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ABSTRACT 

Cardiovascular diseases are the leading cause of death worldwide. Several strategies – small 

molecules, gene therapy, surgeries, cardiac rehabilitation – have been developed to treat 

patients with cardiac disorders or to prevent the disease. A novel promising tool is the 

application of induced pluripotent stem cell-derived human cardiomyocytes; however, their 

clinical application is hampered by their fundamentally immature characteristics. Although 

several approaches were recently proven to support certain aspects of cardiac maturation, it 

has been discovered that any kind of stimulus itself is insufficient to induce proper maturation 

of these cardiomyocytes. Therefore, researchers have developed multifactorial approaches 

linking biotechnology, life sciences and material sciences toolsets. In this review, we 

summarise the current state-of-the-art methodologies in cardiac differentiation and maturation 

with the application of biocompatible materials and automated cell culture systems combined 

with various electrical, mechanical, topological, and biochemical stimuli. 
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Highlights 

 Improving the maturation of hiPSC-CMs is of great importance as pluripotent stem 

cell-differentiated cardiomyocytes initially demonstrate a foetal phenotype. 

 A biomimetic environment is needed with multiple stimuli to achieve higher 

maturation of hiPSC-CMs. 

 Electrospun scaffolds could recapitulate the natural 3D environment for tissue 

engineering.  

 Electrically conductive polymers are essential for cardiac tissue engineering. 

 3D printing and bioreactors support the long-term cell culture of hiPSC-CMs. 

  



1. INTRODUCTION 

 

Cardiovascular diseases (CVDs) remain the most prevalent concern in healthcare. 

CVDs affect the heart and vasculature, including coronary heart disease, cerebrovascular 

disease, peripheral arterial disease, rheumatic heart disease, congenital heart disease, deep 

vein thrombosis and pulmonary embolism, heart failure, atrial fibrillation, heart attack, stroke, 

or high blood pressure. According to the World Health Organization (WHO), more than two-

thirds of all global deaths are caused by non-communicable diseases (41 million annually, 

NCDs). Almost half of the NCDs are caused by CVDs (17.9 million), far more than by cancer 

(9.3 million), respiratory diseases (4.1 million) or diabetes (1.5 million), making CVDs the 

chief killer diseases globally (one-third of all deaths) [1-2]. There have been calls for 

advocacy programs to raise awareness among policymakers, as cancer is still assumed as a 

superior health concern, despite the fact that 113 million people live with CVD within the 

member countries of the European Society of Cardiology [3]. Apart from CVD morbidity and 

mortality, CVDs represent a significant financial and economic burden worldwide. Estimates 

from the European Heart Network show more than 200 billion EUR cost for the EU economy 

annually [3], while the American Heart Association (AHA) reported costs of 555 billion USD 

(2016) within the US [4]. AHA estimates the projection of CVD costs by 2035 to an 

astonishing 1.1 trillion USD yearly, while nearly half of the population will live with some 

form of CVD [4]. Medical costs break down into direct (hospital and health care, medical 

services and devices, prescription drugs and nursing costs) and indirect costs (productivity 

loss, work loss). 

Although there is an urgent and growing need for novel drug discoveries, therapies 

and treatments, infamous clinical trial failures obstruct the way of scientific and medical 

breakthroughs. This is best illustrated by the disappointing outcomes of the Cardiac 

Arrhythmia Suppression Trial (CAST) and Survival with oral d-sotalol (SWORD) trials, 

where the treatments increased the risk of mortality in patients assigned to the drug treatment 

[5-8]. Aside from safety concerns, trials might also fail due to lack of efficiency, as it was the 

case in a recent study [9-10]. Further concerns are raised as many of the failed, completed or 

uncompleted trials remain unpublished [11]. 

Consequently, only a handful of drugs targeting CVDs entered the market in recent 

years. More importantly, failure of a trial in the most expensive phase 3 carries an enormous 

economic burden [12]. In a 2018 research, 54% of the investigated phase 3 trials failed, 57% 

due to the lack of efficacy, 17% due to safety concerns while 22% because of commercial 



reasons [13]. Figure 1 shows the proportion of cardiac drugs progressing through the drug 

discovery pipeline compared to treatments for other diseases. There have only been 7 

cardiovascular drugs approved by the FDA and introduced to the market over the last decade. 

 

 

Figure 1.: Disheartening trends in the cardiac drug discovery pipeline. 

(A) A cumulative comparison of the newly approved drugs by the US Food and Drug 

Administration (FDA), New Molecular Entity (NME) Drug and New Biologic Approvals in 

the field of cardiovascular, neurologic and cancer treatments between 2011-2022 [14-25]. 

Over the last decade, a strikingly low number of FDA-approved cardiac drugs entered the 

market, which is more prominent in the light of cancer drugs. (B) Drugs for treating 

neurological disorders and cancers take up ~10% and ~30% of the new approvals, 

respectively, while cardiovascular drugs are responsible for only ~1%. 

 

Due to the above-mentioned factors, there is currently an urgency in the scientific 

community for a more relevant human-based model that can more accurately predict drug 

safety and efficacy before these candidates enter clinical trials. Novel approaches to manage 

CVDs are greatly needed, including regenerative medicine. In order to progress in modelling 

or regeneration, a deeper understanding of the developing healthy cardiac tissue niche is 

required. The native environment of cardiomyocytes (CMs) is comprised of the extracellular 

matrix (ECM) which is a complex network of proteins and other biomolecules. The 

composition of the cardiac ECM must dynamically adapt to provide the required signals at 

each step of maturation from immature foetal CMs to mature adult CMs. From a structural 

and functional point of view, mimicking this dynamic environment is generally accomplished 

with scaffolds combining fibrillar synthetic materials – which recapitulate the architecture and 

elasticity required for the matrix – and biomaterials (collagen, laminin, fibronectin, etc.) to 

promote the interaction between the CMs and the matrix. Intrinsically, this approach allows 

for more favourable conditions for maturation, but they are far from being sufficient. In fact, 

coupling with chemical, electrical, and mechanical stimuli is inevitable to reach a high degree 
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of maturation and implies the development of more sophisticated devices, in which the 

scaffolds are integrated, allowing a fine-tuning of these coupled stimuli over several weeks. 

Here we review the current state of the cardiac differentiation protocols, a fruitful 

connection of biological and material sciences focusing on the state-of-the-art maturation of 

human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) lead by multiple 

stimuli. 

 

2. ESSENCE OF HIPSC-CMS AND HIPSC-CM DIFFERENTIATION 

 

Currently, preclinical in vitro or in vivo models barely recapitulate the human body. 

