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Self adaptation of networks of non-identical pulse-coupled excitatory and inhibitory
oscillators in the presence of distance-related delays to achieve frequency

synchronisation

L. Gil
Université Côte d’Azur, Institut de Physique de Nice (INPHYNI), France

(Dated: November 30, 2023)

We show that a network of non-identical nodes, with excitable dynamics, pulse-coupled, with
coupling delays depending on the Euclidean distance between nodes, is able to adapt the topology of
its connections to obtain spike frequency synchronization. The adapted network exhibits remarkable
properties: sparse, anti-cluster, necessary presence of a minimum of inhibitory nodes, predominance
of connections from inhibitory nodes over those from excitatory nodes and finally spontaneous spatial
structuring of the inhibitory projections: the furthest the most intense. In a second step, we discuss
the possible implications of our findings to neural systems.

PACS numbers: 89.75.-k Complex systems - 89.75.Fb Structures and organization of complex systems -
05.45.Xt Synchronization; coupled oscillators - 05.65.+b Self-organized systems

I. INTRODUCTION

The properties and dynamics of a set of interacting
elementary constituents is a very old subject of study
in Physics. The elementary constituents are often iden-
tical, the connections at short distance, the geometry
of low dimensionality and often homogeneous in such a
way that the complete problem presents many symme-
tries and conserved quantities which greatly facilitate its
study. None of this persists when one is interested in
sets of biological cells, scientific collaborators, comput-
ing grids, water, electricity, travelers distribution net-
works, Internet or the spread of epidemics or opinions
[1–3]. These networks are indeed made up of very inho-
mogeneous elements, with wide distribution of degrees of
connectivity, often without any characteristic length of
interaction. In addition to their ubiquity, these networks
are also adaptative, characterized by their own dynamics
of the weights of inter-node connections.

Influenced by Kuramoto’s pioneering work in 1974,
much of the literature has focused on the paradigmatic
problem of synchronizing a network of coupled non-
identical oscillators. The existence of phase transition
[4–6], of organization in modular structures, of clusters
and chimera states has then been reported [7, 8]. In par-
ticular, it has been shown that networks were able to
self-organize to obtain global synchronization at a lower
cost than that obtained by all-to-all homogeneously con-
nected networks. Self-organization thus makes it possible
to extract a better collective advantage from the speci-
ficities of each individuality [9–14].

However, the vast majority of this work concerns net-
works of phase oscillators (as opposed to excitable os-
cillators) coupled by a smooth, regular function of the
phase difference (as opposed to pulse-coupled), and this
despite the possible great importance of the latter type
of network for understanding neural systems. This is be-
cause phase synchronization of excitable pulse-coupled
oscillators in the presence of delays proportional to their

distance is a geometric frustration problem not admit-
ting a solution in general. The basic idea is as follows:
for nodes A and B to train each other to spike in phase,
the delay τAB between them must be an exact multiple
of their interspike interval (ISI). Similarly, for B and C
to spike in phase, τBC must be a multiple of ISI. But,
unless you consider a very particular geometry (such as
the one used in Ref. [15–18] where nodes are arranged
on a circle and distances are measured along this circle),
τAC is in general not a whole number of times ISI and
therefore the spike of A participates in desynchronizing
C. Along this argument, the pulse aspect of the cou-
pling, i.e. the existence of an interaction only during a
very short time interval compared to ISI, is fundamen-
tal. Indeed, the further the coupling is from a Dirac dis-
tribution, the less the proportionality relation between
delay and ISI is constraining (see VI C).

Since phase synchronization is highly unlikely, what
other forms of self-organization can be expected? De-
tailed numerical simulation of neural network models re-
port the existence of frequency synchronization regimes:
ref.[19] simulates the activity of 105 neurons and 8.5
106 synaptic contacts randomly distributed on the sur-
face of a sphere of radius 8 mm with sub-millisecond
time resolution. The neurons interact via both local
and long-distance connections. The ratio of excitatory
to inhibitory neurons is 4/1. Neurons, both excita-
tory and inhibitory, are not identical and the parameters
that describe their dynamics in the absence of coupling
are randomly distributed around a mean value. Short-
term depression and facilitation are taken into account
through the Markram’s [20] phenomenological descrip-
tion of short-term synaptic plasticity. Long-term synap-
tic plasticity is taken into account through spike-timing
dependent plasticity [21]. The main result of this numer-
ical experiment is the observation of spontaneous self-
organization of neurons into groups and repeatedly gen-
erated patterns of activity with millisecond precision of
spike timing ( in agreement with experimental observa-
tions [22]).
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Networks of excitable pulse-coupled oscillators with de-
lays proportional to distance can therefore be frequency
synchronized. The tricky part is that these frequency-
synchronized structures were obtained when we weren’t
really looking for them, since only biological mechanisms
known to play a role in learning were involved in the net-
work’s adaptation dynamics. As a result, the network
frequency synchronization could appear as a secondary
effect of learning, possibly even fortuitous, but not as the
main objective of the network dynamics. Experimental
observations do not resolve the ambiguity, as they fo-
cus mainly on proving the role of connections in network
synchronization [23, 24], with little evidence of the rela-
tionship between synchronization and learning.

Here we are not going to remove this ambiguity ei-
ther, but simply bring a new element of reflection by
approaching the problem from the opposite side: instead
of starting from biological learning mechanisms and ob-
serving that they lead to a certain structural organiza-
tion of networks and to synchronization, we’re going to
impose frequency synchronization (i.e. frequency syn-
chronization is the stated goal and we treat it as an op-
timization problem) and report on the way the network
self-organizes to achieve this. Our faraway hope is that
subsequent comparisons between the theoretical organi-
zations (for the purpose of learning and for the purpose of
synchronization) and the effective organization of certain
neural systems may help to resolve the ambiguity.

To our purpose, we use a greedy algorithm where each
node modifies the weight of its incoming connections to
best adjust its ISI to an external and common setpoint
ISIsp. Our mains results are:

1. the frequency synchronization requires the manda-
tory presence of a minimum percentage of in-
hibitory nodes among excitatory ones.

2. the nodes that spike at the same time and consti-
tute repeatedly generated patterns of activity ac-
tually form anti-clusters. This means that almost
all of the connection weights are associated with
inter-pattern links, while the mass of intra-pattern
connections is almost vanishing.

