
HAL Id: hal-04308465
https://hal.science/hal-04308465v1

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modeling and enforcing access control policies in
conversational user interfaces

Elena Planas, Salvador Martínez, Marco Brambilla, Jordi Cabot

To cite this version:
Elena Planas, Salvador Martínez, Marco Brambilla, Jordi Cabot. Modeling and enforcing access con-
trol policies in conversational user interfaces. Software and Systems Modeling, 2023, �10.1007/s10270-
023-01131-3�. �hal-04308465�

https://hal.science/hal-04308465v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Software and Systems Modeling (2023) 22:1925–1944
https://doi.org/10.1007/s10270-023-01131-3

SPEC IAL SECT ION PAPER

Modeling and enforcing access control policies in conversational user
interfaces

Elena Planas1 · Salvador Martínez2 ·Marco Brambilla3 · Jordi Cabot4

Received: 15 November 2022 / Accepted: 2 October 2023 / Published online: 22 November 2023
© The Author(s) 2023

Abstract
Conversational user interfaces (CUIs), such as chatbots, are becoming a common component of many software systems.
Although they are evolving in many directions (such as advanced language processing features, thanks to new AI-based
developments), less attention has been paid to access control and other security concerns associated with CUIs, which may
pose a clear risk to the systems they interface with. In this paper, we apply model-driven techniques to model and enforce
access-control policies in CUIs. In particular, we present a fully fledged framework to integrate the role-based access-control
(RBAC) protocol into CUIs by: (1) modeling a set of access-control rules to specify permissions over the bot resources using
a domain-specific language that tailors core RBAC concepts to the CUI domain; and (2) describing a mechanism to show
the feasibility of automatically generating the infrastructure to evaluate and enforce the modeled access control policies at
runtime.

Keywords Model-driven engineering · Conversational user interfaces · CUIs · Access-control · RBAC

1 Introduction

Nowadays, user interfaces that allow fluid and natural com-
munication between humans and machines are gaining
popularity [28]. Many of these interfaces, commonly referred

Communicated by Iris Reinhartz-Berger and Dominik Bork.

This work has been partially funded by the Spanish government
(LOCOSS project - PID2020-114615RB-I00 and BODI project -
PDC2021-121404-I00) and the Luxembourg National Research Fund
(FNR) PEARL program, grant agreement 16544475.

B Elena Planas
eplanash@uoc.edu

Salvador Martínez
salvador.martinez@imt-atlantique.fr

Marco Brambilla
marco.brambilla@polimi.it

Jordi Cabot
jordi.cabot@list.lu

1 Universitat Oberta de Catalunya, 08018 Barcelona, Spain

2 IMT Atlantique, Brest, France

3 Politecnico di Milano, 20133 Milan, Italy

4 Luxembourg Institute of Science and Technology, 4362
Esch-sur-Alzette, Luxembourg

to as Conversational User Interfaces (CUIs), are becoming
complex software artifacts themselves, for instance, through
AI-enhanced software components that enable even more
natural interactions with the possibility to use advanced Nat-
ural Language Processing (NLP) components embedded in
chatbots or voicebots.

CUIs are being increasingly adopted in several domains
such as ecommerce, customer service1 (as a direct commu-
nication channel between the company and end-users) [34],
eHealth (to automatize healthcare [3]) or to support inter-
nal enterprise processes, among others.2 However, many of
these domains are susceptible to trigger access-control risks.
For instance, the following scenarios may cause several risky
situations: (1) A bot for a Human Resource Intranet could dis-
close private data, such as salaries, to an unauthorized person;
(2) A CUI embedded into an eLearning system could provide
the same information for both teachers and students, although
they have different roles and different needs; or (3) A CUI
acting as the interface to a paying service could provide the
same enriched answers to the non-paying users and the pay-
ing ones. To avoid the above situations, we need to ensure the

1 According to Gartner Inc, by 2027, chatbots will become the primary
customer service channel for roughly a quarter of organizations.
2 The chatbot market size is growing at a compound annual growth rate
(CAGR) of over 20% according to several sources.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01131-3&domain=pdf
http://orcid.org/0000-0002-6755-8792
http://orcid.org/0000-0002-3978-9876
http://orcid.org/0000-0002-8753-2434
http://orcid.org/0000-0003-2418-2489

1926 E. Planas et al.

CUI is able, for instance, to disable potential queries (sce-
nario 1) for certain user profiles, to provide different answers
for the same query depending on the user role (scenario 2)
or to provide different information precision levels for the
same queries depending on the user-specific privileges (sce-
nario 3).

Several works [16, 30, 42] emphasize the importance of
considering security, particularly access control in the def-
inition of CUIs, as highlighted in the scenarios mentioned
above. While some approaches exist to enhance security in
general UML models or within specific contexts, such as
web interfaces, we are lacking concrete solutions for enrich-
ing CUIs with robust access control mechanisms. Achieving
a comprehensive intent-based control system that could be
integrated with other components as part of a multiexperi-
ence user interface, which could be built together by using
a Multiexperience Development Platform (MXDP), is still a
remaining challenge.

To cover this gap, this work proposes to enrich CUI
definitions with access-control primitives to enable the def-
inition and enforcement of security policies. Our solution
is based on the use of model-driven techniques to raise the
abstraction level at which the CUIs (and the access-control
extensions) are defined. This facilitates the model-based
generation of such secure CUIs on top of different bot devel-
opment platforms. As discussed in the related work, this
security extension was regarded as needed in other domains
such as web services [2], XML documents [13] or Internet
of Things [36]. This work enables the same type of support
for the new type of interface that CUIs represent.

Our framework (see Fig. 1) is composed of two main com-
ponents: (1) a design time component (right part of the figure)
to enable the specification of the CUI authorization policy
and decide on the evaluation strategies; and (2) a runtime
component (left part of the figure) in charge of interacting
with the user and, based on the specified policies, act accord-
ingly either by allowing or denying the access to the resources
depending on the user permissions.

This paper extends our previous paper [41] in several
directions:

1. We extend the DSL (Domain Specific Language) from
[41] with global permissions to simplify the definition
of general policies affecting the bot as a whole and
new types of permission constraints for a more fine-
grained restriction of the granted permissions (e.g., for
temporally-restricted access).

2. We propose a (textual) concrete syntax for the DSL and
a modeling editor (with the expected auto-completion
and syntax highlighting features, among others) to easily
define (and check the well-formedness of) such policies.

3. We discuss a couple of implementation strategies to
enforce the rules on top of bot frameworks, including
the full architecture and infrastructure for a generative
approach that relies on Casbin to integrate the runtime
evaluation of policies on top of the Xatkit framework.

4. We extend the related work to compare our approach with
other solutions.

The rest of the paper is structured as follows: Sect. 2
provides the background about CUIs and access-control;
Sect. 3 introduces a bot we will use as a running example
along the paper; Sect. 4 specifies the language we propose
to add model-based access-control for CUIs design; Sect. 5
describes how to evaluate and enforce the policy rules for
CUIs; Sect. 6 performs a comparative analysis and summa-
rizes the related work; and finally Sect. 7 concludes with the
highlights and further work.

2 Background

In this section, we review the basic concepts where this
work relies on: Conversational User Interfaces (CUIs) (see
Sect. 2.1) and Role-Based Access-Control (RBAC) (see
Sect. 2.2).

2.1 Conversational user interfaces (CUIs)

Conversational user interfaces (CUIs) aim to emulate a con-
versation with a real human. The most relevant examples of
CUIs are chatbots and voicebots.

Fig. 1 Framework overview

123

Modeling and enforcing access control policies in conversational user interfaces 1927

A bot wraps a CUI as a key component but complements it
with a behavior specification that defines how the bot should
react to a given user request. Bots are classified in different
types depending on the channel employed to communicate
with the user. For instance, in chatbots the user interaction
is through textual messages, in voicebots is through speech,
while in gesturebots is through interactive images. Note that
in all cases bots are the mechanism to implement a conver-
sation, it just changes the medium where this conversation
takes place.

The conversation capabilities of a bot are usually designed
as a set of intents, where each intent represents a possible
user’s goal when interacting with the bot. The bot awaits
for its CUI front-end to match the user’s input text (called
utterance) with one of the intents the bot implements. The
matching phase may rely on external Intent Recognition
Providers (e.g. DialogFlow,3 Amazon Lex4 or Watson Assis-
tant).5 As part of the match, one or more parameters (called
also entities in the bot terminology) in the user utterance
can also be recognized, in a process known as named entity
recognition.

When there is a match, the bot back-end executes the
required behavior, optionally calling external services; and
finally, the bot produces a response that it is returned to the
user.

For non-trivial bots, the behavior is modeled using a
kind of state-machine expressing the valid interaction flows
between the users and the bot.