These experimental setups include 2D or 3D cell cultures or animal models. Many of the 

animal models apply small rodents, as their size and maintenance are less challenging 

compared to large mammals, and there is a huge variety of genetically modified laboratory 

rodents and small mammals for disease modelling. On the other hand, a significant limitation 

comes from the animals’ anatomy, physiology, and pathophysiology. The behaviour of these 

cells and organs leads to interspecies differences and might markedly differ from that of the 

human. During excitation-contraction coupling of the CMs, the intracellular calcium 

concentration must elevate to initiate the contraction, while removing calcium from the 

cytosol is equally essential to let relaxation occur [26]. In this regard, rat or mouse models 

behave fundamentally differently from the ferret, dog, cat, guinea pig or human ventricles 

[27]. The positive staircase phenomenon (Bowditch effect) – a built-in autoregulatory 

mechanism of the human heart [28-29] – where elevated heart rate increases the force of 

contraction to increase cardiac output, is missing from rat hearts [30]. Large mammal models, 

such as canine or sheep hearts are frequently used in experimental cardiology [31-32], 

however, the lack of human models (due to obvious reasons) is yet to be solved. 

The application of hiPSCs has become a powerful tool since the discovery of the 

technology for reprogramming somatic cells to a pluripotent state, thus providing an 

essentially unlimited cell source of human origin [33]. The potential to foster pluripotent stem 

cells led to the in vitro development of various cell types of the human body, such as muscle 

cells, neuronal cells, pancreatic cells, skin cells or even organs [34]. This customisable in 

vitro modelling creates an opportunity to emulate tissue-, disease-, or even patient-specific 

systems, while the application of iPSCs bypasses the ethical issues with the use of embryonic 

stem cells (ESCs).  



The hiPSC-CMs are, therefore, potential cardiac models in healthy and diseased states 

and can serve as a human-relevant platform for developing cardioprotective drugs and in vitro 

cardiotoxicology methods. There is a growing interest towards hiPSC-CMs, which is 

represented by the escalated number of publications referring to hiPSC-CMs (Figure 2.). 
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Figure 2.: Increasing number of hiPSC-CM publications. 

There has been a tremendous increase in scientific publications focusing on hiPSC-CMs since 

the description of somatic cell reprogramming and cardiac differentiation. Data were obtained 

from PubMed, limited to 2011-2022; keywords were “hiPSC-CM”, the widely accepted and 

the most frequently used abbreviation for human iPS-derived cardiomyocytes. 

 

There have been several approaches to generate CMs from stem cells over the last 

decade. During this process, the cells are committed to the mesodermal and cardiac cell fate. 

In the first studies, low yield and purity of beating cells were generated from ESCs in 

suspension cultures or with hanging-drop techniques, relying on spontaneous differentiation 

[35-36]. Subsequently, research groups applied increasingly sophisticated, chemically defined 

protocols on hiPSCs, shifting from sera, proteins and growth factors (DKK1, activin A, 

BMP4, foetal bovine serum, etc.) to the application of small molecules (CHIR99021, IWR-1, 

IWP-2, etc.), resulting in better controlled and more economic cell culture protocols [37-40].  

 

 



Figure 3.: A typical ventricular hiPSC-CM differentiation protocol. 

Recent studies about cardiac induction apply protocols with evolved cell culture media and 

small molecules decently timed throughout the first two weeks of cardiac development. Most 

protocols use CHIR99021 and IWP-2 to activate or inhibit the Wnt/β-catenin pathway, 

respectively. This figure shows a representative example of a typically applied cardiac 

differentiation protocol. 

 

The most frequently used hiPSC-CM differentiation (Gi/Wi protocol [37]) with the 

application of small molecules to generate ventricular subtype of cells via the biphasic 

modulation of the Wnt/β-catenin pathway is shown on Figure 3. Briefly, Wnt activation is 

achieved by a transient application of the glycogen synthase kinase 3β (GSK3β) inhibitor (e.g. 

CHIR99021), which is followed by the administration of a Wnt inhibitor (e.g. IWR-1). The 

role of this biphasic modulation of the Wnt/β-catenin signalling is to recapitulate those 

processes during embryonic heart development. Wnt regulates the mesoderm posterior bHLH 

transcription factor 1 (Mesp1) through the induction of mesendodermal markers (brachyury, 

Bry and eomesodermin, EOMES). Inhibition of Wnt in vivo is mediated by the Mesp1 

activated dickkopf Wnt signalling pathway inhibitor 1 (DKK1) to promote the cardiac-lineage 

fate [41]. For a recent review, detailing the evolution of CM differentiation, see Lyra-Leite et 

al [42]. 

Characteristic immunocytochemistry images of hiPSC-CMs by staining early 

mesodermal and cardiac biomarkers are shown on Figure 4. Early biomarkers, Nkx2.5 and 

GATA4 show commitment to cardiac cell lineage from the mesoderm layer on cardiac 

precursor cells, while cardiac troponin T (cTnT) is a key marker for beating cardiac cells and 

for the development of the sarcomere structure. Co-staining with phalloidin marks the distinct 

f-actin expression in the hiPSC-CMs. 

 

Figure 4.: Immunocytochemistry staining of D15 hiPSC-CMs. 

Immunocytochemistry images show specific biomarkers for early-type hiPSC-CMs at day 15. 

The most frequently used marker for CMs is the cardiac troponin T (cTnT), which shows 

apparent striations (A, green) in case of the development of CM sarcomere structures. 

Mesodermal marker homeobox protein Nkx2.5 (A, red) is required for heart development. 

Transcription factor GATA4 (B, green) plays a role in the intrauterine cardiac development 

and drive foetal proliferation of CMs. Phalloidin staining (B, red) visualises the actin 



filaments of CMs. 4′,6-diamidino-2-phenylindole (DAPI) shows nuclear staining (A, B, blue). 

Images were taken on hiPSC-CMs generated by BioTalentum Ltd, at 10x and 40x 

magnification; scale bar, 50 µm. 

 

Besides identifying the differences within the cardiac induction techniques, it is also 

interesting to analyse the different protocols applied in the literature to achieve viable hiPSC-

CMs, thus we present here the progress within the past 3 years. Between 2020 and 2022, 183 

papers featured hiPSC-CMs, 17 out of them were review papers and 7 were computational 

simulations and modelling. Focusing on the original data articles, we found that the majority 

of the hiPSC-CM differentiation protocols (41%) applied small molecules to induce cardiac 

development, using CHIR99021 as the GSK3β inhibitor to activate Wnt signalling and 

additionally, various forms of the Wnt inhibitors (IWP2, IWP4, IWR-1, C59, XAV939). 

