0.00%)

4.187
(−0.07%)

4.185
(−0.10%)

0.164
(2.50%)

0.165
(2.48%)

80 4.255
(−0.07%)

4.097
(−0.07%)

4.095
(−0.10%)

0.159
(1.26%)

0.160
(1.27%)

GPR-EI

2 6.895
(−0.09%)

6.651
(−0.12%)

6.649
(−0.12%)

0.244
(0.83%)

0.246
(0.82%)

10 4.864
(−0.04%)

4.685
(−0.09%)

4.684
(−0.09%)

0.179
(1.13%)

0.180
(1.12%)

20 4.530
(0.00%)

4.362
(−0.05%)

4.360
(−0.07%)

0.168
(1.20%)

0.170
(1.80%)

40 4.349
(−0.02%)

4.186
(−0.10%)

4.184
(−0.12%)

0.164
(2.50%)

0.165
(2.48%)

80 4.254
(−0.07%)

4.100
(0.00%)

4.097
(0.05%)

0.154
(−1.91%)

0.156
(−1.26%)

Table 2: Numerical results for a Geometric American put option. Values in brackets are the relative errors

with respect to the American benchmark. d stands for the dimension.
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Benchmarks GPR-MC GPR-EI

P

d American Bermudian 125 250 500 1000 2000 125 250 500 1000 2000

XVA, case M = V

2 0.242 0.244 0.247
(117)

0.245
(202)

0.244
(480)

0.245
(1419)

0.244
(4732)

0.242
(103)

0.244
(126)

0.243
(151)

0.245
(320)

0.244
(841)

10 0.177 0.178 0.183
(160)

0.180
(287)

0.180
(688)

0.179
(1784)

0.179
(5621)

0.180
(132)

0.179
(199)

0.179
(358)

0.179
(698)

0.179
(1803)

20 0.166 0.167 0.171
(243)

0.171
(447)

0.172
(1052)

0.170
(2345)

0.169
(6592)

0.169
(221)

0.169
(344)

0.169
(692)

0.168
(1257)

0.168
(2679)

40 0.160 0.161 0.152
(363)

0.159
(614)

0.164
(1413)

0.165
(3360)

0.164
(8537)

0.159
(360)

0.163
(515)

0.164
(1076)

0.164
(2171)

0.164
(4284)

80 0.157 0.158 0.118
(477)

0.138
(1047)

0.155
(2287)

0.158
(4709)

0.159
(12258)

0.070
(441)

0.119
(1010)

0.145
(1885)

0.151
(3961)

0.154
(7242)

XVA, case M = V̂

2 0.244 0.246 0.249
(125)

0.247
(194)

0.249
(518)

0.248
(1472)

0.246
(4869)

0.244
(97)

0.246
(236)

0.245
(301)

0.247
(607)

0.246
(1570)

10 0.178 0.180 0.188
(190)

0.183
(301)

0.181
(702)

0.182
(1811)

0.181
(5528)

0.182
(132)

0.181
(367)

0.181
(680)

0.181
(1286)

0.181
(3252)

20 0.167 0.169 0.175
(249)

0.175
(464)

0.174
(1011)

0.172
(2295)

0.171
(6680)

0.170
(212)

0.170
(600)

0.170
(1276)

0.170
(2275)

0.170
(4830)

40 0.161 0.163 0.152
(353)

0.163
(657)

0.165
(1345)

0.167
(3365)

0.165
(8782)

0.160
(355)

0.164
(954)

0.166
(1982)

0.165
(3997)

0.165
(7853)

80 0.158 0.159 0.119
(503)

0.141
(1160)

0.156
(2242)

0.159
(5020)

0.160
(12265)

0.071
(832)

0.120
(1804)

0.147
(3366)

0.153
(6826)

0.156
(7395)

Table 3: Numerical results for a Geometric American put option. Values in brackets are the computational

times (in seconds). P is the number of points employed in the GPR algorithms.

2.50% and, in general, tends to increase as the problem size increases. Again, the Bermudian approximation

contributes about half of the total error. To conclude, we observe that the results for M = V and M = V̂

are very similar, both in terms of prices and XVA.

To investigate the convergence rate of the two methods, we compute the XVA by changing the number P

of points employed for the sparse quasi-random grid. As one may observe from the results reported in Table

3, the GPR algorithms provide convergence to Bermudian prices with great accuracy. Moreover, due to the

use of the control variate technique, very few points are needed to obtain very accurate results. Obviously,

the larger the dimension, the more points are required to approach the exact value. This fact is particularly

important as the computational time increases more than linearly as the number of points increases (the

higher cost is due to the training of the GPR model, which is cubic). Finally, we note that the GPR-EI

method is generally faster and more accurate than GPR-MC, but the latter returns more accurate results in

very high dimensions, especially for d = 80.

