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The high/low frequency balance drives
the perception of noisy vibrations

Corentin Bernard, Etienne Thoret, Nicolas Huloux and Sølvi Ystad

Abstract—Noisy vibrotactile signals transmitted during tactile
explorations of an object provide precious information on the
nature of its surface. Linking the properties of such vibrotactile
signals to the way they are interpreted by the haptic sensory
system remains challenging. In this study, we investigated hu-
mans’ perception of noisy, stationary vibrations recorded during
exploration of textures and reproduced using a vibrotactile
actuator. Since intensity is a well-established essential perceptual
attribute, an intensity equalization was first conducted, providing
a model for its estimation. The equalized stimuli were further
used to identify the most salient spectral features in a second
experiment using dissimilarity estimations between pairs of vibra-
tions. Based on dimensionally reduced spectral representations,
linear models of dissimilarity prediction showed that the balance
between low and high frequencies was the most important
cue. Formal validation of this result was achieved through a
Mushra experiment, where participants assessed the fidelity
of resynthesized vibrations with various distorted frequency
balances. These findings offer valuable insights into human
vibrotactile perception and establish a computational framework
for analyzing vibrations as humans do. Moreover, they pave
the way for signal synthesis and compression based on sparse
representations, holding significance for applications involving
complex vibratory feedback.

Index Terms—Vibrotactile perception, vibration sparse synthe-
sis, vibration compression, psychophysics, haptics.

I. INTRODUCTION

S IMPLE vibrations have become a standard mean to convey
information in our smartphones and game controllers. Re-

cent technological advancements have expanded the frequency
bandwidth of actuators, enabling software designers to create
more precise vibrations. Additionally, the miniaturization of
these actuators enables their integration into a wide range
of human-machine interfaces, including wearables and vibro-
tactile touchscreens. These vibrations are primarily used to
provide users with additional information, enhancing usability
and accessibility. Moreover, finely-tuned vibrations have been
employed to improve immersion in virtual gaming environ-
ments [1], [2] and facilitate remote social interaction [3], [4].
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Up to this point, two distinct approaches have been devised
for generating vibrations. The first approach involves crafting
signals using a simple model based on a limited set of
parameters, often relying on a single sine wave with varying
frequency and envelope [5]. This method offers the advantage
of being sparse while enabling the creation of a diverse range
of stimuli. However, it falls short in accurately reproducing
natural vibrations with a complex spectral profile. The second
approach is based on the capture and faithful playback of
vibrations induced by friction during texture exploration [6].
This approach can achieve a high level of realism but is much
more demanding in terms of amount of data to be restituted.
The need to reduce data storage size has become increasingly
crucial as new technologies emerge, incorporating a multitude
of channels, such as multitouch haptic surfaces [7], wearable
devices [8] or controllers [9] equipped with multiple actuators.

On the other hand, the human body is consistently exposed
to vibrations generated by the friction between the skin and
external surfaces, especially when manipulating objects with
the fingers. This influx of information is initially processed
by mechanoreceptors, which transform mechanical vibrations
into electrical spike patterns [10]–[12], The efficient coding
hypothesis [13] postulates that the sensory system encodes
incoming information as efficiently as possible, eliminating
redundancies to minimize the number of spikes and reduce
neural activity. In touch, prior research has suggested potential
reduction in dimensionality when encoding skin deforma-
tions [14], such as for detecting of object slippage [15].

In this paper, we investigated human vibrotactile perception
to identify perceptually relevant signal features that could
further be used to simplify the vibrotactile signal. Our hypoth-
esis was that by extracting these features from the incoming
vibrations, we could reduce the signal to what is strictly
perceptible.

Through psychophysical experiments, we identified spectral
structures that perceptually stand out within noisy vibrations.
We demonstrated that any signal can be projected onto this
perception-driven basis and then reconstructed with this re-
duced information. In addition to the interesting synthesis per-
spective of this approach, it can also be employed for achieving
sparse representations for vibrotactile signal compression.

The paper is divided into three sections, each corresponding
to a distinct experiment dedicated to the perception of noisy
stationary vibrations, which were here recordings of friction-
induced vibrations that present temporal homogeneity. The
first experiment investigates the perception of the intensity
of these vibrations. It provides a relationship between sig-
nal power and perceived intensity, as well as an intensity
equalization of the stimuli, hereby preparing for the next
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experiments. The second experiment dvelves into the percep-
tion of other attributes by posing a simple question: which
spectral attributes enable distinguishing sensations between
two vibrations? The results underscored the essential role
played by one fundamental element in vibrotactile perception:
the balance between high and low frequencies. Lastly, the third
experiment not only reaffirms these previous findings but also
showcases their potential in terms of vibrotactile synthesis and
compression.