3. During the adaptation process, the statistics of
the connection weights converge to a lognormal
distribution. The weight of outgoing connections
from inhibitory nodes is significantly larger than
would be expected if the weights were randomly
distributed among the nodes. Those from the in-
hibitory nodes are on the contrary significantly less
numerous. Moreover, we observe the spontaneous
occurrence of a spatial structuring where the weight
of the outgoing connections is greater and deviates
all the more from the random distribution as the
distance between the nodes is greater.

The study plan is as follows: First, the excitable dy-
namics model used will be described and the synchro-

nisation algorithm and its consequences on the network
dynamics will be presented. The convergence of the algo-
rithm will then be checked numerically. In a second step
we present our results: i) necessity of a minimum percent-
age of inhibitors, ii) occurrence of death amplitude in the
presence of a high percentage of inhibitors, iii) the for-
mation of anticlusters and iv) spatial distribution of the
weights of the connections as a function of the distances
and the excitatory-inhibitory nature of the connections.
Finally, as the ingredients of our model have been chosen
sparingly (excitability, distance-dependent delays, pulse-
coupled, weighted summation of neighbor influence, ex-
citatory or inhibitory projection, and the quest for fre-
quency synchronization), the possible implications of our
general results to genuine neural networks will be consid-
ered. In particular, we will discuss how our results are
articulated with the Izhikevich’s Polychronization con-
jecture [25].

II. THE MODEL

A. neuronal dynamics

To model a network of N pulse-coupled excitable os-
cillators, we use a point process framework [26]. The
benefits of such a choice are multiple:

1. the intrinsically probabilistic nature of the dynam-
ics. We obtain a Poisson’s distribution of inter-
spikes interval for an isolated neuron without any
effort.

2. the perfect control of the dynamics of a neuron.
The temporal evolution of an isolated neuron re-
quires the integration of neither a dynamic system
nor the computation of a nonlinear mapping but
just corresponds to a shift in the state space.

3. and above all a remarkable efficiency and speed of
execution. The algorithm does not converge all the
time, and even when it does, it can take several
tens of millions of integration steps, hence the need
to go fast.

The drawbacks are the consequence of the advantages:
the dynamics of an isolated neuron is highly schematized,
especially compared to the diversity of possible behaviors
and to the precise modeling that could be done [27].

The state of neuron i at time t (t ∈ N) is de-
scribed by the variable Si(t) which takes discrete values
in [−T ri , T s]. T s and T ri are integer values representing
respectively the spike and the refractory durations. The
neurons are not identical because they can differ by the
duration of their refractory period T ri . The dynamics of
Si is composed by an alternation of a deterministic and
a stochastic part. The deterministic part starts at time
t∗ whenever Si(t

∗) = T s and continues with
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t∗ + ... 0 1 ... T s − 1 T s T s + 1 ... T s + T ri − 1 T s + T ri
S T s T s − 1 ... 1 −1 −2 ... −T ri 0

Note that during this deterministic sequence, Si jumps
from +1 to −1 without passing through 0. This is be-
cause we reserve Si = 0 to describe the rest state, the one
reached after the refractory period. The stochastic part
starts at time trest whenever Si(t

rest) = 0 and is involved
in the determination of the next state Si(t

rest + 1)

Si(t
rest) = 0 =⇒ Si(t

rest+1) =

{
T s with prob pi(t

rest)

0 ” 1− pi(trest)
(1)

with

pi(t) = R
[
p0 + a

N∑
j=1

DjWijH(Sj(t− τij))
]

(2)

where

R(x) =


0 if x ≤ 0

x if 0 ≤ x ≤ 1

1 if x ≥ 1

H(n) =

{
1 if n > 0

0 otherwise

(3)
p0 ∈ [0, 1] and a ≥ 0 are constant parameters, Dj = ±1
depending on whether j is excitatory or inhibitory, Wij ≥
0 is the strength of the connection from j to i and τij is
their propagation delay proportional to their Euclidean
distance. The role of the function R is to guarantee that
pi is a probability, that is a positive number in [0, 1].
The pulse-coupled character of the dynamics is modeled
by the function H which takes non-zero values only when
the neighbors spike at the right time.

When the neuron chains spikes without discontinuity,
its dynamics is periodic and the inter-spike interval (ISI)
reaches its minimum value ∆ = T s + T ri + 1. In our
simulations, we use p0 = 0.001 such that the average
ISI in absence of coupling (a = 0) is about 103 time
steps.

B. network geometry

In line with our objectives, the network is free to adapt
as it wishes since it is all to all connected and that the
weights of the connections Wij can evolve without con-
straints between [0,+∞]. On the other hand, the spatial
positions of the nodes and consequently the propagation
delays are determined once and for all at the beginning
of the optimization process. In what follows, we discuss
this initial distribution of positions that we want to be
both random but with a well-defined smaller distance
between neighbors [28]. Note that the distances between
nodes correspond to the usual Euclidean distances in 3-
dimensional space (see VI B).

We proceed as follows: In a first step, N neurons are
randomly distributed on the surface of a sphere of radius

R = 1. The interneuron distances vary between 0 and
2R = 2.0 and their initial distribution is shown in section
VI B Fig.13.

In a second step the spatial distribution of the nodes
onto the surface is regularized in order to homogenize
their surface density. This adjustment is achieved by
subjecting the node i to repulsive

∑
j 1/rij interactions.

The repulsive forces are applied until the quality factor of
the min

j
(rij) distribution is equal to 30 [28]. In the end,

the nodes form an almost hexagonal network (with mesh
dhex '< min

j
(rij) >), with many penta-hepta topological

defects (VI B Fig.14).
As the simulation is time discretized, all the delays τij

are expressed as integer unit of cdt the distance traveled
by the information during a unit of time:

τij =
[ rij
cdt

]
(4)

where [ ] stands for the integer value. An important pa-
rameter is then the number of time steps necessary to
transmit the information from one node to its nearest
neighbor. This number is equal to τmin = dhex/cdt.
The maximum distance being 2R = 2, the state of all
the neurons must be stored in memory over a duration
of 2τmin/dhex time steps. Therefore, for an economi-
cal management of the memory it is better to use a
small value of τmin (in most of our simulations we used
τmin = 3, see VI C for how to select parameters).