Growth factors alone (Activin A, BMP4, bFGF) or in a combination with small molecules 

(CHIR99021 + Activin A) were presented in 2% and 7% of the research papers, respectively. 

The 2D chemically coated surfaces dominated the work, while 10% of studies were conducted 

in 3D arrangements (3D spheroid differentiation, growth in bioreactor tanks). Other methods 

(e.g. cultivation on the surface of mouse embryonic fibroblasts, MEF) were negligible in this 

context. Remarkably, a notable, 25% of the published papers used commercially available 

hiPSC-CMs. On the other hand, although commercially available cardiac differentiation kits 

offer a ready-to-use method, their application is not widely distributed (4% of the articles), 

possibly due to their relatively higher price and chemically undefined (non-disclosed) nature. 

Table 1. summarises the publications of hiPSC-CMs from 2020 to 2022. 



 

  2020 2021 2022 

Total 59 
 

Ref 64 
 

Ref 60 
 

Ref 

2D - Small molecules (CHIR99021+IWP2-/IWP-4/IWR-1/C59/XAV939) 22 37% [43-64] 26 41% [65-90] 27 45% [91-117] 

2D - Growth factors (Activin A, BMP4, bFGF) 1 2% [118] 2 3% [75,119] 1 2% [120] 

2D - Combination of small molecules and growth factors 4 7% [121-124] 6 9% [125-130] 3 5% [131-133] 

2D - Other (MEF) 1 2% [134] 0 0% 
 

0 0% 
 

3D 7 12% [118,135-140] 8 13% [141-148] 3 5% [149-151] 

Review papers 5 8% [152-156] 4 6% [154,157-159] 8 13% [160-167] 

Computational modelling, simulations 1 2% [168] 3 5% [169-171] 3 5% [172-174] 

Commercially available hiPSC-CM differentiation kits 4 7% [60,175-177] 4 6% [79,178-180] 0 0% 
 

Commercially available hiPSC-CMs 17 29% [118,181-196] 13 20% [197-209] 15 25% [210-224] 

 

Table 1.: Distribution of the applied hiPSC-CM differentiation protocols. 

The summary of the studies published in the last 3 years, focusing on the proportions of the different cardiac induction models. Some of the 

papers are represented more than once, as they contained two or more of the above listed applications. Data were obtained from PubMed, limited 

to 2020-2022, keywords were “hiPSC-CM”.  



3. MULTIPLE APPROACHES TO LINK BIOMEDICAL AND MATERIAL 

SCIENCES FOR CM MATURATION, THE EMAPS-CARDIO CONCEPT 

 

It is becoming increasingly evident that for hiPSC-CM maturation it is crucial to 

simulate physiological settings by recapitulating external stimuli that mimic the native 

microenvironment. Different mechanical characteristics of scaffold materials should be 

considered for engineering a functional myocardium in vitro, including choice of porosity, 

flexibility, fiber alignment, surface modification, hydrophilicity, and other techniques for the 

improvement of cell adherence and stimulation. The seeding cell density and the coating of 

the scaffolds with substances that improve cell adherence (e.g. laminin, fibronectin, Geltrex, 

etc.) are also of major importance to achieve a more advanced maturation stage. CMs have a 

range of cell–cell connections, including adherens junctions, desmosomes and gap junctions 

that are critical for electromechanical coupling and these interactions might be enriched at 

higher cell densities [225]. Furthermore, density-dependent cell alignment was also observed 

on a fibronectin-patterned surface [226]. To further foster hiPSC-CM maturation, engineered 

3D tissues can be additionally subjected to various external stimuli, including 

electrostimulation, mechanical loading and incorporation of growth factors, adhesion 

molecules, platelet-rich plasma or other stimulatory ingredients [227]. The multiple 

approaches to be combined to mimic the natural environment and to foster the maturation of 

CMs in vitro are summarised in Figure 5. 

 

 

 



Figure 5.: Multiple approaches and their combinations to mimic the natural 

environment and to foster the maturation of hiPSC-CMs. 

Maturation process must follow the de novo production of hiPSC-CMs to mimic the adult 

phenotype. Besides recapitulating the natural microenvironment and the ECM (i.e. topological 

stimulation), several stimuli are proposed to promote maturation, including mechanical, 

electrical, or biochemical stimulation, Optimisation of the physicochemical properties of the 

applied scaffolds may highly contribute to the development of the adult-like hiPSC-CMs 

(detailed in the text). 

 

3.1 Mechanical properties of biomaterials to stimulate hiPSC-CM biological responses 

and maturation 

Biomaterials used for CM maturation must simulate the natural microenvironment 

providing the ideal niche for the cells. The key properties of the scaffolds include 

biocompatibility, hydrophilicity, permeability, flexibility and the capacity to blend with other 

polymers [228]. Micro- (<50 μm in diameter) and macropores (>200 μm in diameter) are 

needed for cell penetration and diffusion of nutrients [228]. A pore size <60 μm facilitates 

endothelial cell penetration and colonisation, larger pores promote nutrient diffusion [229-

231]. In addition, pore diameter >70 μm is needed for myocyte-penetration into the scaffold 

[232]. A possible solution to facilitate both might be creating scaffolds with pores of varying 

sizes. The end-diastolic Young’s modulus (0.02-0.5 MPa) and the tensile strength (3-15 kPa) 

of the native myocardial tissue is relatively low, thus, the production of scaffolds with low 

tensile strength and mechanical properties might improve cell cultivation and contraction of 

the engineered tissue. On the other hand, surgical grafts are often failed due to breakdown 

because of the physiological loading in vivo. Based on these, intermediate tensile strength (1-

2 MPa) was reported to be preferable over scaffolds with low or high tensile strength [233]. 

Furthermore, spring-like fibers showed increased elasticity and extensibility compared to 

straight fibers, suggesting a possible beneficial role in contributing to the contraction 

properties of the engineered cardiac tissues [232]. 

Scaffolds should also support aligned morphology of the fibers and the cells to mimic 

cardiac layout in myocardial tissue [232]. Aligned PCL fibers induced efficient hiPSC-CM 

alignment and improved sarcomere organisation [234]. High alignment of CMs can be 

achieved using micropatterns, where microcontact printing generated non-adherent 

polyethylene glycol (PEG) regions on Matrigel and fibronectin layered gold-coated glass 

slides, resulting in the highest hESC-derived CM and sarcomere alignment in the 30-80 µm 

gaps [235]. However, although multiple studies have demonstrated that aligned CMs may 

result in advanced cardiac phenotypes indicative of cell maturation, including the organisation 



of sarcomeres and gene expression of sarcomere proteins, calcium handling proteins and ion 

channels, their calcium transient kinetics were slower than in cells grown on tissue culture 

polystyrenes [234]. 