II. BACKGROUND

A. Intensity and frequency perception

The literature on vibrotactile perception offers a plethora
of studies that have focused on two key characteristics of
simple vibrations: intensity and frequency. Intensity is known
as the principal perceptual attribute in vibrotactile percep-
tion, playing a pivotal role in discriminating between tactile
stimuli. This holds true for both simple synthesized vibra-
tions [16] and for friction induced vibration recorded from
various textures [17]. Perceived intensity is directly associated
with the signal’s amplitude. Remarkably, humans can discern
subtle differences in intensity regardless of the frequency,
with discrimination thresholds ranging from 11% to 30%
depending on the study (see [18] for a review). Moreover, it is
noteworthy that perceived intensity is also influenced by the
signal’s frequency. Amplitude detection thresholds follow a U-
shaped curve related to frequency, similar to curves of equal
intensity [19]. Vibrations of equal amplitude are perceived
as more intense at frequencies around 200 Hz. Models have
been developed to predict the intensity of a single sine wave
based on its amplitude and frequency [20], and also for
signals comprising a sum of two sine waves [21]. Furthermore,
humans possess the ability to distinguish frequency differences
when they deviate by more than 20%. The just-noticeable
difference typically falls between 17% and 21 % across various
studies, following Weber’s Law [22], [23].

The literature also sheds lights on the frequency selectivity
of vibrations composed of two distinct frequencies. When
these two frequencies are sufficiently distant, separated by
more than 100 Hz, they give rise to a unique percept. In
such cases, we are unable to discern the two individual
vibrations distinctly; instead, we perceive a vibration that falls
somewhere between the initial frequencies, with the percep-
tion being influenced by the amplitude of each frequency
component [24]–[26]. Conversely, when the two frequencies
are closely spaced (<100 Hz), interference patterns emerge,
resulting in what is known as ”beating”. In this scenario, the
frequency of the beating, or the frequency of the amplitude
modulation, takes on a more prominent role as a perceptual
attribute compared to the initial frequencies [27], [28], induc-
ing a sensation of rhythm [29].

From a physiological perspective, perceived intensity is
primarily mediated in the somatosensory periphery by the total
population of nerve fibers that are activated [30], whereas the
frequency coding relies on temporal spiking patterns [31].

B. Vibration encoding and compression

Signal encoding is a crucial issue for vibration rendering.
Since humans are sensitive to vibrations up to 1000 Hz [19],
temporal signals are usually encoded with a sample rate of
about 2000 Hz. An 8 bits quantization of the signal has
been shown to be sufficient for preserving the perceived
quality [32].

Previous studies have also demonstrated that classical math-
ematical transformations, such as the Fourier transform or
the Gabor transform, were relevant to model the encoding of
vibration signals in accordance to human perception [33]–[35].

In the literature, many contributions have studied the com-
pression of vibrotactile signals in order to develop the best
methods to reduce the file size without altering its tactile
quality. The main idea is to remove information that is
not perceived from the signal. Previous works focused at
removing frequency components that are below the detection
threshold [36], [37]. Based on frequency masking [38], other
approaches [39]–[41] consist in removing the low-amplitude
frequencies that are imperceptible due to their vicinity with a
high-amplitude frequency. A measure of vibration similarity,
based on spectral and temporal similarities [42], has been
developed to assess the compression quality and compare
compression methods [43].

III. MATERIAL AND METHODS

This section outlines the setup utilized in the three experi-
ments presented in this paper. The experiments were approved
by the Ethical Committee of Aix-Marseille University.

A. Vibrotactile stimuli

Recordings of friction-induced vibrations from Kirsch et
al.’s database [44] were used to provide vibrotactile stimuli.
These signals were recorded during exploration of textures
with a specific tool equipped with an accelerometer. We
selected 18 signals corresponding to 9 materials (rubber,
polyester pad, foam, felt, cork, bamboo, baltic brown (granite),
anti-vib pad (recycled rubber) and aluminium grid) explored
by 2 different probes (round and spiked) for a medium scan-
ning speed condition. To use stationary signals, one second of
each recording during which the scanning speed was roughly
constant between 100 and 120 mm/s was kept. The sampling
rate was set to 2800 Hz.

B. Vibration rendering

Tactile stimuli were presented through an Actronika (Paris,
France) HapCoil-One vibrotactile actuator (dimensions, 11.5×
12× 37.7 mm3; frequency bandwidth, 10–1000 Hz; resonant
frequency with no load, 65 Hz). The actuator was powered
by a Pioneer A-209R audio amplifier. The participants were
asked to grab the vibrotactile actuator between the thumb
and the index finger of their left hand to feel the vibrations.
Fig. 1.a presents the frequency response of the actuator while
being held with two fingers. In the following, vibrations will
be described either by their input voltage when considering
the source signal (for intensity and synthesis), or by their
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Fig. 1. a. Frequency response of the actuator held by two fingers, as in
the experimental conditions. b. Iso-intensity vibration curve rendered by
the actuator and felt with two fingers. The curves display the peak-to-peak
voltage of the input signal (in red) and the peak-to-peak acceleration (in blue)
corresponding to sine-waves at various frequencies that are perceived with the
same intensity.

acceleration (signal filtered by the frequency response) when
investigating human perception.

