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Abstract Surface traces of earthquake faults are complex and segmented on multiple scales. At seis-
mogenic depth the detailed geometry of faults and earthquake rupture is mainly constrained by earth-
quake locations. Standard earthquake locations are usually too diffuse to constrain multi-scale fault geom-
etry, while differential-timing relocation mainly improves finest scale precision. NLL-SSST-coherence, an en-
hanced, absolute-timing earthquake location procedure, iteratively generates traveltime corrections to im-
provemulti-scale precision and uses waveform similarity to improve fine-scale precision. Here we apply NLL-
SSST-coherence to large-earthquake sequences and background seismicity along strike-slip faults in Califor-
nia. Our relocated seismicity at seismogenic depth along major fault segments and around large-earthquake
ruptures oftendefines smooth, planar or arcuate, near-vertical surfaces across the sub-km to10’s of kmscales.
These results show that multi-scale smooth fault segments are characteristic of major, strike-slip fault zones
andmaybeessential to large earthquake rupture. Our results suggest that smoothness and curvature of faults
influences earthquake initiation, rupture, rupturedirection andarrest, and candefine earthquakehazard. The
results corroborate that surface traces of strike-slip fault zones reflect complex, shallow deformation and not
directly simpler,main slip surfaces at depth, and support use of planar or smoothly curved faults formodeling
primary earthquake rupture.

Non-technical summary Surface tracesof earthquake faults, likemany featuresof thenatural land-
scape, are irregular and complex across many scales, from microscopic to many kilometers. However, there
are conflicting views on the geometrical complexity and smoothness of earthquake faults deeper in the Earth
at seismogenic depth, wheremost earthquakes occur - about 4 to 15 km formany large faults in California. But
knowing fault geometry at seismogenic depth is key to understanding earthquakes, including the initiation,
growth, and hazard of large earthquakes. The detailed geometry of earthquake faulting at seismogenic depth
is mainly constrained by seismicity—earthquake locations derived from earthquake waves on seismograms.
But the precision of earthquake locations from routine seismic networkmonitoring is insufficient for imaging
the detailed geometry of faults, while modern, high-precision location procedures mainly improve locations
on only the finest, sub-kilometer scales. Here we apply a new, multi-scale, high-precision earthquake loca-
tion procedure to earthquake activity along major strike-slip faults in California. Our relocations reveal main
fault zones at seismogenic depth as smooth, planar or arcuate, near-vertical surfaces across the sub-km to
10’s of km scales. These results suggest that multi-scale smooth faulting is characteristic of major strike-slip
fault zones, likely influences earthquake initiation, rupture, rupturedirectionandarrest, andmayevenbenec-
essary for large earthquake to occur. The results can aid in mapping earthquake hazard, and underline that
surface fault traces mainly reflect complex, secondary, shallow deformation and not directly simpler, large
earthquake slip surfaces at depth.

1 Introduction

The geometry, complexity and smoothness of faults are
related to maturity of fault zones, rupture physics and
earthquake hazard (Okubo and Dieterich, 1984; Ben-
Zion and Sammis, 2003; Dieterich and Smith, 2010; Fang
and Dunham, 2013; Scholz, 2019). Surface traces of
major, strike-slip earthquake faults are typically com-
plex and segmented, and it is often considered that
these shallow features reflect the fault geometry at seis-
mogenic depth and control the size, initiation, arrest,
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and recurrence intervals of large earthquake rupture
(Bakun, 1980; Bakun et al., 1980; King and Nábělek,
1985; Wesnousky, 2006; Manighetti et al., 2007; Wes-
nousky, 2008; Klinger, 2010).
The roughness of natural faults has been idealized as

fractal or self-affine (Aviles et al., 1987; Power et al.,
1988; Scholz, 2019). Fault surfaces on smaller scales
(e.g., up to ~100 m) are often close to statistically self-
similar but acquire scale dependence as a result ofwear,
at least along the direction of slip (Power et al., 1988; Re-
nard et al., 2006; Sagy et al., 2007). However, the magni-
tude and sense of any roughness scaling depends on the
definition of roughness, how it is measured, and if re-
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ferring to single ormultiple fault strands (Beeler, 2023).
Surface mapping and exhumed faults suggest faults are
roughor corrugated at all scales, fromsub-millimeter to
hundreds of km, but with a scale dependence (Candela
et al., 2012; Renard andCandela, 2017; Beeler, 2023). On
scales of up to ~100 m the roughness of exposed fault
surfaces is found to decrease with total slip (Sagy et al.,
2007). Larger scale surfacemapping implies a reduction
in fault system complexity with increasing geologic off-
set (Wesnousky, 1988; Stirling et al., 1996; Perrin et al.,
2016; Manighetti et al., 2021). And fractal analysis of
the main San Andreas, California fault trace indicates
it is simple or planar at scales larger than about 1-2 km
(Aviles et al., 1987).
The seismogenic depth, a brittle zone where most

co-seismic slip and energy release occurs, is from 4
km or less to 10-15 km for many large faults in Cal-
ifornia (Sibson, 1982; Marone and Scholz, 1988). At
these depths, standard, arrival-time relocations of back-
ground seismicity and aftershock sequences are usu-
ally too diffuse to constrain multi-scale and detailed
fault geometry. For the ~60 km Parkfield segment of
the strike-slip, San Andreas fault in California, various
high-precision, differential-timing relocations image a
twisting (Thurber et al., 2006; Kim et al., 2016; Perrin
et al., 2019), straight (Simpson et al., 2006) or predom-
inantly planar (Thurber et al., 2006) surface, and, on
the km scale, as multiple active fault patches offset by
tens to hundreds of meters perpendicular to the over-
all fault surface (Nadeau et al., 1994; Waldhauser et al.,
2004). However, the geometry of faults segments and
the main rupture zones of larger earthquakes are usu-
ally modeled as (Savran and Olsen, 2020; Ramos et al.,
2022), and often imaged as (CockerhamandEaton, 1984;
Schaff et al., 2002; Graymer et al., 2007;Waldhauser and
Schaff, 2008; Lomax, 2020a) smooth, near-planar sur-
faces.
Thus, current understanding of the multi-scale ge-

ometrical complexity and smoothness of faults and
earthquake rupture zones at seismogenic depth is based
on conflicting results (see also Goebel et al., 2014). This
shortcoming hinders better understanding of earth-
quake rupture physics and of the relations between
faulting at seismogenic depth and surface traces, with
important ramifications for earthquake hazard assess-
ment.
Seismicity, the distribution of earthquakes in space,

time, and size, is fundamental for understanding earth-
quakes and for earthquake hazard assessment and fore-
casting (e.g. Scholz, 2019). Seismicity can show the ge-
ometry and activity of faults, the stages of earthquake
initiation, and the extent of large earthquake rupture.
In particular, seismicity can provide detailed informa-
tion on fault geometry at seismogenic depth, including
on and around surfaces ofmain, co-seismic slip and en-
ergy release. However, relative to the needs of modern
seismological study, standard, arrival-time based earth-
quake locations often have low accuracy and preci-
sion, where accuracy is closeness to a usually unknown
ground-truth, and precision is relative location accu-
racy–the correctness of the relative positions of nearby
hypocenters. Useful and unbiased determination of the

geometry, complexity and smoothness of faults from
seismicity requires earthquake location with uniformly
high precision over multiple scales.
NLL-SSST-coherence (Lomax and Savvaidis, 2022), a

recently developed, arrival-time earthquake location
procedure, iteratively generates traveltime corrections
to improve precision over many scales (e.g., from the
size of a study area to ~1 km) and then uses waveform
similarity to further improve precision on the finest
scales (e.g. sub-km). NLL-SSST-coherence provides
multi-scale, high-precision earthquake location.
Here, extending the work of (Lomax and Henry,

2022), we apply NLL-SSST-coherence to relocate recent
large-earthquake sequences and background seismic-
ity on major strike-slip faults in and around California.
The relocated seismicity at depth surrounding high-slip
patches of large earthquakes and on long stretches of
major fault zones generally defines planar or arcuate,
near-vertical surfaces that are multi-scale smooth (i.e.,
have fractal or Hausdorff dimension ~2.0 over a speci-
fied range of length scales). These results have implica-
tions for understanding of earthquake rupture physics,
fault zone maturity, hazard, and maximum size, for the
relationship of surface traces and paleo-seismic results
to faulting at seismogenic depth, and for earthquake
rupture modeling.

