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Abstract

An anomalous event is commonly defined as an event sensibly distinct from the ma-
jority of its counterparts in a given context. Hence, video anomaly detection is often tack-
led as an out-of-distribution problem. Recent self-supervised state-of-the-art anomaly
detection approaches are trained on object-centric descriptors extracted using object de-
tectors. While these approaches are efficient for simultaneous detection and localization
of single instance-related anomalies, they are not suited to identify anomalies related
to different instance categories. In addition, anomalies that emerge from multiple in-
stances interaction remain an open issue. In particular, we investigate the detection of
anomalous interactions between pedestrians and automatic doors in the context of train
video-surveillance.

We propose a three parts approach. A panoptic segmentation network extracts instance-
aware semantic maps of pedestrians and automatic doors in the input video sequence.
Two self-supervised multi-tasks networks are trained separately on each semantic maps
sequence using a set of proxy tasks specifically tailored for the considered object cate-
gories. Finally, both networks anomalous binary responses are fused to provide a final
interaction anomaly detection classification. We evaluate our method on a railway appli-
cation dataset to detect doors-pedestrian anomalous interactions.

1 Introduction
Directly classifying a set of anomalous events following a fully-supervised scheme is not

practical as anomalous events tend to be too rare and diverse to gather in sufficient quantities
to train on. Such a training scheme makes the model incapable of identifying any unforeseen
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anomalous event. Anomalous events are instead commonly considered as outliers from a
nominal distribution i.e. from a normality model trained on normal event instances. The
nominal distribution is often learned by a self-supervised neural network trained on surrogate
tasks designed to exploit certain consistent patterns within the training data. Proxy tasks
can for instance learn temporal consistencies of motion information in consecutive frames
(homogeneous motion), or visual consistencies such as the similar appearance of objects in
the scene. A normality model is fit on normal training data to capture such assumptions, and
detects any event that diverges from the normality model as anomalous.

Instead of fitting their normality model on the whole image, some recent state-of-the-art
works [2, 3, 7, 10, 14] fit their normality model on object-centered bounding boxes extracted
using object detectors [30, 31]. This approach is motivated by the prevalence of pedestrians
in video surveillance anomalous events datasets documented in the literature, such as Av-
enue, ShanghaiTech, and UCSD Ped2 [20, 23]. However, it’s important to note that these
datasets predominantly contain isolated anomalies. These anomalies are primarily related to
the movement of a single object class, such as individuals falling, or they may involve the
presence of unexpected instance categories.

The recent release of the dataset FRailTRI20_DOD [16] provides a new unchallenged
use-case: the detection of pedestrian and automatic doors interaction in a railway environ-
ment. To the best of our knowledge, it is the only dataset of the literature showcasing this
kind of interaction anomalies.

Our contribution is multi-fold. We propose a new architecture that fuses the anomaly
classifications provided by two punctual anomalies detection networks (ADN) to identify
interaction anomalies. Both ADN are based on the self-supervised approach proposed in
[10] and are respectively dedicated to identify doors-centric and pedestrian-centric punctual
anomalies. We make use of the proxy tasks proposed in [10] to reduce the ADNs misalign-
ment with respect to the anomaly detection task and we also introduce a new "optical flow
prediction" task for both networks. In addition, we introduce the "doors states prediction"
task for the doors anomaly detection network.

Finally, given that FRailTRI20_DOD is composed of top-down fish-eye images, we in-
vestigate the substitution of the object detector used in the original implementation of [10]
by a version adapted to fish-eye images. Following [34], we leverage a panoptic segmenta-
tion [15] network of the literature [37] to extract doors and pedestrian masks. We then use
simple heuristic to construct a bounding box from each pedestrian mask. We explore the
use of different fish-eye specific bounding-box conventions to train our pedestrian anomaly
detection network on.