The actuator was also characterized via its iso-intensity
curves presented in Fig. 1.b. The intensity judgments were
gathered in a previous experiment involving five participants,
with the method of direct intensity matching with sine-waves
as in [19]. The curves show in which frequency band par-
ticipants are most sensitive to the actuator, in terms of input
voltage (proportional to displacement) or acceleration.

During all experiments, participants wore noise-canceling
headphones playing pink noise to mask sounds produced by
the actuator and avoid any auditory bias.

IV. INTENSITY PERCEPTION

As detailed previously, intensity is well known as the
primary perceptual attribute of vibration. However, existing
models of intensity perception in the literature have primarily
focused on simple vibrations with one or two sine waves. To
date, there are no intensity models specifically designed for
noisy vibrations.

Consequently, a preliminary experiment was conducted to
equalize the intensity of the stimuli, so that the contribution
of other attributes could be studied regardless of the intensity.
Besides, the participants’ judgments were examined to develop
a model of perceived intensity for noisy vibrations.

A. Protocol

A mathematical amplitude normalization was first con-
ducted by equalizing the standard deviation of the 18 vibration
signals. Perceptual intensity equalizations were then performed
by the participants who were asked to adjust the gain of each
stimulus to match the intensity of a reference stimulus: a white
noise with normalized standard deviation amplitude. For the
18 stimuli, the gain could be adjusted between 0.2 and 5, while
the reference was assigned a gain of 1.

B. Participants

The intensity equalization was performed by 10 participants,
2 females and 8 males, from 23 to 55 years old (mean=29.7),
1 left-handed and 9 right-handed.

C. Results

Participants responses were coherent, as shown by high pair-
wise correlations between participants on the selected gains
(Pearson’s r: M=0.82, SD=0.08, df=16 for the 45 correlations,
all significant p<0.05).

For each stimulus, the average gain was computed as the
geometric mean of all participants judgments. The mean gains
were then applied to the signals in order to obtain the 18
iso-intense vibrotactile stimuli for the second experiment. The
high correlations (Pearson’s r: M=0.91, SD=0.05, df=16 for
each of the 10 correlations, all significant p<0.05) between
the mean gains and the participants individual gains shows that
the mean gains faithfully represent the participants judgments.

Fig. 2.a presents the result of the intensity equalization on
the power spectra of the stimuli. After equalization, the vibra-
tion signals show less variability in the 80-200 Hz frequency
band. This means that, when asked to equalize the intensity,
the participants tended to equalize the power of the signals in
this specific frequency band, regardless of the power in higher
or lower frequency bands.
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Fig. 2. a. Results of the equalization of the perceived intensity for the
18 vibrations. The original signals from the Kirsch et al. database [44] are
displayed in grey. These signals were equalized in standard deviation prior to
the experiment (in blue). The signals equalized in intensity by the participants
are shown in red. On the top, the mean power spectra of the signals are
displayed in continuous line and the standard deviation in shaded area. On
the bottom, only the standard deviation is displayed for comparison. b. Linear
modeling of intensity prediction (R2 = 0.90). The dots represent the mean
intensity judgments for each stimulus with respect to its power in the 80-
200 Hz frequency range, calculated with the filter showed on the top-left (not
to scale).

D. Model of intensity perception

Based on these results, we constructed a model to predict
the perceived intensity of noisy vibrations from their signal.
The intensity judgments were obtained as the inverse of the
selected gains. For each signal, its power in the frequency
band of interest (80-200 Hz) was computed using a 2nd

order Butterworth bandpass filter. The linear regression curve
(R2 = 0.90, df=16), displayed in Fig. 2.b, demonstrates that
we can accurately model the intensity judgments from the
power in that frequency band. The goodness of fit dropped
when increasing the frequency bandwidth, to R2 = 0.07 for
the whole frequency band (10 to 1000 Hz). This means that,
for noisy vibrations, the perceived intensity is directly deter-
mined by the power of the signal in the 80 to 200 Hz frequency
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band, and weakly influenced by the power of higher and
lower frequencies. This frequency band matches the optimal
sensitivity band outlined in Fig. 1.b, which corresponds to
the combination of human tactile sensitivity and the actuator
frequency response.

