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Optimal Self-Adaptive Parameter Selection for ADMM:
Quadratically Constrained Quadratic Program

H.-N. Nguyen†

Abstract—We propose two new algorithms for solving quadrat-
ically constrained quadratic programmings (QCQP) arising from
real-time optimization based control such as model predic-
tive control or interpolating control. The proposed algorithms
are based on the Alternating Direction Method of Multipliers
(ADMM). ADMM is a powerful tool for solving a wide class
of constrained optimization problems. There are two main
challenges when applying ADMM: i) its performance depends
greatly on the efficiency of finding the orthogonal projection
on the feasible set; ii) it is not trivial to find the correct
penalty parameters. For the first challenge, we provide a way
to reformulate the original QCQP problem such that there
exists an explicit expression for the orthogonal projection. Hence,
the computational cost per iteration is cheap. For the second
challenge, we provide two procedures to compute systematically
the penalty parameters. In the first procedure, a closed form
expression for the optimal constant scalar parameter is derived
in terms of the matrix condition number. In the second one,
the penalty parameters are adaptively tuned to achieve fast
convergence. The results are validated via numerical simulation.

I. INTRODUCTION

The alternating direction method of multipliers (ADMM)
provides a versatile tool for solving a broad variety of con-
strained optimization problems in several fields, see, e.g., [2],
[6], [23], [9], [24], [22] [4]. The method is based on the aug-
mented Lagrangian where additional variables, the so-called
penalty parameters, are introduced. There are two main attrac-
tive features of ADMM. The first one is its simplicity, provided
that the orthogonal projection on the feasible set is easily
computed. The second feature is that ADMM is guaranteed
to converge for all positive values of its penalty parameters.
However, it is well known that the rate of convergence of
ADMM depends greatly on the proper choice of the penalty
parameters. In the context of convex constrained optimization
to the best of the author’s knowledge, except the particular
case of quadratic program (QP), where explicit expression for
a scalar constant penalty parameter was proposed [7], [20],
there is no systematic way to calculate the penalty parameters.
The users need to tune them manually for their particular
applications.

Our interest in ADMM is mainly motivated by its potential
application to Model Predictive Control (MPC) [13], [18].
MPC is a control technique that solves at each time instant
a finite horizon optimal control problem formulated from the
system dynamics, constraints, and a cost function. The dual-
mode MPC is one of the most well known MPC formulations.
In the dual-mode MPC, recursive feasibility and asymptotic
stability are guaranteed by using a terminal cost, and by

† SAMOVAR - Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau
France hoai-nam.nguyen@telecom-sudparis.eu

imposing the terminal state to lie in a terminal set. This
set is constraint-admissible and invariant. For linear systems
subject to linear and/or quadratic constraints, with a quadratic
cost function and an ellipsoidal terminal constraint, the opti-
mization problem is a QCQP. Note that ADMM was already
discussed in the context of QCQP based MPC in [13], [18].
However in these works, the penalty parameter is a scalar and
is found by the trial and error method. In addition, only box
constraints are addressed in [13]. In [18], the ellipsoid matrices
are required to be positive definite.

Another potential application of ADMM is in robust predic-
tion dynamics based MPC [3], [16], [17], or in interpolating
control [15]. They are also real-time optimization based con-
trol techniques, where the set invariance concept is heavily
exploited. In these techniques, if ellipsoid or the intersection
of ellipsoids are used for the invariant set, then the resulting
optimization problem is a QPQP.

In this paper, we propose two new ADMM-based algorithms
to solve a generic QCQP. Our first objective is to reformulate
the QCQP into an equivalent form such that ADMM can be
applied, and that the orthogonal projection can be analytically
computed. Our second and main contribution is to provide
two new procedures to calculate the penalty parameters. In the
first procedure, we are looking for a constant scalar penalty
parameter. We show how to obtain a closed form expression in
this case. Since the considered QCQP includes the QP in [7]
as a particular case, the first method provides a generalization
of the results in [7]. In addition, we provide an improvement
of the results in [7] by showing that the residuals sequence is
Q−linearly convergent. In [7], it was only possible to establish
the R−linear convergence for the residuals.

In the second procedure, we are looking for a vector of the
time-varying penalty parameters. The keystone of the second
procedure is based on the observation that if we employ the
dual variables of the original QCQP for the penalty parameters,
the ADMM algorithm can converge in one steps. Clearly, the
dual variables of the orignal QCQP are unknown. We provide
a way to update iteratively the penalty parameters such that
they converge to the dual variables. The resulting adaptive
ADMM algorithm is fully automated. A connection between
our second procedure and the well known residual balancing
method [11] is presented.

The paper is organized as follows. Section II covers the
notation. Section III is concerned with the problem formulation
and preliminaries. Section IV is dedicated to the QCQP
problem with only one quadratic constraint. Then in Section
V, the general case of QCQP is considered. In Section VI, we
recall a brief theory of the robust prediction dynamics based
MPC. Two simulated examples are evaluated in Section VII
before drawing the conclusions in Section VIII.



II. NOTATION

Notation: A positive definite (semi-definite) matrix P is
denoted by P ≻ 0 (P ⪰ 0). We denote by R the set of
real numbers, by Rn×m the set of real n ×m matrices, and
by Sn+/Sn the set of positive definite (semi-definite) n × n
matrices. For symmetric matrices, the symbol (∗) denotes each
of its symmetric block. ||x||2P = xTPx, ||x||2 =

√
xTx. For

a given P ∈ Sn+, E(P ) represents the following ellipsoid

E(P ) = {x ∈ Rn : xTP−1x ≤ 1}

The set {1, 2, . . . , n} is denoted by 1, n. In,0n are, respec-
tively, the identity matrix and the zero matrix of dimension
n×n. 1n is the vector of ones of dimension n×1. A sequence
{x(k)} converging to x∗ is said to converge at: i) Q−linear
rate if ||x(k + 1)− x∗|| ≤ κ||x(k)− x∗|| with 0 < κ < 1; ii)
at R−linear rate if ||x(k + 1) − x∗|| ≤ κ(k), where κ(k) is
Q−linearly convergent.

III. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

We aim to solve the following QCQP

min
x

{
1

2
xTHx+ fTx

}
(1)

s.t. (x+ bi)
TQi(x+ bi) ≤ 1,∀i = 1,m (2)

where x ∈ Rn, H ∈ Sn+, Q1 ∈ Sn, . . . , Qm ∈ Sn, and
f, b1, . . . , bm ∈ Rn.

Throughout, we assume that (1), (2) is strictly feasible.
This implies that Slater’s condition is satisfied. Hence, strong
duality holds. Note that the matrices Qi,∀i = 1,m are
required only to be positive semi-definite. As such, linear
constraints such as

ui ≤ gTi x ≤ ūi (3)

with gi ∈ Rn, gi ̸= 0, and ui < ūi can be reformulated as (2)
as follows. Define

ui =
ūi − ui

2
, g̃i =

gi
ui

(4)

We can equivalently rewrite (3) as (2) with

Qi = g̃ig̃
T
i , bi = −

(
ui + ūi

2g̃Ti g̃i

)
g̃i (5)

We can also recast the quadratic constraints

xT Q̃ix+ 2b̃Ti x ≤ c̃i (6)

as (2) with

Qi =
Q̃i

c̃i + b̃iQ̃
−1
i b̃i

, bi = Q̃−1
i b̃i (7)

The associated Lagrangian for (1), (2) is

L(x, θ) =
1

2
xTHx+fTx+

m∑
i=1

θi
2

(
(x+ bi)

TQi(x+ bi)− 1
)

(8)

where θ ∈ Rm is the dual variable. Using (8), the optimal
solution to (1), (2) is given by

x∗ = −

(
H +

m∑
i=1

θ∗iQi

)−1(
f +

m∑
i=1

θ∗iQibi

)
(9)

where θ∗ is the solution of the following optimization problem

max
θ
{V (θ)} ,

s.t. θi ≥ 0,∀i = 1,m
(10)

with V (θ) being the Lagrange dual function, i.e.,

V (θ) =

− 1
2

(
f +

m∑
i=1

θiQibi

)T (
H +

m∑
i=1

θiQi

)−1(
f +

m∑
i=1

θiQibi

)
+ 1

2

m∑
i=1

(
θib

T
i Qibi − θi

)
(11)

Since strong duality is satisfied, we have the optimal value
of (1), (2) is equal to the attained optimal value of the dual
problem (10). Hence, V (θ) is bounded from above by the
optimal value of (1), (2). Using the KKT conditions, the
optimal solution θ∗ of (10) satisfies

∇V (θ∗)T (θ − θ∗) ≤ 0,∀θ ≥ 0

or equivalently, θ∗ is optimal if and only if θ∗ ≥ 0, and ∀i =
1,m {

∇Vi(θ
∗) ≤ 0, if γ∗

i = 0,
∇Vi(θ

∗) = 0 if γ∗
i > 0

(12)

In (12), ∇Vi(θ
∗) is the i−th component of the vector ∇V (θ∗).