2 Related Works
Several approaches leverage frames appearances consistency to model normality. Some

methods use a CNN encoder as a feature extractor and train a one-class [35] or a binary [13,
21] classifier or use a reconstruction error as abnormality score [4, 11, 18, 24, 27, 28, 36].
Frames temporal consistency can also be used to model normality, either by predicting future
frames from current data, using LSTMs [5] or generative approaches such as GANs [1, 6,
25, 26, 29, 33, 38]. Other approaches also use optical flow (OF) [6, 25, 29], or pixel-level
motion between consecutive frames, to learn motion normality. While most approaches
consider the entire image, "Object-centric" techniques focus their training on object-centric
sequences produced by an object detector [2, 3, 7, 10, 14]. In particular, [3, 10] train a 3D
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CNN following a multi-task learning strategy to yield a better normality model.
Anomaly detection works in the field of train transportation include [19] which proposes

an image masking strategy for unsupervised anomaly localization and supervised anomaly
classification in an intercity train station environment. How use-case is sensibly different
from their since they do not identify doors-related anomalies. They only use a specifically
tailored door tracking-based key frame extraction method to capture the status of train doors.
In addition their definition of anomaly is restricted to locating abnormal objects on the train
station. They do not identify doors-centric anomalies nor interaction anomalies.

In our work, we propose a two-stream architecture based on [10], each stream focusing
on both doors and pedestrians behaviors. We use a panoptic segmentation network inspired
by [37] to extract doors and pedestrians masks. Moreover, we design the "doors states pre-
diction" task as a self-supervised proxy task to classify sliding doors states which can easily
be generalized to other door types.

3 Method

3.1 Motivation
We aim at designing a network to detect interaction anomalies between instances of two

distinct categories. We apply it to the detection of pedestrians-automatic doors interaction
but this strategy can be applied to other sets of categories as long as we design an ADN for
each category of interest. Hence, we implement one object-centric punctual ADN for each
category so as to focus on each category of interest separately. We then use the late fusion
of their binary responses to identify interaction anomalies. We use the multi-task learning
scheme from [10] as we expect each surrogate task to capture a valuable feature of normality.

3.2 Data Preprocessing
Each ADN is trained on a batch of object-centric temporal sequences (OCTS) produced

by concatenating several instance-aware segmentations provided by an object detector. The
YOLOv3 network used in the original implementation is replaced by a K-Net panoptic seg-
mentation network [37] following the work in [34]. For training and inference, our archi-
tecture input is a set S(t) = {Sk,k ∈ [−3,3]} of 7 object-centric frames Sk extracted from
31 consecutive frames (Fi, i ∈ [t − 15, t + 15]) centered on the current frame Ft . Object-
centric frames Sk are extracted from the frames Fi selected using a fixed time step δ such
that Sk = Ft+kδ ,∀k ∈ [−3,3]. The section 4.3.3 presents how each ADN proxy task per-
formances vary w.r.t δ . Some K-Net predictions are shown in fig. 3(a) and the full data
preparation process is summarized in fig. 2.

Doors OCTS are composed of doors segmentation masks concatenated across multiple
frames. We focus on modeling the closing state of the door without the need to represent
their appearance. Pedestrian OCTS are generated by extracting in several frames the closest
bounding box from each pedestrian mask in the current frame. The selection of this closest
bounding box is determined following three heuristic approaches: Axis-aligned bounding
boxes, i.e. the vertical or horizontal bounding box of a pedestrian mask. Radius-aligned
bounding box [32] oriented w.r.t the axis from the center of the image to the pedestrian
mask centroid. Human-aligned bounding box [8] oriented w.r.t the first characteristic vec-
tor of the pedestrian mask pixels coordinates Principal Component Analysis (PCA). Some
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examples and their properties are shown in fig. 1(a) and fig. 2. in the supplementary material.
Pedestrian and doors OF OCTS are cropped from the OF provided by a pretrained

FlowNet2 [12] on two consecutive raw images. Doors OF are extracted by applying doors
segmentation masks on the OF images while each pedestrian OF is extracted through its
bounding box. For both doors and pedestrians, the OF norm is provided as ground truth
label to the optical flow prediction head of their respective ADN, and all OCTS are reshaped
as 64×64 pixels.

