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ABSTRACT

30 The insulator–metal transition in liquid hydrogen is an important phenomenon to understand the interiors of gas giants, such as Jupiter and
31 Saturn, as well as the physical and chemical behavior of materials at high pressures and temperatures. Here, the path toward an experimental
32 approach is detailed based on spectrally resolved x-ray scattering, tailored to observe and characterize hydrogen metallization in dynamically
33 compressed hydrocarbons in the regime of carbon–hydrogen phase separation. With the help of time-dependent density functional theory
34 calculations and scattering spectra from undriven carbon samples collected at the European x-ray Free-Electron Laser Facility (EuXFEL), we
35 demonstrate sufficient data quality for observing C–H demixing and investigating the presence of liquid metallic hydrogen in future experi-
36 ments using the reprated drive laser systems at EuXFEL.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146416

37 I. INTRODUCTION
38 The first confirmed discovery of an exoplanet in 19921 and then
39 the discovery of an exoplanet around a Sun-like star by Mayor and
40 Queloz2 opened the floodgates for the detection of exoplanets, leading
41 to multiple dedicated missions to look for exoplanets across the galaxy.

42After 30 years and over 5000 confirmed exoplanets,3 it is now increas-
43ingly important to understand how planetary systems form and
44evolve. A large number of discovered exoplanets lie in the range of
45masses of gas giants like Jupiter and Saturn and ice giants like Uranus
46and Neptune, with the ice giants dominating the population.4,5
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47 Studying these large bodies in our Solar System continues to enhance
48 our understanding of the formation and evolution of planetary sys-
49 tems in general.
50 Various probe missions afforded us extensive data and improved
51 our understanding of the planets by exploring the upper layers and
52 space around them. The interiors of these astrophysical bodies can be
53 constrained using the measurements of their physical properties, but
54 establishing the internal structure and their bulk composition requires
55 a better understanding of the behavior of the chemical species at high-
56 pressure and high-temperature conditions. The thermal energies at
57 planetary interior conditions are at the same order of magnitude as the
58 energies stored in the chemical bonds, resulting in expected complex
59 chemical processes including phase transitions, species separation, and
60 demixing.6,7 The chemical composition and potential chemical pro-
61 cesses taking place inside these planets are essential for creating better
62 models and understanding their thermal, magnetic, and electrical
63 properties.8

64 The deep planetary conditions are at the low-temperature end of
65 the warm dense matter (WDM) regime. WDM describes the transi-
66 tion region between cold condensed matter and high-temperature
67 plasmas.9,10 One of the materials with great interest in research at
68 WDM conditions is metallic hydrogen. It was first predicted by
69 Wigner and Huntington11 that solid molecular hydrogen would trans-
70 form into metal at high pressures. A pressure-induced liquid–liquid
71 phase transition from molecular hydrogen to a metallic phase is rele-
72 vant to planetary interiors and therefore has been widely
73 researched.12–14 The transition is referred to as plasma phase transi-
74 tion, which, depending on temperature, is predicted to either be an
75 abrupt first-order phase transition or a continuous transition to the
76 metallic state.15–17

77 Theoretical and experimental studies of metallic hydrogen have
78 significantly contributed to the current understanding of planetary
79 evolution. Jupiter and Saturn are predicted to have an interior domi-
80 nated by liquid metallic hydrogen, which is in contrast to the proper-
81 ties of the insulating, molecular form present in the outer layers.6 This
82 highly condensed metallic hydrogen in the interior of gas giant planets
83 is expected to be responsible for the strong dynamo that drives their
84 exceptionally strong magnetic fields.18 Uranus and Neptune are most
85 often modeled to be made of three layers: a rocky core consisting of sil-
86 icates and iron, an “icy” shell that contains a mixture of water, meth-
87 ane, and ammonia, and a gaseous envelope dominated by hydrogen
88 and helium.19–21 In the high-pressure and high-temperature environ-
89 ment of these icy-giant planets, it is predicted that methane will form
90 polymeric hydrocarbon chains8,22 and, deeper toward the core, will
91 dissociate into carbon in the form of diamond and metallic
92 hydrogen.23–26