Hydrophilic scaffolds are often used to increase cell attachment. To increase 

hydrophilicity of a polymer, additional surface modifications could be used, including 

polymer mixing (e.g. PEG, laminin fragments), coating (polydopamine coating) or plasma 

treatment [236-237]. Otherwise rat primary CMs prefer relatively hydrophobic surface 

(85 wt% P(lactide-co-glycolide) + 15 wt% poly(ethylene glycol)–poly(D,L-lactide) with a 

contact angle 60° [238]. 

 

3.2 Biomimetic external stimuli 

Electrical stimulation can promote cardiac development and mediate the cardiac 

differentiation of hiPSCs by activating multiple pathways related to calcium signalling 

through the activation of Ca
2+

/PKC/ERK pathways [239-240]. Electrical pacing parameters 

also depend on the maturation stage – early maturation mimics foetal heart rate (110-160 bpm 

or 2-2.5 Hz) [241], while adult heart pacing could be mimicked by electric pulses of 2.5 V/cm 

at 5 ms pulse duration and at 1 Hz frequency [242]. Stimulation by electric pulses of 1-

1.5 V/cm, 5 Hz induces spontaneous beating of hiPSC-derived embryoid bodies (EBs) [239]; 

one week of such stimulation resulted in upregulation of cardiac gene expression (Nkx2-5, 

GATA4, αMHC, CX43) and reduced expression of pluripotent markers (KLF4 and OCT4) in 

differentiated hiPSC-CMs [239]. Connexins are concentrated at the longitudinal ends of the 

cells during CM maturation (i.e. polarised). Engineered tissue rings were made of fibrinogen, 

Matrigel, thrombin and 1-day old Sprague Dawley rat ventricular or atrial CMs. Length, 

width, height, surface area, and volume of electrically stimulated CMs were not different 

compared to postnatal rat CMs on day 12. Stimulation increased the expression of CX43 (the 

membrane is stained positive for Cx43), but Cx43 polarisation was statistically lower than in 

adult CMs [243]. 

The application of electric stimuli has been shown to favour the formation of 

sarcomeres and improve the spontaneous and synchronous beating of cardiac cells. Composite 

conductive (2D and 3D) substrates for CMs were shown to decrease the duration of 

maturation and improve contractile and electrical properties, as demonstrated through the 

application of various approaches, including chemically synthesised conjugated polymers, 

single-walled carbon nanotubes or engineered nanowired 3D cardiac patches [244-246]. 



Besides electrical stimulation, mechanical stimulation can also be applied to the cells. 

Mechanical stimulation has been considered for cardiac maturation to mimic the mechanical 

forces that the cardiac tissue undergoes throughout development, as previously reviewed by 

Carlos-Oliveira et al. [247]. Hydrostatic stress is caused by blood pressure after birth, and it 

directly depends on the distance from the right atrium (the greater the distance, the higher the 

pressure due to the greater column). The hydrostatic pressure is compared to the right atrial 

pressure and it may vary from -10 mmHg in the head to +90 mmHg in the veins of the feet 

[248]. External mechanical loading mimics in vivo forces that affect CMs undergoing cardiac 

maturation during organ development. Physiologically, shear stress is generated by blood 

flow and promotes the formation and maturation of heart chambers, CM proliferation, and 

valvulogenesis. In embryos, shear stress is about ~0.4–5 dyne/cm
2
 while in adult human 

organisms it is 10 to 26 dyne/cm
2
 in arteries and 1.4–6.3 dyne/cm

2
 in veins [249]. Shear stress 

is necessary for atherogenesis, while disturbed shear stress (low or unsteady blood circulation) 

is related to atherosclerotic plaque formation [250-251]. During CM maturation in vitro shear 

stress can be induced using a bioreactor system with laminar flow and physiological strain 

[252]. Cyclic strain mimics regular heart beating; physiological parameters are 5-10% 

elongation at 1 Hz frequency [253-254]. During hypertension, a 15% higher strain was 

estimated compared to conditions at normal blood pressure. Under hypertensive conditions, 

the amount of strain has been estimated to be 15% higher than under normotensive conditions. 

Cyclic strain can be applied on a monolayer (rat bone marrow-derived mesenchymal stem 

cells, rBMSC), seeded on elastic silicone membrane or on PLCL scaffolds with ES-derived 

CMs. In both experiments, 10% elongation resulted in increased GATA-4, Nkx2.5, Cardiac α-

MHC, β-MHC, MEF2c gene expression [255-256]. 

Different mechanical forces can be combined to mimic the natural mechanical forces, 

for instance, pulsatile flow-induced shear stress and physiological strain. In a mouse cell 

experiment, optimised conditions of 1.48 mL/min pulsatile flow with 5% cyclic strain at 

0.33 Hz, from day 2 to day 12, not only induced cardiac gene expression (Actc1, Myh6, 

Myh7) in mESC-derived cells but also had the highest number of sarcomeric myosin-positive 

(MF-20) cells [252].  

 

3.3 Integration of multiple approaches 

 Heart-on-a-chip technology has recently become an increasingly popular tool, 

combining controllable culture conditions, and the application of various stimulations and 

continuous parameter readouts [159]. This review discusses the multiple approaches that have 



been shown to link biomedical and material sciences for CM maturation. However, currently 

only a few studies investigate their simultaneous application [159,257]. The most promising 

examples include a fully 3D printed and instrumented microphysiological device that provides 

continuous electronic readout of the contractile stress of multiple laminar cardiac micro-

tissues [257].  

 In our recent, Horizon 2020 EU Framework Programme, the ElectroMechanoActive 

Polymer-based Scaffolds for Heart-on-Chip (EMAPS-Cardio) project, we aim to establish a 

realistic organotypic model both for healthy states and diseased models. A biomimetic 

microenvironment will be produced to grow and mature hiPSC-CMs, by combining 

biotechnology and biomaterial sciences. The system is equipped with beating hiPSC-CMs and 

sensors to closely monitor cell culture conditions and physiological parameters during the 

growth and maturation of the cells in a scaffold-cell arrangement placed either in a bioreactor 

or in an electromechanoactive polymer-based plate environment. Electrical, mechanical, 

topological, and biochemical stimulations allow us to examine physiology and develop 

realistic disease models in a human-based in vitro microenvironment (Figure 6). The 

following sections provide details on the components of this complex system. 

 

 

Figure 6.: The EMAPS-Cardio concept for matured human cardiomyocytes. 