3.3 Networks architectures
As presented in 4, each ADN is a separate modified implementation of the network

proposed in [10]. Each network is composed of a dedicated 3D CNN encoder shared re-
spectively by 5 and 4 proxy prediction heads. Shallow and Narrow encoder and decoder
structures are borrowed from this work for the proxy tasks 1 through 4. The proxy tasks are
the following.

Task 1: Arrow of time / Doors state prediction. The Arrow of time task, only im-
plemented for the pedestrian ADN, is trained to classify an OCTS as being played forward
(X (T1)=(S−3, ...,S0, ...,S3)) as opposed to being played backwards (X (T1)=(S3, ...,S0, ...,S−3)).
Since pedestrians walking motion is asymmetrical with respect to time, the arrow of time is
expected to be harder to predict for those showcasing an anomalous motion. The back-
wards prediction probability is used for anomaly scoring during inference. Since the clos-
ing and opening of doors instead appear temporally symmetrical, we replace this task by
the Doors states prediction task for the doors ADN. It is a self-supervised task trained to
classify a doors OCTS between four normal doors states ("Start Opening" (SO), "Fully
Opened" (FO), "Start Closing" (SC) and "Fully Closed" (FC)) in addition to an anoma-
lous state ("Stopped Midway" (SM)). Possible transitions between these states are pre-
sented in fig. 1(c) in the supplementary material. The four normal doors states are trained in
a supervised manner while the abnormal door state SM is an OCTS artificially crafted by re-
peating a SO or SC state doors segmentation masks X (T1) = (S0, ...,S0, ...,S0). The prediction
probability of the SM state is used for anomaly scoring during inference.

Task 2: Motion Irregularity. During training, this task is a binary classification be-
tween a regular and an irregular motion. The regular motion sample is an untouched OCTS
while the irregular motion sample is constructed by selecting 3 randomly chosen previous
frames and 3 randomly chosen succeeding frames from the current frame Ft . Each frame is
separated by random gaps in the range [σmin,σmax], concatenated before and after the current
frame. The selection of these σmin and σmax is the subject of the "Single" experimental set-
ting presented in sec. 4.3.3. The irregular motion prediction probability is used for anomaly
scoring during inference.

Task 3: Middle bounding box prediction. Each ADN is trained to learn to recon-
struct the central frame S0 content from the previous and succeeding frames contents in the
OCTS i.e. (S−3, ...,S−1,S1, ...,S3). The L1 loss between the central frame and the decoder
prediction is used as loss function during training and as anomaly scoring during inference.

Task 4: Model distillation. During training, the pedestrian ADN is trained to predict the
last layer features of a ResNet-50 pre-trained on ImageNet and the "person" class prediction
probability provided by K-Net from the pedestrian OCTS center frame (S0). The model
thus learns normal events features distribution, and we expect great discrepancies between
the model and the teachers predictions for pedestrians with an unusual appearance or other
objects than were wrongly detected by K-Net. During inference, similar to [10], we only use
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the L1 loss between the model prediction and K-Net "person" class prediction probability as
anomaly scoring. This task is only learned for the pedestrian ADN as the doors ADN only
processes doors segmentation masks, and not their visual appearance.

Task 5: Optical flow prediction. During training, each model is trained to reconstruct
the norm of the full optical flow temporal sequence from the entire OCTS but the last frame
X (T5) = (S−3, ...,S2). Since each optical flow models the pixel level motion between two
OCTS consecutive elements, this task amounts to an optical flow reconstruction for the first
to the second to last optical flows and an optical flow prediction for the last one. The L1
loss between the ground truth and predicted optical flow temporal sequences are used as loss
function during training and as anomaly scoring during inference.

Each ADN resulting loss function is the sum of its decoders losses and half of the knowl-
edge distillation loss [10] for pedestrian ADN. During inference, each ADN anomaly score
is the mean of its decoders anomaly scores normalized over the whole test set.

3.4 Fusion
The anomaly score provided by each ADN during inference is thresholded following

an optimal threshold value T maximizing the geometric mean of the True Positive Rate
(TPR) and True Negative Rate (TNR) over the test set. Each ADN thus provides a binary
classification for each frame of the evaluation set. The final interaction anomaly prediction
is obtained by applying the "logical OR" operator on both outputs (fig. 2).