III. ALGORITHM

There are no strict and rigorous rules leading to the
choice of the algorithm used. Rather, it is the result of
a set of general considerations, analogies and heuristic
arguments that we present below. Ultimately, the main
rationale is that it effectively leads to synchronized solu-
tions.

1. We have deliberately chosen not to use a central
control capable of accepting or rejecting a solution
based on a global computation. The reason is that
this kind of approach quickly becomes impractical
with increasing N . On the contrary, we opted for
a local, scalable and parallelizable approach.

2. Following H.A. Simons’ ideas in his famous paper
”Architecture of the complexity” [29], the nodes of
the network were imposed to be unable to perform
complicated mathematical computations (such as,
for example, gradient computations or predictions).
We just expect each oscillator to be able to estimate
its ISI and to compare it with the setpoint ISIsp.
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3. We assume that the incoming weight adjustment is
not done systematically at each time step but only
when the node has just spiked.

4. A node that has just tested a new local weight con-
figuration but which ultimately does not adopt it,
cannot force the rest of the network to return to
its initial state configuration. This would require
too much effort in terms of storage and transport
of information. The node that did the test must
continue on its way. Optimization must be done
on the fly.

5. The modification of the incoming connections of
node A has a direct effect on its spike frequency.
On the contrary, the effect of modifying its outgo-
ing connections is obviously more indirect: when
node A acts on the incoming connections of its
neighbours, then their spike frequencies are mod-
ified and may act in return on the spike frequency
of A. Both approaches are possible but we will limit
ourselves in the algorithm to the most efficient one,
i.e. the modification of incoming connections only

6. We have chosen not to impose any a priori struc-
ture on the connection network. Each node is con-
nected with all the others but the weights of the
connections evolves without constraint, can vanish
or, on the contrary, grow indefinitely. This is a
very expensive choice in terms of computating time
but which is absolutely necessary to let the network
freely choose its own topology.

If, at time t, node i does not spike, then its incoming
connections do not change. Now if it spikes at time t,
then this node starts its remodelling activity by estimat-
ing the elapsed time interval ISI between its last two
spikes. Let j be another node of the network (j 6= i) con-
nected to i through Wij . If the last spike of j took place
at a time different from t− τij , then i does not perceive
any synaptic potential from j. It is then useless for itself
to maintain the incoming connection Wij and

Wij(t+ 1) = Wij(t) (1− b) (5)

where b is a small positif real. On the contrary, if j
spiked at t − τij then its weight contribution is changed
accordingly to

Wij(t+1) = max
(

0,Wij(t)+αξDj (ISI − ISIsp)
)

(6)

where ξ ∈ [0, 1] is a random uniformly distributed vari-
able and α ≥ 0 stands for the modification amplitude. In-
terpretation of Eq.(6) is straightforward: if i detects that
its ISI is higher than the setpoint (i.e. (ISI − ISIsp) >
0), the incoming connections associated with inhibitory
nodes (Dj = −1) will be decreased while those associ-
ated with excitatory nodes (Dj = +1) will be increased.
As a result, Wij and the probability for i to spike are
increased. Conversely, when ISI < ISIsp, the same

FIG. 1. Imposed time evolution of α (left axis, in black)

and Gs =
∑N
i=1(ISIi − ISIsp)2 (right axis, in red) along the

optimization process. The network consists in 300 nodes: for
Tr = 38 there are 88 excitatory and 16 inhibitory nodes, for
Tr = 39, 96 and 10 and for Tr = 40, 71 and 19. Ts = 3 and
a = 4. The ISI setpoint is set at 45.

dynamics Eq.(6) leads to a decrease in the spike prob-
ability. Note that more sophisticated expressions can be
considered for the weight change, but Eq.6 can be un-
derstood as the unique linearization in the neighborhood
of ISI ' ISIsp of any mechanim imposing frequency
synchronisation.

It is important to realize that the algorithm is of the
greedy type. Although the evolution of Wij (Eq.6) im-
poses without any doubt that the ISI of node i will get
closer to the setpoint, the simultaneous global conver-
gence of all the nodes is absolutely not guaranteed: the
convergence of a node can be done at the expense of an-
other one.

Fig.1 represents a typical time evolution of the global

deviation Gs =
∑N
i=1(ISIi−ISIsp)2 along the optimiza-

tion process. While α is gradually increased by steps of
0.1, we observe a decrease of Gs to zero indicating that
the system does evolve globally towards a frequency syn-
chronization. However, this convergence is far from being
uniform and takes rather the aspect of an avalanche dy-
namic where the local optimization of a node can provoke
a cascade of events at the network level. Finaly, when the
global synchronization is reached, the network dynamics
stops and the network does not evolve anymore.

Randomness is present in the dynamics through pi(t)
(Eq.1) and ξ (Eq.6) and the initial geometrical distri-
bution of the nodes. To investigate these effects, we
perform two types of numerical experiments. All the
simulations have in common the same parameter val-
ues (a, cdt, Ts and ISI setpoint), the same initial Wij

values and they share the same distribution of refrac-
tory periods and [number of excitatory nodes, number
of inhibitory nodes]: for Tr = 38, [80, 20], for Tr = 39,
[79, 21] and for Tr = 40 [81, 19] (we introduce the nota-
tion [[38, [80, 20]], [39, [79, 21]], [40, [81, 19]]] to designate
such a configuration). On the other hand, the two groups
differ by their initial distribution of the position of the
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FIG. 2. Raster plot of the network activity. The configuration
is [[38, [136, 53], [39, [157, 53]], [40, [170, 31]]] and involved 600
nodes. Ts = 3, p0 = 0.001, b = 0.01, a = 4 and ISIsp = 46.
The figure corresponds to the spatiotemporal dynamics after
convergence of the optimization process.

nodes. The simulations of the first group (20 simula-
tions) use a strictly identical geometrical distribution
such that the origin of randomness is limited to pi(t)
and ξ. We observe that the convergence toward a fre-
quency synchronisation regime is achieved for α > αc
where αc varies from one experiment to another with
αc ∈ [0.8, 1.2]. Averaging over the 20 experiments, we
found < αc >= 1.0 ± 0.1. Each of the simulations of
the second group (10 simulations) uses its own, ran-
domly generated, geometrical configuration. We found
αc ∈ [0.90, 1.60] with < αc >= 1.1 ± 0.2. Thus, we can
see that i) the two types of measures are consistent with
each other, ii) and that the random distribution of node
positions is an important source of fluctuations. There-
fore, in what follows, each optimization process will be
associated with a random draw of the position of the
nodes.