2 The NLL-SSST-coherence procedure
for high-precision earthquake loca-
tion

There are many means for improving the accuracy and
precision of standard, arrival-time based earthquake
locations. These include use of seismographic sta-
tions close to and above the source zone (Pavlis, 1986;
Gomberg et al., 1990; Billings et al., 1994; Hardebeck
and Husen, 2010; Buehler and Shearer, 2016), 3D (Aki
and Lee, 1976; Crosson, 1976; Thurber, 1983; Miche-
lini and McEvilly, 1991) and geology-based, seismic ve-
locity models (e.g. Ryaboy et al., 2001; Wagner et al.,
2013; Darold et al., 2014; Latorre et al., 2016), station
traveltime corrections (Pavlis and Hokanson, 1985a;
Myers, 2000; Richards-Dinger and Shearer, 2000; Lin
and Shearer, 2005; Lomax, 2008; Nicholson et al., 2008;
Nooshiri et al., 2017; Lomax, 2020a), ground-truth cal-
ibration (Ritzwoller et al., 2003; Bondár and McLaugh-
lin, 2009; Lomax and Savvaidis, 2019), and location
algorithms robust to error in the velocity models or
earthquake arrival-time data (Stauder and Ryall, 1967;
Shearer, 1997; Lomax, 2008; Lomax et al., 2014; Ishida
and Kanamori, 1978).
High-precision, multi-event, relative location meth-

ods (Nakamura, 1978; Poupinet et al., 1982; Frémont
andMalone, 1987; Got et al., 1994; Shearer, 1997; Fehler
et al., 2000; Rowe et al., 2002; Lin et al., 2007; Lan-
dro et al., 2015), including the widely used HypoDD
(Waldhauser and Ellsworth, 2000) andGrowClust (Trug-
man and Shearer, 2017), require and build upon ini-
tial, standard, arrival-time locations. Relative location
methods use waveform similarity and precise, cross-
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correlation, differential timing between events at in-
dividual stations to refine fine-scale, inter-event spa-
tial relations. These methods can image seismicity in
remarkable detail on the finest scales, showing nar-
row streaks, highly localized fault planes and sets of
faulting structures (Got et al., 1994; Rubin et al., 1999;
Waldhauser et al., 2004; Michele et al., 2020). How-
ever, these procedures depend on high-quality initial
locations, good station and ray coverage, and a high-
quality velocity model which produces accurate travel-
times and gradients of travel-time (Michelini and Lo-
max, 2004; Richards et al., 2006;Matoza et al., 2013; Lan-
dro et al., 2015; Gibbons et al., 2017). These procedures
may fail to resolve meaningful, larger and multi-scale
differences between events in epicenter and especially
depth (Schoenball and Ellsworth, 2017; Hauksson et al.,
2020), perhaps because of poor station distribution and
consequent poor ray coverage around the sources, or
because of low accuracy and precision in the underly-
ing, arrival-time locations.
We obtain multi-scale high-precision earthquake re-

locations through the combined use of source-specific,
station traveltime corrections (SSST) and stacking of
probabilistic locations for nearby events based on
inter-event waveform coherence (Lomax and Savvaidis,
2022). We use the NonLinLoc location algorithm (Lo-
max et al., 2000, 2014, NLL hereafter), which performs
efficient, global sampling to obtain an estimate of the
posterior probability density function (PDF) in 3D space
for hypocenter location. This PDF provides a com-
prehensive description of likely hypocentral locations
and their uncertainty, and enables application of the
waveform coherence relocation. Within NLL, we use
the equal differential-timing (EDT) likelihood function
(Zhou, 1994; Font et al., 2004; Lomax, 2005, 2008; Lomax
et al., 2014), which is highly robust in the presence of
outlier data caused by large error in phase identifica-
tion, measured arrival-times or predicted traveltimes.
We use a finite-differences, eikonal-equation algorithm
(Podvin and Lecomte, 1991) to calculate gridded P and
S traveltimes for initial NLL locations.

2.1 Source-specific station term corrections

In a first relocation stage, NLL-SSST-coherence itera-
tively develops SSST corrections on collapsing length
scales (Richards-Dinger and Shearer, 2000; Lomax and
Savvaidis, 2022), which can greatly improve, multi-
scale, relative location accuracy and clustering of events
(Pavlis and Hokanson, 1985b; Richards-Dinger and
Shearer, 2000; Lin and Shearer, 2005; Nooshiri et al.,
2017). In contrast to station static corrections (Tucker
et al., 1968; Ellsworth, 1975; Frohlich, 1979; Lomax,
2005, 2008), which give a unique time correction for
each station and phase type, SSST corrections vary
smoothly throughout a 3D volume to specify a source-
position dependent correction for each station and
phase type. These corrections account for 3D varia-
tions in velocity structure and corresponding distortion
in source-receiver ray paths. NLL-SSST uses smooth,
Gaussian distance kernels for accumulating SSST cor-

rections, while Richards-Dinger and Shearer (2000) use
a fixed number of neighboring events, and Lin and
Shearer (2005) use fixed distance and shrinking-box ap-
proaches.
Spatial-varying, SSST corrections are most effective

for improving relative locations on all scales when the
ray paths between stations and events differ greatly
across the studied seismicity, including when stations
are inside the seismicity distribution, the extent of seis-
micity is large relative to the distance to the stations, or
the depth range of events is large. SSST corrections can
improve multi-scale precision when epistemic error in
the velocity model is large, such as when a 1D, later-
ally homogeneousmodel or a large-wavelength, smooth
model is used in an areawith sharp, lateral velocity con-
trasts or smaller scale, 3D heterogeneities.