We will use (11), (12) to show the convergence of the new
algorithm in Section IV-B.

B. Alternating Direction Method of Multipliers

We can use the ADMM to solve convex optimization
problems of the form

min
x,z
{g(x)} (13)

s.t.
{

Ax+Bz = c,
z ∈ Z

(14)

where x ∈ Rn, z ∈ Rl, g : Rn → R is a convex function,
A ∈ Rd×n, B ∈ Rd×l and c ∈ Rd. Z ⊆ Rl is a closed and
convex set.

The augmented Lagrangian for (13), (14) is

Lρ(x, z, y) = g(x) + yT (Ax+Bz − c) +
ρ

2
||Ax+Bz − c||22

(15)

where y ∈ Rd is the dual variable for the equality constraint.
ρ > 0 is the penalty parameter. For simplicity, ρ is a scalar
in this section. However, it is possible to consider a vector of
the penalty parameters as in Section V.



In the following, we use k as iteration counter of the
ADMM. At each iteration of the ADMM, we perform alter-
nating minimization of Lρ(x, z, y) over x and z. At iteration
k we carry out the following steps

x(k + 1) =

argmin
x

{
g(x) + y(k)TAx+

ρ

2
||Ax+Bz(k)− c||22

}
(16)

z(k + 1) =

argmin
z∈Z

{
y(k)TBz +

ρ

2
||Ax(k + 1) +Bz − c||22

}
(17)

y(k + 1) = y(k) + ρ (Ax(k + 1) +Bz(k + 1)− c) (18)

Under very mild assumptions, it is well-known [2], [5], [10]
that the ADMM converges to a globally optimal solution of
problem (13), (14) for any value of ρ > 0. However, the
number of iteration to have small residuals depends strongly
on the value of ρ. A poor choice of ρ might significantly slow
down the convergence of the method.

The stopping condition of the ADMM algorithm is deter-
mined by the primal rp and dual rd residuals given by{

rp(k) = Ax(k) +Bz(k)− c,
rd(k) = ρATB (z(k)− z(k − 1))

(19)

The justification for using rd as a residual for dual optimality
can be found in [2]. The ADMM algorithm (16), (17), (18)
returns a sub-optimal solution point (x̃∗, z̃∗, ỹ∗) of (13), (14)
where the suboptimality is determined by the stopping con-
dition ||rp(k)||∞ ≤ ϵp, ||rd(k)||∞ ≤ ϵd with given tolerances
ϵp > 0, ϵd > 0. The parameters ϵp, ϵd are often chosen relative
to the scaling of the algorithm iterates [2].

IV. ADMM FORMULATIONS FOR QCQP: THE CASE m = 1

In this section we study the case m = 1, i.e., we consider
the following optimization problem

min
x

{
1

2
xTHx+ fTx

}
(20)

s.t. (x+ b)TQ(x+ b) ≤ 1 (21)

with b = b1, Q = Q1. This case is considered first to introduce
the main idea.

A. Optimal Fixed Penalty Parameter

The main aim of this section is to provide a way to optimize
the fixed penalty parameter ρ for minimizing the rate of
convergence of the ADMM algorithm (16), (17), (18). Define
L as a ”square root” matrix of Q, i.e., LTL = Q. Since Q
is required to be only positive semi-definite, one can always
select L as a full row rank matrix with L ∈ Rl×n where l is
the rank of Q. For the ADMM implementation, define z ∈ Rl

as
z = Lx+ Lb (22)

Remark 1: The motivation of introducing the auxiliary vari-
able z as in (22) is that in this case the z-update in (17) can
be computed explicitly as will be shown later. If z is defined
as z = x or z = x+ b, then there is no closed form solution
for the z−update in (17). □

We rewrite the problem (20), (21) as

min
x,z

{
1

2
xTHx+ fTx

}
(23)

s.t.
{

Lx− z + Lb = 0,
zT z ≤ 1

(24)

It is clear that x∗ is the optimal solution of (23), (24) if and
only if x∗ is the optimal solution of (20), (21). For problem
(23), (24), the associated augmented Lagrangian takes the
following form

Lρ(x, z, y) =
1

2
xTHx+fTx+yT (Lx−z+Lb)+

ρ

2
||Lx−z+Lb||22

(25)
Using (16), the ADMM sub-problem for the x−update is an
unconstrained quadratic program

min
x

{
1
2x

T (H + ρLTL)x

−
(
ρLT z(k)− LT y(k)− ρLTLb− f

)T
x
} (26)

Problem (26) has the unique solution, recall LTL = Q

x(k + 1) = (H + ρQ)−1
(
ρLT z(k)− LT y(k)− f − ρQb

)
= (H + ρQ)−1

(
ρLT z(k)− LT y(k)

)
−(H + ρQ)−1 (f + ρQb)

(27)
Using (17), the z−update is the solution of the following
optimization problem

min
z

{
zT z − 2

(
Lx(k + 1) + 1

ρy(k) + Lb
)T

z

}
,

s.t. zT z ≤ 1
(28)

Define
v(k + 1) = Lx(k + 1) +

1

ρ
y(k) + Lb (29)

The following lemma is taken from [17], [18]. It enables us
to find the closed-form solution for (28).

Lemma 1. [17], [18] The optimal solution of (28) is given
by

z(k+1) =

{
v(k + 1), if v(k + 1)T v(k + 1) ≤ 1,

v(k+1)√
v(k+1)T v(k+1)

, otherwise

(30)
Finally, using (18) the y−update is given as

y(k + 1) = y(k) + ρ (Lx(k + 1)− z(k + 1) + Lb)

= ρ
(
Lx(k + 1) + 1

ρy(k) + Lb− z(k + 1)
)

thus, using (29)

y(k + 1) = ρ (v(k + 1)− z(k + 1)) (31)

Using (19), (22), the primal and dual residuals are given as{
rp(k) = Lx(k)− z(k) + Lb,
rd(k) = −ρLT (z(k)− z(k − 1))

(32)

Define u(k) = y(k)
ρ . Using (29), one has

rp(k) = v(k)− u(k − 1)− z(k)

thus, using (31)

rp(k) = u(k)− u(k − 1) (33)



Combining (27), (29), (30), (31), (33), we obtain Algorithm 1,
which shows the particularization of the ADMM method for
solving (23), (24). Since problem (23), (24) is strictly convex,
it is well known [2] that Algorithm 1 converges to the fixed
point, and that the fixed point is the optimal solution of (23),
(24).

Algorithm 1: Fixed Penalty Parameter - Case m = 1

Require: H, f,Q, b, L, z(0), u(0), ρ > 0, ϵp > 0, ϵd > 0
1: k ← 0
2: repeat
3: x(k + 1) ← ρ(H + ρQ)−1LT (z(k)− u(k)) − (H +

ρQ)−1 (f + ρQb)
4: v(k + 1)← Lx(k + 1) + u(k) + Lb
5: if v(k + 1)T v(k + 1) ≤ 1 then
6: z(k + 1)← v(k + 1)
7: else
8: z(k + 1)← v(k+1)√

v(k+1)T v(k+1)

9: u(k + 1)← v(k + 1)− z(k + 1)
10: rp(k + 1)← u(k + 1)− u(k)
11: rd(k + 1)← −ρLT (z(k + 1)− z(k))
12: k ← k + 1
13: until ||rp(k)||∞ ≤ ϵp and ||rd(k)||∞ ≤ ϵd

In the following we aim to characterize the rate of con-
vergence of Algorithm 1. We aim also to provide a way to
compute the optimal ρ that minimizes this rate of convergence.

Substituting (27) into (29), one gets

v(k+1) = Rz(k)+(I−R)u(k)−L(H+ρQ)−1 (f + ρQb)+Lb

or equivalently

v(k+1) = Rz(k)+(I−R)u(k)+L(H+ρQ)−1(Hb−f) (34)

where
R = ρL(H + ρQ)−1LT (35)

Note that R is a symmetric matrix. Since H ≻ 0 and L is full
row rank, it follows that R ≻ 0. The following result show
that R ≺ I .