IV. RESULTS

A. Spatio-temporal dynamics at convergence

At convergence, the spatio-temporal dynamics is char-
acterized by the periodic succession of node patterns D =
P1, P2...PISIsp where ISIsp is the imposed inter-spike in-
terval setpoint (Fig.2). A pattern is constituted by the
set of all nodes that spike at the same time. As the
number of nodes varies from one pattern to another, the
global firing rate oscillates periodically in time with the
period ISIsp (Fig.3). The patterns in the sequence D are
2 by 2 disjoint and their gathering constitutes the total
set of nodes of the network. Therefore they form a parti-
tion of the set of nodes. Fig.4 and Fig.5 show typical tem-
poral evolutions of the dynamics in the space of the pat-
terns. On the vertical axis, the zero corresponds to any
pattern that is not in the list D =P1, P2...PISIsp . Fig.4
is the regular and periodic dynamics obtained after con-

FIG. 3. Time evolution of the global firing rate associated
with the raster plot in Fig.2.

FIG. 4. Time evolution of the spatio-temporal dynamics in
the space of the patterns. On the vertical axis, the numbers
1 to 46 stand for the patterns P1, P2...PISIsp observed at the
convergence of the optimization process in Fig.2 and Fig.3.

vergence of the optimization process. Fig.5 is obtained
by freezing the dynamics of the network corresponding to
Fig.4 (i.e. Wij are constant) and by increasing the back-
ground noise (po = 0.04). The global dynamics is found
to be intermittent with phases of locking on the periodic
solution at convergence, interspersed by episodes of more
or less long stall with a complex dynamics.

B. Mandatory presence of inhibitory nodes and
amplitude death

Numerous studies [23, 24, 30] have highlighted the fun-
damental role of inhibitory connections in the organiza-
tion of neuronal systems either for the control of the exci-
tatory network or for the fine tuning of the spike timings.
This mechanism is so general that, accordingly to [23],
”Synaptic inhibition itself can be synchronized by way of
interactions within networks of inhibitory and excitatory
neurons ”. It is therefore expected that our model also
proves that frequency synchronization is only possible in
the presence of a minimum number of inhibitory nodes.

Each node being associated with a specific refractory
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FIG. 5. Same as Fig.4 but now p0 = 0.04 such that the
dynamics is strongly disrupted. As before, the numbers 1
to 46 on the vertical axis stand for the patterns D = P1,
P2...PISIsp but now 0 is associated with any patterns that
is not in the list D. Pay attention to the difference in the
horizontal scales: the one in Fig.4 spans only a few ISIsp
while here it corresponds to more than 200.

period Tr, we should normally characterize a given net-
work by its statistical distribution of Tr. Nevertheless,
for the sake of simplicity, we have concretely limited our-
selves to 3 distinct values (typically Tr ∈ [38, 40]). Tests
with up to 5 values have been performed to check that
this limitation was not relevant. The spike duration Ts
being the same for all nodes, the setpoint for the inter-
val between 2 spikes ISIsp cannot be less than ∆min =
Trmin + Ts + 1 because our model (Eq.1) does not con-
tain any mechanism capable of reducing the refractory
period. On the other hand, it seems possible to impose
an ISIsp greater than ∆max = Trmax+Ts+1 because one
expects the inhibitory neurons to cooperate to prohibit
the spike over a duration longer than Trmax . Typically
we impose either ISIsp = ∆max+1 or ISIsp = ∆max+2.
Control simulations with ISIsp = ∆max + 5 have been
successfully performed. However, for even larger values,
numerical convergence problems have been encountered.

We have conducted no less than 300 numerical exper-
iments (Fig.6). For each simulation, the initial position
of the nodes is randomly generated. Then for each node,
its value of Tr is chosen randomly and uniformly between
the 3 values 38, 39, and 40. Finally the excitatory or in-
hibitory action of the node is randomly drawn: with a
probability fg the node is inhibitory, with a proba 1− fg
it is excitatory. fg changes with the experiments inside
[0.05, 0.95]. For each simulation, α is increased in steps
of 0.1 until a critical value αc is reached for which a fre-
quency synchronization regime is established. Value of α
higher than 6.0 have not been investigated. Red points in
Fig.6 represents the set of (fg, αc) points. When several
αc are associated to the same value of fg, it is the highest
value of αc that counts, the one that ensures the conver-
gence towards the frequency synchronization whatever
the initial geometry of the nodes and the optimization
path taken. For fg ' 0, the plot suggests a divergence of

FIG. 6. The network consists of 300 nodes whose initial posi-
tions are randomly chosen on a sphere. The refractory period
of each node is randomly chosen among the 3 values 38, 39
and 40 and its inhibitory/excitatory character is determined
by drawing with a probability fg (fraction of inhibitors). The
ISI setpoint is 45. The red points (left axis, solid discs) stand
for (fg, αc). The black ones (hollow diamonds) correspond to
(fg, ndeath), where ndeath is the number of nodes that have
ceased to spike under the pressure of the inhibitory nodes
along the optimisation process

.

αc associated with the impossibility of a global frequency
synchronization in the absence of inhibitory nodes. For
fg ' 1, we observe the spontaneous death of a certain
number ndeath of nodes during the optimization process.
At a given moment, under the action of their inhibitory
connections, these nodes were unable to spike. And since
a node that does not spike cannot change its incoming
connections, the situation persists as long as the neigh-
borhood action goes on.

C. Anti-clusters structuring

For two nodes A and B to train each other to spike
in phase, the delay τAB between them must be an exact
multiple of the setpoint ISIsp. Consequently, we expect
and observe two very distinct operating regimes depend-
ing on whether the maximum delay between 2 nodes of
the network (2/cdt) is less or greater than ISIsp.