2.2 Waveform coherency relocationmethod

In a second relocation stage, NLL-SSST-coherence re-
duces aleatoric location error by consolidating infor-
mation across event locations based on waveform co-
herency between the events (Lomax and Savvaidis,
2022). This coherency relocation, NLL-coherence, is
based on the concept that if the waveforms at a sta-
tion for two events are very similar (e.g. have high co-
herency) up to a given dominant frequency, then the
distance separating these events is small relative to the
seismic wavelength at that frequency (e.g. Geller and
Mueller, 1980; Poupinet et al., 1984), perhaps less than
about a quarter of this wavelength (Geller and Mueller,
1980; Thorbjarnardottir and Pechmann, 1987). A pair
of similar events is a doublet and a set of similar events
may be called a cluster,multiplet or family; these events
all likely occur on a small patch of a fault with similar
magnitude and sourcemechanism (Gedney, 1967;Ham-
aguchi andHasegawa, 1975; Ishida and Kanamori, 1978;
Geller and Mueller, 1980; Poupinet et al., 1982; Nadeau
et al., 1994; Cattaneo et al., 1997; Ferretti, 2005). In
a high-precision, microseismic study Goertz-Allmann
et al. (2017) show for waveformwindows spanning both
P and S waves that correlation coefficients greater than
about 0.7 indicate event multiplets locate within about
0.1 km, which is about a quarter wavelength for the typ-
ical dominant waveform frequency ~20 Hz andwave ve-
locity of ~2.5 km/s shown in their study. The results of
Goertz-Allmann et al. (2017) (their figs. 4 and 6) also
show lack of clustering and large separation of event
pairs for correlation coefficients less than about 0.5.
For detailed seismicity analysis, the precise hypocen-

ter locations of events in multiplets can be assigned to
a unique centroid point or coalesced in space through
some statistical combination of the initial hypocenter
locations (Jones and Stewart, 1997; Kamer et al., 2015).
Alternatively, precise, differential times between like-
phases (e.g., P and S) for doublet events can be mea-
sured using time- or frequency-domain, waveform cor-
relation methods. Differential times from a sufficient
number of stations for pairs of doublet events allows
high-precision, relative location between the events,
usually maintaining the initial centroid of the event po-
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sitions (Nakamura, 1978; Poupinet et al., 1982, 1984; Ito,
1985; Got et al., 1994; Nadeau et al., 1994; Waldhauser
and Ellsworth, 2000; Matoza et al., 2013; Trugman and
Shearer, 2017).

NLL-coherence uses waveform similarity directly to
improve relative location accuracy without the need for
differential time measurements or many stations with
waveform data. The method assumes that high co-
herency between waveforms for two events implies the
events are nearly co-located, and that all of the infor-
mation in the event locations, when corrected for true
origin-time shifts, should be nearly identical in the ab-
sence of noise. Then, stacking over probabilistic lo-
cations for nearby events can be used to reduce the
noise in this information and improve the location pre-
cision for individual, target events. We measure co-
herency as themaximum, normalized cross-correlation
betweenwaveforms from one ormore stations for pairs
of events within a specified distance after NLL-SSST re-
location (5-10 km in this study). We take the maxi-
mum station coherence between the target event and
each other event as a proxy for true inter-event dis-
tances and thus as stacking weights to combine NLL-
SSST location probability density functions (PDF’s) over
the events. In effect, this stack directly improves the
hypocenter location for each target event by combin-
ing and completing arrival-time data over nearby events
and reducing aleatoric error in this data such as noise,
outliers, and missing arrivals. For a ground-truth test
of NLL-SSST-coherence using controlled-source, explo-
sion data from Finland, Lomax and Savvaidis (2022) es-
timated a relative horizontal location error of about 75
m. See Lomax and Savvaidis (2022) for more discussion
and details, and Supplementary File S1 for NLL-SSST-
coherence processing parameters used in this study.

A representation through analogy of the im-
provement of location precision given by NLL-SSST-
coherence and by cross-correlation based, differential-
timing methods is shown in Figure 1. Relative to a
set of true locations, standard catalog locations using
arrival-time based location methods contain multi-
scale distortion primarily due to epistemic error in the
velocity model, and smaller scale blurring primarily
due to aleatoric error in the arrival-time data. NLL-
SSST corrections remove epistemic error to improve
multi-scale precision, and NLL-coherence removes
aleatoric error to improve smaller scale precision.
Differential-timing methods remove mainly aleatoric
error in the arrival-time data to improve smaller and
finest-scale precision, while, in practice (Waldhauser
and Schaff, 2008; Trugman and Shearer, 2017), their
time-difference formulation explicitly ignores and
does not correct for larger scale, epistemic, veloc-
ity model error. These methods thus produce high,
finest-scale precision, but do not remove larger, multi-
scale distortion introduced in underlying, standard
catalog locations. No methods can directly improve
absolute epicenter and depth shifts and distortions on
the largest scale (e.g., the full study area), for which
accurate velocity models and calibration with ground
truth information is needed.

3 NLL-SSST-coherence relocations
along strike-slip faults in California

We present and discuss NLL-SSST-coherence reloca-
tions for well recorded, recent, moderate to large earth-
quake sequences and background seismicity on major
strike-slip faults in and around California (Figure 2).
We do not analyze sequences for very large, Califor-
nia strike-slip earthquakes such as 1993 Mw 7.3 Lan-
ders (Hauksson et al., 1993), 1999 Mw 7.1 Hector Mine
(Hauksson, 2002) or 2019Mw 7.1 Ridgecrest (Ross et al.,
2019) primarily because aftershock seismicity for such
large earthquakes occurs mainly away from main rup-
ture surfaces (e.g. Das and Henry, 2003; Liu et al.,
2003), but also, for the earlier Landers and Hector Mine
events, due to sparsity of station distribution and lack of
available digital waveform recordings.
In most cases we compare the results with high-

precision, cross-correlation based, differential-timing
relocations for the same time period and magnitude
ranges, as available in the Northern California Seis-
mic SystemHypoDD catalog (NCSS-DDWaldhauser and
Ellsworth, 2000; Waldhauser and Schaff, 2008; Wald-
hauser, 2009). The number of available NCSS-DD events
is always less than the number of NLL-SSST-coherence
events since HypoDD relocates only events having a
minimum number of high cross-correlation connec-
tions to nearby events. We analyze the results with
a focus on the geometry and smoothness of apparent
faulting as imaged or inferred by the multi-scale, NLL-
SSST-coherence seismicity. It is important to note that
even small heterogeneities in fault geometry, including
roughness, kinks, bends, or offsets, can have a large ef-
fect on rupture physics (King and Nábělek, 1985; King,
1986; Dieterich and Smith, 2010; Fang and Dunham,
2013).
In the following relocations, we apply NLL-SSST with

a smallest, Gaussian kernel smoothing length of 4 km
or 2 km and apply NLL-coherence using waveforms up
to 10 Hz or 20 Hz frequency (Supplementary File S1).
We obtain formal NLL-SSST-coherence epicenter (errH)
and depth (errZ) uncertainties as low as 100-200m (Sup-
plementary Table S1 and Datasets S1-5). This uncer-
tainty range represents the relative locations accuracy
(precision) of the NLL-SSST-coherence relocations, but
not the absolute location accuracy which may be much
larger. As with other location procedures, NLL-SSST-
coherence does not directly improve absolute epicen-
ter and depth accuracy on the largest scale (e.g., the full
study area), forwhich accurate velocitymodels and cali-
bration with ground truth information is needed. Thus,
in the following, “multi-scale” precision ranges from
approximately sub-km (as low as 100-200 m) to the ex-
tent of each study area.

3.1 Smooth, planar faulting: the Parkfield
segment of the central San Andreas fault

We first examine the 2004 Mw 6.0 Parkfield sequence
and background seismicity along the Parkfield segment
of the central San Andreas fault (Figure 2). The Park-
field segment is at the southeastern end of an over 100
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Figure 1 A photo analogy representing the multi-scale improvement in location precision of NLL-SSST-coherence versus
the fine-scale improvement of differential-timingmethods. NLL-SSST-coherencemaynot achieve the sameprecision at finest
scales as differential-timingmethods such asHypoDDorGrowClust, but can give a better representation of the true geometry
of locations across other scales.