V. SPECTRAL CONTENT PERCEPTION

The main experiment focuses on the perception of the
spectral content. With the stimuli now having equal intensity, it
becomes more straightforward to explore how other attributes
influence vibrotactile perception. We used a protocol based on
dissimilarity ratings, wherein participants were asked to rate
the (di-)similarities between pairs of stimuli. This technique is
a gold standard in the field of auditory perception to investigate
the perception of sound timbre for musical instruments [45]–
[47], see [48] for a recent meta-analysis. It enables to model
perception within a reduced dimensional space and to identify
the main perceptual dimension within this space. Through
further analysis, links can be established between these dimen-
sions and signal features, ultimately unveiling the association
between signal and perception.

This approach has also demonstrated its potential in the
study of touch. For textures, perceptual differences can be
predicted using the comprehensive data collected during their
tactile exploration, encompassing forces, vibrations, and ve-
locity [49]. A recent study [50] proposed a physiology-based
model to predict the dissimilarities in vibrations designed with
varying amplitudes, frequencies and modulation rates.

Here, as proposed in [48], we first gathered dissimilarity
ratings from human participants and then trained a linear
model, fully interpretable, to predict the obtained dissimi-
larities based on the spectral representations of the stimuli.
We assume that once the proposed model is trained to mimic
human responses, we can interpret its behavior to gain insight
on human perception.

A. Participants

The dissimilarity rating experiment was performed by 18
participants, 3 females and 15 males, from 21 to 55 years old
(mean=28), 1 left-handed and 17 right-handed.

B. Protocol

Participants had to evaluate the perceptual differences of the
vibrations through pairwise comparisons. The 18 stimuli were
presented against each other, resulting in 153 pairs. The stimuli
were also compared with themselves to provide a baseline
for the most similar ratings, leading to 171 pairs in total,
presented in random order. At each trial, participants felt the
two vibrations successively. The vibrations lasted for 1 second,
and were separated by 500 ms of silence. Each sequence was
played once. Participants were asked to judge the perceived
dissimilarities between the pairs and to report their ratings
on a scale from ”very similar” to ”very dissimilar” thanks
to slider on a visual interface. The interface converted the
slider position into a dissimilarity rating between 0 and 1
(0=very similar, 1=very dissimilar). Prior to the experiment, a

familiarization session was carried out with 30 random pairs.
It enabled the participants to familiarize themselves with the
task and the stimuli, and to create their own internal rating
scale. The experiment lasted for about 45 min.

C. Results

Regarding dissimilarity ratings, participants were less con-
sensual than for the intensity ratings, as revealed by the
pairwise correlation scores between participants (Pearson’s r:
M=0.51, SD=0.12, df=169 for the 162 correlations, all signif-
icant p¡0.05). Yet, as the evaluation strategies were coherent
across participants, we averaged their dissimilarity scores. The
correlations between the average and the participants’ scores
(Pearson’s r: M=0.73, SD=0.09, df=169 for the 18 correlations,
all significant p¡0.05) showed that the mean dissimilarity
scores well reflect participants’ judgments. The following
analysis therefore focuses on the between-participants mean
dissimilarity scores.

For pairs with the same stimulus, the dissimilarity scores
were low (M=0.12, SD=0.07), but still higher than 0. This
means that the task was quite difficult and the intensity-
equalized vibrations felt already pretty similar. It also means
that vibrations with a dissimilarity score below 0.12 could be
considered as perceptually identical.

D. Predicting dissimilarities from spectral representation
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Fig. 3. Frequency response of the filter bank used to compute the power
by frequency band of the vibration signals. The 30 filters are logarithmically
spaced following Weber’s law to match human perception.

Since the stimuli were considered as stationary, i.e. they
were felt to be relatively constant during the 1 second presen-
tation time, we chose to represent the signals by their power
spectra to focus on the spectral properties. The power spectrum
was computed as the power by frequency band using a filter
bank with 30 second-order bandpass-filters logarithmically
spaced between 10 and 1000 Hz, as shown in Fig. 3. This
representation of the signal power spectrum offers the advan-
tage of being both sparse and close to perception. It covers
the human vibration sensitivity range and the filter distribution
follows Weber’s law of vibrotactile frequency perception, with
a Just-Noticeable frequency Difference (JND) of 17% [23] be-
tween two filters: N = log(fmax/fmin)/log(1+JND) ≈ 30
filters.

Continuous spectral patterns were observed, indicating that
the signal representation could be further reduced. Therefore,
a Principal Component Analysis (PCA) was conducted to
provide a data-driven dimensionality reduction. The PCA was
trained on the power by frequency band of all the signals in
the Kirch et al. database [44] (composed of 281 signals). We
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Fig. 4. Principle of the dissimilarity prediction model, illustrated here to compare two vibrations. The spectra are projected on a basis of spectral patterns
given by the PCA. Then, the distance between these two representations is computed. Weights are associated to each component and are optimized so that
the mathematical distances fit the perceptual dissimilarities as closely as possible.

found that the first 8 dimensions of the PCA were sufficient
to capture 95% of the variance of stimuli in the database.
This enabled us to decompose the experiment’s 18 stimuli
into the most important spectral patterns of friction-induced
vibrations presented in Fig. 5.a. We can already note that the
first component V1 encodes a balance between high and low
frequencies, and other components encode spectral patterns of
increasing complexity.