2.2 Role-based access-control

Access-control [45] is a mechanism aimed at assuring that
the resources within a given software system are available
only to authorized parties, thus granting confidentiality and
integrity properties on resources.

Basically, access-control consists of assigning subjects
(e.g., system users, but also any active entity which may
interact with it) the permission to perform actions (e.g.,
read, write, connect) on resources (e.g., files, services).
Access-control policies are a pervasive mechanism in cur-
rent information systems, and may be specified according to
many different models and languages, such as Mandatory
Access-Control (MAC) [1], Discretionary Access-Control
(DAC) [1], Attribute-Based Access-Control [21], and Role-
based Access-Control (RBAC) [44].

In this work, we focus on RBAC, where permissions
are not directly assigned to users (which would be time-
consuming and error-prone in large systems with many
users), but granted to roles. Then, users are assigned to one

3 https://cloud.google.com/dialogflow/.
4 https://aws.amazon.com/lex/.
5 https://cloud.ibm.com/catalog/services/watson-assistant.

or more roles, thus acquiring the respective permissions. To
ease the administration of RBAC security policies, roles may
be organized in hierarchies where permissions are inherited
and possibly added to the more specific roles.

3 Running example

In this section, we introduce a simplified version of an ecom-
merce chatbot, which will be used as a running example in
the remainder of this paper. Broadly, an ecommerce bot (see
Fig. 2) interacts with the user to provide customer service,
answer questions, recommend products, gather feedback,
and track engagement, among many others. The simplified
ecommerce chatbot we use in this paper addresses the user
intentions described in Table 1.

The user intentions match the corresponding chatbot
intents and prompt the bot to trigger a specific behavior
in response. This execution logic is specified using the
UML state-machine formalism [35], which allows express-
ing the valid (conversational or event-driven) interaction
flows between the user and the bot. The state-machine of our
ecommerce chatbot (see Fig. 3) includes an initial state (Greet
user), where the bot greets the user, after which automatically
navigates to the main menu awaiting for a user request. In

Fig. 2 ecommerce chatbot interaction with an anonymous user (left)
and an employee (right)

Table 1 Intents of our ecommerce chatbot

Intent Description

1. Find product Searches for a product
within the catalogue

2. Get product details Returns information about a
product

3. Buy product Records an order

4. Update shop catalogue Updates the product
catalogue

123

https://cloud.google.com/dialogflow/
https://aws.amazon.com/lex/
https://cloud.ibm.com/catalog/services/watson-assistant

1928 E. Planas et al.

Fig. 3 ecommerce bot state machine

Table 2 ecommerce bot policy
rules

Role Type Permission

anonymous Intent Find product

Get product details

State Greet user

Show main menu

Find product

Get basic product details

Transition from Greet user to Show main menu

from Show main menu to Find product

from Find product to Get basic product details

from Find product to Show main menu

from Get basic product details to Find product

registered All GRANT ALL Permissions (ecommerceBot)

EXCEPT FOR

Intent Update shop catalog

State Get basic product details

employee All GRANT ALL Permissions(ecommerceBot)

case the user request matches with the find a product intent,
a transition to the Find product state is navigated. Once in
that state, the user can ask for additional product details or
go back to the main state. The same logic is applied to the
rest of the states.

Clearly, not all intents of this ecommerce bot should be
available to all users, as the bot is serving both internal and
external users of the shop and, for instance, as can be seen in
Fig. 2, we do not want external users to be able to modify the
shop catalogue (or they could lower the price of a product
before buying it).

Therefore, we should add proper access control to manage
who is entitled to do what on which resource and protect the
others. To this end, in this example, we differentiate between
three roles (anonymous, registered, and employee), each of
them able to interact with different resources according to the
permissions detailed in Table 2. Note that the permissions do
not only restrict what intents can be matched but also the

possible navigational transitions and reachable states for a
matched intent depending on the role.

For instance, according to these permissions, an anony-
mous user can only match two intents (Find product and Get
product details) but, when matching the latter, an anonymous
user will only be able to follow the transition leading to the
Get basic product details as only registered users can see
the full product details. On the opposite side, the employees
have full permissions to use all types of the resources, while
registered users can use all the resources, including buying
products, except for the update of the catalogue (reserved to
employees only) and the state Get basic product details, as
registered users access the improved version on this state.

Note that, as can be seen in Table 2, to simplify the assign-
ment of permissions, we can use global permissions that grant
access to all bot components to a role including the poten-

123

Modeling and enforcing access control policies in conversational user interfaces 1929

tial use of an except for clause where we could list the few
exceptions on a global role.6

4 Modeling access-control policy rules for
CUIs

The first part of our framework (see Fig. 1 right) consists of a
design time component to enable the specification of the CUI
authorization policy. This authorization policy is expressed
via a policy language. To this end, in this paper we propose
to extend a generic CUI language, based on our previous
proposal [41], with new modeling primitives, inspired by
other RBAC-like languages and tailored to the CUI domain,
to add access-control semantics to CUIs.

As any DSL, this extended access-control-CUI DSL is
defined through two main components [27]: (i) an abstract
syntax (metamodel) which specifies the language concepts
and their relationships, and (ii) a concrete syntax which
provides a specific (textual or graphical) representation to
specify models conforming to the abstract syntax. Both
aspects are platform-independent. This enables the analysis
of the access-control information disregarding the specifici-
ties of the concrete CUIs security features and implemen-
tation and its deployment on top of different authorization
libraries depending on the needs of the system as explained
in Sect. 4.5.

The next subsections describe these elements in more
detail, after an initial review of the core CUI modeling lan-
guage that we are extending.

4.1 CUI metamodel

The CUI-specific metamodel part (colored in gray in Fig. 4) is
a simplified version of the metamodel defined by the authors
in [40] and describes the set of concepts used for modeling
the intent definitions of a bot and its execution logic. The
main elements of this metamodel are:

Intents. The metaclass Intent represents the possible user
goal when interacting with the CUI. Intents, which are a
specific type of Event (as bot interactions can also be trig-
gered by external events), can optionally have Parameters
which allow defining specific characteristics of the Intent. On
the other hand, intents can be triggered from several devices
(which could also be restricted as part of the security policy).

States. Following the state-machine formalism, the meta-
class State models a particular behavioral state in which the
bot stays until a new intent triggers a transition to another
state.

6 When listing the exceptions we skip listing all impossible transitions,
i.e. transitions between two states where at least one of them is not
reachable by the role.

Transitions. The metaclass Transition represents the
potential bot evolutions from one state to another. We
distinguish two types of Transitions: AutomaticTransitions
(triggered automatically) and GuardedTransitions (triggered
when a specific guard holds). A GuardedTransition may be
triggered by one or more Events and include a Constraint
to be satisfied for the transition to occur. This allows fine-
grained control over the firing of the Transition.

Matchings. This part of the metamodel can be used to
track the user requests at runtime and link them with the
matched intents and recognized parameters. This is useful
for the evaluation of the policies but could also be used for
logging purposes. In particular, the metaclass UserRequest
represents the user utterances, which may match with one or
more Intents. In order to contextualize the requests and apply
access-control we add several parameters such as the loca-
tion and timestamp of the request. Each recognized intent
is represented by the MatchedIntent metaclass, which stores
the level of recognition confidence provided by an external
intent recognition provider. For each Parameter of an Intent,
the corresponding MatchedIntents keep its value in the asso-
ciation classParameterValue. Each of theseParameterValues
corresponds to a specific text fragment of the analogousUser-
Request which has derived the MatchedInput.

4.2 RBACmetamodel

The RBAC metamodel part is an extended version of the
metamodel presented by the authors in [41] and extends the
standard RBAC concepts mentioned in Sect. 2 to adapt it to
CUIs. This is done by weaving the RBAC and CUI concepts
through the definition of a set of permissions that specify
which roles are allowed to perform a specific action (a match
to an intent or a transition navigation to a state) on a resource
(intents, transitions, states, or all of the above). Its main ele-
ments are:

Resources.The metaclassResource represents the objects
that are part of a CUI and that we may want to protect. In the
context of CUIs, we consider that resources are basically the
different components of the bot, which can be of three types:
Intents, Transitions or States. Protecting intents will prevent
some roles matching part of the CUI’s intents. This may be
necessary, for instance, to prevent specific users from asking
for some specific functionality (if they do not have permis-
sions to match the intent, their request will not be recognized
by the bot). On the other hand, protecting transitions and
states will allow, once an intent has been matched, to execute
different behaviors depending on the role that triggered the
intent. This may be useful, for instance, to provide different
answers for an intent depending on the role of the user. We
expand on this in the Action description below.