Figure 2 Study areas. Study areas in California and
Nevada for NLL-SSST-coherence relocations presented (ma-
genta) and discussed (white) in this work. Green lines show
faults from theUSGSQuaternary fault and fold database for
the United States.

km long, near-straight stretch of the San Andreas fault
which exhibits surface creep, and just northwest of a
long, locked stretch of the fault that hosted the 1857 M

7.9 Fort Tejon earthquake (Bakun et al., 2005; Langbein
et al., 2005). It is generally accepted (e.g. Simpson et al.,
2006; Thurber et al., 2006) that there is a single main
fault surface at seismogenic depth for the 2004 rupture,
and that this rupture falls not along the curved, main
San Andreas surface trace, but instead along and under
the straighter, Southwest Fracture zone (Figure 3).

For the Parkfield area, NCSS-DD HypoDD relocations
(NCSS-DD Waldhauser and Schaff, 2008; Waldhauser,
2009) show a fault geometry that is kinked and small-
scale segmented (Figure 3ac Waldhauser et al., 2004),
a common result for high-precision, differential-timing
relocation. In contrast, NLL-SSST-coherence reloca-
tions (Figure 3bd) show a much smoother, near-planar
fault surface across scales from sub-km to the ~50 km
study extent. The difference in geometry for the two
sets of relocations is emphasized by a singular value
decomposition (SVD) fit of a single plane to each of
the respective hypocenter sets (Figure 3cd); the mean
absolute deviation of NLL-SSST-coherence hypocenters
from their SVD plane (140m) is 54% of that for NCSS-DD
(260 m). These characteristics and differences between
the two sets of relocations are accentuated in stretched
views of the seismicity (Supplementary Figure S1) and
in animated, rotating views along the San Andreas fault
zone (Supplementary Movies S1 and S2).

The near-planar surface defined by the NLL-SSST-
coherence relocation follows the overall trend of sur-
face faults on the largest scales, but not the smaller scale
segmentation and complexity of these faults. At seismo-
genic depth the NLL-SSST-coherence relocations show
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Figure 3 Seismicity along the central San Andreas fault zone around Parkfield. M ≥ 1.0 hypocenters from 1984-01-01 to
2022-02-22 in map view for (a) 10384 NCSS-DD and (b) 11314 NLL-SSST-coherence event relocations; inner gray box shows
area used for SVD fit of plane to hypocenters from 2.5 to 15 km depth. Lateral views from ~S40◦E along best fit SVD plane
(near vertical, cyan line) for each catalog shown for (c) NCSS-DD and (d) NLL-SSST-coherence. Hypocenter color shows origin
time (yellow events after the 2004 Mw 6.0 mainshock), symbol size is proportional to magnitude; larger yellow and white
dots show and 2004 Mw 6.0 hypocenter and approximate 1966 M 5.5 epicenter, respectively. Inverted pyramids show nearby
seismic stations used for relocation. Light purple lines show faults from the USGS Quaternary fault and fold database for
the United States, SAFZ – San Andreas fault zone, SWFZ – Southwest Fracture zone, MM – Middle Mountain, GH – Gold Hill.
Background topography from OpenTopography.org. See also Supplementary Movies S1 and S2.

no offsets or bends below the epicenters of the 1966 M
~6 or 2004 Mw 6.0 Parkfield earthquakes. These two
events ruptured nearly the same fault area but initiated
at opposite ends of this area andpropagated in opposing
directions (Bakun et al., 2005); such differences in ini-
tiation point and rupture direction may be possible due
to the planarity and smoothness of the fault at depth,
i.e., fault complexity was not a controlling factor for ini-
tiation and other rupture characteristics (Bakun et al.,
2005).

3.2 Smooth, arcuate faulting: the southern
Calaveras fault zone

We next examine the 1984 Mw 6.2 Morgan Hill, Califor-
nia sequence and background seismicity along a 90 km
stretch of the southern Calaveras fault zone (Figure 4).
The southern Calaveras fault zone, which exhibits

shallow creep, branches towards the north from the
north end of the creeping section of the San Andreas
fault (Watt et al., 2014). Since the installation of dense
seismometer networks in the 1970’s along this stretch of
theCalaveras fault zone therehasbeenabundantmicro-
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Figure4 Seismicity along the southernCalaveras fault zone. M≥1.5hypocenters from1984-01-01 to2022-10-26 inmapand
lateral view from S55◦W of (a) 6138 NCSS-DD and (b) 6419 NLL-SSST-coherence event relocations. Hypocenter color shows
origin time (yellow events within first month after the 1984 Mw 6.2 mainshock), symbol size is proportional to magnitude;
larger white dots show the 1979 M 5.8 and 2007 M 5.4 hypocenters, and large yellow dot the 1984 Mw 6.2 hypocenter. Map
viewsare tilted tobest alignalong thenear-vertical planeofMw6.2 aftershocks around its hypocenter: NCSS-DDviewplunges
81◦ NE; NLL-SSST-coherence view plunges 84◦ NE. Dashed arrows show approximate main rupture direction and extent for
the 1979 M 5.8 (Reasenberg and Ellsworth, 1982) and 1984 Mw 6.2 (Cockerham and Eaton, 1984) events. Inverted pyramids
show nearby seismic stations used for relocation. Light purple lines show faults from the USGS Quaternary fault and fold
database for the United States. Background topography from OpenTopography.org. See also Supplementary Movie S3.

seismicity and several moderate earthquakes, includ-
ing the 1979 M 5.8 Coyote Lake and the 1984 Mw 6.2
events (Oppenheimer et al., 1990), and the 2007 M 5.4
Alum Rock earthquake. For this area, high-precision,
NCSS-DD differential-timing relocations (Figure 4a; see
also Schaff et al., 2002) again show a kinked and seg-
mented character for the main lineation of seismic-
ity. In contrast, NLL-SSST-coherence relocations (Fig-
ure 4b) form a smoother, arcuate lineation on inter-
mediate and larger scales, especially along and around
the 1984 Mw 6.2 aftershock zone (yellow events in fig-
ure). This arcuate lineation follows closely the circum-
ference of a circle of radius 428 km centered to the
south-southwest (Supplementary Figure S2), the signif-
icance of which we discuss later.

Neither set of relocations shows a clear relation of

seismicity to the complex multitude of surface mapped
faults, beyond similar, largest scale trends. And neither
set shows a bend in the fault at seismogenic depth near
the 1979 M 5.8 or 1984 Mw 6.2 hypocenters; such bends
on surface fault traces have been proposed as related to
the rupture initiation point for these and other earth-
quakes (Bakun, 1980; King and Nábělek, 1985). Both
events ruptured to the southeast (Figure 4), with the
1984Mw 6.2 rupture terminating to the southeast where
both sets of relocations show clustered, shallow, off-
fault aftershock seismicity and a possible small offset or
kink at depth, while the 1979 M 5.8 main rupture likely
terminated at a right step in fault segments, with later
aftershocks along the segment further to the southeast
(Reasenberg and Ellsworth, 1982; Oppenheimer et al.,
1990). The 2007 M 5.4 event also ruptured to the south-
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east (Oppenheimer et al., 2010).