Proposition 1: Consider R in (35). One has R ≺ I,∀ρ > 0.
Proof: By using the Schur complement, we can equivalently

rewrite the condition R ≺ I as[
I

√
ρL√

ρLT H + ρQ

]
≻ 0

Using the Schur complement again, the condition is equivalent
to

H + ρQ− ρLTL ≻ 0

or H ≻ 0. The proof is complete. □
Define λ̄, λ as the maximal and the minimal eigenvalues of

R, respectively. λ̄, λ are functions of ρ. One has 0 < λ ≤ λ̄ <
1. Define

λ = max{1− λ, λ̄} (36)

Clearly, 0 < λ < 1.
The following result shows that Algorithm 1 converges

linearly to the fixed point for any ρ > 0.

Theorem 1: Consider Algorithm 1. The following relation
holds

||z(k + 1)− z∗||22 + ||u(k + 1)− u∗||22
≤ λ

(
||z(k)− z∗||22 + ||u(k)− u∗||22

) (37)

Proof: See Appendix A. □
Theorem 1 states that the sequence {(z(k), u(k))} is

Q−linearly convergent with the rate λ. The optimal penalty
parameter ρ∗ should be chosen to minimize λ. Note that min-
imizing λ is equivalent to minimize the maximal eigenvalue
of the matrix diag(R, I −R).

Define W = LH−1LT , W ∈ Rl×l. One has W ≻ 0, since
L is a full row rank matrix and H ≻ 0. Denote d1, d2, . . . , dl
as the eigenvalues of W with

d1 ≥ d2 ≥ . . . ≥ dl > 0 (38)

We have the following result.
Theorem 2: The optimal penalty parameter ρ is given by

ρ∗ = 1√
d1dl

.
Proof: See Appendix B. □
Remark 2: With ρ = ρ∗, the corresponding convergence

rate is λ∗ =

√
d1
dl

1+
√

d1
dl

. Note that d1

dl
is the condition number of

W . Since dl ≤ d1, it follows that d1

dl
≥ 1 and λ∗ ≥ 1

2 . □

B. Self-Adaptive Penalty Parameter

In this section we provide a new iteration scheme to find
the solution of (20), (21). Here we are interested in optimizing
the penalty parameter ρ. However unlike Section IV-A, ρ is a
function of k. We will use γ(k) instead of ρ(k) in the ADMM
scheme to distinguish the fixed penalty parameter case and the
time-varying parameter case. For simplicity of discussion, the
iteration counter k is also considered as a time index.

To facilitate the reading, we summarize here the z−, y−
updates at iteration k−1, and the x−, v− updates at iteration
k, using the ADMM scheme (27), (29), (30), (31) with a time-
varying γ(k).

z(k) =

{
v(k), if v(k)T v(k) ≤ 1,

v(k)√
v(k)T v(k)

otherwise , (39)

y(k) = γ(k − 1) (v(k)− z(k)) (40)

x(k + 1) = (H + γ(k)Q)−1(γ(k)LT z(k)− LT y(k))

− (H + γ(k)Q)−1(f + γ(k)Qb), (41)

v(k + 1) = Lx(k + 1) +
1

γ(k)
y(k) + Lb, (42)

Using (39), one gets

z(k) = α(k)v(k) (43)

where 0 < α(k) ≤ 1, with

α(k) =

{
1, if v(k)T v(k) ≤ 1

1√
v(k)T v(k)

, otherwise

α(k) can be arbitrarily close to zero when v(k)T v(k) is large.
However, α(k) is always different from zero. Substituting (43)
into (40), one obtains

y(k) = γ(k − 1) (1− α(k)) v(k) (44)



With a slight abuse of notation, define

R(k) = γ(k)L (H + γ(k)Q)
−1

LT

By substituting (41), (43), (44) into (42), one obtains

v(k + 1) = A(k)v(k) + L(H + γ(k)Q)−1(Hb− f) (45)

with

A(k) = α(k)R(k) + (1− α(k))
γ(k − 1)

γ(k)
(I −R(k)) (46)

Equation (45) describes a time-varying system with v(k) being
the state. The system matrix A(k) is the convex hull of two
vertices, i.e.,

A(k) = α(k)A1(k) + (1− α(k))A2(k)

with A1(k) = R(k), A2(k) = γ(k−1)
γ(k) (I −R(k)). It is clear

that the convergence rate of v(k) to the fixed point v∗ depends
greatly on A(k). For example, if A(k) has an eigenvalue, that
lies outside the unit circle, then v(k) diverges to infinity.

Remark 3: If γ is constant, then A1(k) = R, A2(k) =
I − R. The results in Section IV-A can be interpreted as to
select γ to minimize the maximal eigenvalue of A1 and of A2.
□

Using (46), one has

A(k) = (1− α(k)) γ(k−1)
γ(k) I

+
(
α(k)− (1− α(k)) γ(k−1)

γ(k)

)
R(k)

(47)

Consider first the case α(k) < 1. Hence α(k) = 1√
v(k)T v(k)

.

Similar to Section IV-A, a natural idea is to select γ(k) that
minimizes the modulus of the maximal eigenvalue of A(k)
at each iteration k, for a given α(k), α(k − 1) and γ(k − 1).
However, it is not trivial to extend this method for the case
m ≥ 2. In this paper, we select γ(k) by using the following
equation

α(k)− (1− α(k))
γ(k − 1)

γ(k)
= 0

or, equivalently

γ(k) =

(
1

α(k)
− 1

)
γ(k−1) =

(√
v(k)T v(k)− 1

)
γ(k−1)

(48)
Substituting (48) into (47), one gets

A(k) = α(k)I =
1√

v(k)T v(k)
I

Thus, using (45)

v(k+1) =
v(k)√

v(k)T v(k)
+L(H + γ(k)Q)−1(Hb− f) (49)

Substituting (48) into (41), one obtains

x(k + 1) = −(H + γ(k)Q)−1(f + γ(k)Qb)
= (H + γ(k)Q)−1(Hb− f)− b

(50)

Using (49), (50), one gets

v(k + 1) =
v(k)√

v(k)T v(k)
+ Lx(k + 1) + Lb (51)

Note that at iteration k only γ(k − 1), v(k) are required in
equations (48), (50), (51) to update γ(k), x(k + 1), v(k + 1).
Hence (48), (50) (51) can be used to find the fixed point
γ∗, x∗, v∗ of the original scheme (39), (40), (41), (42).

In the following we provide an alternative way to find the
fixed point γ∗ that does not require v(k). The idea is to use
the Gauss-Seidel method [8]. As it will be shown later this
method allows us to cover also the case α(k) = 1. Using this
method, v(k + 1), γ(k + 1) are updated in two steps

1) Step 1: Fix γ(k), calculate v(k+1) as a solution of the
following nonlinear equation

v =
v√
vT v

+ Lx(k + 1) + Lb (52)

where x(k + 1) is given in (50).
2) Step 2: Update γ(k + 1) using (48) and v(k + 1)

We have the following result.
Proposition 2: A solution v of (52) is given as

v =(
1 + 1√

(x(k+1)+b)TQ(x(k+1)+b)

)
L (x(k + 1) + b)

(53)

Proof: Using (53), one has

v√
vT v

=
L(x(k + 1) + b)√

(x(k + 1) + b)TQ(x(k + 1) + b)

It follows that
v√
vT v

+ L (x(k + 1) + b) = v

The proof is complete. □
Using Proposition 2 after Step 1, one gets

v(k + 1) =(
1 + 1√

(x(k+1)+b)TQ(x(k+1)+b)

)
L (x(k + 1) + b)

(54)

At Step 2, by substituting (54) into (48), one obtains

γ(k + 1) = (
√
v(k + 1)T v(k + 1)− 1)γ(k)

=
√
(x(k + 1) + b)TQ(x(k + 1) + b)γ(k)

(55)
Note that only γ(k) is required to update γ(k+1) in equation
(55).