Based on the spectral patterns representations of the vi-
bration, we constructed a model to predict the participants’
dissimilarity ratings from the experiment.

The methodology used to compare two vibrotactile signals
x and y is presented in Fig. 4. The algorithm takes the
two temporal signals as input. Firstly, the power spectra are
measured by computing the power by frequency band Px and
Py (dim = 30, using the filter bank described previously).
Then, the power spectra are projected on the PCA basis V
(dim = 8×30) to obtain the PCA scores Tx and Ty (dim = 8):

Tx = V Px and Ty = V Py (1)

Next, the local distance d in each PCA dimension j is
calculated as the absolute difference between the two PCA
scores.

dj(x, y) =
√

(Txj − Tyj)2 (2)

Finally, the global dissimilarity D between the two vibra-
tions is computed as a weighted sum of the local distances:

D(x, y) =
∑
j=1:8

wjdj(x, y) (3)

The weights wj were optimized so that the dissimilarity
prediction best matched the participants’ dissimilarity ratings.
It was performed by a Lasso regression, a multiple regression
model with regularization that performs variable selection to
facilitate the interpretation of the results.

To train the model, while the best amount of penalization
was chosen by cross validation (10-fold), the weights were
optimized on a training set of 122 dissimilarity ratings (80%
of the data). The prediction performance of the model was
then evaluated on a test set of 23 dissimilarity ratings (20%
of the data).

For the prediction, the model exhibited a coefficient of
determination R2 = 0.54 (mean of 100 repetitions with
random assignment to the training and test sets, SD=0.11).
The prediction score is not as high as for the intensity model,
but the participants were also less coherent. Still, more than
half of the variance is explained.

E. Interpretation of the dissimilarity model

Frequency (Hz)

V1

V2

V3

V4

V5

V6

V7

V8

10 100 1000

0.5

-0.5

Frequency (Hz)

a b

c

P
ow

er
 (d

B
)

P
ow

er
 (d

B
)

10 100 1000

0.5

-0.5

0.5

-0.5

0.5

-0.5

PCA Component Vi

M

P2=M+t2,1V1
~

P9=M+t9,1V1
~

cumulative
single

R2

1 2 3 4 5 6 7 8

0

0.6

0.4

0.2

-3

-5

-7

Fig. 5. a. Representation of the 8 PCA components Vi to highlight spectral
patterns. b. Contribution of each PCA component to the prediction quality.
The red curves show the evolution of the coefficient of determination when
the prediction is performed using the projection of the signals on the ith

component only. The blue curves show the evolution of the coefficient of
determination when the prediction is performed with projection on the basis
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ts,1. M is the averaged spectrum of the database.
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The linearity of the proposed model offers the advantage of
being easily interpretable. We can assess the importance of a
PCA component by examining the impact of its withdrawal
on the prediction quality R2.

Fig. 5.b shows that the prediction is only based on the
projection of the stimuli on the first PCA component V1.
Indeed, the prediction scores R2 are below 0 when other
components are considered alone (red curve) and R2 does not
increase as more PCA components are included (blue curve).
This means that, to mimic human judgments, the model only
needs information about the first PCA component, i.e. the
balance between high and low frequencies.

A classical multidimensional scaling analysis (MDS) was
conducted to place each stimulus in a 2-dimensional space so
that the distances between stimuli, regarded here as perceptual
dissimilarities, would show up as clearly as possible. The
blue points in Fig. 6 show the result of the MDS performed
on the participant’s mean dissimilarity ratings. The projection
of the first PCA component V1 in this space demonstrates
its high correlation (Pearson’s r = 0.94, df=16, p<0.01)
with the first MDS dimension (and r = −0.01, df=16,
p=0.95 with the second dimension). In comparison, the other
PCA components are much lesser correlated with the MDS
dimensions (Pearson’s r ∈ [−0.4, 0.5] for all correlations,
df=16, non-significant). The first dimension of the MDS is
known to reveal the main stimulus property rated by the
participants. This analysis confirms the importance of the V1

basis, the balance between the high and low frequencies, in
vibrotactile perception.
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component V1 in the MDS space and the unite circle is plotted for comparison.
The materials underlying the friction-induced vibrations are indicated, as is
the type of probe: round (r) or spiked (s).

An MDS analysis was also conducted on the dissimilarities
given by the model. It was combined with a Procrustes
superimposition, a combination of translations, rotations and
uniform scaling, to match the two spaces and enable com-
parison. The positions resulting from predicted dissimilarities

are displayed in blue in Fig. 6. The error distances, in grey,
show that the model better predicts dissimilarities with certain
stimuli.