3.3 Smooth faulting in oceanic crust: Mendo-
cino triple-junction, California

Next, we consider seismicity from 1995-2022 around
the Mendocino triple-junction, Norther California (Fig-
ure 2). This area hosts a fault-fault-trench triple junc-
tionwith complex, 3D plate interactions: dextral Pacific
– Gorda plate motion across the Mendocino fault zone
(MFZ), oblique subduction of the east-dipping Gorda
plate under the North American plate along the Casca-
dia subduction zone, and dextral North American – Pa-
cific plate motion across the San Andreas fault (Smith
et al., 1993).
For the Mendocino triple-junction area, high-

precision, differential-timing NCSS-DD relocations
(Figure 5a) show diffuse lineations of seismicity off-
shore along the MFZ and in the underlying, subducting
Gorda plate. In contrast, NLL-SSST-coherence relo-
cations (Figure 5b) show a smooth, narrow, gently
curved distribution of hypocenters along the MFZ
around 20 km depth (yellow events in figure) and,
within the Gorda plate, show several narrow, ~20-30km
deep, NW-SE lineations of events suggesting smooth
or linear sets of parallel fractures (Gong and McGuire,
2021; Lomax and Henry, 2022). For these relocations,
NLL-SSST-coherence precision may only be 500 m
to 1 km in some areas due to poor station coverage
(Supplementary Table S1).

3.4 Smaller scale, smooth, planar faulting:
the 1986 M 5.7 Mount Lewis sequence

We next examine on a smaller scale the 1986 M 5.7
Mount Lewis sequence and surrounding, 1984-1999
background seismicity (Figure 2). This sequence oc-
curred just to the north of our southern Calaveras fault
zone study in an ~25 km, north-south area with no
mapped surface faults. The 1986 M 5.7 mainshock had
a north-south oriented, right-lateral strike-slip mech-
anism and a highly productive aftershock sequence
within in a distinctive, north-south oriented “hourglass”
shaped volume (Zhouet al., 1993;Dodge et al., 1996; Kilb
and Rubin, 2002).
For the Mount Lewis sequence, high-precision,

differential-timing NCSS-DD relocations (Figure 6a),
more clustered and organized, NLL-SSST-coherence re-
locations (Figure 6b) and the results of Kilb and Ru-
bin (2002) all define well the extensive, volumetric,
hourglass form of seismicity to the north and south
of the mainshock hypocenter. All sets of relocations
also show a narrow, central, ~2 km long (NCSS-DD)
to ~3 km long (NLL-SSST-coherence; see Supplemen-
tary Movie S5) north-south, tabular trend of foreshocks
(blue) and early aftershocks (yellow) around the main-
shock hypocenter, extending from about 2 km above to
1 km below the hypocenter (large yellow dot). Kilb and
Rubin (2002) interpret this trend as a kinkedmainshock
rupture surface. Here, SVD analyses of events within
a 1.2 km wide rectangular prism centered on the tabu-
lar trends shows that near vertical planes fit well (mean

absolute deviation 66 m for NCSS-DD, 35 m for NLL-
SSST-coherence) all foreshocks, mainshock and early
aftershocks while covering an area similar to that in-
ferred through teleseismic waveform analysis for the
mainshock rupture (Zhou et al., 1993). For the NLL-
SSST-coherence relocations, the aftershocks just north
and south of the SVD plane are mainly offset east and
west, respectively, from the strike of the plane, as ex-
pected for aftershocks concentrating in the extensional
quadrant of a right-lateral, strike-slip event (Kim et al.,
2004). These results suggest a simple, smooth, planar
surface for the main M 5.7 rupture, while most after-
shocks occur outside this surface on extended, complex
secondary structures, including fault sets perpendicu-
lar to main rupture, indicating an immature fault sys-
tem (Kilb and Rubin, 2002).

3.5 Indirect indication of smooth, planar
faulting: southwest of San Francisco

We next consider background seismicity along ~50 km
of the San Andreas fault zone (SAFZ) to the south and
west of San Francisco (Figure 2). The SAFZ to the west
of San Francisco likely hosts the hypocenter of theM7.9
1906 California earthquake (Lomax, 2008). NLL-SSST-
coherence relocations from Feb 1981 to April 2021 for
this area are shown in Figure 7.
A major part of the seismicity forms an ~35 km long

zone at about 5-11 km depth which is rotated about 5◦

clockwise to and crosses under the surface expression
of the SAFZ. This seismicity has predominantly exten-
sional focal mechanisms and is associated with an ex-
tensional, right stepover between the onshore San An-
dreas fault and the offshore Golden Gate fault (Zoback
et al., 1999; Parsons, 2002; Lomax, 2008).
To the south of San Francisco, the onshore surface

trace of the SanAndreas fault (SAFZ and cyan line in Fig-
ure 2a) is nearly linear and exhibited up to 4.5 m of rup-
ture during the M7.9 1906 earthquake (Reid and Law-
son, 1908). These relations and evidence from seismic-
ity (Zoback et al., 1999) and reflection seismics (Hole
et al., 1996) suggest that the active fault surface that
hosted 1906 rupture at seismogenic depth may be rep-
resented by a vertical plane under and along the sur-
face trace. Such a plane delimits well the northeast-
ern boundary of the extensional seismicity along this
segment (Figure 7ab), as also found by Zoback et al.
(1999) and Lomax (2008). The truncation of ongoing ex-
tensional seismicity along a vertical fault may indicate
a strong contrast in geologic structure across the fault
(e.g. Liu et al., 2003) such that present-day background
stress leads to, in this case, distributed, normal fault-
ing to the southwest while the northwest side remain
mainly aseismic.
Along and below the northeast boundary of the ex-

tensional seismicity there is a 30 km long set of seismic-
ity clusters at around 11–13 km depth (Figure 7ac) with
mainly strike-slip focal mechanisms (Lomax, 2008).
This set of deep clusters is well fit by a linear trend ro-
tated about 5◦ clockwise to the SAFZ (white rectangle in
Figure 7c) and which appears to connect the San An-
dreas and Golden Gate faults below and across the ex-
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Figure 5 1995-2024 Mendocino triple-junction relocations. Map view of M ≥ 2.0, 1995-01-01 to 2024-04-01 hypocenters for
(a) 2585 NCSS-DD and (b) 3645 NLL-SSST-coherence event relocations. Hypocenter color shows depth, symbol size is propor-
tional to magnitude. Inverted pyramids show nearby seismic stations used for relocation. Light purple lines show onshore
faults from the USGS Quaternary fault and fold database for the United States; MFZ – Mendocino fault zone; SAFZ – San An-
dreas fault zone. Background topography image fromwww.ncei.noaa.gov. See also Supplementary Movie S4.

tensional stepover. This linear trend of deep seismic-
ity suggests either a linear, strike-slip fault structure
around 12 km depth, or localized, synthetic, or anti-
thetic faulting at the base of a brittle crust in response
to dextral shear across an underlying, linear ductile
zone (Lomax, 2008). An upwards extension of the linear
trend of deep seismicity appears to delimit the north-
eastern boundary of shallower extensional seismicity
(Figure 7a), but examination of the geometrical rela-
tions in 3D and structural considerations favor that this

boundary is right-steppingwith segments parallel to the
main SAFZ.