Evaluated
Set

Abnormal Events Normal
EventsDoors Only Combined Ped Only

Full 1 1 1 0
Doors Only 1 None 0 0
Combined None 1 None 0
Ped Only 0 None 1 0

Doors 1 1 0 0
Ped 0 1 1 0

(a) (b)
Figure 1: 1(a) Venn diagram of each hazardous events dependencies w.r.t pedestrians and
doors. 1(b) Ground truth annotations for each evaluation subset. The "None" annotations are
subtracted from the evaluation data to avoid overlap between the "Doors Only" and "Ped"
subsets and "Ped Only" and "Doors" subsets.

4 Experiments

4.1 FRailTRI20_DOD dataset description
The FRailTRI20_DOD dataset [16] is composed of video footage taken from a fish-eye

camera placed on the ceiling of a train in front of train automatic doors. It showcases videos
of boarding and unboarding pedestrians and opening and closing doors. A multi-label an-
notation is provided from each frame which includes the doors opening state and a set of
anomalous events. Anomalies can either be related to doors only, such as the events Doors
Interrupted while closing (DI) when the automatic doors get stuck due to a mechanical
mishap, or Instance Stuck in the Doorway (ISD) when a miscellaneous object blocks the
doors. Others are related to pedestrians only such as an Interrupted Passenger Exchange
(IPE) when simultaneous boarding and unboarding passengers bump into each other or the
Fall of a Passenger (FP). Finally some events result from an abnormal pedestrian-doors
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Figure 2: Full model diagram.

Dataset cat. PQ RQ SQ

FPDM
person 89.5 91.9 97.4
door 98.0 98.0 100

Train person 79.6 87.3 91.2
door door 97.0 97.0 100

combined
person 83.3 89.1 93.6
door 97.7 97.7 100

(a) (b)
Figure 3: 3(a) Input image, panoptic segmentation ground truth and K-Net predictions. 3(b)
K-Net panoptic segmentation results on the FPDM, Train doors and combined datasets ex-
pressed for the categories "person" and "door".

interaction, such as an Instance Present in the Doorway during closing (IPD) which can
become a Passenger Stuck in the Doorway (PSD), a Passenger’s Bag Stuck in the Door-
way while being Inside the train (BSDI) or a Passenger’s Bag Stuck in the doorway
while being on the Station (HE.BSDS). Anomalous events are summarized in fig. 1(a).

4.2 Object detector

We use the K-Net model with the swin [22] backbone variety pretrained on the COCO
dataset and finetuned for 30 epochs on a combination of the FPDM dataset and an anno-
tated subset of the FRailTRI20_DOD dataset called the Train Door dataset [9]. Panoptic
segmentation results are provided in fig. 3(c) using the Panoptic Quality (PQ) metric [15],
the geometric mean of the segmentation quality (SQ) and recognition quality (RQ) metrics.

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Dufour, Meurie, Strauss, and LÃ©zoray} 2020

Citation
Citation
{Kirillov, He, Girshick, Rother, and Dollar} 2019



LAURENDIN O., AMBELLOUIS S., MAHTANI A., FLEURY A.: BMVC VUA 2023 7

ResNet-50
(pretrained on

ImageNet)

Flownet-2
(pretrained on

Chairs)

Flownet-2
(pretrained on

Chairs)