The concept aims to produce a platform for the growth and maturation of cardiac microtissues 

for realistic organotypic models in healthy and diseased states. Electromechanoactive 

polymer-based scaffolds (EMAPS) are combined with bioactive membranes to optimise the 

differentiation of the hiPSC to adult-like CMs. The cell-scaffold kit is then transferred to a 3D 

printed device and/or bioreactor (microfluidic system) to enable continuous monitoring of 

cardiac function. This platform aims to serve as the most realistic human heart model to help 

better understand heart diseases and cardiotoxicology screenings.  

 

4. ELECTROSPINNING AND DRUG RELEASE FROM SCAFFOLDS 

 



Several requirements – some of which are particular to the maturation of cardiac cells 

and tissues – must be met by artificial scaffolds in order to replicate the natural 3D 

environment for tissue engineering. While electrospinning is a straightforward and 

economical method that can meet most of these requirements, it does presuppose several 

specific material advancements, particularly in terms of physicochemical and biological 

qualities. By delivering a high voltage to a polymer solution that is drawn into a jet or stream 

and driven toward a collector, the electrospinning method is able to create polymer micro-

nanofibers. The electrostatic forces stretch the electrically charged polymers to create fibers. 

The first crucial step is to replicate the fibrillary structure of ECM, which directs cell 

arrangement and promotes the elongated, anisotropic shape of CMs by creating long, straight 

sarcomeres that control cell contractility [258]. With the best design, high-speed spinning 

drums or mandrel collectors can produce aligned electrospun nanofibrous scaffolds [259]. 

These scaffolds have continuous micro- and nanofibers, a high surface-to-volume ratio, a high 

porosity level, and a heterogeneous distribution of pore sizes, which are characteristics of 

natural ECM [260]. 

Another critical factor is the mechanical characteristics of the applied scaffolds. To 

support the myocardium’s spontaneous contractions, ideal scaffolds should have a Young's 

modulus of tens to hundreds of kPa. Since many electrospun synthetic polymers, including 

PCL, PLA, PLGA, etc., have Young's moduli in the MPa range and yield points below 1%, 

they are not suitable for the maturation of cardiac cells. The necessary mechanical properties 

can be achieved using electrospun elastic polymers like PLCL, PGS, or natural polymers 

(chitosan, elastin, silk fibroin, gelatin), or mixtures of elastic and natural polymers 

(PGS/gelatin, PLCL/silk fibroin, etc.) [259]. A thorough analysis of the various polymers 

utilised for cardiac tissue engineering can be found in the review paper of Kitsara et al. [260]. 

Electrically conductive scaffolds have been found to naturally improve the 

synchronisation of cardiac cell beating in the myocardium due to electrical signal 

transmission through the scaffold [261]. In fact, the excitation-contraction coupling is 

facilitated, and intercellular gap junctions are better established in CMs cultivated on 

conductive 2D and 3D substrates. To create elastic conductive scaffolds, conductive fillers 

like carbon nanotubes, graphene, reduced graphene oxide, metallic nanoparticles, etc., or 

conducting polymers (CPs, see next section) are frequently utilised [262-263]. Another 

method involves utilising chemical or electrochemical deposition to coat the surface of the 

scaffolds with a layer of CPs.  



Additionally, the application of electric stimuli that accelerate the maturation of heart 

tissues can be facilitated using conductive scaffolds. The structural and mechanical properties 

of myocardial function were shown to be enhanced by electrical stimulation [264]. 

Furthermore, the stimulation regime and duration significantly increased adult-like gene 

expression profiles in the stimulated tissue [265]. 

The modification of the scaffolds from both the outside and the inside of the fibers is 

another crucial topic. This can be carried out utilising physical, chemical, and biological 

techniques either during the construction of the scaffolds or afterwards. It can significantly 

enhance biocompatibility and how cardiac cells interact with scaffolds by improving cell 

adhesion, proliferation, etc. The simplest method is probably a post-construction treatment, 

which involves chemical alteration of the surface fibers by adding functional groups or 

changing those that already exist. For instance, to improve the interaction with negatively 

charged sticky proteins like fibronectin or laminin, positive charges can be produced using 

hydrochloric acid (HCl) [261]. Dopamine polymerisation on scaffold surfaces has also been 

investigated to enhance cardiac cell adhesion [266]. It is also an interesting alternative to 

modify surfaces using plasma [267]. The scaffolds can also be incubated in a solution 

containing biomolecules, such as fibronectin, chitosan, collagen, etc., to enhance their 

biological characteristics [268]. Other popular techniques include blend, coaxial, and 

emulsion electrospinning with biological additions [269]. They can be optimised to 

encapsulate substances like growth factors for drug release and have the advantage of causing 

a change within the electrospun fibers. Short sticky peptides from growth factors (e.g. 

Neuregulin-1) or laminin [270] can be encapsulated in polymer blends [271]. An effective 

technique for CM maturation involves the construction of core-shell fibers for the regulated 

release of active molecules with the timed secretion of suitable growth factors [272] and small 

molecule inhibitors [273]. In another study, core-shell electrospun nanofibers were created to 

enclose a bioactive form of VEGF [274]. 

Two additional points must be considered. The first one concerns the degradation of 

the scaffolds over time which can be a major issue. When employed for cardiac cell 

maturation, the properties of the scaffolds must be stable over several weeks or months, and 

using natural polymers can be problematic from that point of view. Finally, cell seeding can 

be extremely challenging and should be regarded as a crucial stage in the formulation of 

experimental protocols depending on the type of scaffold and the design of the device with 

which the scaffold is to be employed. The cell seeding must be preceded with potent 



sterilisation procedures without harming the scaffold material (e.g. gamma irradiation, UV 

exposure, chlorine dioxide, ethylene oxide). The successful attachment of hiPSC-CMs to the 

scaffold surface also highly depends on the physicochemical properties (e.g. dry or pre-

moistened, surface tension, electrospinning material, coating with ECM proteins) of the sheet 

and on the alignment of the nano- or microfibers (see previous chapter), while a higher 

amount of the cell culture media during cell seeding might reduce the density of cells on the 

scaffold surface and result in an unwanted attachment to the bottom of the culture dish. The 

cell seeding might be followed by slow migration into the deeper layers of the scaffolds, 

which – without functional vascularisation – limits the thickness of the samples due to the 

slowed or hampered diffusion of oxygen and nutrients [275]. In contrast to hydrogels, the cell 

distribution on porous scaffolds might also be inhomogeneous [276]. 