4 Discussion

4.1 NLL-SSST-coherencemethodology

NLL-SSST and NLL-coherence together greatly increase
precision (relative location accuracy) onmultiple scales
within a standard, arrival-time location framework (Fig-

9
SEISMICA | volume 2.1 | 2023



SEISMICA | RESEARCH ARTICLE | Fault smoothness across scales

Figure 6 1984-1999 Mount Lewis sequence relocations. M ≥ 1.0 hypocenters from 1984-01-01 to 1999-12-31 for (a) 3343
NCSS-DD and (b) 3503 NLL-SSST-coherence event relocations in map view (upper panels) and lateral view from east (lower
panels). Hypocenter color shows origin time (cyan events show foreshocks before the M 5.7 mainshock (large yellow dot),
yellow events the first 7 days of aftershocks), symbol size is proportional to magnitude. Inverted pyramids show nearby
seismic stations used for relocation. White rectangles showplane of best SVD fit to hypocenters in a 0.6 kmwide zone around
the rectangle, heavy line indicates top of the plane. Background topography image from OpenTopography.org. See also
Supplementary Movie S5.

ure 1; Lomax and Savvaidis, 2022). Building on and
making use of the thorough, probabilistic global sam-
pling and robust, EDT likelihood function of NLL, NLL-
SSST improves multi-scale precision by iteratively re-
moving common-mode traveltime residuals at available

stations as a function of hypocentral position. This
procedure reduces epistemicmodel errors and location
bias between nearby events located with differing sets
of stations or phase types. NLL-coherence location im-
proves smaller scale precision by stacking probabilis-
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Figure 7 1981-2021 relocations southwest of San Francisco. NLL-SSST-coherence relocations of available NCSS events
1981-01-01 to 2022-11-30. 3170 events with 68% confidence ellipsoid semi-axis ≤ 2 km shown in a) map view, b) in section
view from the southeast (from N146E) along the SAFZ and including only events within the white box in panel a), and c) in
map viewwith only events deeper than 11 kmplotted to emphasize the trend of deep clusters (white rectangle). Hypocenters
are shifted randomly 0.2 km to avoid overlapping symbols. Green lines show faults from the USGS Quaternary fault and fold
database for theUnited States and fromParsons (2002), SAFZ – San Andreas fault zone, SGFZ – SanGregorio Fault zone, GGF –
Golden Gate Fault. The cyan line in panel a) shows a vertical plane from1 to 10 kmdepth aligned to the nearly linear segment
of the SAFZ south of San Francisco; the SAFZ and 1906 rupture are coincident with the cyan line. Background topography
image from OpenTopography.org. See also Supplementary Movie S6.

tic, NLL-SSST location PDF’s of nearly co-located, mul-
tiplet events, as measured by waveform similarity. This
stacking of PDF’s effectively reduces aleatoric data error
and suppresses outliers in the underlying arrival times,
while filling in missing arrival time data across multi-
plet events, resulting in a data-driven, spatial coales-
cence of location for events with similar waveforms. In
the following, as explained earlier, “multi-scale” pre-
cision ranges from approximately sub-km (as low as
100-200m) to the extent of each study area.

In contrast to the coherence-weighted stacking of
PDFs for nearby events in NLL-coherence, cross-
correlation based, differential-timing methods such as
HypoDD or GrowClust achieve high to very high, fine-
scale precision through explicit, inter-event, differen-
tial location. This location involves over nearby event
pairs of differences in distance along event-station ray
directions, as constrained by all available arrival-time
differences and the used velocity model. For relocation
studies with good station coverage, and thus good ray
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coverage around the events, these differential-timing
methods should achieve higher, finest-scale precision
than NLL-SSST-coherence. However, for cases of poor
station and ray coverage, NLL-SSST-coherence may re-
tain higher relative location accuracy and better depth
control than do cross-correlation based, differential-
timing methods, as indicated by our results for Men-
docino triple-junction and Mount Lewis seismicity and
previous results for the 2020 Mw 5.8 Lone Pine, Cali-
fornia sequence (Lomax and Savvaidis, 2022). Further-
more, differential-timing methods such as HypoDD or
GrowClust usually preserve or allow only slight change
in the centroid of the starting locations for individ-
ual clusters of high similarity events (Waldhauser and
Ellsworth, 2000;Waldhauser and Schaff, 2008; Trugman
and Shearer, 2017) and thus, in general, will not im-
prove larger, multi-scale precision beyond that of the
starting locations (Figure 1). It is possible that applying
cross-correlationbased, differential-timingmethods af-
ter NLL-SSST relocation would produce optimal multi-
and finest-scale location precision. And applying these
methods after NLL-SSST-coherence may also have ad-
vantages, asNLL-coherence can collect noisy, outlier lo-
cations back into their correct clusters. The XCORLOC
method (Neves et al., 2022) precedes cross-correlation
based, differential-timing relocation with L1 and L2
norm SSST and so can improve multi-scale precision in
a manner analogous to NLL-SSST-coherence.
There is no evident reason why the NLL-SSST-

coherence methodology might smooth hypocenters lo-
cations over larger distances as an artifact. Indeed,
the iterative,multi-scale NLL-SSSTprocedure generates
smaller-scale traveltime corrections that are indepen-
dent over larger distances; this independence should
preserve true roughness or offsets in alignments of
seismicity. For the case of large error in the arrival-
time data, the independence of NLL-SSST corrections
over larger distances would more likely produce arti-
fact error and offset between clusters of hypocenters
than artifact smoothing. For Mount Lewis, the NLL-
SSST-coherence relocations match well detailed fea-
tures of the high-precision NCSS-DD (Figure 6) and Kilb
and Rubin (2002) relocations, including definition of
the main rupture surface, complex secondary struc-
tures and fault sets perpendicular to the main rupture,
without exhibiting additional smoothing or smearing of
these features that might be artifacts of the NLL-SSST-
coherence methodology.
To further illustrate this point, we compare NLL-

SSST-coherence with high-precision, differential-
timing relocations based on a precursor to GrowClust
(HYS Hauksson et al., 2012) for the complex, 2021 Mw
5.3 Calipatria sequence (Supplementary Figure S3).
This sequence, in the Brawley Seismic zone at the
southern end of the San Andreas fault system, ruptured
3 larger, near-orthogonal segments overs scales of ~2-10
km and numerous smaller scale features over about
7 days (Hauksson et al., 2022). NLL-SSST-coherence
and HYS relocations of the Calipatria seismicity (Sup-
plementary Figure S3) closely reproduce the same
features over all scales, including the larger scale,
near-orthogonal planes, and smaller scale splay and

clustered seismicity, while both set of relocations show
similar depth distribution of these features, including
shallowing of a sharp base of seismicity towards the
north. These results show that, besides larger scale
distortion due to different velocity models and station
correction procedures, NLL-SSST-coherence does
not oversimplify or smooth distributed, multi-scale,
multi-fault ruptures compared to high-precision,
differential-timing relocations.
Similar to NLL-SSST, 3D, tomographic, velocitymodel

inversions implicitly generate station and sourcedepen-
dent traveltime corrections, and may involve collaps-
ing scale lengths. However, differential-timing reloca-
tion in 3D tomographicmodels for Parkfield relocations
(Thurber et al., 2006) do not show as smooth, vertical,
or planar a surface as does NLL-SSST-coherence (Fig-
ure 3b). This difference may be related to the mapping
in tomographic inversion of all traveltime residuals to
unique, 3D, Vp and Vs velocity grids, while SSST maps
the residuals to a large set of 3D, stationVp andVs travel-
time grids; this latter procedure retains many more de-
grees of freedom and so can preserve a greater amount
of information from the residuals thatmay be useful for
precise location.