Call on the maximum

The American option Call on the maximum is a difficult to evaluate derivative and so it has been considered

by many authors, such as Schoenmakers [27], Lelong [21], Becker et al. [5], Goudenège et al. [18, 19], and

Ech-Chafiq et al. [14]. Specifically, the payoff of such an option is given by

H(ST ) =

(

max
i=1,...,d

Si
T −K

)

+

.

We start the numerical analysis by considering the same model parameters as for the Geometric put,

which are reported in Table 1. We stress out that, since the considered derivative is a call option and the
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d GPR-MC GPR-EI UB

P

125 250 500 1000 2000 125 250 500 1000 2000

XVA, case M = V

2 1.004 1.001 0.998 0.999 0.998 0.999 0.999 0.999 0.998 0.998 1.009± 0.001

10 2.191 2.210 2.226 2.231 2.229 2.237 2.231 2.236 2.234 2.230 2.252± 0.001

20 2.670 2.720 2.753 2.762 2.771 2.789 2.792 2.788 2.774 2.774 2.803± 0.001

40 2.743 3.149 3.223 3.268 3.294 3.317 3.262 3.247 3.296 3.299 3.337± 0.001

80 2.674 3.001 3.602 3.702 3.764 2.830 3.241 3.642 3.736 3.741 3.852± 0.001

XVA, case M = V̂

2 1.012 1.019 1.011 1.010 1.011 1.010 1.011 1.011 1.010 1.011 1.021± 0.001

10 2.217 2.238 2.250 2.254 2.255 2.263 2.257 2.261 2.259 2.257 2.279± 0.001

20 2.711 2.748 2.787 2.790 2.803 2.820 2.825 2.823 2.806 2.809 2.837± 0.001

40 2.766 3.180 3.259 3.305 3.333 3.358 3.298 3.284 3.336 3.339 3.377± 0.001

80 2.705 3.046 3.646 3.742 3.812 2.891 3.259 3.699 3.732 3.783 3.898± 0.001

Table 4: Numerical results for a Call on the maximum option. The confidence interval for the upper-bound

UB is computed at a 99% confidence level.

underlying pays no dividends (ηi = 0, see Table 1), early exercise is never optimal for the riskless option.

Moreover, since the payoff of the derivative is always possible, we can use the closed formulas proposed by

Burgard and Kjaer [9] to compute the XVA for the European derivative. Specifically, if M = V , then

XV AEU = V EU (t,S0) ·
(

1− e−(λB+λC)T − cp
1− e−(λB+λC)T

λB + λC

)

,

and if M = V̂ , then

XV AEU = V EU (t,S0) ·
(

1− e(cp−λB−λC)T
)

.

It is worth noting that despite the prices of an European and an American riskless options are equals,

this does not also apply to their XVAs. In fact, an American option may be exercised early so to reduce the

losses due to counterparty default, thus the XVA on the American option is expected to be smaller than the

European one. So, we present the XVA on the European option as an upper-bound (UB). Results are shown

in Table 4. We can see that both proposed methods provide very accurate values for the cases considered.

When a large number of points is used (at least 500), the relative deviation between the returned values,

that is the difference divided by the larger value, is less than 2%. The values obtained for XVA are all below

the upper-bound, although very close to it.

Finally, for the sake of comparison, let us calculate the XVA for a Call on the maximum considering

a positive dividend rate, equal for all underlyings and equal to ηi = 0.02. In this specific case, there are

neither benchmarks nor upper-bounds. Table 5 presents the results. In the case under consideration (positive

dividend), the valuation seems to be more challenging than in the previous case (with zero dividend). In

fact, at least 500 points are needed to obtain a relative deviation of less than 5%.

Swaption with floor on two portfolios

The derivatives considered in the numerical examples above are all options and therefore their payoff function

and their values are always positive. The model considered in this work also admits negative values for the
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d GPR-MC GPR-EI

P

125 250 500 1000 2000 125 250 500 1000 2000

XVA, case M = V

2 0.817 0.805 0.800 0.806 0.804 0.805 0.801 0.802 0.802 0.803

10 1.988 2.003 2.008 2.009 2.006 1.962 1.966 2.000 2.004 1.999

20 2.479 2.529 2.551 2.555 2.556 2.473 2.485 2.481 2.456 2.457

40 2.599 2.948 3.009 3.063 3.080 3.026 2.973 2.964 3.005 2.997

80 2.577 2.850 3.407 3.487 3.557 2.811 3.033 3.461 3.422 3.488

XVA, case M = V̂

2 0.820 0.814 0.809 0.808 0.815 0.814 0.811 0.812 0.811 0.812

10 2.018 2.031 2.027 2.030 2.031 1.981 1.992 2.025 2.026 2.022

20 2.505 2.555 2.581 2.581 2.588 2.503 2.514 2.508 2.488 2.484

40 2.625 2.978 3.051 3.100 3.118 3.059 3.009 2.998 3.040 3.033

80 2.613 2.878 3.449 3.531 3.597 2.848 3.068 3.461 3.464 3.560

Table 5: Numerical results for a Call on the maximum option with a positive dividend rate.