The following result holds.
Theorem 3: The iteration scheme (50), (55) converges to

the optimal solution x∗ of (20), (21) for any γ(0) > 0.
Proof: See Appendix C. □
Remark 4: As the iteration scheme (50), (55) has a root in

the ADMM, it is possible to prove the convergence of (50),
(55) to the optimal solution via the ADMM theory. The main
advantage of the proof of Theorem 3 in the paper is that
it shows that γ can be selected as the dual variable for the
original problem (20), (21). Note that unlike Algorithm 1, γ in
(50), (55) is allowed to be zero. If γ∗ = 0, then the constraint
(21) is inactive. Otherwise, (21) is active. □

The following result holds.
Proposition 3: Using (55), γ(k) converges to the fixed point

γ∗ monotonically for any γ(0) > 0.
Proof: See Appendix D. □



Concerning the convergence rate, it is well known [1] that
using equation (55), γ(k) converges linearly to the fixed point
γ∗. The convergence rate depends on dh

dγ evaluated at the fixed
point γ = γ∗. The parameter γ converges quickly to γ∗ when
γ is far from γ∗. The speed is slower when γ is close to
γ∗. This behavior is very typical for first-order optimization
methods.

In the following we will analyze the behavior of Algorithm
1 if we use ρ = γ∗. It can be verified that Algorithm 1
converges in one step with z(0) = 0, u(0) = 0 if γ∗ = 0,
and with z(0) = L(x∗ + b), u(0) = L(x∗ + b) if γ∗ > 0. This
analysis suggests that ρ = γ∗ is the best choice. However,
γ∗ is unknown. Our idea is to use the scheme (50), (55) to
obtain a very rough approximation of γ∗. Because γ converges
quickly to γ∗ when γ is far from γ∗, we need only to make a
few iterations for (50), (55). We then use the obtained estimate
as the penalty parameter in Algorithm 1.

We will now analyze the behavior of Algorithm 1 with
ρ = γ̃∗ near the fixed point (x∗, v∗, z∗, u∗), where γ̃∗ is an
approximation of γ∗. At step 3 of Algorithm 1, one has

x(k + 1) = γ̃∗(H + γ̃∗Q)−1LT (z(k)− u(k))
−(H + γ̃∗Q)−1(f + γ̃∗Qb)

= γ̃∗(H + γ̃∗Q)−1LT (z(k)− u(k)) + x̃∗

where x̃∗ = −(H + γ̃∗Q)−1(f + γ̃∗Qb) ≈ x∗. Hence one
should have z(k) ≈ u(k) at convergence. At step 9, one gets
z(k) ≈ u(k) ≈ 1

2v(k). At step 3, one obtains

v(k + 1) = Lx(k + 1) + u(k) + Lb
≈ 1

2v(k) + L(x∗ + b)

It follows that v(k) converges to v∗ with the convergence rate
of 1

2 near the fixed point of Algorithm 1. Note that 1
2 is the

best possible rate for Algorithm 1 with ρ = ρ∗. Note also that
at the fixed point one should have v∗ = 2L(x∗ + b). Hence
z∗ = L(x∗ + b), and u∗ = L(x∗ + b).

We summarize our development in Algorithm 2.

Algorithm 2: Time-Varying Penalty Parameter - Case m = 1

Require: H, f,Q, b, L, γ(0) > 0, Tmax > 0, ϵd > 0, ϵp > 0
1: t← 0
2: repeat
3: x(t+ 1)← −(H + γ(t)Q)−1 (f + γ(t)Qb)
4: γ(t+ 1)←

√
(x(t+ 1) + b)TQ(x(t+ 1) + b)γ(t)

5: t← t+ 1
6: until t = Tmax

7: Using Algorithm 1 with ρ ← γ(t), z(0) ← L(x(t) +
b), u(0)← L(x(t) + b)

A good choice for γ(0) in Algorithm 2 is γ(0) = ρ∗. Step
6 implies that we run Algorithm 2 only for a few number of
iterations Tmax. Note that other criteria can be used, e.g., we
stop to update γ when the speed of change or progress in γ
is less than some tolerance value.

Results of numerical experiment given in Section VII
demonstrate that Algorithm 2 reduces substantially the number
of iterations compared to Algorithm 1 with ρ = ρ∗. The
drawback of Algorithm 2 is step 3, i.e., one needs to inverse

(H + γ(k)Q) in each iteration. In the following we provide a
way to reduce this increased computational cost. Define Lh ∈
Rn, Vh ∈ Rn, Dh ∈ Rn such that LT

hLh = H,V T
h Vh = I ,

Dh is a diagonal matrix, and

V T
h DhVh = (LT

h )
−1QL−1

h

One has

(H + γ(k)Q)−1 = L−1
h (I + γ(k)V T

h DVh)
−1(LT

h )
−1

= L−1
h Vh(I + γ(k)D)−1V T

h (LT
h )

−1

The matrix I+γ(k)D is diagonal, its inverse can be calculated
analytically for any γ(k) ≥ 0.

C. Connection to Earlier Works

In this section we aim to show the connection between
Algorithm 2 and the residual balancing (RB) method [2],
[11], [25]. The RB method is based on the observation that
increasing ρ or equivalently γ strengthens the penalty term
in the augmented Lagrangian (25), yielding smaller primal
residual rp but larger dual one rd. Conversely, decreasing γ
leads to larger rp and smaller rd. Since both rp and rd must
be small at convergence, it is reasonable to balance them, i.e.,
tune γ to keep both rp and rd of similar magnitude. At iteration
k, a simple way for this goal is

γ(k) =


ηγ(k − 1), if ||rp(k)|| ≥ τ ||rd(k)||,
γ(k−1)

η , if ||rd(k)|| ≥ τ ||rp(k)||,
γ(k − 1), otherwise

(56)

where η > 1 and τ > 0. In [11], η can also be time-varying.
The adaptation (56) is generally turning off after a few number
of iterations.

The scheme (56) has been found to be effective for a number
of problems [12], [14], [21]. As far as we know, there is
no systematic method to select η, τ . The parameters η, τ are
chosen by the trial and error method. It is well known [25]
that this is not a trivial problem. The performance of the RB
method varies wildly with different problem scalings.

Recall that the main purpose of optimizing γ in Algorithm
2 is to make z(k) ≈ u(k). Hence z(k + 1) − z(k) ≈ u(k +
1) − u(k), or equivalently, rp and rd have the same order of
magnitude. Consequently, Algorithm 2 can be considered as a
new adaptive RB method. The main distinguished feature of
Algorithm 2 compared to the standard RB method is that the
parameter η is automatically and dynamically updated. This
new “feedback” in Algorithm 2 makes it more robust to bad
scaling in the data.

V. GENERAL CASE

A. Optimal Fixed Penalty Parameter

Consider the optimization problem (1), (2). Define Li ∈
Rli×n such that LT

i Li = Qi, and li is the rank of Qi, ∀i =
1,m. Define also zi ∈ Rli and z ∈ Rl1+...+lm as{

zi = Lix+ Libi,∀i = 1,m,

z =
[
zT1 zT2 . . . zTm

]T (57)



We rewrite the problem (1), (2) as

min
x,z

{
1
2x

THx+ fTx
}

s.t.
{

Lix+ Libi = zi,∀i = 1,m,
zTi zi ≤ 1,∀i = 1,m

(58)

Clearly, problem (1), (2) and problem (58) have the same
optimal solution x∗. The augmented Lagrangian for (58) is

Lρ(x, z,y) =
1
2x

THx+ fTx

+
m∑
i=1

yTi (Lix+ Libi − zi) +
m∑
i=1

ρi

2 ||Lix+ Libi − zi||22
(59)

where yi ∈ Rli ,∀i = 1,m are the dual variables for the
equality constraints, ρi > 0,∀i = 1,m are penalty parameters.
ρi can be different for different i, ∀i = 1,m.

Using (16) at iteration k, the x−update is the solution of
the following quadratic program

min
x

{
1
2x

T (H +
m∑
i=1

ρiL
T
i Li)x

−
(

m∑
i=1

(
ρiL

T
i zi(k)− LT

i yi(k)
)
− f −

m∑
i=1

ρiL
T
i Libi

)T

x

}
(60)

Recall LT
i Li = Qi,∀i = 1,m. The solution to (60) can be

computed analytically as

x(k + 1)

= (H +
m∑
i=1

ρiQi)
−1

(
m∑
i=1

(
ρiL

T
i zi(k)− LT

i yi(k)
)

−f −
m∑
i=1

ρiQibi

)
= (H +

m∑
i=1

ρiQi)
−1

m∑
i=1

(
ρiL

T
i zi(k)− LT

i yi(k)
)

−(H +
m∑
i=1

ρiQi)
−1

(
f +

m∑
i=1

ρiQibi

)
(61)

Using (17) at iteration k, the z−update is the solution of the
following optimization problem

min
z

{
m∑
i=1

−yi(k)T zi

+ρi

2

(
zTi zi − 2 (Lix(k + 1) + Libi)

T
zi

)}
s.t. zTi zi ≤ 1,∀i = 1,m

(62)

The cost function and the constraints of (62) are separable in
zi. The updates of zi can be carried out in parallel.