Many participants spontaneously reported after the experi-
ment that a few stimuli presented intensity temporal variations.
Therefore, we computed a non-stationarity metric defined as
the standard deviation of perceived intensity over time, using
the previous model of intensity estimation by time windows
of 100 ms, with 50 ms overlap. This metrics appeared as well
correlated with the second dimension of the MDS (Pearson’s
r = 0.86, df=16, p< 0.01).

It is also interesting to note that vibrations induced by
friction on similar materials are located in the same zones
of the perceptual space.

VI. VALIDATION THROUGH ANALYSIS BY SYNTHESIS

The previous experiment highlighted the prominence of the
balance between the high and low frequencies to feel dissim-
ilarities between vibrations. We will now evaluate the validity
of the previous insights by evaluating vibrations recreated by
synthesis using this frequency balance. This section also shows
how this property of the human tactile sensory system can be
leveraged to propose sparse vibration synthesis.

A. Synthesis procedure

original
vibration

Analysis and encoding

Decoding

Synthesis

M, V1

filter bank

filter bank
white
noise

synthetic
sound

impose 
power

project
on PCA V1

inverse
transform

P1:30

t1

mesure 
power

-

combine
subbands

mesure 
power

P̃1:30

Fig. 7. Procedure of the analysis-synthesis. The power by frequency band of
the original vibration is projected on the axis V1 (first component of the PCA
on the whole vibration database). The synthetic signal is based on noise, to
which the powers of the frequency bands from the first PCA component are
imposed. This algorithm was derived from [51].

The proposed approach is based on analysis by synthesis,
a well-known approach in audio processing, that consists in
extracting parameters from a given natural sound to recon-
struct it using algorithmic techniques [52], [53]. Analyzing
the structure of the algorithm with respect to the quality of
synthesized sound has proven its potential for probing human
perception. [51].

The analysis-synthesis procedure is described in Fig. 7. The
original vibration, a stationary signal, is analyzed by filtering
it with the logarithmic 30-filters bank. The power of each
frequency band P1:30 is then computed and projected on V1
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the first component of the PCA (the PCA that have been
performed on the whole database [44]). The input vibration is
thus encoded as a unique scalar: the first principal component
score t1.

The decoding part requires the average power by frequency
band of the database M and the first component of the PCA
V1. These features are the same for each vibration in the
database. From the input t1, the inverse transform is performed
to obtain an approximation of the powers of the 30 frequency
bands P̃1:30. The Fig. 5.c shows examples of two signal spectra
reconstructed by this method.

The synthesis procedure takes noise as an input, filters it,
measures the power in each frequency band and applies the
desired values P̃1:30. The output is obtained by combining the
subbands, but this simple process does not produce exactly the
desired signal. Therefore, an iteration procedure is conducted
until the powers of the bands perfectly match P̃1:30, and the
algorithm outputs the synthesized signal.

B. Protocol

A third experiment was conducted to evaluate the quality
of the sparse synthesis that we developed. The protocol
was similar to a MUSHRA (Multiple Stimuli with Hidden
Reference and Anchor). At each step, the participants were
instructed to rate and rank the similarities between a reference
stimulus (the original vibration) and 5 stimuli:

• the synthesized version of the vibration S1 using the
proposed sparse algorithm (with the first component V1

only)
• a synthesized version of the vibration S1:8 with all the

information (with the 8 components V1:8)
• a synthesized version of the vibration S2:8 with all the

information except the first component (with V2:8)
• the original vibration O as control (the hidden reference)
• a synthesized vibration based on the mean power spec-

trum M , used as a control (anchor) and identical for all
the stimuli.

The stimuli were 1 second vibrations that the participants
could play as many times as they wanted by clicking on the
corresponding buttons The interface displayed 5 sliders (in
random position) to rate the 5 versions of the stimuli on a
scale from ”very dissimilar” (0) to ”very similar” (1). This task
was performed 18 times for the 18 stimuli from the previous
experiment, presented in random order. The participants were
asked to score the most similar stimulus to 1. Preliminary
tests showed that it was preferable not to ask to score the most
dissimilar stimuli to 0 (as in classic MUSHRA methods), since
some of the original stimuli were very close to the anchor M .

C. Participants

The evaluation of the synthesized vibrations was performed
by 15 participants, 6 females and 9 males, from 22 to 55 years
old (mean=30), all right-handed.

D. Results

The results of the comparison between the original vibra-
tions and the synthesized versions are presented in Fig. 8.
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Fig. 8. Evaluation of the quality of the synthesized stimuli. The 18 original
vibrations were compared against themselves (O) and synthesized versions
based on all the PCA dimensions (S1:8), based only on the first dimension
(S1), based on all the dimensions except the first one ((S2:8) or based on the
mean spectrum (M).