We introduce

R({W}) =

∑
Pµ∈D

∑
i∈Pµ,j∈Pµ

Wij∑
Pµ∈D

∑
Pµ′ 6=µ∈D

∑
i∈Pµ,j∈Pµ′

Wij

(7)

which, for a given configuration {W}, stands for the ra-
tio between the total weight of the internal connections
to each pattern Pµ and the total weight of the connec-
tions between two distinct patterns Pµ and Pµ′ 6=µ. We
compute R({Wcvg}) where {Wcvg} is the configuration
network at the convergence of the optimization process.
We compare the previous result with the distribution of
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FIG. 7. Histogram of R({Wrand}) defined in Eq.7. We made
10000 random draws and the histogram has 100 bins.The net-
work consists of 300 nodes whose initial positions are ran-
domly chosen on a sphere. The refractory period of each node
is randomly chosen among the 3 values 38, 39 and 40 and the
fraction of inhibitors fg = 0.15. The ISI setpoint is 45 while
the delay between two diametrically opposed nodes is 2/cdt =
33 < ISIsp. We find < R({Wrand}) >= 0.022 ± 0.0025
which implies that R({Wcvg}) at convergence deviates from
the mean value by more than 9.4 standard deviation.

.

R({Wrand}) where {Wrand} are derived from {Wcvg} by
randomly redistributing its weights among the nodes of
the network.

We first consider the situation where 2/cdt < ISIsp
that corresponds to a ”small” network where all nodes
are within one inter-spike interval of each other. This
regime correspond to the vast majority of our investiga-
tions because it is the most interesting and surprising sit-
uation. Fig.7 is a histogram of the values of R({Wrand})
obtained after 10000 draws of the random configuration
{Wrand}. While < R({Wrand}) >' 0.022 with a stan-
dard deviation of 0.0025, the measured value at conver-
gence is R({Wcvg}) = 1.9 10−7, significantly smaller. It
thus deviates from the random distribution by more than
9 standard deviations, which rules out any coincidence:
therefore the patterns Pµ ∈ D are characterized by a very
strong anti-cluster structuring.

In the case of a network with 2/cdt = 100 > ISIsp,
the situation is completely changed. In such a ”large”
network, each node can be linked to several distinct
nodes shifted by exactly one ISIsp. Then R({Wcvg})
is no longer almost zero, but on the contrary is mea-
sured to be almost one standard deviation higher than
< R({Wrand}) > (not shown). The anti-cluster structure
is in competition with the connections between nodes be-
longing to the same pattern and is clearly less predomi-
nant. Fig.8 shows the connection weights repartition Wij

versus the delay τij when both i and j belongs to the same
given pattern Pµ (randomly chosen in the D sequence).
We clearly observe that only internal connections with a
delay equal to ISIsp ot 2 ISIsp are not vanishing.

FIG. 8. The plot shows the set of points (τij ,Wij) where i
and j belong to the same pattern Pµ ∈ D. The networks has
600 nodes, Ts = 3, a = 4 and p0 = 0.001. Their refractory
periods are not identical and vary between 38 and 40. The
ISI setpoint is fixed at 46 and 2/cdt = 100. The fraction of
inhibitory nodes is 20%. The first maximum is located at 46
(= ISIsp) and the second at 92.

D. Network sparseness

The Gini coefficient is a real number, between 0 and 1,
that measures the rate of inequality of the distribution
of a variable. It was originally developed in economics
to measure the income inequality of a country’s popula-
tion. Applied to the case of connection weights, a null
value of this coefficient would correspond to the homoge-
neous distribution of the mass, i.e. to the case where all
Wij are equal. On the contrary, a coefficient equal to 1
would mean that all the weights are zero, except for one
and only one. For values of fg ' 0.2 and the number N
between 100 to 600 of nodes, we find a staggering value
of 0.95 indicating that the optimized networks are par-
ticularly sparse with a very large majority of connections
reduced to zero coexisting with a very few number of very
massive connections. Fig.9 shows a typical histogram of
the connexion weights Wij in log-log scales.

E. Predominance of projections from inhibitory
nodes

Here we focus on the global masses of the network con-
nections according to the excitatory or inhibitory nature
of the nodes of departure and arrival. We introduce

P+±({W}) =
∑

{i ∈ [1, N ]|Di = +1}
{j ∈ [1, N ]|Dj = ±1}

Wij (8)

where P++({W}) (resp. P+−({W})) stands for the total
mass of the excitatory ← excitatory connections (resp.
excitatory ← inhibitory) for the network configuration
{W}. We define in the same way the other masses P−+
and P−− and we introduce the xy notation to designate
any of the sign pairs ++, +−, −+ and −−.
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FIG. 9. Histogram with 200 bins of the weights of the con-
nections Wij in log-log scales. We integrated the results ob-
tained for 5 distinct networks with fg = 0.2 at convergence
of the optimization process. The turquoise cercles correspond
to networks with 300 nodes while the red diamonds are as-
sociated with network with 600 nodes. Continuous lines are
quadratic fits compatible with lognormal distributions.

.

xy Pxy({Wcvg}) < Pxy({Wrand}) > standard deviation σ
Pxy({Wcvg})−<Pxy({Wrand})>

σ

++ 557485 623876 3690 -18.0

−+ 141147 159531 2792 -6.6

+− 224183 159530 2782 23.2

−− 60525 40403 1516 13.3

TABLE I. Same configuration as in Fig.2. Pxy are defined in
Eq.8. The rightmost column shows the difference between the
measurements at convergence and the mean value in units of
standard deviation. Undoubtedly, a large part of the mass has
been allocated to the outgoing connections from the inhibitory
nodes at the expense of the outgoing connections from the
excitatory ones.

The numerical values of the above quantities at the
convergence of the optimization process do not have any
meaning in themselves. Neither do their ratios since
they depend on fg. So we will proceed as for the
demonstration of the anti-cluster structure in paragraph
IV C, by comparing Pxy ({Wcvg}) with the distribution of
Pxy({Wrand}) where {Wrand} are derived from {Wcvg}
by randomly redistributing its weights among the nodes
of the network. The results are displayed in Tab.I. Since
they differ from the mean values by several standard devi-
ations, they are highly significant from a statistical point
of view. They clearly shows a very net deficit in the mass
of the connections from excitatory nodes, to the benefit
of a substantial excess in the mass of the connections
from inhibitory nodes.