4.2 Relocation results

With relocation of earthquake sequences and back-
ground seismicity along the SanAndreas (Parkfield) and
southern Calaveras strike-slip faults in California, we
have shown that NLL-SSST-coherence relocated seis-
micity at seismogenic depth alongmajor faults and sur-
rounding large-earthquake ruptures often defines nar-
row, multi-scale smooth, planar (e.g., Parkfield) or ar-
cuate (e.g. southern Calaveras), near-vertical surfaces
acrossmultiple scales. For Parkfield, the high-precision
relocations of Thurber et al. (2006) (see interpretation
of Simpson et al., 2006), and the XCORLOC relocations
of Neves et al. (2022) also suggests, on the intermediate
and largest scales, smooth, near-vertical faulting.
NLL-SSST-coherence relocations for the Mendocino

triple-junction area show that such multi-scale smooth
faulting also occurs for strike-slip faulting in oceanic
crust, as found in other areas (e.g. Schlaphorst et al.,
2023). NLL-SSST-coherence relocations to the south-
west of San Francisco suggests a deep, linear fault or re-
sponse to a deeper, linear shear zone over ~30 km. For
the 2019 Mw 7.1 Ridgecrest, California, sequence high-
precision (e.g. Ross et al., 2019; Shelly, 2020) and stan-
dard NLL locations (Lomax, 2020a) define two planar,
orthogonal faulting surfaces formain rupture of theMw
6.4 foreshock, while Lomax (2020b) additionally deter-
mines that these planes are at different depths and non-
intersecting.
On a smaller scale, for NLL-SSST-coherence reloca-

tions of the 1986 M 5.7 Mount Lewis sequence (Fig-
ure 6b), a near vertical, ~4x4 km plane fits well the fore-
shocks, mainshock and early aftershock hypocenters
and covers an area similar to that of mainshock rup-
ture as inferred through teleseismic waveform analysis.
An hourglass form of aftershocks to the north and south
of this simple, planar mainshock rupture surface, sug-
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gest complex splay and cross faultingwhich fallsmainly
withing the dilatational quadrants of right-lateral main-
shock rupture as delimited by the ~4x4 km plane.
The 2020 Mw 6.5 Monte Cristo Range, Nevada se-

quence occurred along an immature, strike-slip fault
zone, with no clear surface traces related to primary
rupture (Koehler et al., 2021). At seismogenic depth,
NLL-SSST-coherence relocations for this sequence (Lo-
max, 2020a) define two, en-echelon, smooth, planar
faulting segments corresponding in size andorientation
to expected andmodeled mainshock rupture, as well as
lateral and shallow secondary and splay faulting form-
ing an extensive damage zone, in similarity to theMount
Lewis results.
For NLL-SSST-coherence relocations to the south of

San Francisco, the northeast limit of diffuse, exten-
sional seismicity corresponds to a multi-scale smooth,
vertical, planar fault along the SAFZ. In this case, the
seismicity does not directly fall on and define an ac-
tive surface of faulting, but instead delimits the edge
and depth limits of the likely 1906 faulting surface
that is currently mainly aseismic. Preliminary analy-
sis of NLL-SSST-coherence relocations for the 2014 M
6.0 South of Napa, California sequence and background
seismicity shows similar, though less clear, indirect in-
dications of planar faulting for the M 6.0 mainshock
rupture.
These NLL-SSST-coherence relocations define multi-

scale smooth faulting over at least 10’s of km for seg-
ments of mature, strike-slip fault zones, and over the
likely rupture zones of large andmoderate earthquakes
along these faults and on less mature faults. These re-
sults suggest that multi-scale smooth (down to sub-km
lengths), planar and arcuate faulting is characteristic of
strike-slip fault zones at seismogenic depth andperhaps
necessary for larger earthquake rupture. We next con-
sider some important implications of these results.

4.3 Rupture physics

The smoothness and curvature of fault segments at
seismogenic depth likely influences earthquake rup-
ture physics—initiation, rupture, and arrest (Okubo
and Dieterich, 1984; Ben-Zion and Sammis, 2003; Di-
eterich and Smith, 2010; Fang and Dunham, 2013), and
perhaps enables the occurrence of larger earthquakes
(Goebel et al., 2017, 2023). Earthquake initiation may
be possible anywhere within smooth fault segments,
thoughmost likely at non-geometrical asperities—areas
of stress concentration either within the segments due
to previous rupture history or material heterogeneities
and perhaps indicated by concentrations of microseis-
micity, or at limits of the segments including at kinks or
stepovers (Das and Henry, 2003; Aki, 1979; King, 1986;
Scholz, 2019). The arrest of earthquake rupture is likely
favored at barriers such as kinks, steps, or other fault
complexities at the limits of smooth segments at seis-
mogenic depth, as well as within smooth segments at
areas of stress relaxation due to previous rupture his-
tory (Sibson, 1985; King, 1986; Scholz, 2019). Laboratory
experiments indicate that smooth faults have larger co-
seismic slip, lower residual stress and fewer aftershocks

compared to rough faults (Goebel et al., 2023).
Most importantly, for faults that are smooth and pla-

nar or horizontally arcuate (especially when following
closely the circumference of a circle, as is the case
for the southern Calaveras; Supplementary Figure S2),
theremaybenegligible geometrical interactions and re-
sulting backstresses (Dieterich and Smith, 2010) imped-
ing strike-slip rupture displacement. In this case, min-
imal energy is absorbed by off-fault inelastic deforma-
tion as fracture energy (Cocco et al., 2023), and a max-
imum of strain energy released during rupture would
be available to further drive the rupture. Thus, sus-
tained earthquake rupture, and perhaps even the occur-
rence of larger earthquakes, would be more likely over
a smooth fault surface than a rough or fine-scale seg-
mented surface (e.g. Dieterich and Smith, 2010; Fang
and Dunham, 2013; Perrin et al., 2016).
Multi-scale smooth faults are also considered most

likely to support sustained supershear rupture propa-
gation (Bouchon et al., 2010; Bruhat et al., 2016), and
should radiate relatively less high-frequency energy
than rough faults (Madariaga, 1977; Shi and Day, 2013;
Trugman and Dunham, 2014). For planar faulting, the
relative displacement between crustal blocks would be
planar shear, while the displacement of blocks across
arcuate faults would include a rotational component.
In addition, for a multi-scale smooth, curved fault,

there may be a preferred direction for rupture (Rubin
and Gillard, 2000), perhaps due to the position of the
curved fault surface forward of rupture relative to the
dilatational and extensional quadrants of the rupture
(Fliss et al., 2005). This is suggested by our results for
the southern Calaveras fault zone where the 1984 Mw
6.2, 1979 M 5.8 and 2007 M 5.4 events all ruptured to
the southeast (Figure 4b). Given the sense of curva-
ture of NLL-SSST-coherence seismicity and right-lateral
slip, for southeastward rupture the fault forward of the
rupture front is in the dilatational quadrant of strain
from the current andprevious rupture. This dilatational
strain would decrease normal stress across the fault,
producing dynamic “unclamping” in front of the rup-
ture and facilitating further slip, in amanner analogous
to a continuum of infinitesimal, extensional bends or
stepovers (Poliakov et al., 2002; Oglesby, 2005; Oglesby
andMai, 2012; Parsons andMinasian, 2015). Under this
mechanism, rupture in the opposite direction, north-
west in this case, would be impeded, as with infinites-
imal, compressional bends or stepovers, which may
explain why 1979 M 5.8 rupture did not propagate or
trigger slip to the northwest into the presumably well
loaded, future rupture zone of the 1984 Mw 6.2 event. A
general rulewould be that rupture is promoted in the di-
rection along which the fault is concave to the right for
right-lateral slip and concave to the left for left-lateral
slip. Thismechanism could explain sense of rupture for
other large earthquakes on smoothly curving segments
of strike-slip faults, including for southeastwards rup-
ture for the 2002 Mw 7.9 Denali fault, Alaska-Canada
earthquake (Eberhart-Phillips et al., 2003), for primar-
ily eastwards rupture of the 1943 Ms 7.7 Tosya, Turkey
earthquake along the North Anatolian fault (Dewey,
1976; Barka and Kadinsky-Cade, 1988; Stein et al., 1997)
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and perhaps for at least the first half of westward rup-
ture for the 1939 Ms 7.9 Erzincan, Turkey earthquake
(Emre et al., 2021) where the North Anatolian fault ap-
pears mildly concave to the north (Emre et al., 2018). A
preferred, eastward rupture direction due to fault cur-
vature for the 1943 Tosya earthquake could in part ex-
plain why it ruptured in the opposite direction to that
of othermajor events along the North Anatolian fault in
the past century and why its epicenter is, anomalously,
not in an area of increased stress from previous events
(Stein et al., 1997). For a planar fault, this mechanism
is not active and gives no preferred rupture direction,
which is consistent with the 1966 M 5.5 and 2004 Mw
6.0 Parkfield earthquakes rupturing in opposing direc-
tions from opposite ends of a segment of the San An-
dreas fault that our NLL-SSST-coherence results show
is smooth and planar (Figure 3b).
Most of these relations between rupture physics and