payout, so it is interesting to consider a case with this attribute. Let us now consider an American two-

portfolio Swaption with a negative floor, i.e. a derivative in which two portfolios are swapped between

counterparties, whose value can be either positive or negative. Specifically, the first portfolio consists of the

first d/2 underlyings and the second portfolio consists of the remaining underlyings. For simplicity, we will

assume d to be an even number. In both cases, the underlyings all have the same weight, so the value of each

portfolio is equal to the average of the prices of the individual risky assets. The payout of such a derivative

is given by

H(ST ) = max





2

d





d/2
∑

i=1

Si
T −

d
∑

i=d/2+1

Si
T



 ,K



 .

In particular, the floor K is a negative number, thus the payout of the option can be negative. Table 6

presents the numerical results. We observe that, in the case considered, the estimated values for the XVA

are much smaller than in the previous cases. The two methods return very similar values for d ≤ 40, whereas

for d = 80 GPR-EI estimates of the XVA are greater than those returned by GPR-MC (approximately

+20%). The lack of a benchmark makes it unclear which of the two methods is the more accurate in this

case.

5 Conclusion

In this paper, we have discussed the problem of calculating the XVA of a derivative that depends on multiple

underlyings. This issue plays an essential role in counterparty risk management, also in light of the regulations

currently in force. Nevertheless, it is an element that is often overlooked due to the curse of dimensionality

associated with the problem of valuing high-dimensional options. Our proposal to address this challenge is

to reformulate the problem in probabilistic terms and make use of the GPR-MC and GPR-EI techniques

with control variate, which have already been successfully applied in similar contexts. Numerical results

show that it is possible to obtain very accurate estimates of the XVA and, in some cases, very few points are
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d GPR-MC GPR-EI

P

125 250 500 1000 2000 125 250 500 1000 2000

XVA, case M = V

2 41.911 42.031 41.953 41.884 42.054 42.086 41.958 42.063 41.982 42.000

10 14.604 14.938 14.693 14.762 14.750 14.820 14.307 14.551 14.691 14.739

20 7.959 8.168 8.567 8.631 8.827 7.612 7.560 8.241 8.230 8.441

40 4.426 4.546 4.277 4.397 4.427 3.710 4.010 4.275 4.215 4.354

80 3.010 1.448 1.855 2.079 2.089 2.173 2.287 2.613 2.524 2.474

XVA, case M = V̂

2 42.560 42.404 42.372 42.563 42.463 42.594 42.377 42.477 42.377 42.549

10 14.894 15.040 14.789 14.849 14.897 14.941 14.369 14.694 14.775 14.854

20 8.022 8.233 8.631 8.653 8.937 7.587 7.726 8.355 8.383 8.592

40 4.446 4.589 4.282 4.414 4.559 3.681 4.081 4.265 4.249 4.412

80 3.179 2.493 1.899 2.104 2.132 2.146 2.301 2.682 2.611 2.593

Table 6: Numerical results for a Swaption with floor on two portfolios. All the results must be multiplied

by 10−2.

sufficient to achieve very accurate results. For the considered cases, the proposed methods demonstrate to

be effective for large dimensions, thus providing new methods for estimating XVA by overcoming the curse

of dimensionality.
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A Proof of Proposition 2.1

Equation (2.7) is a non-linear equation, so, first, we discuss existence and uniqueness of the solution. Let us

assume that we have fixed the value of tn and x, so we can consider them as model parameters. We define

the function f : R → R as

ftn,x (z) = max

{

E (x) +
∆t

2

(

z+cp + z−cm
)

, H (x)

}

,

so that equation (2.7) can be rewritten as

Ṽ (tn,,x) = ftn,x

(

Ṽ (tn,,x)
)

.

So, in to Ṽ (tn,,x) one has to solve the equation z−ftn,x (z) = 0, that is computing the zeros of the function

Ftn,x (z) = x − ftn,x (z). We observe that Ftn,x is a continuous function and it is piecewise derivable. In

particular, if

z 6= 0, z 6= 2
H (x)− E (x)

cp∆t
, and z 6= 2

H (x)− E (x)

cm∆t
,

then the derivative of Ftn,x is given by

d

dz
(Ftn,x (z)) =















1− ∆t
2 cp if z ≥ 0 and E (x) + ∆t

2 cpz > H (x) ,

1− ∆t
2 cm if z < 0 and E (x) + ∆t

2 cmz > H (x) ,

1 if E (x) + ∆t
2 (z+cp + z−cm) < H (x) ,

that is

d

dz
(Ftn,x (z)) =















1− ∆t
2 cp if z > 0 and z > 2H(x)−E(x)

∆tcp
,

1− ∆t
2 cm if z < 0 and z > 2H(x)−E(x)

∆tcm
,

1 otherwise.