Note that, to simplify the definition of policies, we also
consider the whole Bot as a resource itself. This enables

123

1930 E. Planas et al.

Fig. 4 Access-control CUIs metamodel

123

Modeling and enforcing access control policies in conversational user interfaces 1931

granting certain roles permission for the whole bot, espe-
cially useful for roles that must be able to perform any action
on any bot component, as is the case with the employees
in our running example. This kind of GRANT ALL level
permission follows the standard semantics of this type of
permission as proposed in the database realm. Besides, for
roles that should have almost all permissions, we can add
an except for clause listing those bot components to whom
the grant all permission does not apply. These global per-
missions will then be unfolded during the generation process
and converted into a set of individual policies over concrete
components as the other policies to simplify its treatment and
provide a homogeneous environment for the policy enforce-
ment mechanism.

Subjects. The metaclass Subject represents the active
actors which interact with the CUI. Following an RBAC
approach, we define two kinds of subjects: Users and Roles,
where users get roles assigned. Role inheritance is supported.
To stick to a pure RBAC approach, permissions cannot be
assigned to individual users. Nevertheless, it is always possi-
ble to create a role that only such user would have and assign
permissions to that role if needed.

Actions. The metaclass Action represents the access to
the resources that may be performed by the subjects of the
CUI. In this context, we consider as main possible actions
performed by subjects are Matching an intent, Reaching of a
state and Navigating (i.e., traversal) a transition. We would
like to remark that, while the above list of actions are the
most common ones, we could define additional ones. For
instance, a Read action for intents. If we grant a role a Read
action permission over an intent, the users with that role will
be able to see the intent exists (e.g., as part of help functions)
but will not be able to match it (similar to the concept of
gray/disabled buttons or options in a Graphical User Inter-
face). This could be used to push the user to perform the
actions required to acquire more permissions (e.g., register
in the web application).

Permissions. The metaclass Permission represents the
right to perform a given Action (matching an intent, reaching
a state or navigating a transition) on a given Resource (an
intent, state or transition) granted to a specific Role (corre-
sponding to a CUI user). Intent permissions enable users to
trigger a bot behavior for certain intentions. State permissions
control whether a certain state can be reached or not (even
when an intention could lead the user to such state, if that is
the case and the intent is matched, the user will be redirected
to a different state also linked to the same intent or it will just
stay in the same state if no alternative is available). Finally,
transition permissions enable a more fine-grained control of
the potential user interactions when needed; indeed, even
after the match, we can restrict to which state that match
should move the user to (e.g. even when a role has permis-
sions to reach a certain state we may want to control the

path a user with a given role has to follow to reach that state
preventing the transition of navigations that could reach that
same state but via other paths).

In order to easily define large permissions, our metamodel
allows defining an All special permission at the bot level,
implying that the role with such global permission will be
able to perform all types of actions on the bot components.
This can be expressed by relating the permission directly
with the Bot metaclass, which includes all its components.
Besides, our metamodel allows limiting these global per-
missions through the relationship exceptFor, which allows
defining which resources of the bot will not be part of the
global permission assigned to a specific role.

As we will see later, we can add a WFR to ensure that
the bot components of an exceptFor relationship are part of
the bot to which the permission that holds the exception is
related to.

Constraints. The metaclass Constraint restricts the per-
mission to execute the corresponding action only when
certain conditions hold. The metaclassRoleBasedConstraint,
which extends the original RBAC standard model combin-
ing a concept from the ABAC model, represents specific
context-based constraints to restrict the permissions. Our
metamodel explicitly includes some predefined types of con-
straints regarding the geographical location, the temporal
periods when the user can express a certain request, the
allowed devices for doing so or even the possible set of values
for the parameters to be matched during the Intent recognition
phase. But many other ad-hoc constraints could be defined
as well using a generic constraint language such as OCL.

4.3 Concrete syntax

As mentioned before, domain-specific languages are usually
equipped with a concrete syntax that enables users to cre-
ate instances (i.e. models conforming to the DSL) without
dealing directly with the abstract syntax.

In this case, we decided to provide our language with a
textual syntax instead of a graphical or form-based one, as we
believe it results in more compact policy specifications that
are easier to create and understand. Nevertheless, we could
have several alternative concrete syntaxes for the same meta-
model, so it would be equally possible to define a graphical
syntax for our language or even a mix of the two.

Textual syntaxes are defined via a grammar. As explained
in more detail in Sect. 4.5, our grammar is created with
Xtext,7 a state-of-the-art language workbench. Thanks to the
Xtext support we can provide advanced editing facilities to
the bot designers interested in using our access-control lan-
guage for their CUIs, e.g. to help them in the creation of valid
instances.

7 https://www.eclipse.org/Xtext/.

123

https://www.eclipse.org/Xtext/

1932 E. Planas et al.

As we will see in more detail in Sect. 4.5, Listings 3 and 4
show, respectively, the grammar for our language and a partial
representation of the policy rules for our running example
written in this grammar.

4.4 Policy validation and correctness

The correctness of a policy can be defined and checked at
different levels.

The first level is to verify a policy is well-formed, i.e., to
check that it is properly aligned with its metamodel and can
be expressed as an instance of such metamodel. This is guar-
anteed by our implementation (see below). This would cover
basic structural validations like the fact that permissions can-
not be directly linked to users as there is no relationship
between the Permission and User classes in the metamodel.

Additional well-formedness rules can be added by attach-
ing to the metamodel OCL constraints (called, in this context,
well-formedness rules, WFR). As will be seen in the next sec-
tion, these WFRs are not purely decorative, instead, they are
checked automatically by our editor as Eclipse also includes
an OCL engine able to check OCL-based WFRs.8 As an
example, the OCL rule of Listing 1 states that when granting
global permission on a bot, the components that are listed
as an exception must be components belonging to that same
bot.

Listing 1 Consistency rule.

1 context Permission inv :
2 self . resource .oclIsTypeOf(Bot) implies
3 self . exceptFor−>forAll (c | c . bot = self . resource)

Beyond well-formedness we may also want to check that
the policiesmake sense. Note that our permissions are always
positive and additive in our model.9 However, several unde-
sirable situations, such as redundancy between permissions
could appear, for instance, if the policy includes a permis-
sion directly granted to an intent for a role that has also global
access to all bot components (and therefore already has the
permission to match the intent through this All access). List-
ing 2 shows an example OCL constraint that could prevent
this by checking that a role has no global permissions for a
role that already has individual ones. As this is a redundancy

8 https://projects.eclipse.org/projects/modeling.mdt.ocl.
9 Keep in mind that the global permissions with except for restrictions
are unfolded into a set of positive permissions on the individual compo-
nents so the except for clause is not a negative condition, just restricts the
number of positive permissions that are generated during the unfolding.

and not an error, we could decide to just show a warning
instead of an error in this case.

Listing 2 No redundancy rule.

1 context Permission inv :
2 let allPerm: Set(Permission) =
3 Permission−>select (e | e . role = self . role) in
4 self . resource .oclIsTypeOf(BotComponent) implies
5 allPerm−>excludes(self . bot)

Despite the addition of WFR to check the correctness of
the permission rules, the absence of conflicts does not guar-
antee the policies to be correct, as other anomalies may exist.
For instance, the existence of empty roles (roles that have zero
permissions) or isolated resources (resources where nobody
can perform any action upon). These scenarios can also be
checked by evaluating the policy once their definition has
been completed. Similar to the WFRs above we could write
an OCL query to return the potentially problematic roles and
components.

Finally, we may also want to make sure that permissions
are consistent with respect to arbitrary constraints attached to
them. In the general case, i.e., when the constraints are arbi-
trary constraints written in a highly expressive language like
OCL (that includes iterator expressions, null values, tuple
types,...), the use of formal verification methods is required,
each one with its own set of trade-offs [17]. Specific adapta-
tions of such methods for RBAC-specific checking do exist
as well, e.g. [29, 39, 43, 47].

4.5 Modeling editor for RBAC policies

To prove the feasibility of our approach, we describe in this
section the tool support we provide to facilitate such policy
modeling.

As mentioned before, we use the Xtext language work-
bench in order to provide our access-control language with
a concrete textual syntax and an associated editing tool.

The central artifact of Xtext is the grammar, which pro-
vides the syntactic rules valid textual instances must follow.
Our grammar, shown in Listing 3, defines a textual language
in which RBAC policies are composed by first a number of
declarations (lines 1 to 15), and second a number of rules
(lines 18 to 42) which refer to these declarations.

123

https://projects.eclipse.org/projects/modeling.mdt.ocl

Modeling and enforcing access control policies in conversational user interfaces 1933

Listing 3 CUI-RBAC Xtext grammar.