The update of zi is the solution of the optimization problem,
∀i = 1,m

min
zi

{
zTi zi − 2

(
Lix(k + 1) + yi(k)

ρi
+ Libi

)T
zi

}
s.t. zTi zi ≤ 1

(63)

Define, ∀i = 1,m

vi(k + 1) = Lix(k + 1) +
yi(k)

ρi
+ Libi (64)

Using Lemma 1, the solution zi(k+1) to the problem (63) is
given by, ∀i = 1,m

zi(k+1) =

{
vi(k + 1), if vi(k + 1)T vi(k + 1) ≤ 1

vi(k+1)√
vi(k+1)T vi(k+1)

, otherwise

(65)

Finally using (18), the update of yi is given by, ∀i = 1,m

yi(k + 1) = yi(k) + ρi (Lix(k + 1) + Libi − zi(k + 1))

= ρi

(
Lix(k + 1) + yi(k)

ρi
+ Libi − zi(k + 1)

)
thus, using (64)

yi(k + 1) = ρi (vi(k + 1)− zi(k + 1)) ,∀i = 1,m (66)

Define ui(k) =
yi(k)
ρi

,∀i = 1,m, and u = [uT
1 uT

2 . . . uT
m]T .

With a slight abuse of notation, we use Algorithm 1 to
summarize the particularization of the ADMM algorithm (16),
(17) (18) to the problem (1), (2). For any ρi > 0,∀i = 1,m, as
the problem (1), (2) is strictly convex, Algorithm 1 converges
to the fixed point, which is the optimal solution to (1), (2).

Algorithm 1: Fixed Penalty Parameter - General Case

Require: H, f,Qi, bi, Li, zi(0), ui(0), ρi > 0,∀i =
1,m, ϵp > 0, ϵd > 0

1: k ← 0
2: repeat
3: x(k + 1)←

(H +
m∑
i=1

ρiQi)
−1

m∑
i=1

ρiL
T
i (zi(k)− ui(k))

−(H +
m∑
i=1

ρiQi)
−1

(
f +

m∑
i=1

ρiQibi

)
4: for i← 1 to m do
5: vi(k + 1)← Lix(k + 1) + ui(k) + Libi
6: if vi(k + 1)T vi(k + 1) ≤ 1 then
7: zi(k + 1)← vi(k + 1)
8: else
9: zi(k + 1)← vi(k+1)√

vi(k+1)T vi(k+1)

10: ui(k + 1)← vi(k + 1)− zi(k + 1)
11: rp,i(k + 1)← ui(k + 1)− ui(k)
12: rd,i(k + 1)← −ρiLT

i (zi(k + 1)− zi(k))

13: k ← k + 1
14: rp(k)← [rp,1(k)

T rp,2(k)
T . . . rp,m(k)T ]

15: rd(k)← [rd,1(k)
T rd,2(k)

T . . . rd,m(k)T ]
16: until ||rp(k)||∞ ≤ ϵp and ||rd(k)||∞ ≤ ϵd

In the rest of this section, we restrict ourselves to the case
ρi = ρ, ∀i = 1,m to calculate the optimal ρ∗ that minimizes
the convergence rate. Define

L =

 L1

...
Lm

 , R = ρL(H +
m∑
i=1

ρQi)
−1LT

b = −L(H +
m∑
i=1

ρQi)
−1

(
f +

m∑
i=1

ρQibi

)
,

(67)

In this section we assume that L is a full row rank matrix. In
this case R ≻ 0,∀ρ > 0. Using similar arguments as in the
proof of Proposition 1, it can be shown that R ≺ I . Define
λ̄, λ, respectively, as the maximal and the minimal eigenvalues
of R. One has 0 < λ ≤ λ̄ < 1. Define

λ = max{1− λ, λ̄} (68)



It is clear that 0 < λ < 1. Define also v = [vT1 vT2 . . . vTm]T .
Using (61), (64), (67), one obtains

v(k + 1) = Rz(k) + (I −R)u(k) + b (69)

We have the following result.
Corollary 1: Consider Algorithm 1. The following relation

holds

||z(k + 1)T − z∗||22 + ||u(k + 1)T − u∗||22
≤ λ

(
||z(k)T − z∗||22 + ||u(k)T − u∗||22

) (70)

Proof: The proof is omitted here, as it follows the same lines
as the proof of Theorem 1. □

Remark 5: Consider the case where Qi,∀i = 1,m are
given in (5). In this case, the QCQP problem (1), (2) is a
QP problem. Corollary 1 states that the residual sequence
{(z(k), u(k))} is Q-linear convergent. Using Proposition 2
in [7], it is only possible to establish that {(z(k), u(k))} is
R−linearly convergent. Note also that the result in [7] is not
valid for the constraints (5), that have a lower and upper
bounds. Hence, Corollary 1 provides an improvement of the
result in [7] for the QP case. □

Define W = LH−1LT , W ∈ Rl×l, with l = l1 + . . .+ lm.
Since L is a full row rank matrix, one has W ≻ 0. Denote
d1, . . . ,dl as the eigenvalues of W with

d1 ≥ d2 ≥ . . . ≥ dl > 0

We have the following result.
Corollary 2: The optimal penalty parameter ρ is given by

ρ∗ =
1√
d1dl

(71)

Proof: It is omitted here, since it follows the same lines as
the proof of Theorem 2. □

Remark 6: For the QP problem, the result in Corollary 2 is
the same as in Theorem 4 of [7]. Hence for the QP problem,
this paper provides an alternative proof to show that one has
the optimal convergence rate with ρ∗ given in (71). Similar to
the proof of Theorem 2, it can be shown that the convergence

rate is λ∗ =

√
d1
dl

1+
√

d1
dl

. Since d1 ≥ dl, one has λ∗ ≥ 1
2 . □

Remark 7: If L is not a full row rank matrix, following
[7], a good heuristic choice for ρ is ρ = 1√

d1dl
, where dl is

the smallest nonzero eigenvalue of W. □

B. Self-Adaptive Penalty Parameters

In this section we consider the case when we have a vector
of time-varying penalty parameters ρ1(k), ρ2(k), . . ., ρm(k).
As in Section IV-B, to distinguish the fixed penalty parameter
case and the the time-varying parameters case, we will employ
γi(k) instead of ρi(k), ∀i = 1,m.

Using similar arguments as in Section V-A, it can be shown
that the z−, y−updates at iteration k − 1, and the x−,
v−updates at iteration k are given by

zi(k) =

{
vi(k), if vi(k)T vi(k) ≤ 1,

vi(k)√
vi(k)T vi(k)

otherwise ,∀i = 1,m,

(72)
yi(k) = γi(k − 1) (vi(k)− zi(k)) ,∀i = 1,m, (73)
x(k + 1) =

(H +

m∑
i=1

γi(k)Qi)
−1

m∑
i=1

(
γi(k)L

T
i zi(k)− LT

i yi(k)
)

− (H +

m∑
i=1

γi(k)Qi)
−1(f +

m∑
i=1

γi(k)Qibi) (74)

vi(k + 1) = Lix(k + 1) +
1

γi(k)
yi(k) + Libi,∀i = 1,m,

(75)

Using (72), one obtains, ∀i = 1,m

zi(k) = αi(k)vi(k) (76)

where 0 < αi(k) ≤ 1, ∀i = 1,m with

αi(k) =

{
1, if vi(k)T vi(k) ≤ 1,

1√
vi(k)T vi(k)

, otherwise (77)

Substituting (77) into (74), one gets

yi(k) = γi(k − 1)(1− αi(k))vi(k),∀i = 1,m (78)

By substituting (74), (76), (78) into (75), one obtains, ∀i =
1,m

vi(k + 1) =
m∑
j=1

(
αj(k)− γj(k−1)

γj(k)
(1− αj(k))

)
Rijvj(k)

+γi(k−1)
γi(k)

(1− αi(k))vi(k) + Libi

−Li(H +
m∑
j=1

γj(k)Qj)
−1(f +

m∑
j=1

γj(k)Qjbj)

(79)
where, ∀i, j = 1,m

Rij = γj(k)Li(H +

m∑
i=1

γi(k)Qi)
−1LT

j

Similar to Section IV-B, consider first the case αi(k) < 1,∀i =
1,m. In this case αi(k) =