 

5. CONSTRUCTION OF ELECTROMECHANOACTIVE POLYMER-BASED 

SCAFFOLDS 

 

The development of electrically conductive scaffolds based on CPs for cardiac tissue 

engineering has grown significantly in the last ten years [262]. Because of their intrinsic 

electronic and ionic conduction, they promote cell differentiation, proliferation, and 

maturation. They also favour synchronous contractions among cardiac cells increasing the 

expression of genes that encode key proteins involved in the regulation of the 

electrophysiological properties of CMs [261,277]. Moreover, electrical stimulation can be 

delivered through a CP-based scaffold with noticeable beneficial effects on differentiation and 

maturation (Figure 7) [278]. 

 

Figure 7.: Platform for integrated stimulation and continuous sensing. 

Schematic illustration of the platform where electrical stimulation is combined with 

continuous sensing. During the fabrication process of the EMAPS (Electromechanoactive 

polymer-based scaffolds) actuators, their integration with bioactive scaffolds is achieved by 



electrospinning of aligned microfibers followed by the vapour-phase and electrochemical 

deposition of conductive polymers and finished with the application of bioactive scaffolds, 

leading to a bioactive bilayer actuator. The prepared 3D printed transwell inserts are then 

ready to be integrated into a conventional cell culture plate for hiPSC-CM cultivation and 

evaluation of readouts. 

 

The most commonly used CPs for tissue engineering are polyaniline (PANI), poly(3,4-

ethylene-dioxythiophene) (PEDOT), and polypyrrole (PPy) with electrical conductivities up 

to 105 S/cm [262,279]. PPy is usually considered the most promising for cardiac tissue 

engineering because of its ease of synthesis, high conductivity in physiological conditions, 

and well-known biocompatibility. PPy has been coated onto electrospun scaffolds or 

incorporated into the fibers, and both ways have been used with various materials, including 

silk fibroin [280-281]. 

Their surface properties can be easily tuned through the binding of bioactive 

molecules using adsorption, entrapping, or covalent binding [278]. For example, PPy surfaces 

can be doped with peptides from laminin (p20 and p31) to enhance the differentiation of ESCs 

[282] and PPy-incorporated cardiogel was shown to result in a substantial improvement of 

cardiac functional properties [283]. The key issue with these approaches is to keep the 

biomolecules attached without impacting their bioactive roles. 

Apart from being conductive, an exciting feature of CPs is that they can be used for 

electromechanical actuation in biomedical applications [284]. The actuating principle of CPs 

resembles the physiological muscles, in terms of being wet, soft, and electrically stimulated 

and controlled. CPs undergo a volume change upon electrochemical oxidation and reduction 

by applying a low potential usually under 1 V. The volume change is predominantly caused 

by the motion of ions and solvent in and out of the polymer matrix during electrochemical 

cycling. This process can produce significant stress from 3-5 MPa and strain of a few percent. 

Furthermore, the use of scaffolds with aligned fibers will translate the volume change into a 

uniaxial strain leading to a more efficient mechanical stimulation of cardiac cells. 

However, for an efficient electromechanical actuation, CPs often have too high 

Young’s modulus (E⁓100-300 MPa) and low elasticity due to their brittle backbones. Here, 

the conductive scaffold, directed towards cellular mechanical stimulation, requires specific 

features. These include having elastic properties, and a low Young’s modulus so not to hinder 

the electrically driven volume change in the actuating polymer. Moreover, particular attention 



must be paid to obtain a strong adhesion of the deposited CPs to avoid delamination and creep 

during actuation. 

To overcome these issues, different approaches have been reported to enhance the 

properties of CPs using appropriate dopants, or by incorporating the CP into cross-linked 

elastic scaffold structures. Different doping ions can be employed to enhance the electrical 

and electromechanical properties of CPs. In the case of PPy, for example, 

dodecylbenzenesulfonate (DBS), trifluoromethanesulfonate (CF3SO3), or Lithium 

bis(trifluoromethanesulfonyl)imide (LiTFSI) have been used as dopants and will change the 

electromechanical properties of the PPy. It was shown that PPy doped with DBS exhibits the 

best performance for electromechanical actuation [285]. PPy electrochemical actuators can 

operate in physiological liquids which makes them extremely relevant for the 

electromechanical stimulation of cardiac cells [286-287]. 

Electrochemical synthesis of CPs is the preferred means for obtaining redox-actuating 

materials, due to its simplicity, good selectivity, reproducibility, and high actuating 

performances. The electrochemical deposition route requires the attachment of a separate 

electrically conductive electrode to the scaffold (e.g. metal coatings) followed by the 

deposition of the main actuating layer. This solution is, however, hampered by additional 

manufacturing costs and delamination issues. Temmer et al. developed a metal-free two-step 

combined chemical-electrochemical polymerisation strategy to prepare the actuating material 

on a non-conductive membrane [288-289]. A first chemically synthesised CP layer 

(synthesised through dry vapor phase deposition or wet chemical route) forms an electronic 

electrode surface, allowing the following electrochemical deposition of the main actuating 

layer of the CP. This synthetic pathway ensures good adhesion between the scaffold 

membrane and the CP. Harjo et al. used the combined polymerisation process to coat PPy on 

the surface of electrospun gelatin–glucose nanofibers to prepare a linear actuator [285]. The 

results of the electromechanical actuation showed that the obtained actuators have good 

actuation strain (⁓20%) and stress (⁓0.15 MPa) with high stability [285]. 

Gelmi et al. followed the combined chemical-electrochemical polymerisation strategy 

of PPy to develop electrospun conductive scaffold mats that can deliver electrical as well as 

mechanical stimulation to hiPSC-CMs upon electrochemical oxidation and reduction 

processes of PPy in cell media [287]. The material is comprised of a poly(lactic-coglycolic 

acid) (PLGA) fibrous scaffold coated with the CP PPy. The authors reported an increased 

expression of cardiac markers for stimulated compared to unstimulated protocols. Similarly, 



E. Kerr-Phillips reported cross-linked electrospun rubber fibers with electrochemically 

controllable pore sizes using the CP PEDOT [290]. 

 

6. MICRODEVICES SUPPORTING HIPSC-CMS, COMMERCIALLY AVAILABLE 

DEVICES AND CHALLENGES 

 

The 3D cultivation of hiPSC-CMs towards their mature stage is considered a very 

promising model for drug safety testing as it mimics the complex in vivo architecture, notably 

by reproducing closely the ECM microenvironment [291]. As described above, the maturation 

process of hiPSC-CMs requires the help of several crucial biophysical stimuli, namely, 

mechanical, electrical, topological and biochemical cues [292]. Therefore, there is a rising 

demand for the development of proper cultivation platforms, able to provide such biophysical 

stimuli and environment simultaneously [293]. Moreover, an adequate sensing of hiPSC-CMs 

autonomous contractility and excitability is of major importance as they are crucial indicators 

to evaluate CM functions during various treatments [294]. An overlook at the existing market 

permits a glimpse of a few commercially available devices that can cultivate hiPSC-CMs. 