1 Policy :
2 'Sec_Policy' name = ID
3 'Declarations' '{'
4 'Roles:'
5 subjects+=Role (',' subjects+=Role)*
6 '}'
7
8 'Rules:' '{'
9 permissions+=Permission

10 (permissions+=Permission)*
11 '}'
12
13 ('Constraints:' '{'
14 constraints+=Constraint
15 (constraints+=Constraint)*
16 '}')?
17 ;
18
19
20 Role returns Role:
21 name = ID
22 ('inheritingFrom' inheritFrom=[Role])?
23 ;
24
25 enum AAction returns AccessAction:
26 Match='Match' | Navigate='Navigate'
27 | Reach='Reach' |
28 Read='Read' | All='All'
29 ;
30
31 Constraint returns RoleBasedConstraint :
32 'Constraint' name = ID ':' '[' 'using'
33 language=ID ']' body=STRING
34 ;
35
36 Permission :
37 'GRANT' action=AAction
38 'to' role+=[Role]
39 'on' resource=[def : :Bot | QualifiedName]
40 ('exceptFor' exceptFor+=
41 [def : :BotComponent
42 | QualifiedName]
43 (',' exceptFor+=[def : :BotComponent
44 | QualifiedName])*)?
45 ('(' 'withConstraint:' constraints+=
46 [RoleBasedConstraint
47 (constraints+=[RoleBasedConstraint]
48)* ')')?
49 ';'
50 ;
51
52 QualifiedName: ID ('.' ID)*;

Note that the definition of the bot itself (i.e., the state
machine expressing the bot behavior with all the intents, tran-
sitions,...) is not part of this grammar. Here we just reference
those elements, defined in a separate model with the corre-
sponding CUI modeling language of choice. This way we

achieve separation of concerns to facilitate the collaboration
between CUI and security experts. Nevertheless, we believe
our RBAC language is comprehensible enough to empower
CUI designers without a deep security knowledge to still
define the key security policies for their bots.

As an example, Listing 4 shows an instantiation of the
above grammar to represent the access-control policy of our
ecommerce bot policy (i.e., the rules showed in Table 2).

Listing 4 CUI-RBAC policy rules of our running example.

1 Sec_Policy e_commerceBot_policy
2
3 Declarations{
4 Roles: registered , employee, anonymous
5 }
6
7 Rules: {
8 GRANT Match to anonymous on eCommerceBot.
9 _FindProduct ;

10 GRANT Match to anonymous on eCommerceBot. I
11 _GetProductDetails ;
12 GRANT Reach to anonymous on eCommerceBot.S
13 _Greetuser ;
14 GRANT Reach to anonymous on eCommerceBot.S
15 _ShowMainMenu;
16 GRANT Reach to anonymous on eCommerceBot.S
17 _FindProduct ;
18 GRANT Reach to anonymous on eCommerceBot.S
19 _GetBasicProductDetails ;
20 GRANT Navigate to anonymous on
21 eCommerceBot.T1;
22 . . .
23 . . .
24 GRANT All to registered on
25 eCommerceBot except
26 For
27 eCommerceBot. S_GetBasicProductDetails ,
28 eCommerceBot. I_UpdateShopCatalogue;
29 GRANT All to employee on eCommerceBot;
30 }

Xtext generates an Eclipse-based IDE which includes a
textual editor of the grammar with auto-completion, syntax
highlighting, and error detection with respect to the meta-
model and its WFRs. Note that Xtext uses our metamodel
as the abstract syntax for our language and thus, correct
textual policies are internally represented as models con-
forming to it. As an example, Fig. 5 shows a screenshot of
our textual editor, where two constraint violations have been
introduced. First, the rule Grant All to registered
on eCommerceBot exceptFor... contains an intent
in the except for list (the intentGetMonthly Goals) that is not
part of the ecommerce bot. Second, the rule Grant Match
to employee on eCommerceBot.I_BuyProduct
is redundant with respect to the rule Grant All to

123

1934 E. Planas et al.

Fig. 5 Screenshot of the Eclipse-based editor of our DSL

employee on eCommerceBot, since the last gives per-
missions to the same role for the entire bot.

5 Evaluating and enforcing policy rules for
CUIs

As explained previously, the second part of our framework
(see Fig. 1 left) consists of a runtime component in charge
of interacting with the user and act accordingly either by
allowing or denying the access to the resources depending
on the user permissions.

The recommendation in the implementation of modern
policy frameworks is to separate the infrastructure logic from
the application logic by using a reference monitor architec-
ture [22]. This architecture consists of two basic components:
a Policy Enforcement Point (PEP) and a Policy Decision
Point (PDP). As shown in Fig. 1, access requests to the bot
resources are intercepted. These requests are then forwarded
to the PDP, which reads the policy rules to resolve the access.
The access decision yielded by the PDP is returned to the bot
through the PEP. Note that values for attributes such as loca-
tion or time (or any other contextual attribute referenced in
the access conditions) must be attached to the access request
(or directly taken from the runtime environment) in order for
the PDP to evaluate the match.

There are several possible strategies to implement this
architecture, depending on the level of internal access to the
chatbot engine that the chatbot designer has.

If modifying the execution logic of the chatbot engine
is possible, we could embed the security checks as part of
the engine itself. These checks would be part of standard

elements of the chatbot execution logic and be implicitly
verified upon every single intent matching or transition nav-
igation request.

But in most scenarios, chatbot designers will not have this
option, as most chatbot platforms are not open source or are
hidden behind an API offered to deploy the bot and inter-
act with the engine. In these cases, access control must be
explicitly added to the individual chatbot logic. Authoriza-
tion verification becomes now explicit but, on the other hand,
it can be easily added on top of many more chatbot engines.

Next subsections discuss both scenarios in more detail,
especially the latter one as it will be the most common sce-
nario for chatbot designers, which can not typically modify
the chatbot engine themselves. Note that, as a trade-off, in
this scenario the expressiveness of the rules we can evaluate
may be restricted by the capabilities of the chosen external
library (e.g., it may not support temporal or geographical or
other types of complex constraints).

5.1 Enforcing RBAC policies via an external library

The first strategy we propose to enforce RBAC policies is
by relying on a third-party library able to evaluate an access
request against a policy. Then, based on this decision, the
chatbot will need to act accordingly.

This enforcement strategy requires then two steps:

1. Translate the modeled policies to the input language used
by the external library.

2. Integrate in the bot definition the calls to this external
library.

123

Modeling and enforcing access control policies in conversational user interfaces 1935

Next, we see how we could implement each step. In partic-
ular, we will do it using Xatkit [14] as chatbot framework and
Casbin10 as a RBAC library. Casbin is an open-source access
control library that provides support for enforcing autho-
rization based on various access control models. Although
Casbin itself supports many programming languages such
as Go, Java, Nodejs, PHP, Python, Microsoft.NET, C++, and
Rust, a similar approach could be followed to call our access-
control rules from other chatbot frameworks and by relying
on other external libraries such as Open Policy Agent11 or
Ory.12

5.1.1 Step 1: Generating RBAC policies

The policies written with our modeling editor are used at
runtime in order to decide upon access requests. This can be
done by either developing a brand new runtime component
for our language or by re-using some existing authorization
framework. In this paper, we opt for this second option as this
is a more flexible and simple solution that avoids reinventing
the wheel and facilitates the integration of our approach in
different technical stacks.

As a proof of concept, we show how to policies written
in our access-control for CUIs language will be translated
to Casbin policies. A similar approach would be followed to
translate them to other authorization systems.

In order to use Casbin with a specific access-control
model, the developer needs to provide two configuration
files. First, a .conf file containing an access-control model
definition (e.g., ABAC, RBAC, etc). As an example, List-
ing 5 shows a .conf file that corresponds to the default RBAC
model as provided by Casbin.

Listing 5 Casbin RBAC predefined configuration.

1 [request_definition]
2 r = sub , obj , act
3
4 [policy_definition]
5 p = sub , obj , act
6
7 [role_definition]
8 g = _, _
9

10 [policy_effect]
11 e = some(where (p. eft == allow))
12 [matchers]
13 m = g(r . sub , p. sub) && r . obj == p. obj &&
14 r . act == p. act

And second, the developer needs to provide a .csv file
containing the actual access-control policy. As an example,

10 www.casbin.org.
11 https://www.openpolicyagent.org/.
12 https://github.com/ory.

Listing 6 shows the policy, in the form of comma-separated
values, that corresponds to the aforementioned Casbin model.
Each line corresponds to a policy rule that contains: (1) the
identifier of a role; (2) the CUI resource on which the permis-
sion is going to be granted (an intent -I-, state -S- or transition
-T-); and (3) the action on the resource (matching, reaching
or navigating).

Listing 6 Excerpt of Casbin RBAC policy of our running example.