F. Spatial distribution of the connexion weights

The question that interests us here is to know if there is
a relationship between the propagation delay τij between
any 2 nodes i and j of the network and the weights Wij

(possibly Wji) of their connections. For that purpose, we

introduce the following definitions:

M+±({W} , τ) =
∑

{i ∈ [1, N ] |Di = +1}
{j ∈ [1, N ] |Dj = ±1}

Wijδ(τ − τij) (9)

where δ(n) = 1 if n = 0 and cancels out for any other
integer value. For the configuration {W}, M++({W} , τ)
(resp. M+−({W} , τ)) is the sum of the masses of all the
connections from an excitatory node to an excitatory one
(resp. inhibitory to excitatory) and separated by a prop-
agation delay τ . By analogy, we define in the same way
M−+ and M−−. We then proceed in the same way as for
proving the anti-cluster feature of the optimized network
or for proving the predominance of the inhibitory projec-
tions. We first compute Mxy({Wcvg} , τ) where {Wcvg}
is the configuration network at the convergence of the
optimization process and then we compare the result
with Mxy({Wrand} , τ) where {Wrand} are derived from
{Wcvg} by randomly redistributing its weights among the
nodes of the network. The results are displayed in the
figures Fig.10, Fig.11 and Fig.12. For Fig.10, Fig.11, the
3 columns correspond to the triple repetition of the nu-
merical experiment by changing only the initial position
of the nodes on the sphere. The red circles stand for
the case of the optimized network Mxy({Wcvg} , τ) while
the numerous blue lines (light, medium and dark) are
associated with 10000 random draw repetitions and the
respective position of the confidence intervals at ±1, ±2
and ±3 standard deviations. Some figures give the im-
pression that the optimized values are compatible with
a random configuration of the connection masses. Oth-
ers, on the contrary, seem to indicate that they clearly
deviate from it. To clarify the situation, we introduce

Q−+ =
M−+({Wcvg} , τ)− <M−+({Wrand} , τ)>√

<M−+({Wrand} , τ)2> − <M−+({Wrand} , τ)>2

(10)
that stands for the deviation from the mean value mea-
sured in units of standard deviation (also Q++, Q+− and
Q−−) and plot it versus τ (fig.12). The analysis of the
figures leads to the following remarks:

1. For a given value of the delay, the values of M++

or M−+ associated with outgoing connections from
excitatory nodes, do not deviate significantly (more
than 3 standard deviations) from the mean value of
the random distributions.

2. Nevertheless, if for a given delay, the values of M±+
were only due to chance, then from one delay to
another we should observe an alternation of values
larger and smaller than the average. The fact that
a large majority of the values are below the mean
value is statistically significant and is corroborated
by the global P±+ measurements.

3. For outgoing connections from inhibitory nodes,
we clearly observe that not only are M±− signif-
icantly above the random value, but also that this
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FIG. 10. The first row stands for the plot of M++({W} , τ)
versus τ while the second one with M−+({W} , τ) versus τ .
The columns correspond to the repetition of the measurement
for 3 networks with 600 nodes, Ts = 3, a = 4 and p0 =
0.001 but distinct random initial positions of the nodes. The
refractory periods are not identical and vary between 38 and
40. The ISI setpoint is fixed at 46. The fraction of inhibitory
nodes is 20%. Vertical axis are in arbitrary units, as the
absolute value is irrelevant. Red points correspond to the
converged optimized network while the numerous blue lines
are associated with the random distribution of the weights
among the network connections. The light, medium and dark
blue lines are respectively associated with mean value ±1 ,
±2 and ±3 standard deviations.

FIG. 11. Same regime of parameters as in Fig.10, but now
the first row deals with M+− versus τ while the second one
with M−− versus τ .

deviation increases with delay. The further the in-
hibitory connection projects, the higher its weight.

FIG. 12. Same regime of parameters as in the first column
of Fig.11 and Fig.12. Black straight lines are linear regres-
sion fits. Qxy as defined in Eq.10, measures the deviation of
Mxy({Wcvg} , τ) from the mean value <Mxy({Wrand} , τ)> in
units of standard deviation. Hence, on the Fig.10 a1 (resp.
b1), the fact that M++({Wcvg} , τ) (resp. M−+({Wcvg} , τ))
stays almost all the time in the blue crosses zone corresponds
on the present top left plot (resp. top right), to values of
|Q++| (resp. |Q−+|) mostly smaller than 3. The situation is
very different for Q−− and especially for Q+−, where not only
do the measurements deviate from the mean value by more
than 3 standard deviations, but where there is also a clear
upward trend materialized by the black solid line.

V. DISCUSSION

A. Reminder of our results

We have just shown that a network of non-identical
nodes, with excitable dynamics, pulse-coupled, with cou-
pling delays depending on the Euclidean distance be-
tween nodes, was able to adapt the topology of its con-
nections to obtain spike frequency synchronization. The
adapted network has the following remarkable properties:

1. The spatio-temporal dynamics is organized in a pe-
riodic succession of patterns. A pattern is consti-
tuted by the set of nodes that spiked at the same
time. The set of patterns forms a partition of the
network. There are very few connections between
nodes of the same pattern and the vast majority
of connections concern nodes belonging to distinct
patterns. This results in an anti-cluster structure.

2. The network is very sparse.

3. Inhibitory nodes play a fundamental role in fre-
quency synchronization. Not only because fre-
quency synchronization requires the presence of a
minimum number of inhibitory nodes, but also be-
cause the total mass of outgoing connections from
the inhibitory nodes is very significantly larger than
if the connections were established randomly.
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4. We observe the spontaneous occurrence of a spa-
tial organization of inhibitory nodes: The further
the inhibitory connection projects, the higher its
weight.

B. Comparison with neural networks

First, the need for a minimum percentage of inhibitory
nodes is a result in total agreement with experimental ob-
servations [23, 24]. Perhaps even more remarkable is that,
as in our study, inhibitory neurons are mostly identified
experimentally as playing a critical functional role not in
the process of information storage, but in the temporal
regulation of networks.