1√
vi(k)T vi(k)

. The parameters γi(k)

are chosen to satisfy the following equation, ∀i = 1,m

αi(k)−
γi(k − 1)

γi(k)
(1− αi(k)) = 0

Hence, ∀i = 1,m

γi(k) = 1−αi(k)
αi(k)

γi(k − 1)

=
(√

vi(k)T vi(k)− 1
)
γi(k − 1)

(80)

By substituting (80) into (74), one gets

x(k+1) = −(H+

m∑
j=1

γj(k)Qj)
−1(f+

m∑
j=1

γj(k)Qjbj) (81)



By substituting (80), (81) into (79), one obtains, ∀i = 1,m

vi(k + 1) =
vi(k)√

vi(k)T vi(k)
+ Li (x(k + 1) + bi) (82)

With a slight abuse of notation, denote

γ(k) = [γ1(k) γ2(k) . . . γm(k)]T

Similar to Section IV-B, we use the Gauss-Seidel method to
find the fixed point γ∗, x∗,v∗ of the scheme (80), (81), (82).
The main advantage of this method is that we also cover the
case αi = 1. Using the Gauss-Seidel method, vi(k + 1) is
updated as a solution of the following equation, ∀i = 1,m

vi =
vi√
vTi vi

+ Li(x(k + 1) + bi)

Using Proposition 2, one obtains, ∀i = 1,m

vi(k + 1) =(
1 + 1√

(x(k+1)+bi)TQi(x(k+1)+bi)

)
Li (x(k + 1) + bi)

(83)
By substituting (83) into (80), one gets, ∀i = 1,m

γi(k+1) =
√

(x(k + 1) + bi)TQi(x(k + 1) + bi)γi(k) (84)

The iteration scheme (81), (84) requires only γ(k),∀i = 1,m
to update x(k+1), γi(k+1). Using similar arguments as the
ones in Theorem 3, it can be shown that the scheme (81),
(84) converges linearly to the fixed point x∗, γ∗. The speed of
convergence is fast when γ is far from γ∗. It becomes slower
when γ and γ∗ are close. Hence, similar to Section IV-B, we
use the scheme (81), (84) with a few number of iterations to
obtain a rough approximation of γ∗. We then use the obtained
value as the penalty parameters in Algorithm 1. With a slight
abuse of notation, we use Algorithm 2 to denote this two stages
processes.

Algorithm 2: Time-Varying Penalty Parameters - General Case

Require: H, f,Qi, bi, Li, γi(0) > 0,∀i = 1,m, Tmax >
0, ϵp > 0, ϵd > 0

1: t← 0
2: repeat
3: x(t+ 1)←

−(H +

m∑
i=1

γi(t)Qi)
−1

(
f +

m∑
i=1

γi(t)Qibi

)
4: for i← 1 to m do
5: γi(t+ 1)←√

(x(t+ 1) + bi)TQi(x(t+ 1) + bi)γi(t)

6: t← t+ 1
7: until t = Tmax

8: Using Algorithm 1 with ρi ← γi(t), zi(0) ← Li(xi(t) +
bi), ui(0)← Li(xi(t) + bi),∀i = 1,m

The number of iterations required for Algorithm 2 to
converge to the fixed point is significantly smaller than that

of Algorithm 1 with ρi = ρ∗, ∀i = 1,m. This is because a
”good” estimate of γ∗

i ,∀i = 1,m helps us to have zi ≈ ui ≈
vi
2 ,∀i = 1,m at each iteration. Hence the rate of convergence

of vi near the fixed point is close to 1
2 , which is the best

possible rate for Algorithm 1 with ρi = ρ∗, ∀i = 1,m when
d1 = d2 = . . . = dl.

As written in Section IV-C, our scheme can be considered
as a new adaptive RB balancing method. The most notable
feature on Algorithm 2 is that we provide a way to update
the vector of penalty parameters. Note that the standard RB
method was suggested only for the scalar penalty parameter.
Although it is possible to extend the RB method to the case
of several penalty parameters, the tuning will be problematic
due to the large number of tuning parameters.

The downside of Algorithm 2 is Step 3, which requires to

inverse the matrix (H +
m∑
i=1

γi(k)Qi), or equivalently to find

the solution of the following linear system

(H +

m∑
i=1

γi(t)Qi)x(t+ 1) = −(f +

m∑
i=1

γi(t)Qibi) (85)

The eigenvalues/eigenvectors decomposition trick in Section
IV-B works only with m = 1. Solving (85), e.g., via Gaussian
elimination can be computationally demanding, especially for
a large n. In this paper, we use the conjugate gradient (CG)
method [19] to solve (85). The CG method is an iterative
method, that is well known to be effective for (85) since (H+
m∑
i=1

ρi(k)Qi) is a positive definite matrix. The interested reader

is referred to [19] for more details on the CG method.

VI. APPLICATION TO ROBUST MODEL PREDICTIVE
CONTROL

We apply the results developed in this paper to the opti-
mization problem of the prediction dynamics MPC method
[3], [16], [17]. With a slight abuse of notation, we use t as
the time step in this section.

Consider the following uncertain and/or time-varying linear
discrete-time system

χ(k + 1) = A(t)χ(t) + B(t)ν(t) (86)

where χ ∈ Rnχ is the measurable state, ν ∈ Rnν is the control
input. The matrices A(t) ∈ Rnχ×nχ ,B(t) ∈ Rnχ×nν satisfy

A(t) =
s∑

i=1

δi(t)Ai,B(t) =
s∑

i=1

δi(t)Bi (87)

where Ai ∈ Rnχ×nχ ,Bi ∈ Rnχ×nν are known matrices.
δ(t) = [δ1(t) . . . δs(t)]

T is a vector of parametric uncer-
tainties such that

s∑
i=1

δi(t) = 1, δi(t) ≥ 0,∀i = 1, s (88)

The state χ(t) and input ν(t) are subject to the constraints

−1nc
≤ Fχχ+ Fνν ≤ 1nc

(89)

where Fχ ∈ Rnc×nχ , Fν ∈ Rnc×nν are constant matrices.



The objective is to design a control law ν(t) = U(χ(t))
such that the controlled system

χ(t+ 1) = A(t)χ(t) + B(t)U(χ(t))

fulfills the state and input constraints (89) despite the un-
certainties. Furthermore, U(χ(t)) should solve the following
minimax problem

min
ν(t),ν(t+1),...

max
δ(t)


∞∑
j=0

||χ(t+ j)||2Q + ||ν(t+ j)||2R

 (90)

where χ(t+ j), ν(t+ j),∀j = 0, 1, . . . are the predicted states
and the predicted inputs from time t. Q ∈ Snχ ,R ∈ Snν

+ are
weighting matrices.

Without the constraints (89), it is well known that (90) is a
linear quadratic regulator problem. The solution is the linear
state feedback controller

ν(t) = K0χ(t) (91)

where the gain K0 ∈ Rnν×nχ can be found by solving a
semi-definite program (SDP).

In the presence of (89), the problem (90) is intractable due
to the need of guaranteeing (89) for the infinite number of
constraints. A way to overcome this problem is to employ the
following dynamic control law ν(t) = K0χ(t) + (K −K0)r(t)

r(t+ 1) =
s∑

i=1

δi(t) (Ai + BiK) r(t)
(92)

where r(t) ∈ Rnχ is the controller state. K ∈ Rnν×nχ is any
gain, that robustly stabilizes (86). In general, K is selected as
a low matrix gain to enlarge the domain of attraction. δi,∀i =
1, s in (92) are the same as in (88). As it will be shown later
in this section, δi are not required for the implementation for
the prediction dynamics based MPC control law.

Using (86), (92), one obtains

χ̃(t+ 1) = Ã(t)χ̃(t) (93)

where χ̃(t) =
[
χ(t)T r(t)T

]T
, and

Ã(t) =
[
A(t) + B(t)K0 B(t)(K −K0)

0nχ×nχ
A(t) + B(t)K

]
It is clear that Ã(t) =

s∑
i=1

δi(t)Ãi with

Ãi =

[
Ai + BiK0 Bi(K −K0)
0nχ×nχ

Ai + BiK

]
Using (89), (92), one obtains

−1nc
≤ F̃χχ̃ ≤ 1nc

(94)

where F̃χ = [Fχ + FνK0 Fν(K −K0)].
The prediction dynamics based MPC method consists of

two stages: offline stage and online stage. The offline stage
includes two steps: i) Estimate the domain of attraction of
(93), (94); ii) Calculate the upper bound of the cost function
(90).