1 p anonymous, I_FindProduct , Match
2 p anonymous, I_GetProductDetails , Match
3 p anonymous, S_Greetuser , Reach
4 p anonymous, S_ShowMainMenu, Reach
5 p anonymous, S_FindProduct , Reach
6 p anonymous, S_GetBasicProductDetails , Reach
7 p anonymous, T1, Navigate
8 p employee, I_FindProduct , Match
9 p employee, I_GetProductDetails , Match

10 p employee, I_BuyProduct , Match
11 p employee, T1, Navigate
12 p employee, T2, Navigate
13 . . .
14 . . .
15 p registered , I_FindProduct , Match
16 p registered , I_GetProductDetails , Match
17 p registered , I_BuyProduct , Match
18 p registered , S_Greetuser , Reach
19 p registered , S_ShowMainMenu, Reach
20 . . .
21 . . .
22 p registered , T1, Navigate
23 p registered , T2, Navigate
24 . . .
25 . . .

To generate Casbin policies from our policies written in
our language (see Listing 4) we employ code generation tech-
niques. The generation focuses on the .csv Casbin file. Note
that the .conf file may be customized (notably to modify
the types of elements used in the policy rules, the access
requests, and the match process) but this configuration does
not depend on the specific access-control policy of a given
CUI, and thus, does not need to be (re)generated from it.

Again, we use Xtext facilities to implement our code gen-
eration. Xtext integrates code generation triggering options in
the generated IDE, so policies are automatically (and trans-
parently) translated to the target language (Casbin) as the
policy file is saved. As our model and the Casbin model
are very close the translation is straightforward. Listing 7
shows the actual code generator written in the Xtend Java
dialect. It starts by retrieving the root of the policy model
(line 5), creates a .csv file and then fills it by calling the
genPolicy() method (line 7). This method iterates on the per-
missions contained in the policy model element and generates
for each permission a Casbin RBAC permission rule (p, sub-

123

www.casbin.org
https://www.openpolicyagent.org/
https://github.com/ory

1936 E. Planas et al.

ject, object, action). Finally, note that our code generator
performs the flattening of permissions (lines 18 to 24).

Listing 7 Excerpt of Casbin policy generator.

1 override void doGenerate(Resource resource ,
2 FileSystemAccess2 fsa ,
3 IGeneratorContext context) {
4 for (e : resource . allContents . toIterable .
5 f i l t e r (Policy)) {
6 fsa . generateFile (
7 e .name + " . csv" ,
8 e . genPolicy)
9 }

10 }
11
12 def genPolicy(Policy p) ' ' '
13 «FOR r : p. permissions»
14 «val exceptions = r . exceptFor»
15 «IF r . resource instanceof Component»
16 p «FOR role : r . role «role .name»«
17 ENDFOR»
18 «r . resource .name» , «r . action»
19 «ELSE»
20 «val botResource = r . resource as
21 Composite
22 «FOR cp : botResource .component»
23 «IF !exceptions . contains (cp)»
24 p «FOR role : r . role» «
25 role .name»«ENDFOR» ,
26 «cp.name» , «cp. printAction»
27 «ENDIF»
28 «ENDFOR»
29 «ENDIF»
30 «ENDFOR»
31 ' ' '
32
33 def String printAction(cuirbac_rbac .Resource
34 cp){
35 switch cp{
36 case cp instanceof Intent : "Match"
37 case cp instanceof State : "Reach"
38 case cp instanceof Transition :
39 "Navigate"
40 default : "NoAction"
41 }
42 }

5.1.2 Enforcing RBAC policies

Following this strategy, the security checks are explicitly
added to each transition of the state machine of the running
bot.13

13 Note that constraints on intents and states are at this point trans-
formed into constraint on the transitions related to those intents and
states as, without modifying the chatbot engine, the transition is the
only point where we can influence the bot behavior. Nevertheless, this

As an example, Listing 8 shows how the transition from
the Show Main Menu state to the Update Shop Catalogue
state has been modified to add a new condition that checks
the user’s role is allowed to match theUpdate ShopCatalogue
intent and only proceeds to the corresponding state when this
condition is true (lines 3 to 5). Otherwise, as seen in Fig. 2
the bot inform the user she has not permissions to perform
that action (lines 6-8). The complete implementation for our
running example bot is available.14

Listing 8 Policy Enforcement Point (PEP) implementation.

1 showMainMenuState
2 .next()
3 .when(intentIs (updateShopCatalogueIntent) .and
4 (c −> enforcer . enforce
5 (role, "UpdateShopCatalogueIntent",match)))
6 .moveTo(updateShopCatalogueState)
7 .when(intentIs (updateShopCatalogueIntent) .and
8 (c −> !enforcer . enforce
9 (role, "UpdateShopCatalogueIntent",match)))

10 .moveTo(informAboutPermissions) ;

Note that, even if access-control evaluation and enforce-
ment are now explicit, they could still be automatically added
to the concerned transitions. Given a security policy and a
plain chatbot definition, we could automatically instrument
all relevant transitions with the proper access-control checks.
For Xatkit bots, and as Xatkit is a Java-based engine, a library
such as JavaParser15 could be used to traverse the AST of the
bot definition and modify it to add the Casbin calls on each
transition.

5.2 Enforcing RBAC policies using a security-aware
chatbot engine

A radically different strategy to enforce RBAC policies is
to rely on a chatbot engine that already offers RBAC primi-
tives as part of its core engine execution. This would be ideal
as our work would consist in translating our modeled poli-
cies into the chatbot engine definition language (same as we
would need to do for the other chatbot components such as
the intents, states,...) and we are done. The engine would take
care of internally analyzing and evaluating the policies every
time it is needed.

Unfortunately, there is none at the moment but if the
engine is open source, you could implement this by yourself.
Obviously, the way to modify the engine with access-control
semantics depends on the engine. Here we briefly comment
on how we are implementing this on an experimental branch

kind of unfolding can be automated and does not require additional
manual effort from the user.
14 https://github.com/elenaplanas/xatkit-RBACBot/tree/jCasbin.
15 https://javaparser.org/.

123

https://github.com/elenaplanas/xatkit-RBACBot/tree/jCasbin
https://javaparser.org/

Modeling and enforcing access control policies in conversational user interfaces 1937

of Xatkit as this is the chatbot engine we created ourselves
and therefore we one we are more familiar with.

The first step is to extend Xatkit’s FluentAPI to enable the
definition of security policies as part of the bot definition.
Calls to this extended API would just store in the internal
bot model of the chatbot engine the security of details of the
chatbot execution same as it stores all the info on the intents,
states and transitions to be able to execute the bot and evolve
it from one state to the other in response to all types of events.

Listing 9 shows a small example of how the Update Shop
Catalogue intent of our running example would be defined
using this extended FluentAPI. Note how now the definition
of the security policies is fully integrated with the own chat-
bot definition, feeling much more natural and easy to use. We
first create the new role/s and then we just add the roles with
permissions granted as part of the definition of the bot com-
ponents, the update shop intent in the example. Moreover,
now we do not need to manually modify the state machine
part to include any external call, once the policy is defined,
all the rest is taken care internally.

Listing9 Defining security policies as part of the bot definition in Xatkit.

1 val employeeRole = role ("Employee")
2 . constraint ("A f i r s t constraint
3 for the role") ;
4
5 val updateShopCatalogue = intent
6 ("UpdateShopCatalogue")
7 . trainingSentence
8 ("I want to update the
9 shop catalogue")

10 . trainingSentence
11 ("I want to update the
12 price of a product")
13 . trainingSentence
14 ("There are some
15 products to change") ;
16 . permission()
17 . role (employeeRole) ;

The next step is to dynamically filter the set of possible
intents to match at any given moment depending on the user
permissions. The concrete strategy depends on the features
offered by the NLP Engine employed by the chatbot engine
(Xatkit can be plugged to several NLP Engines, including
DialogFlow, nlp.js or our own engine).16

If the NLP Engine allows turning off and on the set of avail-
able intents automatically, we can then disable those intents
that the current user should not be able to match. This is what
DialogFlow supports so in this case we send to DialogFlow
the set of Intents (the context in Xatkit terminology) that it
should consider before every intent matching execution as

16 https://github.com/xatkit-bot-platform/xatkit/wiki/Intent-
Recognition-Providers.

shown in Listing 10. Starting from all intents that are linked
to output transitions from the current state (as these are the
only ones that could be potentially matched at this point)
we filter out those for which the user has no permission. If
the NLP Engine only allows an initial bot deployment that
cannot dynamically evolve, we need to let the user match
any possible intent and, a posteriori remove from the list of
matches those that correspond to intents that should not be
available based on the user’s role.

Listing 10 Dynamic enabling of intents before calling the DialogFlow
NLP engine based on the state and user permissions.