93 Transcribing the physics of WDM state requires consider-
94 ation of highly interacting particles. Coupling and quantum effects
95 are not perturbations in the WDM regime, but are as strong as the
96 thermal energy. The complex interplay of competing forces is a
97 reason that the precise theoretical modeling to adequately portray
98 the physics is very difficult.9,27,28 To test the models, dedicated lab-
99 oratory experiments need to be performed. The so-far applied
100 experimental methods are mostly based on cryogenic liquid hydro-
101 gen as the initial material and include static compression
102 approaches using diamond anvil cells29–32 and various dynamic
103 compression techniques.15,33–36

104In addition to the challenges of compressing hydrogen to metalli-
105zation conditions using the above-mentioned methods, the complexity
106of cryogenic sample environments to start with high-density hydrogen
107from the beginning also limits diagnostic capabilities. The measure-
108ment of electrical conductivities for liquid H2 and D2 dynamically
109compressed by high-velocity impactors driven by a gun has provided
110the first pioneering insight.35 In more recent approaches, the insula-
111tor–metal transition of hydrogen has been characterized by determin-
112ing the surface reflectivity of the compressed sample. While there has
113been progress using a surface reflectivity method, there are notable dis-
114crepancies in the P–T conditions where hydrogen metallization was
115observed.33,34 Indeed, systematic uncertainties of the approach arise
116from the fact that the reflecting interface is often in direct contact with
117a material containing the sample, which may induce additional chem-
118istry and changes in the electronic structure. Therefore, techniques
119capable of accessing the interior of the sample and probing the bulk
120volume are preferable but difficult to realize experimentally. The high
121electronic densities of WDM make it opaque to optical probes, and
122therefore, hard x-rays of keV energy are required to access the bulk
123volume.
124As a further development of pioneering experiments using laser-
125based x-ray sources, the advent of x-ray free-electron lasers has
126matured enough to provide revolutionary capabilities in the diagnosis
127of dynamically compressed matter, mainly created by high energy
128lasers producing compression waves on nanosecond timescales.
129Methods applied include spectrally resolved x-ray Thomson scattering
130(XRTS) that can access the electron temperature and density, the ioni-
131zation state, and plasmon features. The plasmon feature is sensitive to
132frequency-dependent electron–ion collision processes, which are
133related to the electrical conductivity.37

134In this work, we present high-resolution x-ray scattering mea-
135surements obtained in the collective regime from undriven carbon
136samples in comparison with theoretical predictions using the time-
137dependent density functional theory (TDDFT).38 Furthermore, the
138possibility of observing the C–H demixing and hydrogen metallization
139via plasmon scattering under high pressure and high temperature is
140investigated with the help of experiments including a rep-rated ener-
141getic shock driver.

142II. X-RAY THOMSON SCATTERING
143X-ray Thomson scattering is an established diagnostic method
144for characterizing WDM.39,40 The particular experimental setup used
145illuminated sample by a linearly polarized x-ray free-electron laser in
146the horizontal plane. The incident wave vector k0 is described with
147k0 ¼ 2pE0=hc. The scattered radiation is observed at the scattering
148angle h along the direction of the scattered wave vector kS above the
149sample by a spectrometer. The scattering vector k is defined by k ¼ kS
150� k0. For small momentum and energy transfers from the incident x-
151ray photon to the electron (�hx� �hx0, where x0 denotes the fre-
152quency of the incident radiation), the magnitude of the incident wave
153vector is close to the scattered wave vector, k0 � ks, and the absolute
154value of the scattering vector k can be determined by

k ¼ jkj ¼ 4p
E0
hc

sin
h
2

� �
: (1)

155The collective and non-collective regimes are distinguished by
156the scattering parameter a ¼ 1=kkS, where kS is the plasma screening
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157 length: a � 1 corresponds to the collective scattering regime, and a
158 � 1 is characteristic for non-collective scattering. As a is dependent
159 on k, different regimes can be accessed by varying the incident x-ray
160 energy E0 and/or the scattering angle h. Here, the focus is on collective
161 scattering to resolve plasmon oscillations of the electrons.
162 The obtained spectra can, then, be compared to models of the
163 dynamic structure factor Sðk;xÞ, which describes the scattering of
164 radiation from charge density fluctuations. Theoretically, the dynamic
165 structure factor can be obtained by the inversion of the total electronic
166 dielectric function �ðk;xÞ. This expression is equivalent to the total
167 electron density response function vðk;xÞ.41 The dynamic structure
168 factor is obtained using the fluctuation–dissipation theorem,42