3D CNN Encoder

3D
 c

on
v

3D
 c

on
v

3D
 c

on
v

16
 x

 1
6 

x 
32

32
 x

 3
2 

x 
16

8 
x 

8 
x 

32

S-2 S-1 S2S1

R
eg

ul
ar

Irr
eg

ul
ar

S-2 S-1 S0 S2S1

S-2 S-1 S0 S8S4

Fu
lly

 c
on

ne
ct

ed

2D
 c

on
v

4 
x 

4 
x 

32

2 
x 

1

CE loss

0.9

0.1

1

0

predictions labels

S-2 S-1 S1 S22D
 c

on
v

2D
 c

on
v

16
 x

 1
6 

x 
32 L1 loss

prediction label

2D
 c

on
v

32
 x

 3
2 

x 
32

64
 x

 6
4 

x 
3

2D
 c

on
v

2D
 c

on
v

16
 x

 1
6 

x 
32 L1 loss

prediction label

2D
 c

on
v

32
 x

 3
2 

x 
32

64
 x

 6
4 

x 
3

R
eg

ul
ar

Irr
eg

ul
ar

S-2 S-1 S0 S1 S2

S-6 S-4 S0 S3 S5

Fu
lly

 c
on

ne
ct

ed

2D
 c

on
v

4 
x 

4 
x 

32

2 
x 

1

CE loss

0.9

0.1

1

0

predictions labels

CE loss

Fu
lly

 c
on

ne
ct

ed

2D
 c

on
v

4 
x 

4 
x 

32

5 
x 

1

0.1

0.6

0.1

0.1

0.1

0

1

0

0

0

predictions labels

C
lo

si
ng

In
te

rr
up

tio
n

O
pe

ni
ng

SO
SC

FC
SM

O
pe

n

FO

Fu
lly

 c
on

ne
ct

ed

2D
 c

on
v

4 
x 

4 
x 

32

2 
x 

1

CE loss

0.9

0.1

1

0

predictions labels

Fo
rw

ar
d

B
ac

kw
ar

d

S-2 S-1 S0 S2S1

S2 S1 S0 S-2S-1

Fu
lly

 c
on

ne
ct

ed

2D
 c

on
v

4 
x 

4 
x 

32

1 
x 

10
18

L1 loss

0.8

0.1

predictions labels

...

0.5

0.1

...

S0

S-2 S-1 S0 S1 3D
 c

on
v

3D
 c

on
v

3 
x 

16
 x

 1
6 

x 
32 L1 loss

3D
 c

on
v

6 
x 

32
 x

 3
2 

x 
32

6 
x 

64
 x

 6
4 

x 
1

prediction label

2D
 c

on
v

2D
 c

on
v

3 
x 

16
 x

 1
6 

x 
32 L1 loss

2D
 c

on
v

6 
x 

32
 x

 3
2 

x 
32

6 
x 

64
 x

 6
4 

x 
1

prediction label

3D CNN Encoder
3D

 c
on

v

3D
 c

on
v

3D
 c

on
v

16
 x

 1
6 

x 
32

32
 x

 3
2 

x 
16

8 
x 

8 
x 

32

Task 1

C
lo

se
d

Task 2

Task 4

Task 5

Pedestrian Anomaly
Detection Network

Doors Anomaly
Detection Network

S-2 S-1 S0 S1

Figure 4: Pedestrians and doors anomaly detection models summaries using the shallow and
narrow encoder variant. Each encoder layer is followed by a batch normalization layer, a
ReLU activation and a 3D max-pooling layer and the encoder ends with a temporal pooling
layer. 2D CNN Decoders layers are followed by nearest neighbors upsampling layers. 3D
decoders CNN layers are followed by 3D transpose conv layers.

4.3 Anomaly detection networks
4.3.1 Evaluation metrics

We evaluate our approach using the AUC ROC (Area Under the Curve, Receiver Operat-
ing Characteristic) metric computed with respect to the frame-level ground-truth annotations.
Each ADN must be evaluated on its ability to distinguish the specific subset of abnormal
events it was customized to detect from normal events. We therefore design specific AUC
ROC metrics for 4 different abnormal events subsets called "Doors", "Ped", "Doors Only"
and "Ped only". Each subset ground truth annotations are presented in fig. 1(c).

4.3.2 Frames extractions

K-Net detections with a confidence higher than 0.1 and an area greater than 500 pixels
are kept for the train and test sets. Similar to [10], we use the first 85% of each training
sequence to train and the last 15% to validate our Ped ADN. The Doors ADN is trained and
validated on a stratified shuffle split of the training sequences with respect to doors states
annotations.

4.3.3 Individual ADN Experiments

Following [10], two series of experiments shown in table 2 are performed for each ADN.
“Single” experiments involve a single-single encoder-decoder scheme for each predic-

tion head to show their independent effectiveness for anomaly detection. We also experiment
with different values for the δ and σ parameters for the prediction heads 1-3 to test them to
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the best of their ability. These results are reported in table 1 and the optimal models in terms
of AUC ROC on the "Ped Only" (resp. "Doors") subset are transposed in table 2.