1 public @NonNull Iterable<Context>
2 createOutContextsForState (@NonNull
3 DialogFlowStateContext context) {
4 List<Context> result = new ArrayList<>();
5 State state = context . getState () ;
6 Iterable<IntentDefinition>
7 accessedIntents =
8 state . getAllAccessedIntents () ;
9 accessedIntents . forEach(intent −> {

10 i f hasPermission(intent ,
11 context . getsession () . getUser () .
12 getrole ()) {
13 Context . Builder builder =
14 Context .newBuilder () .
15 setName(ContextName. of(this .
16 configuration . getProjectId () ,
17 context .getSessionName() .
18 getSession () , "Enable" +
19 intent .getName()) . toString ()) . . .) ;
20 result .add(builder . build ()) ;
21 }
22 });
23 return result ;
24 }

6 Comparative analysis with the related
work

Modeling of security concerns has been a topic largely stud-
ied in the modeling community. In the following subsections
we review a variety of access control proposals for differ-
ent domains. First, we explore several general approaches
(see Sect. 6.1), which aim to define access control over any
general element. Then, we explore in more detail other
approaches focused on two specific domains closer to the
topic of this paper: Web-based UIs (see Sect. 6.2) and, obvi-
ously, Conversational-based UIs (see Sect. 6.3).

In order to provide a theoretical evaluation of our pro-
posal, we also analyze the expressiveness of our language
to check whether it is powerful to express complex access
control policies by comparing it with the related solutions.

123

https://github.com/xatkit-bot-platform/xatkit/wiki/Intent-Recognition-Providers
https://github.com/xatkit-bot-platform/xatkit/wiki/Intent-Recognition-Providers

1938 E. Planas et al.

6.1 General approaches

Two general well-known frameworks to model security con-
cerns are UMLsec [23] and SecureUML [31], which extend
UML with RBAC primitives. In particular, UMLsec extends
UML so that it supports, among other security concerns, role-
based access control. The extension is provided in the form of
a UML profile and a corresponding verification tool. In the
following, we show how UMLsec can be used to describe
a RBAC policy on the state machine in Fig. 3. The policy
will give employees the right to update the catalogue and
registered users the right to see full product details and buy
products. First, we need to apply the stereotype �rbac� to
the package containing the state machine. This enables three
tags: (1) protected actions, which must contain the list of
activities to be controlled; (2) role, which may have as its
value a list of pairs (actor,role) where actor is an actor in the
activity diagram; and (3) right, which value should be a list
of pairs (role,right)where role represents any role previously
declared in the role tag and right, a protected activity listed in
the protected actions tag (meaning the role gets the permis-
sion to execute the activity). Supposing we have buyer and
worker actors declared in the activity diagram correspond-
ing to the state machine in Fig. 3, the final policy is shown in
Listing 11. Fine-grained access-control (e.g., for the verifi-
cation of conditions) may be achieved by the use of guarded
objects [24], but this requires detailed design models.

Listing 11 UMLsec RBAC policy

1 {protected actions :
2 {Update shop catalogue ,
3 Get ful l product details ,
4 Buy product}
5 }
6 {role :
7 {(buyer , registered) ,(worker , employee)}
8 }
9 {right :

10 {(registered , Get ful l product details) ,
11 (registered , Buy Product) ,
12 (employee, Update shop catalogue)}
13 }

On the other hand, SecureUML also includes RBAC
concepts in UML with stereotypes, including built-in autho-
rization constraints (e.g., separation of duty) and custom
constraints expressed in OCL. However, it is somehow more
invasive as security concepts such as permissions, roles, etc.,
need to be modeled along the application logic.

Besides UMLsec and SecureUML, other existing profiles
and DSLs focus on access control modeling, including [5,
6, 26] among others (see also [4, 25, 32] for a more gen-
eral review of the field). Most of these proposals remain at
the modeling level and do not cover the generation of an

enforcement architecture. Even those that aim at providing
an end-to-end solution target either the networking or dis-
tributed systems domain and therefore their solution is not
directly applicable to the domain of CUIs even if, obviously,
all these languages share a core RBAC representation that
we also employ in our own DSL.

The need for a specific DSL to express access control rules
in new types of systems or components can be observed in
many other domains where specific solutions have also been
proposed, e.g., web services [2], XML documents [13] or
Internet of Things [36]. These extensions provide: (1) At the
modeling level, a set of primitives adapted to key concepts
in the domain (e.g., Intents in our case), which facilitates
the writing of the access control rules by the experts in that
domain; and (2) At the implementation level, better inte-
gration with the underlying technology to generate a more
efficient policy enforcement and decision mechanism. Our
proposal follows the same approach but targets a different
domain, the domain of CUIs which we believe is an impor-
tant enough domain in software development and one that is
quickly growing in importance in many verticals.

6.2 RBAC forWeb-based UIs

In the web interfaces domain, there are a variety of access
control proposals for web applications, such as [8, 9, 11,
18, 19, 33]. We consider these proposals are the closest to
our contribution, since most bots are displayed as embedded
widgets in a web application.

All the above existing approaches support the concept of
Role (often called UserGroup) but the only resource that can
be protected are web pages or components that show content
within those pages. This would be equivalent to our states
(see Fig. 6).

Besides, in the web domain, access controls are typically
evaluated when clicking a link on the current web page (see
Fig. 7). Then, based on the role, the user can be redirected
either to the desired page or to an error page (which would
be equivalent to our transition permissions). Alternatively,
like in the case of the Interaction Flow Modeling Language
(IFML) [10], some languages also allow a finer-grained level
of control, allowing to specify dedicated rules for visualizing
or hiding specific content chunks inside a web page. For
instance, Fig. 8 shows a IFML model representing the login
page of a site. Upon submission of her credentials, the user
is assigned a role (role1) and is redirected to a private zone,
where some content (Role1OnlyContent) is shown only to
users with the correct role. This is defined through a dedicated
ActivationExpression directly in the web navigation model.

The expressiveness of our language is comparable to the
ones discussed above. In fact, we consider ours as more
expressive, as we can associate complex constraints to the
permissions (the only one close to this is [19] that includes

123

Modeling and enforcing access control policies in conversational user interfaces 1939

Fig. 6 Example of metamodel excerpt to define roles and their permissions to navigate to web pages, taken from [33]

Fig. 7 Example of navigation model showing how roles can be used as conditional terms in the transition from one page to another, taken from
[11]

a textual language to express role rules) and offer a larger
variety of permissions and resources to constraint.

Our approach also enhances usability through the uti-
lization of this same language richness. For instance, our
proposal can prevent a role from reaching a certain state
(web page in the web application equivalent) no matter where
the user is trying to reach that state from. Instead, in RBAC

approaches for web applications, access control is linked to
links (more similar to our Intent matching permissions), and
therefore, to limit access to a page to a specific role, the cor-
responding evaluation condition must be added to each and
every one of the incoming links to that page or on every
component of the page. Note that this is much more time-
consuming and error-prone as it requires web application

123

1940 E. Planas et al.

Fig. 8 Example of IFML modeling of user-based and role-based access to resources, taken from [10]: once the user logs into the system, she is
assigned a role, and some contents are shown only based on that role

Fig. 9 Example of Identity and Access Management (IAM) roles taken from Amazon Lex (https://aws.amazon.com/es/blogs/machine-learning/
build-conversational-experiences-for-retail-order-management-using-amazon-lex)

123

https://aws.amazon.com/es/blogs/machine-learning/build-conversational-experiences-for-retail-order-management-using-amazon-lex
https://aws.amazon.com/es/blogs/machine-learning/build-conversational-experiences-for-retail-order-management-using-amazon-lex

Modeling and enforcing access control policies in conversational user interfaces 1941

Table 3 Approaches comparison based on coverage of the control requirements support on resources and events

Approaches

Our proposal General approaches Web-based UIs Conversational UIs

Resources

Control on Event � × � ×
Control on Transition � × � ×
Control on State � � × ×
Control on Graphical Artifact × × � ×
Events

Control on System Event � × � ×
Control on GUI Events × × � ×
Control on Conversational User Events � × × �
Control on Abstract Intents � × × ×

designers to make sure they do not forget to add the condi-
tion to all the relevant links and components. Forgetting to
add just one of those rules would create a security threat,
enabling unauthorized access to specific contents or whole
pages or parts of the site.

6.3 RBAC for CUIs

In the context of CUIs, several authors have expressed the
need to secure chatbots, especially in critical domains. For
instance, the work of [42] is an example of a concrete chatbot
in the e-health domain where the authors emphasize the need
for security, in terms of privacy (the data exchange between
the bot and the back-end microservices is encrypted) and
access control (users must authenticate to be able to use the
bot). Similarly, [30] emphasizes the need to put in place a
Chatbot Security Control Procedure to address security con-
cerns in another important application domain like banking.
Another example of a critical domain is security monitor-
ing where chatbots themselves are used to help in securing
other system components [15, 37]. In this case, securing the
own chatbots is obviously even more critical for the overall
security infrastructure.