Sðk;xÞ ¼ �h
pne

1

1� e�hx=kBTe
Im vðk;xÞ½ �: (2)

169 For an advanced study of the sample properties, dynamic
170 structure factor predictions can be extracted from state-of-the-art
171 ab initio methods. For the study, time-dependent density func-
172 tional theory (TDDFT) simulations43 were performed. At ambient
173 conditions, the linear-response TDDFT calculations were per-
174 formed using the full-potential linearized augmented-plane wave
175 code implemented in Elk44 using bootstrap,45 a long-range
176 exchange-correlation (XC) kernel for TDDFT as implemented in
177 the Elk code. The response functions at high-pressure and high-
178 temperature conditions are evaluated using the adiabatic local
179 density approximation for TDDFT in yambo46 applying the
180 Kohn–Sham47 orbitals evaluated by Quantum ESPRESSO.48 The
181 simulations were performed for a system size ranging from 64 to
182 256 atoms consisting of C, H, CH, CH3, and C3H in a supercell
183 using a 2� 2� 2 k-point mesh. The Perdew–Burke–Ernzerhof
184 (PBE)49 XC functional is used in all the calculations.

185 III. RESULTS
186 The experimental data presented here were obtained at the High-
187 Energy-Density (HED) instrument of the European X-ray Free-
188 Electron Laser Facility (EuXFEL).50 The setup used was typical for
189 in situ x-ray diagnostics of laser-driven shock waves at XFEL facilities
190 combining spectrally resolved x-ray scattering in both forward and
191 backward geometries with x-ray diffraction, and only the drive laser
192 was not yet available. The details of the setup together with an analysis
193 of the backward scattering data have been described by Voigt et al.51

194 For demonstrating the forward scattering capabilities, 10lm thick dia-
195 mond samples were probed by x-ray pulses with a photon energy of
196 �6000 eV, focused to <10lm spot sizes using beryllium compound
197 refractive lenses. A monochromator was used to reduce the energy
198 bandwidth to �1 eV, from originally �20 eV corresponding to the
199 self-amplified spontaneous-emission (SASE) bandwidth. Both the
200 spectrometers used cylindrically bent Highly Annealed Pyrolytic
201 Graphite (HAPG) crystals with 80mm radius of curvature, albeit the
202 crystals used in the forward scattering setups had coating thickness of
203 100lm compared with 40 um in the backward direction.52 The back-
204 ward scattering setup had a JUNGFRAU detector53 at 155, to study x-
205 ray Raman spectroscopy from different samples.51 The forward scat-
206 tering signal was collected on an ePix100 detector54 at 18. Dark images
207 were taken as an average of 1200 frames (corresponding to a 2min
208 10Hz acquisition) per gain mode. The setup also included an ePix100
209 detector for x-ray diffraction (XRD) and an Andor Zyla 5.5 sCMOS

210detector along with a bent Si-111 crystal spectrometer downstream of
211transmitted x-rays to measure the source spectrum.51

212For the analysis of the forward spectrometer, pixel values with
213less than a nominal threshold associated with a clear single photon hit
214were truncated to zero for reducing the noise. Pixel noise in high gain
215corresponds to �290 eV, allowing us to identify single photon counts
216with only Poisson noise. Several thousand two-dimensional detector
217images were, then, summed up to derive a lineout. Figure 1 illustrates
218the forward scattering spectrum from a 10lm thick diamond sample.
219The plasmon feature, in this case collective excitations of valence band
220electrons, is usually downshifted by �30 eV with respect to the elastic
221peak.55 Using the monochromator allows the plasmon feature and the
222substructures to be clearly resolved, which would have been smeared
223out with pure SASE.
224The forward scattering angle and the XFEL photon energy result
225in an absolute value of the scattering vector of �0.94 Å�1 applying Eq.
226(1). This wave number was, then, used as input for generating synthetic
227spectra from TDDFT simulations. In Fig. 2, the plasmon feature
228obtained from the experiment is compared with the TDDFT simula-
229tions convolved with the experimental instrument function. The syn-
230thetic spectrum shows reasonable agreement with the experimental
231data, reproducing the detailed features, except the surface plasmon fea-
232ture at�25 eV,56 which is not covered by the bulk nature of the simula-
233tions. The total energy resolution obtained using the monochromator
234with 100lm HAPG crystals is �5 eV. As the 100lm HAPG crystals
235have more depth broadening than the 40lm HAPG crystals that were
236used in the backward scattering setup of the same experiment, by using
237the 40lm HAPG crystals in the forward scattering setup could bring
238down the total spectral resolution to �3 eV.52 Solely using the SASE
239mode results in �20 eV, which smears out all substructures of the plas-
240mon feature and results in overlap with the elastic scattering peak. The
241lower signal due to the monochromator has been compensated by tak-
242ing a larger number of shots cumulatively.