Second our observation of the organization of spatio-
temporal dynamics into a periodic succession of patterns
made up of nodes spiking together is strongly reminis-
cent of the spontaneous self-organization of neurons re-
ported in numerical simulation [19] or in experimental
observations [22], except that no mention is made of an
anti-cluster structure in these publications. On the other
hand, as the nodes of these structures spike at the same
time and are not spatially homogenously distant, there
is no reason for the brain to maintain such connections
that are in fact useless. This prediction could be tested
experimentally.

Unsurprisingly, the patterns differ in size and persis-
tence from [19, 22]. Indeed, whereas in our study nothing
is intended to limit the quest for synchronization, there
exist many biological mechanisms that could control the
synchronization effort. For example, one can increase
the duration of synaptic interaction to relax the geomet-
ric frustation character of the phase synchronization, in-
troduce mechanisms to adapt the spike frequency of an
isolated neuron, or simply modify the propagation times
of potentials by taking into account the myelic sheaths.

C. About the Polychronization conjecture

Noting that the propagation delay between any indi-
vidual pair of neurons is precise and reproducible with
a sub-millisecond precision [31, 32] and arguing that ob-
taining and maintaining such precision can only be un-
derstood if the spike-timing is of the highest importance
for the brain, Izhikevich introduces the term Polychro-
nization [25] to qualify such spiking activity and suggests

that the periodic succession of patterns could play a cru-
cial role in the information storage process. The idea
is that the same neuron could belong to several distinct
patterns, themselves belonging to different sequences of
patterns. Depending on initial conditions and external
stimuli, a specific sequence of patterns could then be se-
lected. As there are many more possible patterns and
sequences than neurons, the storage capacities would be
gigantic.

We are not able to test this conjecture directly. Clearly,
for an imposed ISI, our algorithm can converge on sev-
eral possible network configurations. But once the con-
figuration has been achieved, putting in action a new
optimization process to force the frequency synchroniza-
tion with an other ISI ′ 6= ISI systematically erases the
first configuration. Nevertheless, we can imagine several
ways of getting around this problem. As the optimized
network is extremely sparse, a first approach would be
to freeze the small number of connections with a high-
est weights once and for all. Learning a new optimized
configuration would then involve only those connections
that have not been frozen. A second possible approach
is the progressive construction of a network of optimized
networks. We would proceed as follows: Consider a first
network (N1) optimized to oscillate with ISI1. Let P1 be
a pattern of the periodic succession. We then add to P1 a
set of new nodes (not in N1) to form a new network (N2).
We then run our optimization algorithm to force N2 to
oscillate with ISI2, the optimization algorithm not af-
fecting connections internal toN1 but acting only on con-
nections internal to N2 and on those between P1 and N2

. As the nodes inside P1 are not connected to each other
(thanks to the anti-cluster structure), any ISI2 value can
be imposed on them since there are no internal propaga-
tion delays to satisfy. After convergence, the N2 network
presents a dynamic consisting of the repetition with a
ISI2 period of a sequence of patterns forming a partition
of N2. It is possible to force P1 to be one of the elements
of this partition so that its nodes form a single pattern of
two distinct sequences of the N1+N2 network, associated
respectively with ISI1 and ISI2. The two sequences are
simultaneously compatible when ISI1 and ISI2 are mul-
tiples of each other. Otherwise, it is conceivable that a
stimulus acting on the nodes of P1 will select one or the
other sequence according to the frequency of the exter-
nal forcing. The process can be repeated ad infinitum to
create a network of networks. Works in these directions
are in progress.
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VI. APPENDIX

A. A non-exhaustive list of related works

Pioneering work [33] deals with a network of identi-
cal integrate-and-fire pulse-coupled and excitatory units.
The delay is not related to the distance between nodes
but to a maximum time beyond which the action of node
j on node i is forgotten (i.e. reduces to zero). Two
topologies are studied: a fully connected network and a
two-dimensional regular mesh with local coupling. The
dynamics converges to a frequency synchronized solu-
tion, where all nodes have the same ISI without spik-
ing in unison. In Ref.[34], delays are now clearly asso-
ciated with the time required for the action potential to
propagate along the axon of each neuron. Identical ex-
citatory neurons with an exponentially decreasing cou-
pling with distance, give rise to waves (which implies a
global synchronization in frequency but not in phase).
Ref.[35] investigated the effect of time delays on a set of
two-dimensional identical excitatory oscillators. The os-
cillators are regularly distributed on a square grid and
the interactions between oscillators A and B are delayed
by an amount proportional to the distance rAB between
them. The weights of the connections first decrease as
1/rAB , then vanish for rAB > r0. The oscillators are
not pulse-coupled. It is found that distance-dependent
time delays induce various patterns including traveling
rolls, square-like and rhombus-like patterns, spirals, and
targets. Ref.[36] considered the effects of distributed de-
lays on amplitude death. Oscillators, whose amplitude
must be described in order to eventually cancel it, are
of Ginzburg-Landau type. They are identical and their
dynamics are not excitable. Here the delays are not
distance-dependant but are chosen randomly accordingly
to a given probability distribution. It is showed that even
a small spread in the delay distribution can greatly en-
large the set of parameters for which amplitude death oc-
curs. The idea of the statistical distribution of delay was
then taken up: to study a standard field model of neural
excitatory and inhibitory populations [37, 38], to investi-
gate the coherent activity patterns in inhibitory, synapti-
cally coupled, bursting Hindmarsh-Rose neurons [39], to
demonstrate the widespread occurrence of dynamically
maintained spike timing sequences in recurrent networks
of pulse-coupled spiking neurons with large time delays
[40].

Ref.[41] studies the Rulkov mapping in the presence of
a delay proportional to the interneuron distance and of
a coupling strength proportional to the difference of the
fast variables (coupling known as electrical as opposed
to synaptic coupling known as pulse-coupling). The neu-
rons are not identical, the dynamics of an isolated neuron
is chaotic and the network organization allows a continu-
ous modulation between a scale-free network with dom-
inating long-range connections and a homogeneous net-
work with mostly adjacent neurons connected. A time
averaged Kuramoto’s order parameter (R) is measured.

FIG. 13. Histogram of the interneurons distances before
ajustement with 300 bins (vanishing distances are not taken
into account). The network has 300 nodes randomly dis-
tributed on a sphere of unit radius .