Given the importance of securing chatbots, [16] even pro-
poses chatbot providers to attach a Service-Level Agreement
(SLA) to their chatbots that covers security aspects. Clearly,
chatbots are concerned by (and should be tested against) a
number of security concerns, including access control but
also privacy [42], GDPR [46], cross-site scripting and injec-
tion attacks [7], man-in-the-middle and DDoS attacks [48],
social aspects [20] and language-related vulnerabilities [12].

While the above works highlight the need to integrate
security aspects, they mostly fail to propose concrete and
actionable solutions. This is especially true for access con-
trol, the topic of this work. The situation is not better when
looking at professional tools where access control is focused

on the management of the permissions to enable those who
can collaborate in the bot definition. In this context, access
control is typically called IAM (Identity and Access Manage-
ment), for instance in DialogFlow,17 Amazon Lex18 or IBM
Watson Assistant.19 At most, as part of an IAM policy (see
Fig. 9), you can define whether users must be authenticated
to use the deployed bot without any fine-grained role defini-
tion, not individual permissions on what each role could do.
Moreover, chatbot definition languages, such as [14, 38, 40]
do not include modeling primitives to define access control
policies.

6.4 Summary

To sum up this section, Table 3 summarizes the function-
alities of the most relevant approaches and compares them
with ours regarding the type of resources and events they can
control.

Note that general approaches focus only on controlling
access to states but do not explicitly support restricting the
actions users can perform or a more fine-grained control
on how to reach a certain state. On the contrary, access-
control proposals for web-based or graphical UIs focus only
on restricting what GUI elements a user can interact with
but not on the internal logic. This is the only type of user
event they can restrict, but cannot deal with conversational
events as we do. As we just discussed in the previous section,
current chatbot frameworks, even if they obviously have the
notion of conversational event, do not offer any possibility
to restrict such events at runtime depending on the user. If
needed this has to be manually hard-coded in the bot. This is

17 https://cloud.google.com/dialogflow/cx/docs/concept/access-
control.
18 https://docs.aws.amazon.com/lex/latest/dg/security_iam_service-
with-iam.html.
19 https://www.ibm.com/verify.

123

https://cloud.google.com/dialogflow/cx/docs/concept/access-control
https://cloud.google.com/dialogflow/cx/docs/concept/access-control
https://docs.aws.amazon.com/lex/latest/dg/security_iam_service-with-iam.html
https://docs.aws.amazon.com/lex/latest/dg/security_iam_service-with-iam.html
https://www.ibm.com/verify

1942 E. Planas et al.

precisely what our approach aims to improve by integrating
access control as first-class citizens in CUIs as part of a bot
definition.

7 Conclusions

In this paper we have proposed a new model-driven frame-
work for enhancing the security of CUIs by integrating and
adapting the semantics of the Role-Based Access-Control
(RBAC) protocol to Conversational User Interfaces (CUIs).

In particular, we have extended a generic CUI metamodel
with RBAC primitives that enable the definition of fine-
grained access control policies for all key CUI elements (such
as intents, states, and transitions) and proposed a concrete
textual syntax to express and implement such access control
policy rules. We also show the feasibility of our approach and
applicability by showing how it can be implemented on top of
an existing chatbot framework using two different strategies.

As further work, we plan to cover additional types of
security concerns beyond access-control such as Confiden-
tiality, Integrity, Availability, Non-re-pudiation, and many
others. The requirements for each of these properties for a
given bot should be modeled together with the bot defini-
tion, as we have done for access-control policies, via new
extensions of our DSL. Then, the concrete implementation
strategy will largely depend on the security concern. Some
concerns can be delegated to the chatbot engine itself, e.g.,
protection against DDoS attacks could be taken care of by the
engine embedding a rule to automatically disconnect clients
sending too many requests, where the threshold is defined
when modeling the chatbot. Others to the different clients and
connectors to deploy the bots, e.g., encryption requirements
could be implemented as the configuration of the commu-
nication libraries part of the chatbot widget embedded in
webpages in charge of sending user requests to the chatbot
server. Finally, GDPR (General Data Protection Regulation)
compliance could be facilitated by providing standard con-
versations (e.g., to consent to the recording of the interaction)
to be automatically added to any bot. Our code genera-
tion process should be extended for each of these situations
accordingly.

Finally, we also plan to enrich the framework by support-
ing more expressive access control models and languages
such as XACML20 and alternative implementation strategies
that facilitate the adoption of our language to deploy secure
bots in other environments. We will also start exploring the
extension of testing, verification and validation techniques

20 http://sunxacml.sourceforge.net.

for secured CUIs, expanding on the initial discussion pre-
sented in this work.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. 5200.28-STD, D.: Trusted Computer System Evaluation Criteria.
Dod Computer Security Center (1985)

2. Attributed based access control (abac) for web services. In: IEEE
International Conference on Web Services (ICWS’05). IEEE
(2005)

3. Amato, F., Marrone, S., Moscato, V., Piantadosi, G., Picariello, A.,
Sansone, C.: Chatbots meet ehealth: automatizing healthcare. In:
Workshop on Artificial Intelligence with Application in Health,
vol. 1982 (2017)

4. Basin, D., Clavel, M., Egea, M.: A decade of model-driven security.
In: Proceedings of the 16th ACM Symposium on Access Control
Models and Technologies, pp. 1–10 (2011)

5. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From
uml models to access control infrastructures. ACM Trans. Softw.
Eng. Methodol. 15(1), 39–91 (2006)

6. Ben Fadhel, A., Bianculli, D., Briand, L.: Gemrbac-dsl: a high-
level specification language for role-based access control policies.
In: Proceedings of the 21st ACM on Symposium on Access Control
Models and Technologies, pp. 179–190 (2016)

7. Bozic, J., Wotawa, F.: Security testing for chatbots. In: Testing
Software and Systems (2018)

8. Bozzon, A., Iofciu, T., Nejdl, W., Taddeo, A.V., Tönnies, S.: Role
based access control for the interaction with search engines. In:
Ceri, S., Nejdl, W., van Bruggen, J., Assche, F.V. (Eds.) Proceedings
of the 1st International Workshop on Collaborative Open Envi-
ronments for Project-Centered Learning, COOPER-2007, Sissi,
Lassithi—Crete Greece, 17 September, 2007, CEUR Workshop
Proceedings, vol. 309. CEUR-WS.org (2007). https://ceur-ws.org/
Vol-309/paper03.pdf

9. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process mod-
eling in web applications. ACM Trans. Softw. Eng. Methodol.
15(4), 360–409 (2006)

10. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language:
Model-Driven UI Engineering of Web and Mobile Apps with
IFML. Morgan Kaufmann (2014)

11. Busch, M., Knapp, A., Koch, N.: Modeling secure navigation in
web information systems. In: Perspectives in Business Informatics
Research: 10th International Conference, BIR 2011, Riga, Latvia,
October 6–8, 2011. Proceedings 10, pp. 239–253. Springer, Berlin
(2011)

123

http://sunxacml.sourceforge.net
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://ceur-ws.org/Vol-309/paper03.pdf
https://ceur-ws.org/Vol-309/paper03.pdf

Modeling and enforcing access control policies in conversational user interfaces 1943

12. Cabot, J., Burgueño, L., Clarisó, R., Daniel, G., Perianez-Pascual,
J., Rodríguez-Echeverría, R.: Testing challenges for nlp-intensive
bots. In: 3rd IEEE/ACM International Workshop on Bots in Soft-
ware Engineering. IEEE (2021)

13. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.:
A fine-grained access control system for XML documents. ACM
Trans. Inf. Syst. Secur. 5(2), 169–202 (2002). https://doi.org/10.
1145/505586.505590

14. Daniel, G., Cabot, J., Deruelle, L., Derras, M.: Xatkit: a multi-
modal low-code chatbot development framework. IEEE Access 8,
66 (2020)

15. Fiore, D., Baldauf, M., Thiel, C.: “Forgot your password again?”
Acceptance and user experience of a chatbot for in-company it
support. In: Proceedings of the 18th International Conference on
Mobile and Ubiquitous Multimedia, pp. 1–11 (2019)

16. Gondaliya, K., Butakov, S., Zavarsky, P.: SLA as a mechanism
to manage risks related to chatbot services. In: 2020 IEEE 6th
International Conference on Big Data Security on Cloud (Big-
DataSecurity) (2020)

17. González, C.A., Cabot, J.: Formal verification of static software
models in MDE: a systematic review. Inf. Softw. Technol. 56(8),
821–838 (2014). https://doi.org/10.1016/j.infsof.2014.03.003