243IV. DISCUSSION
244The obtained results suggest the applicability of the method pre-
245sented for observing C–H demixing and hydrogen metallization under

FIG. 1. Forward x-ray scattering spectrum from diamond, normalized to the maxi-
mum of the elastic signal peak. Spectra were obtained by averaging over 18 000
shots using the x-ray beam in the SASE configuration along with a monochromator.
The plasmon feature is presented on a linear scale in Fig. 2.

J_ID: PHPAEN DOI: 10.1063/5.0146416 Date: 2-May-23 Stage: Page: 3 Total Pages: 9

ID: aipepub3b2server Time: 21:33 I Path: D:/AIP/Support/XML_Signal_Tmp/AI-PHP#230291

Physics of Plasmas ARTICLE pubs.aip.org/aip/php

Phys. Plasmas 30, 000000 (2023); doi: 10.1063/5.0146416 30, 000000-3

VC Author(s) 2023

pubs.aip.org/aip/php


 

PROOF COPY [APL21-AR-00653]
J_ID: APPLAB DOI: 10.1063/5.0045281 Date: 8-April-21 Stage: Page: 7 Total Pages: 8

ID: aipepub3b2server Time: 18:05 I Path: D:/AIP/Support/XML_Signal_Tmp/AI-APL#210696

Applied Physics Letters ARTICLE scitation.org/journal/apl

PROOF COPY [POP23-AR-00178]

246 high-pressure, high-temperature conditions. In previous experiments,
247 polystyrene (CH) samples were dynamically compressed at the Linac
248 Coherent Light Source showing C–H phase separation on nanosecond
249 timescales using in situ x-ray diffraction.24,57 Frydrych et al.58 used a
250 similar experimental setup to determine the degree of species separa-
251 tion in a dynamically compressed polystyrene sample to WDM condi-
252 tions from spectrally resolved forward and backward x-ray scattering
253 data. At pressures of the order of �150GPa and temperatures around
254 �6000K, the carbon transforms into nanometer-sized diamonds.
255 Measured diffraction lineouts provide indirect evidence for nearly
256 complete C–H separation (REF—under way), where the isolated
257 hydrogen would be expected to be in a liquid metallic state. However,
258 as XRD does not provide a signal from the weakly scattering hydrogen,
259 and reflectivity measurements from the compression fronts remain
260 elusive due to the ongoing chemical reaction,59 so far there is no direct
261 evidence for the presence of liquid metallic hydrogen in these experi-
262 ments. Due to its sensitivity to electronic structure and bulk conductiv-
263 ity, the high-resolution forward scattering method described here can
264 overcome these limitations and clarify the state of hydrogen in dynam-
265 ically compressed C–Hmixtures.
266 To test the sensitivity with the achieved spectral resolution,
267 TDDFT calculations of the plasmon structures for C, H, and CH at
268 conditions of P � 150GPa and T � 6000K were performed on ionic
269 configurations obtained from density functional molecular dynamics
270 (DFT-MD) simulations performed using VASP.60–63 For consistency,
271 the TDDFT calculations of the dynamic structure factor were per-
272 formed at the k-vector magnitude of �0:94 Å�1, i.e., the same as the
273 forward scattering in the experiment. The spectral contributions of all
274 three species were convolved with the experimentally obtained instru-
275 ment function.51 The results are depicted in Fig. 3 and show a single
276 peak with an almost Gaussian shape for a fully mixed CH sample. For
277 fully demixed CH, a culmination of two distinctly shifted plasmon fea-
278 tures from the two separate components is observed, forming a
279 double-peak structure. The peak at higher energy shifts originates
280 from the collective excitations of the diamond valence band, while the
281 peak at lower energy shifts represents the plasmon feature of liquid