A two-ways repeated measures ANOVA, showed a signifi-
cant effect (α = 0.05) of the version: F(14,4,17)=33, p=1e−16)
and Tuckey post-hoc tests are summarized in Fig. 8. Most
importantly, it showed that S1 was significantly rated as more
similar to the reference than S2:8 (p<0.01) but not less similar
than S1:8 (p= 0.76). A test of equivalence [54] showed that S1

and S1:8 were equivalent (at α = 0.05) in a ±0.15 interval on
the 0 to 1 similarity scale, demonstrating that the first PCA
component V1 is necessary and sufficient to capture all the
spectral information used by subjects to rate the dissimilarity
between two textures.

However, the post-hoc tests highlighted significant differ-
ences between the synthesized versions and the original signals
(p< 0.01). They were mainly due to three stimuli (alu grid r,
alu grid s and foam r) that showed large discrepancies be-
tween S1 and O. This means that certain stimuli were not
accurately synthesized by the the algorithm. These stimuli
were also the ones that were not well predicted by the
model in Fig. 6. Moreover, the differences in similarity ratings
between O and S1 for each stimulus were correlated (Pearson’s
r = 0.72, df=16, p<0.01) with the prediction error of the
model in the MDS space (grey lines in Fig. 6). Also, we found
that the differences in similarity ratings between S1 and M
for each stimulus were correlated (Pearson’s r = 0.63, df=16,
p< 0.01) with the absolute values of their projection on the
first dimension |t1|. In other words, the more the frequency
balance differs from the mean spectrum, the more the stim-
ulus is perceived as dissimilar to M . This is an additional
argument supporting the importance of the frequency balance
in vibrotactile perception.

VII. DISCUSSION

The present work investigated the perception of stationary
noisy vibrations, such as recordings of friction-induced vibra-
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tions with a constant exploration speed and aimed at unveiling
their perceptually relevant signal structures.

A. Intensity perception

Firstly, the perception of intensity, the primary attribute of
vibration, was investigated. We discovered that, akin to simple
sinusoidal vibrations, it is possible to gauge the perceived
strength of a noisy vibration from its signal. The results
revealed that the intensity was directly proportional to the
power of the frequency band to which the subjects were
the most sensitive. The frequency band was between 80 and
200 Hz and corresponded to a combination of the human
tactile sensory curve for sine waves [19] and the actuator’s
frequency response. The power in the higher and lower fre-
quencies, to which we are less sensitive, had a negligible effect
on intensity perception. This model can be easily adapted
to other vibrating devices just by measuring their frequency
response. Equalizing the intensity of the vibration enabled
us to remove this essential characteristic from subsequent
experiments, enabling a detailed exploration of other attributes
such as the spectral content.

B. Spectral content perception

The power spectra of the vibrations were computed thanks
to a perception-based logarithmic filter bank. The principal
component analysis of the spectrum of 281 recorded vibrations
provided a data driven basis whose first axis encoded a balance
between the low and high frequencies. The projection of the
vibrations solely onto this axis (a single scalar) was sufficient
to build a model of dissimilarity prediction, and showed a
high correlation with the first dimension of the MDS. More-
over, vibrations that were re-synthesized using only this axis
were indistinguishable from vibration re-synthesized using the
whole spectral information. These findings clearly demonstrate
that, regarding human perception, the spectral content can
be characterized by the balance between the low and high
frequencies only. This outcome joins previous works that
showed that the spectrum of friction induced vibrations could
be modelled by a 1/fα function [55]. The parameter α also
represents the balance between low and high frequencies and
has been shown to correlate with perceptual judgements of
texture categories [56] and texture pleasantness [57]. From a
physiological perspective, the frequency balance could reflect
the dual neural mechanism of flutter-vibration [58], [59]. The
balance could be the relative importance of the activation of FA
I fibers (Meissner’s corpuscles) in response to frequencies in
the flutter range (< 60 Hz) compared to the activation of FA II
fibers (Pacinian corpuscles) in the vibration range (> 60 Hz).

However, the model of dissimilarity estimation was not
perfectly accurate, especially with some stimuli such as
alu grid r, alu grid s and foam r as shown in Fig. 6. Simi-
larly, the synthesis algorithm failed to properly reproduce these
stimuli. We assume that these differences were due to the
lack of stationnarity, since the friction recordings were not
perfectly controlled. In particular, some participants reported
that alu grid r, alu grid s were felt as not constant. The
metric of non-stationarity suggests that the second dimension

of the MDS may reflect temporal variations. For vibrations
that deviate from the assumption of temporal homogeneity,
important information lies in the phase and is therefore not
captured by the power by frequency band on which the model
is based. This shows the limitations of the present analysis
to stationary signals and further work will explore ways of
including temporal variations (such as time windowing).