Therefore Ftn,x is a continuous piecewise linear function. Moreover, if we assume 1−∆t
2 cp > 0 and 1−∆t

2 cm >

0 (which is true for ∆t small enough) Ftn,x is strictly increasing, so it can not have more than one zero.

Furthermore, we observe

lim
z→−∞

Ftn,x (z) = −∞, lim
z→+∞

Ftn,x (z) = +∞,
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so there is one and only one solution to Ftn,x (z) = 0.

Now, we have proved that there is one and only one solution, let us compute it. We rewrite equation

(2.7) as

Ṽ (tn,,x) = max

{

E (x) +
∆t

2

(

Ṽ (tn,,x)
+ cp + Ṽ (tn,,x)

− cm

)

, H (x)

}

.

We distinguish 5 cases.

Case 1a: Ṽ (tn,,x) = H (x) ≤ 0. In this case, we have

max

{

E (x) +
∆t

2
Ṽ (tn,,x) , H (x)

}

= H (x) ,

so

E (x) +
∆t

2
H (x) cm = E (x) +

∆t

2
Ṽ (tn,,x) cm ≤ H (x) ,

thus

E (x) ≤ H (x)

(

1− ∆t

2
cm

)

≤ 0.

Case 1b: H (x) < Ṽ (tn,,x) ≤ 0. In this case, we have

max

{

E (x) +
∆t

2
Ṽ (tn,,x) cm, H (x)

}

= E (x) +
∆t

2
Ṽ (tn,,x) cm = Ṽ (tn,,x) ,

so

Ṽ (tn,,x) =
E (x)

1− ∆t
2 cm

,

which implies E ≤ 0 and

H (x)

(

1− ∆t

2
cm

)

< Ṽ (tn,,x)

(

1− ∆t

2
cm

)

= E (x) ≤ 0.

Case 1c: H (x) < 0 < Ṽ (tn,,x). In this case, we have

max

{

E (x) +
∆t

2
Ṽ (tn,,x) cp, H (x)

}

= E (x) +
∆t

2
Ṽ (tn,,x) cp = Ṽ (tn,,x) ,

so

Ṽ (tn,,x) =
E (x)

1− ∆t
2 cp

,

and, since E (x) ≥ 0,we also have

H (x)

(

1− ∆t

2
cm

)

< 0 < E (x) .

Case 2a: 0 < Ṽ (tn,,x) = H (x). In this case, we have

max

{

E (x) +
∆t

2
Ṽ (tn,,x) cp, H (x)

}

= H (x) ,

so

E (x) +
∆t

2
H (x) cp = E (x) +

∆t

2
Ṽ (tn,,x) cp ≤ H (x) ,

thus

E (x) ≤ H (x)

(

1− ∆t

2
cp

)

.
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Case 2b: 0 ≤ H (x) < V̂ (tn,, S). In this case, we have

max

{

E (x) +
∆t

2
Ṽ (tn,,x) cp, H (x)

}

= E (x) +
∆t

2
Ṽ (tn,,x) cp = Ṽ (tn,,x) ,

so

Ṽ (tn,,x) =
E (x)

1− ∆t
2 cp

,

thus

E (x) > H (x)

(

1− ∆t

2
cp

)

.

So, cases 1a, 1b, 1c, 2a, 2b, which define a partition of the possible, induce 5 possible relations between

E (x) and H (x) which are incompatible and exhaustive. Let us summarize these relations:

1. If H (x) ≤ 0 and E (x) ≤ H (x)
(

1− ∆t
2 cm

)

≤ 0 then case 1a holds and Ṽ (tn,,x) = H (x);

2. If H (x) ≤ 0 and H (x)
(

1− ∆t
2 cm

)

< E (x) ≤ 0 then case 1b holds and Ṽ (tn,,x) =
E(x)

1−∆t
2
cm

;

3. If H (x) ≤ 0 and 0 < E (x) then case 1c holds and Ṽ (tn,,x) =
E(x)

1−∆t
2
cp

;

4. If H (x) > 0 and E (x) ≤ H (x)
(

1− ∆t
2 cp

)

then case 2a holds and Ṽ (tn,,x) = H (x);

5. If H (x) > 0 and E (x) > H (x)
(

1− ∆t
2 cp

)

then case 2b holds and Ṽ (tn,,x) =
E(x)

1−∆t
2

cp
.

These 5 cases solve the fixed point problem (2.5).
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