Devices based on microelectrode array (MEA) measurement of CM monolayer are 

often used for electrophysiological measurement including drug testing for pharmacology 

evaluation to characterise the electrophysiological changes and to detect functional 

cardiotoxicity [295-296]. These are powerful tools for toxicity screenings with several plate 

formats available (up to 96-well plates). These field potential or impedance recording 

machines provide readouts such as electrical activity, contractility and cell viability [295]. 

Despite the functional readouts, the environment provided by MEAs is fundamentally 

different from the in vivo ECM, while important stimuli (e.g. mechanical, topological) are 

missing.  

The currently available CM culturing devices in the market offer a number of essential 

stimuli and sensing for the physiological cultivation and maturation of hiPSC-CMs [297-301]. 

These engineered heart tissues and heart-on-a-chip devices can be supported by hydrogel 

substrates and equipped with flexible wires to record active force and passive tension, calcium 

transients and action potentials combined with contractility sensing, to generate 3D-

engineered cardiac tissues from hiPSC-CMs, used subsequently for pharmacology studies 

[302]. 



Bioreactors offer promising options to reach the expected degree of complexity and 

maturation of hiPSC-CMs [303-305]. The possibility to apply an extensive array of actuators 

and sensors, which can be manipulated by automated systems allows close monitoring of the 

long-term cell cultures. Such automated cell culture system can provide control over the 

bioprocesses in a sterile environment without the need for manual interventions, thus reducing 

the risk of contaminations. Besides sterile surfaces, long-term hiPSC-CM cultivation requires 

additional well-controlled parameters, such as optimal temperature, stable level of nutrients in 

the cell culture medium, removal of by-products and control of pH, i.e. environmental control. 

Fluidics systems of bioreactors allow continuous replacement of the cell culture medium to 

avoid sudden changes (i.e. nutrient shock) [303], while administration of certain drugs is also 

available for treatments and measurements. Furthermore, the modularity of the bioreactors 

and precision techniques such as 3D printing make it possible to tailor the tissue chamber for 

specific purposes, including integration of different stimuli [306-308]. Figure 8 illustrates a 

possible design of a tissue chamber inside a bioreactor adapted to hiPSC-CMs cultivation and 

maturation. The tissue chamber can be equipped with a pneumatic membrane and elastic (or 

even bioactive) scaffolds, delivering the topological and biochemical cues to the hiPSC-CMs. 

The mechanical stimulation is generated by the expansion of the pneumatic membrane, 

controlled by a flux of air underneath the membrane. Electrodes integrated into the tissue 

chamber are responsible for the current injection to evoke the electrical stimulation, which can 

support T-tubule formation and positive force-frequency relationship to promote the 

maturation of hiPSC-CMs, while a precise camera system evaluates autonomous contractions 

of the hiPSC-CMs. Finally, automation of the bioreactor controls and monitors the events in 

the tissue chamber and fluid path for a distinct long-term culture. 

 

Figure 8.: Bioreactor platform for long-term cell culturing of hiPSC-CMs. 

Schematic illustration of a bioreactor platform where elastic bioactive membranes are 

integrated into the tissue chamber of the bioreactor, allowing biochemical, mechanical, 

topological, and electrical stimulation of hiPSC-CMs to achieve higher maturation. 

 



7. ADDITIVE MANUFACTURING FOR IN VITRO CARDIAC TISSUE 

MODELLING 

Additive manufacturing, also known as 3D printing, is a cutting-edge technology that 

produces objects layer-by-layer from a computer-aided design (CAD) model [309]. Their use 

in tissue engineering has increased over the years, both in the production of biomaterials for 

the repair and regeneration of tissues and in in vitro tissue modelling. Despite this, no 3D 

printed devices for cardiac tissue modelling were found to be commercially available, so an 

overview of the literature was carried out to investigate the current state-of-the-art. 

Engineering cardiac tissues still represent a significant challenge due to its 

heterogeneous, anisotropic, complex, and hierarchical structures, which is critical for 

transitioning from pre-clinical trials to clinical practice. Conventional cell culture methods 

(i.e. 2D and static culture) play a vital role in research but have several limitations since they 

inaccurately represent the tissue in vitro. Bioprinting has emerged to overcome these 

limitations by spatially controlling the 3D structures of artificial tissues and, thus, fabricating 

reproducible tissues. Indeed, this technique is able to create unidirectionally aligned 3D 

microfibers (anisotropic arrangements) for cardiac tissue engineering by varying the distance 

between the fibers deposited in the y direction while keeping the distance in x direction 

constant (Figure 9A) [310]. A simple approach for generating endothelialised myocardium 

tissue involves (1) printing, using the aforementioned arrangement, a bioink containing 

human umbilical vein endothelial cells (HUVECs) embedded in a mixture of alginate and 

Gelatin methacryloyl (GelMA), (2) organisation and migration of the HUVECs into a layer of 

confluent endothelium surrounding the microfibers (Figure 9B) and (3) seeding and culture 

of CMs into the bioprinted scaffold [310]. By using this procedure, cardiac tissue 

demonstrated improved cellular alignment and synchronous spontaneous beating after 48h of 

culture. Notably, the incorporation of the bioprinted tissue on a microfluidic device, i.e. 

endothelialised-myocardium-on-a-chip, prompted its use as a platform for cardiovascular drug 

screening. Despite all that, the published in vitro model has some limitations, namely the use 

of animal CMs and the lack of a hollow lumen in the endothelialised microfibers which 

affects the functionality of the endothelium. 



Figure 9.: Schematics of additive manufacturing methods to achieve organised and 

functional cardiac tissue. 

(A) Scheme of the y-distance variation technique to obtain an anisotropic arrangement of the 

cardiac tissue: (1) arrangement unlikely to improve unidirectional cell alignment; (2) pattern 

capable of promoting cell alignment. (B) Organisation and migration of endothelial cells to 

the fiber surface forming a lumen-like structure. (C) Illustrative representation of the 3D 

printed sensor and its principle. The contraction of the cardiac tissue deflects the cantilever, 

stretching the strain gauge which, in turn, generates a resistance alteration that is proportional 

to the contractile tension of the tissue. d – spacing between filaments. 

 

The orientation of the CMs is of great importance for heart contraction and, 

consequently, for the efficient pumping of blood. Additive manufacturing is ideal to produce 

guiding scaffolds for this application, as it allows control over the architecture of the object. 