18. González, M., Cernuzzi, L., Pastor, O.: A navigational role-centric
model oriented web approach—Moweba. Int. J. Web Eng. Technol.
11(1), 29–67 (2016). https://doi.org/10.1504/IJWET.2016.075963

19. Groenewegen, D., Visser, E.: Declarative access control for webdsl:
combining language integration and separation of concerns. In:
2008 Eighth International Conference on Web Engineering, pp.
175–188. IEEE (2008)

20. Hasal, M., Nowaková, J., Ahmed Saghair, K., Abdulla, H., Snášel,
V., Ogiela, L.: Chatbots: security, privacy, data protection, and
social aspects. Concurr. Comput. Pract. Exp. 33(19), 566 (2021)

21. Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J.,
Cogdell, M.M., Schnitzer, A., Sandlin, K., Miller, R., Scarfone,
K., et al.: Guide to attribute based access control (abac) definition
and considerations (draft). NIST Spec. Publ. 800(162), 66 (2013)

22. Information technology—Open Systems Interconnection—
Security frameworks for open systems: Access control framework
(ISO-10181-3/X.812) (1996)

23. Jürjens, J.: Umlsec: extending uml for secure systems development.
In: UML 2002-The Unified Modeling Language: Model Engineer-
ing, Concepts, and Tools 5th International Conference Dresden,
Germany, September 30–October 4, 2002 Proceedings, pp. 412–
425. Springer, Berlin (2002)

24. Jürjens, J.: Model-based run-time checking of security permissions
using guarded objects. In: International Workshop on Runtime Ver-
ification, pp. 36–50. Springer, Berlin (2008)

25. Kashmar, N., Adda, M., Atieh, M., Ibrahim, H.: A review of access
control metamodels. Procedia Comput. Sci. 184, 445–452 (2021)

26. Kim, D.K., Ray, I., France, R., Li, N.: Modeling role-based
access control using parameterized uml models. In: Fundamental
Approaches to Software Engineering: 7th International Confer-
ence, FASE 2004. Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29–April 2, 2004. Proceedings 7, pp. 180–193.
Springer, Berlin (2004)

27. Kleppe, A.: Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels. Pearson Education (2008)

28. Klopfenstein, L.C., Delpriori, S., Malatini, S., Bogliolo, A.: The
rise of bots: a survey of conversational interfaces, patterns, and
paradigms. In: Conference on Designing Interactive Systems. ACM
(2017)

29. Kotenko, I., Polubelova, O.: Verification of security policy filtering
rules by model checking. In: Proceedings of the 6th IEEE Interna-
tional Conference on Intelligent Data Acquisition and Advanced
Computing Systems, vol. 2, pp. 706–710. IEEE (2011)

30. Lai, S.T., Leu, F.Y., Lin, J.W.: A banking chatbot security con-
trol procedure for protecting user data security and privacy. In:
Advances on Broadband and Wireless Computing, Communica-
tion and Applications (2019)

31. Lodderstedt, T., Basin, D., Doser, J.: Secureuml: A uml-based
modeling language for model-driven security. In: International
Conference on the Unified Modeling Language, pp. 426–441.
Springer, Berlin (2002)

32. Nguyen, P.H., Kramer, M., Klein, J., Le Traon, Y.: An extensive
systematic review on the model-driven development of secure sys-
tems. Inf. Softw. Technol. 68, 62–81 (2015)

33. Oberortner, E., Vasko, M., Dustdar, S.: Towards modeling role-
based pageflow definitions within web applications. In: Koch,
N., Houben, G., Vallecillo, A. (Eds.) Proceedings of the 4th
International Workshop on Model-Driven Web Engineering,
MDWE@MoDELS 2008, Tolouse, France, September 30 , 2008,
CEUR Workshop Proceedings, vol. 389. CEUR-WS.org (2008).
https://ceur-ws.org/Vol-389/paper01.pdf

34. Oguntosin, V.W., Olomo, A.: Development of an e-commerce chat-
bot for a university shopping mall. Appl. Comput. Intell. Soft
Comput. 2021, 66 (2021)

35. OMG: Unified Modeling Language (UML) specification. Version
2.5.1 (2017). https://www.omg.org/spec/UML/About-UML/

36. Ouaddah, A., Mousannif, H., Kalam, A.A.E., Ouahman, A.A.:
Access control in the internet of things: big challenges and new
opportunities. Comput. Netw. 112, 237–262 (2017). https://doi.
org/10.1016/j.comnet.2016.11.007

37. Perera, V.H., Senarathne, A.N., Rupasinghe, L.: Intelligent soc
chatbot for security operation center. In: 2019 International Confer-
ence on Advancements in Computing (ICAC), pp. 340–345. IEEE
(2019)

38. Pérez-Soler, S., Guerra, E., de Lara, J.: Model-driven chatbot devel-
opment. In: Conceptual Modeling (2020)

39. Pistoia, M., Fink, S.J., Flynn, R.J., Yahav, E.: When role models
have flaws: static validation of enterprise security policies. In: 29th
International Conference on Software Engineering (ICSE’07), pp.
478–488. IEEE (2007)

40. Planas, E., Daniel, G., Brambilla, M., Cabot, J.: Towards a model-
driven approach for multiexperience AI-based user interfaces. Soft.
Syst. Model. 20(4), 66 (2021)

41. Planas, E., Perez, S.M., Brambilla, M., Cabot, J.: Towards access
control models for conversational user interfaces. In: Enterprise,
Business-Process and Information Systems Modeling - 23rd Inter-
national Conference, BPMDS 2022 and 27th International Con-
ference, EMMSAD 2022, Held at CAiSE 2022, Leuven, Belgium,
June 6–7, 2022, Proceedings, Lecture Notes in Business Informa-
tion Processing, vol. 450, pp. 310–317. Springer, Berlin (2022)

42. Roca, S., Sancho, J., García, J., Alesanco, Á.: Microservice chatbot
architecture for chronic patient support. J. Biomed. Inform. 102,
66 (2020)

43. Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and verifying secu-
rity policies in business processes. In: Enterprise, Business-Process
and Information Systems Modeling: 15th International Confer-
ence, BPMDS 2014, 19th International Conference, EMMSAD
2014, Held at CAiSE 2014, Thessaloniki, Greece, June 16–17,
2014. Proceedings, pp. 200–214. Springer, Berlin (2014)

44. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST model for role-
based access control: towards a unified standard. In: RBAC’00.
ACM (2000)

45. Sandhu, R.S., Samarati, P.: Access control: principle and practice.
IEEE Commun. Mag. 32(9), 66 (1994)

46. Sağlam, R.B., Nurse, J.R.C.: Is your chatbot GDPR compliant?
Open issues in agent design. In: Proceedings of the 2nd Confer-
ence on Conversational User Interfaces (CUI’20). Association for
Computing Machinery (2020)

123

https://doi.org/10.1145/505586.505590
https://doi.org/10.1145/505586.505590
https://doi.org/10.1016/j.infsof.2014.03.003
https://doi.org/10.1504/IJWET.2016.075963
https://ceur-ws.org/Vol-389/paper01.pdf
https://www.omg.org/spec/UML/About-UML/
https://doi.org/10.1016/j.comnet.2016.11.007
https://doi.org/10.1016/j.comnet.2016.11.007

1944 E. Planas et al.

47. Song, E., Reddy, R., France, R., Ray, I., Georg, G., Alexander, R.:
Verifiable composition of access control and application features.
In: Proceedings of the Tenth ACM Symposium on Access Control
Models and Technologies, pp. 120–129 (2005)

48. Ye, W., Li, Q.: Chatbot security and privacy in the age of personal
assistants. In: 2020 IEEE/ACM Symposium on Edge Computing
(SEC) (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Modeling and enforcing access control policies in conversational user interfaces
	Abstract
	1 Introduction
	2 Background
	2.1 Conversational user interfaces (CUIs)
	2.2 Role-based access-control

	3 Running example
	4 Modeling access-control policy rules for CUIs
	4.1 CUI metamodel
	4.2 RBAC metamodel
	4.3 Concrete syntax
	4.4 Policy validation and correctness
	4.5 Modeling editor for RBAC policies

	5 Evaluating and enforcing policy rules for CUIs
	5.1 Enforcing RBAC policies via an external library
	5.1.1 Step 1: Generating RBAC policies
	5.1.2 Enforcing RBAC policies

	5.2 Enforcing RBAC policies using a security-aware chatbot engine

	6 Comparative analysis with the related work
	6.1 General approaches
	6.2 RBAC for Web-based UIs
	6.3 RBAC for CUIs
	6.4 Summary

	7 Conclusions
	References