In [17], it was show that we can employ the intersection of
ellipsoids E(Pi), i = 1, s for the domain of attraction of (93),
(94). The matrices Pi ∈ S2nχ

+ satisfy the following conditions[
Pj ÃiPi

PiÃT
i Pi

]
⪰ 0,∀i,∀j = 1, s

1− F̃j,χPiF̃
T
j,χ ≥ 0,∀j = 1, nc,∃i = 1, s

(95)

where F̃j,χ is the j−row of F̃χ, j = 1, nx.
The matrices Pi,∀i = 1, s are optimized to enlarge the

estimation of the domain of attraction of (93), (94). The
interested reader can find more details in [17]. For the upper
bound of the cost function, it was shown in [16], [17] that

max
δ(t)


∞∑
j=0

||χ(t+ j)||2Q + ||ν(t+ j)||2R

 ≤ χ̃(t)THχ̃(t)

where the matrix H = diag(Hχ, Hr) satisfies[
H− Q̃ − R̃ ÃT

i H
HÃi H

]
⪰ 0,∀i = 1, s (96)

with
Q̃ = diag(Q,0nχ

), R̃ = [K0 K −K0].

Once the matrices Pi, i = 1, s, Hr are computed, at the online
stage for a given current state χ(t), consider the following
optimization problem

min
r

{
rTHrr

}
s.t.

[
χ(t)T rT

]T
Pi

[
χ(t)
r

]
≤ 1,∀i = 1, s

(97)

It is clear that (97) is a QCQP problem, that can be reformu-
lated as (1), (2). Denote r∗ as the optimal solution of (97).
The control signal at time t is computed as

ν(t) = K0χ(t) + (K −K0)r
∗ (98)

Assuming feasibility of (97) at initial state χ(0), it was proved
in [17] that the control law (97), (98) guarantees recursive
feasibility and robust asymptotic stability.

VII. NUMERICAL EXAMPLE

This section illustrates the potential benefit of the new
methods by simulations of two examples.

A. Example 1

We first consider a very simple QCQP problem (1), (2) with

H = I2, f =

[
17
15

]
,

Q =

[
0.5485 −0.2492
−0.2492 0.1441

]
, b = 02×1

Using Theorem 2, one obtains ρ∗ = 7.6737, Figure 1 presents
the number of iterations of Algorithm 1 as a function of ρ
with the following parameters z(0) = 02×1, u(0) = 02×1,
ϵp = 10−5, ϵp = 10−5. Using figure 1, it can be observed that
the worst-case optimal penalty parameter performs reasonably
well.
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Fig. 1: Number of iterations for Algorithm 1 as a function of
ρ for example 1.

Using Algorithm 2, Figure 2 shows the number of iterations
(solid blue line) and γ (dashed red line) as functions of
Tmax. Using this figure, it can be observed that the number
of iterations required for Algorithm 2 is drastically reduced
compared to that for Algorithm 1.
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Fig. 2: Number of iterations for Algorithm 2 (solid blue) , and
γ (dashed red line) as functions of Tmax for example 1.

B. Example 2

This example is taken from [17] and is concerned with a
classical angular positioning system. The system consists of
a rotating antenna at the origin of the plane, driven by an
electric motor. The control problem is to rotate the antenna
by applying the input voltage to the motor so that it always
points in the direction of a moving object in the plane. The
motion of the antenna can be described by the discrete-time
system (86) with

A1 =

[
1 0.1
0 1

]
,A2 =

[
1 0.1
0 0

]
,B1 = B2 =

[
0

0.1574

]
(99)

The input and state constraint matrices (89) are:

Fχ =

[
1
3 0
0 0

]
, Fν =

[
0
1

]
(100)

The weighting matrices (90) are

Q =

[
1 0
0 0

]
,R = 2× 10−5

The corresponding LQ gain matrix is K0 = [−46.0650 −
7.7831]. The matrix K is chosen an LQ gain with the same
Q and with R = 10 leading to K = [−0.1479 − 1.4582].
The matrices P1, P2 are

P1 =


5.80 −0.16 5.80 −0.16
−0.16 0.86 −0.17 0.95
5.80 −0.17 5.81 −0.18
−0.16 0.95 −0.18 1.11

 ,

P2 =


5.83 −0.27 5.83 −0.28
−0.27 1.00 −0.25 0.98
5.83 −0.25 5.83 −0.26
−0.28 0.98 −0.26 1.03


and Hr = 103

[
2.52 0.32
0.32 4.19

]
.

Since L in (67) is not a full row rank matrix, the penalty
parameter ρ∗ for Algorithm 1 is chosen heuristically as in
remark 7. As the result, one gets ρ∗ = 7.5267.

For the initial condition χ(0) = [−1 0.5]T , Figure 3
presents the number of iterations for Algorithm 1 (dashed
red), and for Algorithm 2 with Tmax = 1 (solid blue), and
with Tmax = 2 (dash-dot yellow) as functions of time. The
tolerances are ϵd = 10−2, ϵp = 10−2. It can be observed
that for this example, comparing to Algorithm 1, the most
significant reduction of the number of iterations for Algorithm
2 is with Tmax = 1.
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Fig. 3: Number of iterations for Algorithm 2 (dashed red),
for Algorithm 2 with Tmax = 1 (solid blue), with Tmax = 2
(dash-dot yellow) as functions of time for example 2.

Finally, Figure 4 shows the state trajectory, the input trajec-
tory and the δ realization as functions of time.

VIII. CONCLUSION

In this paper we proposed two new ADMM based algo-
rithms for solving quadratically constrained quadratic pro-
gramming problems. In the first algorithm, we provided a
closed form expression for the optimal penalty parameter that
guarantees the smallest convergence factor. We also shown
that the residual sequence converges at linear rate. In the
second algorithm, we proposed a way to tune adaptively the
vector of penalty parameters to achieve fast convergence.
We shown that the second algorithm can be considered as
a new residual balancing method, where the parameters are
dynamically updated using the problem data. We validated
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the effectiveness of the proposed methods via two numerical
examples.
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APPENDIX

A. Proof of Theorem 1: To prove (37) we will show that

||z(k + 1)− z∗||22 + ||u(k + 1)− u∗||22 ≤ ||v(k + 1)− v∗||22
(101)

||v(k + 1)− v∗||22 ≤ λ
(
||z(k)− z∗||22 + ||u(k)− u∗||22

)
(102)

Using (31), and recall that y(k) = ρu(k), one obtains

v(k + 1) = z(k + 1) + u(k + 1) (103)

For the fixed point, one has

v∗ = z∗ + u∗ (104)

Combining (103), (104), one obtains

(v(k + 1)− v∗) = (z(k + 1)− z∗) + (u(k + 1)− u∗)

It follows that

||v(k + 1)− v∗||22 = ||(z(k + 1)− z∗) + (u(k + 1)− u∗)||22
= ||z(k + 1)− z∗||22 + ||u(k + 1)− u∗||22

+2(u(k + 1)− u∗)T (z(k + 1)− z∗)

Hence to prove (101), it suffices to show that

(u(k + 1)− u∗)T (z(k + 1)− z∗) ≥ 0 (105)

Recall that z(k+1) is the optimal solution of (28). Using the
KKT optimality condition for (28), one has, ∀z : zT z ≤ 1(
z(k + 1)− Lx(k + 1)− 1

ρ
y(k)− Lb

)T

(z(k+1)− z) ≤ 0

thus, using (29)

(z(k + 1)− v(k + 1))
T
(z(k + 1)− z) ≤ 0

Using (31), one gets

u(k + 1)T (z(k + 1)− z) ≤ 0 (106)



Equation (106) is valid ∀z : zT z ≤ 1. Since (z∗)T z∗ ≤ 1, one
obtains

u(k + 1)T (z(k + 1)− z∗) ≥ 0 (107)

Using similar arguments, and since z∗ is the optimal solution
of (28) for x∗, y∗, v∗, one gets

(u∗)T (z∗ − z(k + 1)) ≥ 0 (108)

Combining (107), (108), one obtains

u(k + 1)T (z(k + 1)− z∗) + (u∗)T (z∗ − z(k + 1)) ≥ 0

It follows that (105) holds. Consequently, (101) holds. It re-
mains to prove (102). One has, for the fixed point (v∗, z∗, u∗)
of (34)

v∗ = Rz∗ + (I −R)u∗ + L(H + ρQ)−1(Hb− f) (109)