The study of Iwanaga et al. demonstrated this by achieving oriented and synchronous CM-

contracting tissue constructs after 3D printing fiber-like acellular scaffolds and culturing them 

with CMs [311]. Another study printed a microscopic, hollow, cylindrical, and acellular 

scaffold to guide the tissue structure composed of hiPSC-CMs [312]. This structure was 

incorporated into an organ-on-a-chip, and the scaffold was able to sustain substantial tissue 

contractions and allowed flow generation without collapse over the course of a week. The use 

of 3D printed acellular scaffolds with subsequent cell culture may be particularly beneficial 

compared with bioprinted cellular ones, as the mechanical and thermal stresses that occur in 

the bioprinting process can affect cell viability and proliferation [313]. 



 The bioprinting process involves the optimisation of several aspects, especially the 

bioink’s properties. Cell spreading, proliferation and morphogenesis are highly dependent of 

the stiffness and porosity of the bioink [314]. Studies on microfluidic bioprinting of 3D 

cardiac tissue constructs found that HUVECs had improved cell spreading on constructs with 

an elastic modulus of around 40 kPa and when embedded in a bioink with a lower elastic 

modulus, cells maintained a spherical shape after 10 days of culture [315]. Evidently, the 

optimal bioink’s mechanical properties differ for each cell type and, therefore, must be 

tailored according to the specific tissue to be mimicked [314]. 

Cellular co-culture systems have been widely used to study and design complex 

multicellular models by mimicking in vivo cell-cell interactions and cell signalling [316]. 

Native tissues are composed of several cell types that work synergistically to achieve the full 

functionality of that tissue or organ, making it, therefore, crucial to replicate this 

multicellularity in in vitro models. In a study by Alonzo et al., organoids containing human 

CMs, microvascular endothelial cells and cardiac fibroblasts were bioprinted to resemble the 

in vivo myocardium more closely and investigate the role of microgravity in disease initiation 

and development [317]. They showed that the interaction between CMs, endothelial cells, and 

fibroblasts has effects on the cardiac remodelling process and cardiac function during 

development and disease. In addition, the 3D printed constructs resembled the striated 

structure of in vivo cardiac tissue at day 21, and exhibited high maturity and complexity, 

indicating that the scaffold supported the growth and development of myocardial tissue. 

Although extensive efforts have been made towards the bioprinting of cardiac 

constructs, most studies still use animal primary cells, or human cell lines [310-311,317]. 

Human stem cells are a fundamental resource for a physiologically relevant in vitro system, 

but their combination with bioprinting technology still remains a challenge, mainly because 

human stem cells eventually lose cell elongation, differentiation and functionality [318-319]. 

Overcoming these challenges, i.e. the successful bioprinting of hiPSC-CMs with enhanced 

cell differentiation, distribution, and functionality, will increase the speed and reduce the cost 

of drug testing by limiting number of cells required and will improve the clinical relevance of 

these tests by replacing the animal models which are not faithfully representing the human 

physiology [319]. 

The majority of the current microphysiological systems (MPS) lack integrated sensors 

and their fabrication involves multi-step lithographic methods. 3D printing can solve this 

exhaustive manufacturing by producing the different parts in a single or just a few 



programmable steps. This was demonstrated in a study by Lind et al., where a fully printed 

MPS with soft strain gauge sensors for the continuous electronic readout of the contractile 

stress of human cardiac tissue was obtained using six functional inks [257]. In seven 

automated sequential steps, the device was produced and contained three main structures: the 

strain gauge wire, the tissue guiding microfilaments and the electrical leads and contact pads 

(Figure 9C). The results showed that microfilaments guided the CM self-assembly into 

anisotropic tissues and that strain gauges provided reliable readings of tissue contractile stress, 

thereby indicating great potential for in vitro tissue engineering and drug screening tests. 

Yong et al. developed a similar approach, but instead of manually seeding the cells, they 

bioprinted a bioink composed by hiPSC-CM and human cardiac fibroblasts (hCFs) in parallel 

to the bi-pillar anchors and onto the sensor [320]. This platform enables high-throughput 

screening, can be connected wirelessly to a smartphone, and can monitor the contractile force 

and beat rate of the engineered cardiac tissue. Clearly, simultaneously printing sensors and 

cardiac tissue constructs bring advantages in terms of reproducibility, control over tissue 

structures, versatility, customisation, and real time measurements. In another study, Wang et 

al. designed a bioprinted cardiac tissue construct integrated with a 3D printed micro-spring to 

measure contractile forces directly [321]. Using this force sensor, the researchers were able to 

monitor the contractile force generated by the tissue construct and assess the effect of drug 

dosage on the contractile force of the bioprinted heart tissue. In addition, a PCL frame was 3D 

printed to act as an anchoring point to attach the cell-laden hydrogel and facilitate the 

development of muscle fibers as well as guide their alignment. Overall, a uniformly 

organised, centimetre-scaled and aligned cardiac tissue was designed, bearing great potential 

for pharmaceutical and regenerative medicine applications. 

 

8. CONCLUSIONS 

 

The aim of the recent studies is to develop cellular systems in microenvironments that 

serve as more accurate human-relevant in vitro models to increase the efficacy and 

translational value of drug development and cardiotoxicity safety screenings. Besides 

generating human-based platforms, an outstanding benefit lies in the compliance with the 

principles of the 3Rs (Replacement, Reduction and Refinement in animal research) as 

millions of laboratory research animals are used in preclinical studies. These developments 

are corroborated by an urgent need for appropriate de novo CMs due to the limited 



regeneration capabilities of the heart. The production of de novo CMs is solved to date, 

however, there are cumbersome attempts to bring these cells to the desired maturity status. 

There have been several attempts to develop the proper structural basis for the hiPSC-

CMs to grow and age, from electrospun scaffolds, heart-on-a-chip devices and muscular thin 

films through cardiac cell sheets and engineered heart tissues to the de- and recellularised 

heart models. The construction of these systems provides physical support and contact to the 

cells, while additional stimulations help the long-term maturation goals by electrical, 

mechanical, or biochemical cues. On top of that, besides in vitro experiments and 

developments, validation of clinical-grade hiPSC-CMs is crucial to prepare these cells for 

clinical use and transplantation into patients with CVDs.  

The use of additive manufacturing strategies in cardiac tissue engineering is 

promising; however, the functionality and complexity of these tissues are still insufficient to 

replicate native tissue accurately. Undoubtedly, this technology is in its infancy and 

challenges such as the low resolution of printing machines, reproducibility, and the lack of 

robust myocardium-targeted bioinks need to be overcome before the devices can enter the 

market. Nevertheless, as technology evolves, further development of additive manufacturing 

strategies and their integration with innovative biomaterials and stem cell therapy is expected, 

which could foster the development of more complex tissues with broader applicability in 

medical, pharma, and other fields.  
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