FIG. 14. Histogram of the interneurons distances after ajuste-
ment. The first peak (the most left-handed) in the distribu-
tion is associated with min

j
(rij), i.e. the mesh of the hexagonal

network. The ratio between the height of this peak and its
width at half height defines the quality factor.

It is found that the most phase synchronized response
(R ' 0.4) is obtained for the intermediate regime where
long as well as short-range connections constitute the
neural architecture.

B. Network Geometry

The position of each node i on the sphere of radius
unit is given by its cartesian coordinates xi,yi and zi with
x2i +y2i +z2i = 1. The distance rij between two nodes used
to calculate the delay in information propagation is rij =√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. Fig.13, Fig.14 and
Fig.15 illustrate the properties of the random network of
nodes after adjustment.
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FIG. 15. Numerical investigation of the relationship between
the average distance between a node and its nearest neigh-
boor (dhex) and the number N of nodes on the surface of
the sphere. The blue straight line is the best power law fit

dhex ' 3.41N−
1
2 .

C. Geometric Frustation

In order to be able to make comparisons, we first con-
sider the classical Kuramoto’s problem: ∂tθi = ωi + 1

N

∑
j

Wijsin (θi(t)− θj(t− τij))

i ∈ [1, N ]

(11)

Looking for a phase synchronisation regime θi(t) = Ωt
leads to

Ω = ωi +
1

N

∑
j

Wijsin (Ωτij) (12)

If we consider the N above equations (Eq. 12) as equa-
tions with unknown Wij , then the ratio between the
number of variables and the number of equations is
ζ = N2/N = N . This high value indicates that network
configurations {Wij} with possible phase synchronization
regimes are very common. Numerical simulations con-
firm this prediction (not shown).

The pulse-coupled regime between the nodes of a net-
work is characterized by the ratio ξ between the spike
duration and the interspike time interval (ISI) between
2 consecutive spikes. Our model which is discrete time is
moreover characterized by the time interval dt between
2 time steps. This parameter does not appear explicitly,
but implicitly through cdt which is the distance traveled
by the information during dt (Eq. 4). cdt is then com-
pared to dhex to form a dimensionless number (see II B,
Fig.15).

In our model, the probability for a neuron i at rest
(Si = 0) to spike is

Pi(t) = a
∑
j

DjWijH [Sj(t− τij)] (13)

where Sj(t) is the state of neuron j at time t, τij is the dis-
tance induced delay between j and i, Wij is the strength

of the connection from j to i and Dj = ±1 depending
on whether j is excitatory or inhibitory. H(s) = 1 if and
only if s > 0 and vanishes otherwise. The minimal inter
spike interval (ISI) is then

4 = T s + T r + 1 (14)

We are looking for a phase synchronisation regime with
ISI = T ≥ 4. We assume that all nodes spike at time
t = 0 such that

Si(0) = T s ∀i (15)

Then the deterministic dynamics leads to Si(4− 1) = 0.
The transition Si(4−1) = 0 −→ Si(4) = 0 requires that
Pi(4− 1) ≤ 0. The next transitions require Pi(4) ≤ 0,
Pi(4 + 1) ≤ 0...Pi(T − 2) ≤ 0 and Pi(T − 1) ≥ 1. This
correspond to a total of T −4+1 inequalities associated
with node i.

From Fig.13 we roughly estimate that the density of
nodes per unit of length located at a distance r from a
given node is

ρ(r) ' N − 1

2
r (16)

The first inequality Pi(4 − 1) ≤ 0 involves only the
nodes j that are at a delay τij ∈ [4 − T s,4] from
node i. These nodes are ' ρ((4− T s)cdt)T scdt in num-
ber. For the next inequality the nodes involved are at
delay τij ∈ [(4+ 1− T s,4+ 1)] from node i and are
' ρ((4 + 1 − T s)cdt)T scdt in number. As ρ(r) is in-
creasing with r, the number of variables is larger for the
second inequality than for the first. It will be also the
case for the other following inequalities. Therefore the
ratio number of variables/number of inequalities that we
will retain is the smallest one

ζ ' N − 1

2
[(4− T s)T s] cdt2 (17)

To finish our estimation, we have to express the depen-
dence of cdt in N . Numerical investigations (section VI B

Fig.15) suggest that dhex ' 3.41/
√
N such that

cdt ' 3.41

τmin
√
N

(18)

and

ζ ' 5.8
(4− T s)T s

τ2min
(19)

for large N . The above expression leads to important
remarks:

1. ζ does not depend on N . This is fundamentally dif-
ferent from the Kuramoto’case for which the prob-
ability of finding a network configuration that sup-
ports a synchronization regime increases linearly
with N .
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2. the limit T s negligible in front of T is obtained
by making T s tend towards 0 while maintaining
constant T , 4 and τmin. In this limit ζ is van-
ishing, which means that it is highly unlikely to
accidentally run into a network configuration that
can support a phase synchronization regime. This
justifies our claim that the phase synchronization
of a set of excitable, pulse-coupled oscillators with
distance-dependent delay is a geometric frustration
problem.

3. In our numerical simulations we have indeed no-
ticed that the network configuration search pro-
gram struggled and sometimes failed to complete
its task when T s was too small in front of 4. The
values of T s that we have selected are therefore a
compromise between values high enough for the al-
gorithm to work and low enough for the network
configurations to be influenced by geometric frus-
tration.

4. The temporal evolution of our model is discretized

in time and is calculated only every dt. By scale
change dt −→ dt

λ , T , T s, 4 and τmin are respec-
tively transformed into λT , λT s, λ4 and λτmin,
but ζ is constant. Therefore our results should not
be impacted by the discrete aspect of the temporal
evolution.

Finally, it is interesting to note that, in the case where
delays are not distance-dependent but chosen at random
according to a distribution of characteristic width σ [37–
40], then each of the T−4+1 inequalities Pi(4−1) ≤ 0,
Pi(4) ≤ 0..Pi(T − 2) ≤ 0 and Pi(T − 1) ≥ 1 involve
' N Ts

σ unknown weights Wij . The ratio between the
number of variables and the number of inequalities is
then

ζ ' N Ts/σ

T −4+ 1
(20)

i.e. proportional to N . The situation is then much less
restrictive than in the previous case and explain the ob-
servations reported in the litterature.