"Combined" experiments are single encoder-multiple decoders schemes used to evalu-
ate the decoders performance when used in a multi-task setting. In addition, the contribution
of the optical flow prediction head is evaluated for each ADN by comparing two "Combined"
variants. The "Full" variant contains all prediction heads while the "Real-time" variant con-
tains all of them safe from the optical flow prediction head. The latter does not rely on
third party network predictions so as to be used in a real-time setting. The bounding boxes
selection contribution is also evaluated for the ped ADN.

Each neural network is trained using mini-batches of 64 samples during 200 epochs for
the "Single" experiments, 400 epochs for the "Combined" experiments, both using the Adam
optimizer with an initial learning rate of 10−3 and keeping other parameters to default values.

4.3.4 Individual ADN Results

"Single" experiments results in table 1 show the importance of the choice of the δ and
σ parameters to insure the proxy tasks 1 through 3 alignment with the anomaly detection
task. It is particularly visible in the case of the doors ADN tasks prediction heads 1 and
2 which results are greatly improved with a greater δ value. It seems that greater values
of δ leads to sharper motion, more closely related to doors being stopped in their motion.
Similarly, the task 2 prediction head systematically achieves better results when σmin = 0. In
these cases, the model is taught to distinguish stationary doors from moving doors.

"Combined" experiments results in tables 2(1) and 2(2) show that every ADN reliably
reaches greater results in terms of AUC ROC than 0.5 (random chance) on their dedicated
subset and less than 0.5 on their complementary subset (except for the pedestrian ADN
prediction head 3). We observe great results of the Doors ADN on the Doors subset with a
slight improvement in mean error and greater interactions between decoders for the "Full"
variant compared to the "Real-time" variant. In the case of the pedestrian ADN, the "Full"
variant using the axis-aligned bounding boxes convention achieves the best results. As such,
these two networks are the ones selected for the fusion step. In addition, each punctual
ADN is evaluated in terms of AUC ROC all on the "Full" subset so as to be compared to
other methods of the literature in 2(3). The doors ADN on its own achieves state-of-the-art
results while the pedestrian ADN does not. This is a predictable outcome since doors-related
anomalies are overrepresented in the dataset, see [16].

Models δ σ

Val Test
Accuracy MAE AUC ROC all

Task 1 Task 2 Task 3 Doors P. O.

Task 1

1 0.94 0.43 0.7
2 0.89 0.42 0.7
3 0.88 0.43 0.67
4 0.91 0.46 0.67
5 0.92 0.46 0.64

Task 2

1 (1-4) 0.9 0.58 0.58
1 (0-4) 0.97 0.58 0.62
2 (1-2) 0.86 0.52 0.78
2 (0-2) 0.96 0.42 0.88
3 (0-1) 0.99 0.45 0.75

Task 3

1 0.04 0.39 0.71
2 0.04 0.32 0.81
3 0.05 0.29 0.85
4 0.05 0.28 0.86
5 0.05 0.28 0.86

Models δ σ

Val Test
Accuracy AUC ROC all

Task 1 Task 2 Task 3 Doors P. O.

Task 1

1 0.99 0.82 0.19
2 0.99 0.81 0.28
3 0.99 0.82 0.24
4 0.99 0.94 0.12
5 0.99 0.93 0.18

Task 2

1 (1-4) 0.99 0.13 0.65
1 (0-4) 0.99 0.55 0.53
2 (1-2) 0.99 0.51 0.47
2 (0-2) 0.99 0.93 0.37
3 (0-1) 0.99 0.94 0.42

Task 3

1 0.99 0.86 0.3
2 0.99 0.91 0.3
3 0.99 0.91 0.24
4 0.99 0.93 0.31
5 0.99 0.94 0.25

Table 1: Single decoders experiments results for tasks 1 through 3 using different δ and σ

for the Ped ADN (left) and Doors ADN (right). Optimal δ and σ values are in yellow.
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4.3.5 Fusion experiment

The Fused Ped and Doors results are presented as the geometric mean of the TPR and
TNR in table 2(4). It encompasses both the combined analysis for all anomalies and an as-
sessment for each individual anomaly category. The evaluation metrics for each individual
anomaly category are computed by isolating the abnormal events related to each considered
anomaly category. Each individual ADN achieves better results than average on their dedi-
cated anomalies (except for the fall of a passenger, FP) the fused model benefits from each
ADN on all anomaly subsets for a small loss of performances.