282metallic hydrogen. With the experimentally demonstrated spectral res-
283olution of �3 eV possible using the 40lmHAPG crystals, and a sepa-
284ration between the peaks of �6–8 eV, C–H phase separation and
285hydrogen metallization can be observed using the demonstrated setup
286in future experiments adding a rep-rated drive laser.
287Additional TDDFT dynamic structure factor calculations were
288performed on pure H and C, as well as other C–H mixtures (CH,
289CH3, and C3H) at different scattering vectors to obtain the respective
290plasmon peaks and plasmon dispersion shifts. Figure 4 shows the plas-
291mon energy shifts for varying k-values for each species. The obtained
292results show that the separation between the features of the fully dem-
293ixed components as shown in Fig. 3 is larger at smaller scattering

FIG. 2. Measured plasmon feature (orange) from Fig. 1 in comparison with the cal-
culated plasmon feature (blue) after convolution with the instrument function.

FIG. 3. Calculated spectra for CH in mixed state (orange) and demixed state (blue)
for the scattering vector of k¼ 0.94 Å�1. The demixed state plasmon is a combina-
tion of the characteristic carbon (red dotted) and metallic hydrogen (black dotted)
features.

FIG. 4. Calculated plasmon energy shift for various species using the peak position
of a respective plasmon in the forward scattering spectrum at different scattering
vectors k. Plasmon shift in an experimental XRTS data at ambient conditions taken
from Ref. 55 is also displayed for comparison.
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294 vector magnitudes. The quadratic dispersion (shown up to k � 1:60)
295 from the TDDFT results is weak, especially for carbon.43,55 The
296 remaining results exhibiting a slightly stronger quadratic dispersion
297 are only shown for k¼ 0.80–1.25 Å�1 highlighting the spectral resolu-
298 tion in the plasmon peaks required for diagnostics. In addition, the
299 dispersion feature obtained using XRTS55 for diamond at ambient
300 conditions is additionally shown for Ref. 55 highlighting the differ-
301 ences expected between ambient and warm dense carbon states. Thus,
302 the corresponding experiments need to aim for small scattering angles
303 and/or low photon energies to optimize the sensitivity for C–H separa-
304 tion and hydrogen metallization via inelastic x-ray scattering.
305 In conclusion, the described method using collective x-ray
306 Thomson scattering is applicable to characterize liquid metallic hydro-
307 gen in the bulk of the sample, which is advantageous over the reflectiv-
308 ity measurements that can only probe the surface (which may be in a
309 non-equilibrium state, e.g., a shock front). We presented how the
310 exemplar scattering spectrum from ambient diamond recorded at the
311 HED instrument of European XFEL agrees well with the TDDFT sim-
312 ulations performed. The existing resolution is capable of distinguishing
313 the expected metallic hydrogen feature after demixing. In our demon-
314 stration experiment, �18 000 shots were accumulated due to a signifi-
315 cant decrease in x-ray flux due to the usage of a monochromator.
316 With the new possibility to use self-seeded x-ray beams providing a
317 spectral resolution comparable to using the monochromator,64 but
318 with approximately 50 times more x-ray photons per pulse, the
319 required number of shots will be significantly reduced. Moreover, the
320 samples applied in the demonstration experiment were notably thin-
321 ner than those in typical shock-compression experiments at XFEL
322 sources (10lm vs 50–100lm). Therefore, it can be expected that an
323 accumulation of approximately 1000 shots or even less is required to
324 obtain the data quality presented here. While high repetition rates
325 place high demands on target design and the target delivery system,65

326 the corresponding developments are under way at the HED instru-
327 ment, e.g., by allowing to replace targets without the need to break the
328 vacuum in the interaction chamber.66 Furthermore, plastics as a base
329 target material allow for using tape samples that enable such rep-rated
330 experiments with several 1000s of shots before targets have to be
331 swapped.67 Novel diagnostic tools combined with the new DiPOLE
332 high-energy laser system at the HED instrument of EuXFEL will
333 enable bulk-sensitive measurements of planetary core conditions. It is
334 up to 10Hz repetition rate, and pulse shaping capabilities68 can be
335 expected to play a crucial role in unlocking the physics behind the
336 planets in the Solar System as well as the evolution of the steadily
337 increasing number of confirmed exoplanets beyond.
338
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