Combining (34), (109), one obtains,

||v(k+1)− v∗||22 = ||R (z(k)− z∗)+ (I−R) (u(k)− u∗) ||22

or, equivalently

||v(k + 1)− v∗||22 =
(z(k)− z∗)TR2(z(k)− z∗)
+(u(k)− u∗)T (I −R)2(u(k)− u∗)
+2(z(k)− z∗)T (R−R2)(u(k)− z∗)

(110)

Because 0 ≺ R ≺ I , one has R−R2 ≻ 0. Hence

∥(z(k)− z∗)− (u(k)− u∗)∥2(R−R2) ≥ 0

It follows that

(z(k)− z∗)T (R−R2)(z(k)− z∗)+
(u(k)− u∗)T (R−R2)(u(k)− u∗)
≥ 2(z(k)− z∗)T (R−R2)(u(k)− z∗)

(111)

Combining (110), (111), one gets

||v(k + 1)− v∗||22 ≤ (z(k)− z∗)TR2(z(k)− z∗)
+(u(k)− u∗)T (I −R)2(u(k)− u∗)
+(z(k)− z∗)T (R−R2)(z(k)− z∗)
+(u(k)− u∗)T (R−R2)(u(k)− u∗)

or, equivalently

||v(k + 1)− v∗||22 ≤
(z(k)− z∗)TR(z(k)− z∗)
+(u(k)− u∗)T (I −R)(u(k)− u∗)

(112)

Using (36), one has
(z(k)− z∗)TR(z(k)− z∗)
≤ λ̄||z(k)− z∗||22 ≤ λ||z(k)− z∗||22

(u(k)− u∗)T (I −R)(u(k)− u∗)
≤ (1− λ)||u(k)− u∗||22 ≤ λ||u(k)− u∗||22

Therefore, using (112), one obtains (102). The proof is com-
plete. □

B. Proof of Theorem 2: Using (38), we decompose W as
W = ETDE, where E ∈ Rl×l with ETE = I , and D =

diag(d1, . . . , dl). By using the matrix inversion lemma for R
in (35) with Q = LTL, one has

R = ρL

(
H−1 −H−1LT

(
1
ρI + LH−1LT

)−1

LH−1

)
LT

= ρW − ρW
(

1
ρI +W

)−1

W

= ET

(
ρD − ρD

(
1
ρI +D

)−1

D

)
E

or equivalently

R = ET diag(
ρd1

ρd1 + 1
, . . . ,

ρdl
ρdl + 1

)E (113)

Hence ρd1

ρd1+1 , . . . ,
ρdl

ρdl+1 are the eigenvalues of R. It follows
that 1− ρd1

ρd1+1 , . . . , 1−
ρdl

ρdl+1 , or equivalently 1
ρd1+1 , . . . ,

1
ρdl+1

are the eigenvalues of (I −R). Using (38), one has{
ρd1

ρd1+1 ≥
ρd2

ρd2+1 ≥ . . . ≥ ρdl

ρdl+1
1

ρd1+1 ≤
1

ρd2+1 ≤ . . . ≤ 1
ρdl+1

Therefore ρd1

ρd1+1 and 1
ρdl+1 are, respectively, the maximal

eigenvalue of R, and of (I − R). So our problem becomes
the problem of selecting ρ to minimize the maximum between
ρd1

ρd1+1 and 1
ρdl+1 .

Note that the function ρd1

ρd1+1 = d1

d1+
1
ρ

is monotonically

increasing ∀ρ > 0. On the other hand, the function 1
ρdl+1

is monotonically decreasing. With ρ = ρ∗ = 1√
d1dl

, one has

ρd1
ρd1 + 1

=
1

ρdl + 1
=

√
d1

dl

1 +
√

d1

dl

(114)

If ρ > ρ∗, then

max

{
ρd1

ρd1 + 1
,

1

ρdl + 1

}
=

ρd1
ρd1 + 1

>

√
d1

dl

1 +
√

d1

dl

If ρ < ρ∗, then

max

{
ρd1

ρd1 + 1
,

1

ρdl + 1

}
=

1

ρdl + 1
>

√
d1

dl

1 +
√

d1

dl

If follows that ρ = ρ∗ is the optimal value. The proof is
complete. □

C. Proof of Theorem 3: Using (55), it is clear that if γ(0) >
0, then γ(k) ≥ 0,∀k ≥ 1. Consider the following function

V (γ(k)) = − 1
2 (f + γ(k)Qb)T (H + γ(k)Q)−1(f + γ(k)Qb)

− 1
2γ(k) +

1
2γ(k)b

TQb
(115)

Using (11), V (γ(k)) is the Lagrange dual function of (20),
(21), where γ is the dual variable, i.e., γ = θ. Recall that
V (γ) is concave and bounded from above. One has

dV (γ(k))
dγ(k)

= 1
2 (f + γ(k)Qb)TQγ(f + γ(k)Qb)
−bTQ(H + γ(k)Q)−1(f + γ(k)Qb)− 1

2 + 1
2b

TQb
(116)



with Qγ = (H + γ(k)Q)−1Q(H + γ(k)Q)−1. Thus, using
(50)

dV (γ(k))

dγ(k)
=

1

2

(
(x(k + 1) + b)TQ(x(k + 1) + b)− 1

)
(117)

Using (55), (117), one has
• If (x(k+1)+b)TQ(x(k+1)+b) > 1, then dV (γ(k))

dγ(k) > 0,
or equivalently V (γ(k)) is a strictly increasing function.
Using (55) one has γ(k+ 1) > γ(k). As a consequence,
V (γ(k + 1)) > V (γ(k)).

• If (x(k+1)+b)TQ(x(k+1)+b) < 1, then dV (γ(k))
dγ(k) < 0,

or equivalently V (γ(k)) is a strictly decreasing function.
Using (55) one has γ(k+ 1) < γ(k). As a consequence,
V (γ(k + 1)) > V (γ(k)).

It follows that V (γ(k)) is strictly increasing along the trajec-
tories of (55) until γ(k) reaches to the fixed point γ∗. Using
(55), γ∗ satisfies the following equation

γ∗ = h(γ∗) (118)

where h(γ) =
√
(x(γ) + b)TQ(x(γ) + b)γ, and x(γ) =

−(H + γQ)−1 (f + γQb).
Equation (118) can have at most two solutions: i) γ∗ is such

that (x∗ + b)TQ(x∗ + b) = 1; ii) γ∗ = 0. It is clear that one
needs only to discuss the case γ∗ = 0, since in the other case
dV
dγ = 0. One has

dh

dγ

∣∣∣∣
γ=0

=
√
(−H−1f + b)TQ(−H−1f + b) (119)

For any small enough γ(0), lim
k→∞

γ(k) → 0 if and only if

dh
dγ

∣∣∣
γ=0

< 1. It follows that

(−H−1f + b)TQ(−H−1f + b) < 1 (120)

Using (117), one has

dV (γ)

dγ

∣∣∣∣
γ=0

=
1

2

(
1− (−H−1f + b)TQ(−H−1f + b)

)
Hence dV (γ)

dγ

∣∣∣
γ=0

> 0. Consequently the KKT condition (12)

is satisfied. In other words, γ∗ = 0 is the optimal solution.
The proof is complete. □

D. Proof of Proposition 3: One has

dh
dγ =

√
(x(γ) + b)TQ(x(γ) + b)

−γx(γ)+b)TQ(H+γQ)−1Q(x(γ)+b)√
(x(γ)+b)TQ(x(γ)+b)

=
(x(γ)+b)T (Q−γQ(H+γQ)−1Q)(x(γ)+b)√

(x(γ)+b)TQ(x(γ)+b)

(121)

Recall that Q = LTL. Using proposition 1, one has Q −
γQ(H + γQ)−1Q ≻ 0, ∀γ ≥ 0. Hence dh

dγ > 0, and h(γ) is
an increasing function. Consequently, for any γ(0) > 0,

• If γ(1) > γ(0), then

γ(2) = h(γ(1)) > h(γ(0)) = γ(1),
...
γ(k + 1) = h(γ(k)) > h(γ(k − 1)) = γ(k)

• If γ(1) < γ(0), then

γ(2) = h(γ(1)) < h(γ(0)) = γ(1),
...
γ(k + 1) = h(γ(k)) < h(γ(k − 1)) = γ(k)

It follows that γ(k) converges monotonically to γ∗. □
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