Another limitation of the analysis is its dependence on the
data base. The vibrations have all been recorded with the same
device and the same protocol and the three experiments have
been performed with 18 stimuli only. However, the projection
axis V1 at the core of the analysis has been obtained by a
PCA on 281 signals, presenting a wide variety of textures,
exploration tools and exploration speeds. We are confident
that the analysis procedure and the synthesis principle can be
generalized to other vibration databases.

C. Sparse synthesis and compression
The benefits of the study are considerable in terms of

vibration synthesis and vibration compression. It enables the
creation of a sparse, perception-based synthesizer that can
replicate a diverse range of texture-like vibrations using only
two controls: intensity and frequency balance.

Very high compression can also be attained through
analysis-synthesis, by extracting intensity and frequency bal-
ance from the original signal and then using these parameters
to synthesize a new vibration that closely resembles the
original. For example, in our case, the 18 signals recorded
over 1 second at a sampling rate of 2800 Hz yield a total
of 18 × 2800 = 50400 data points. The synthesis algorithm
requires the power of the 30 frequency bands for the mean
spectrum (M ) and the first PCA component (V1), and the
projection scores (t) for each stimulus. This results in a total
of 30 + 30 + 18 × 1 = 78 data points for the encoded
data, making up 0.15% of the initial data, without considering
quantization. Since we are considering only stationary signals,
the signal duration does not impact the encoded data size.
However, further work based on time windowing is necessary
to compress vibrations with temporal variations.

The findings of this study hold significant value for a wide
range of applications that involve delivering vibrations to
users. Everyday human-computer interfaces, such as smart-
phones, tablets, and wearables, could greatly benefit from a
sparse synthesizer capable of reproducing complex vibrations.
When combined with algorithms from existing literature to
adapt to the user’s finger movement in the case of active
touch [60], [61], the compression method could prove useful
for replicating textures in virtual environments. Moreover,
synthesis approximations might be negligible as long as the
vibrations remain plausible in a given context and correspond
to the user’s expectations [62].

Vibration compression is also valuable for enhancing the
musical experience through multichannel vibrations, especially
for audiences with hearing impairments. The vibration analysis
framework could be effectively integrated into sensors of
robotic arms to interpret textures in a manner similar to
humans, or to render the essence of tactile information to
individuals with prosthetic hands.
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VIII. CONCLUSION

In this paper, we investigated the perception of noisy,
stationary vibrations. The stimuli were taken from a data base
of friction-induced vibrations recorded during the exploration
of textures at constant velocity. We initially examined the
perception of the intensity of these vibrations and developed
a simple model based on the power within the frequency
bandwidth of human optimal sensitivity. Subsequently, we
investigated other perceptual attributes through dissimilarity
experiments. These experiments revealed that the essential in-
formation regarding the spectral content resides in the balance
between high and low frequencies. The observed discrepancies
were attributed to specific stimuli that were not entirely
homogeneous, wherein pertinent information also lies in the
phase. In summary, the perception of purely stationary noisy
vibrations is driven by two main attributes: 1) intensity and
2) high/low frequency balance. We showcased the potential of
these findings for sparse analysis and synthesis of vibrations,
as well as perception-based compression. Such applications
can be valuable for any device delivering complex vibratory
feedback.
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[57] A. Klöcker, M. Wiertlewski, V. Théate, V. Hayward, and J.-L. Thonnard,
“Physical factors influencing pleasant touch during tactile exploration,”
Plos one, vol. 8, no. 11, p. e79085, 2013.

[58] W. H. Talbot, I. Darian-Smith, H. H. Kornhuber, and V. B. Mountcastle,
“The sense of flutter-vibration: comparison of the human capacity with
response patterns of mechanoreceptive afferents from the monkey hand.”
Journal of neurophysiology, vol. 31, no. 2, pp. 301–334, 1968.

[59] V. B. Mountcastle, W. H. Talbot, I. Darian-Smith, and H. H. Kornhuber,
“Neural basis of the sense of flutter-vibration,” Science, vol. 155, no.
3762, pp. 597–600, 1967.

[60] R. F. Friesen and Y. Vardar, “Perceived realism of virtual textures
rendered by a vibrotactile wearable ring display,” IEEE Transactions
on Haptics, 2023.

[61] J. M. Romano, T. Yoshioka, and K. J. Kuchenbecker, “Automatic filter
design for synthesis of haptic textures from recorded acceleration data,”
in 2010 IEEE International Conference on Robotics and Automation.
IEEE, 2010, pp. 1815–1821.

[62] R. Rosenkranz and M. E. Altinsoy, “A perceptual model-based approach
to plausible authoring of vibration for the haptic metaverse,” IEEE
Transactions on Haptics, 2023.

Corentin Bernard graduated from the Ecole Cen-
trale de Marseille in 2017 and holds a Master’s
degree in acoustics from the Aix-Marseille Uni-
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