(1) Pedestrian Anomaly Detection Network Experimental Results

Models δ σ
Bbox AUC ROC all Doors AUC ROC all Ped Only
Type Mean T 1 T 2 T 3 T 4 T 5 Mean T 1 T 2 T 3 T 4 T 5

Si
ng

le

Task 1 1 Axis 0.43 0.7
Task 2 2 (0-2) Axis 0.42 0.88
Task 3 5 Axis 0.28 0.86
Task 4 1 Axis 0.51 0.79
Task 5 1 Axis 0.32 0.86

C
om

bi
né

s

Full Axis 0.38 0.43 0.41 0.28 0.47 0.29 0.86 0.67 0.85 0.84 0.72 0.89
Real-time Axis 0.51 0.42 0.47 0.27 0.58 0.8 0.74 0.85 0.84 0.64
Full Radius 0.39 0.41 0.44 0.29 0.51 0.27 0.86 0.73 0.81 0.84 0.77 0.86
Real-time Radius 0.41 0.42 0.39 0.29 0.58 0.84 0.74 0.82 0.84 0.71
Full Human 0.34 0.39 0.42 0.28 0.6 0.28 0.85 0.72 0.78 0.84 0.72 0.87
Real-time Human 0.47 0.46 0.44 0.28 0.54 0.8 0.74 0.81 0.84 0.71

(2) Doors Anomaly Detection Network Experimental Results

Models δ σ
AUC ROC all Doors AUC ROC all Ped Only

Mean T 1 T 2 T 3 T 4 T 5 Mean T 1 T 2 T 3 T 4 T 5

Si
ng

le

Task 1 5 0.93 0.18
Task 2 3 (0-1) 0.94 0.42
Task 3 5 0.94 0.25
Task 5 1 0.93 0.37

C
o. Full 0.96 0.93 0.95 0.94 0.92 0.28 0.18 0.27 0.25 0.33

Real-time 0.96 0.89 0.9 0.95 0.28 0.22 0.42 0.23

(3) Punctual ADN comparisons
AUC ROC all Full

Doors ADN 0.87
Ped ADN 0.47
[16] 0.8
[17] 0.82

(4) Fusion Experimental Results, fused binary responses optimal PR threshold

Models Doors Only Combined Ped Only
DI ISD PSD BSDI BSDS IPD IPE FP

Doors ADN 0.86 0.97 0.91 0.71 0.97 0.73 0 0
Ped ADN 0 0.01 0.01 0.02 0 0.03 0.67 0.17
Fused 0.85 0.96 0.9 0.71 0.96 0.73 0.66 0.17

Table 2: "Single" and "Combined" experiment results for the Ped (1) and Doors (2) ADN.
Ped and Doors combined ADN variants selected for the fusion step are in green, orange. (3)
Punctual ADNs compared to methods of the literature on the "Full" abnormal events. Both
methods are based on [25]. (4) Fusion experiment results for each anomalous event.

5 Conclusion
In this paper, we propose a multi object-centric networks architecture to deal with anomaly

detection in human object interactions. We validate and evaluate our architecture to detect
doors-pedestrian anomalous interactions in a railway application context. We also present
two new proxy tasks and show their effectiveness and limitations for each ADN. We per-
formed a thorough study of the impact of the choice of bounding boxes convention and the
impact of preprocessing on the misalignment between the self-supervised proxy tasks and
the anomaly detection task. In future work, we will explore other fusion strategies to fill the
performance gap between the pedestrian and the doors anomaly detection networks. Adding
trained connections between the streams will be investigated.
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