smooth faulting may apply to individual fault segments
of any size in a self-similar manner, so that, for exam-
ple, the smaller is a segment of smooth faulting, the
smaller is the largest rupture that can occur on that seg-
ment. Thus, while seismicity on secondary, splay and
damage zone faulting, such as around the apparently
smooth main rupture segments for the Mount Lewis
and Monte Cristo (Lomax, 2020b) sequences, and after-
shock seismicity in general may not exhibit larger scale
patterns suggesting fault smoothness, individual events
and localized clusters could follow these relations on
the (small) scale of their rupture segments.
On larger scales, many complex and very large earth-

quakes involve rupture on a number of separate fault
segments, each of which may be multi-scale smooth,
as is the case for Monte Cristo, and possibly the case
for the 2016 Mw 7.8 Kaikōura, New Zealand earthquake
(Hamling et al., 2017), and for the 1993 Mw 7.3 Landers
(Hauksson et al., 1993) and 1999 Mw 7.1 Hector Mine
(Hauksson et al., 2022) earthquakes in California. How-
ever, aftershock seismicity for large earthquakes occurs
mainly or almost entirely off of main rupture surfaces
(e.g. Das and Henry, 2003; Liu et al., 2003; Goebel et al.,
2023) making it difficult to define precisely the geome-
try of main rupture surfaces for very large earthquakes.
It is possible that on the largest scales, e.g., for the

1857 M 7.9 and 1906 M 7.9 rupture zones along the San
Andreas fault, main rupture may occur on one or few
long, smooth segments. In this case features of rup-
ture physics of smooth faults discussed above combined
with a possible strong locking of smooth faults due, for
example, to efficient healing by cementation or other
processes on thin, smooth fault surface (Muhuri et al.,
2003; Williams and Fagereng, 2022), may be explana-
tions for potentially long recurrence intervals and re-
sulting large size of these events. Additionally, the seis-
micity patterns southwest of San Francisco, where up-
per crustal seismicity occurs mostly off the SAF with
dominantly extensional focal mechanisms, is consis-
tent with near complete release of shear stress after
the 1906 earthquake. Thus, for a given length scale,
a smooth segment may be expected to take more time
than a rough segment to reload back to a critical state
after rupture.

This self-similarity likely extends to the concept of
fault maturity, characterized by increased simplifica-
tion including smoothing and reduced extent of lateral
damage zones (Naylor et al., 1986; Wesnousky, 1988;
Scholz, 2019). We find that sequences on immature
fault systems such as Mount Lewis and Monte Cristo,
though terminated by extensive damage and splay fault-
ing, contain core segments of main rupture which may
be planar, multi-scale smooth surfaces with little, lat-
eral damage zone seismicity. Such main rupture sur-
faces may be mature, on their smaller length and age
scales, in the same sense as are much longer segments
of major fault systems such as the San Andreas on
much larger scales. Such a scale invariance is found
by Evans et al. (2000) for faults exhumed from seismo-
genic depth,which showsimilarity of shear-inducedmi-
crostructures and deformation mechanisms for faults
10m to 10 km long starting froman early age as inferred
from total slip.

4.4 Earthquake hazard andmaximum size
Our overall results suggest identification of stretches
of smooth faulting would help identify zones of earth-
quake hazard and possibly help quantify maximum
earthquake size. This identification might be made di-
rectly frombackground seismicity or aftershocks falling
on smooth surfaces, or indirectly by the distribution
and geometry of clustered, diffuse, or other seismicity
which may delimit stretches of aseismic, smooth fault-
ing, as suggested in our analysis of seismicity south of
San Francisco. Difficulties arise due to the possibil-
ity that future large earthquakes may occur in areas of
current seismic quiescence, including gaps or locked
patches, for example as indicated by the sparsity of re-
cent seismicity along the 1857 M 7.9 and 1906 M 7.9
rupture zones on the San Andreas fault (Jiang and La-
pusta, 2016; Scholz, 2019). In this case, if delimited by
stretches of smooth faulting at seismogenic depth, near-
silent segments of known or inferred fault zones might
be identified as having elevated hazard. Also, surface
mapped fault traces that are rough, multi-stranded or
offset, but smooth on average over large length scales
may be generated by smooth faulting at seismogenic
depth, as is found with analogue fault modeling and
interpreted for shallow natural faulting (Naylor et al.,
1986; Klinger, 2010; Dooley and Schreurs, 2012), such
surface features can therefore indicate elevated hazard.

4.5 Faulting at shallow versus seismogenic
depth

Our NLL-SSST-coherence relocations along major
strike-slip faults mainly concentrate on a single,
smooth surface at more than a few km depth below
zoneswith amultitude of surface traces, sometimes off-
set from these traces. These relations provide further
evidence that surface traces and offsets of strike-slip
fault zones reflect complex, shallow deformation,
perhaps involving braided and upwards diverging fault
structures (e.g. Christie-Blick and Biddle, 1985; Richard
et al., 1995; Graymer et al., 2007), and not directly sim-
pler and hidden slip surfaces at seismogenic depth (e.g.
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Michael, 1988; Oppenheimer et al., 1990; Schaff et al.,
2002; Ponce et al., 2004; Graymer et al., 2007;Watt et al.,
2014; Chaussard et al., 2015), where most co-seismic
slip and energy release occurs. Furthermore, NLL-
SSST-coherence relocations for the Mount Lewis and
Monte Cristo (Lomax, 2020b) sequences, along smaller
and immature strike-faults, also define at seismogenic
depth one or more smooth faulting surfaces which
correspond to probable mainshock rupture surfaces.
However, for these cases there are either no mapped
surface faults (Mount Lewis) or complex, mapped
surface fractures showing little relation to the deeper
mainshock rupture (Monte Cristo), again emphasizing
an indirect relation of surface features to main rupture
surfaces at seismogenic depth.

In general, shallow deformation associated with
earthquake ruptures involves significant diffuse anelas-
tic deformation (e.g. Antoine et al., 2023). Several pro-
cesses may contribute to explain a broadening of the
zone of deformation around faults from the seismo-
genic zone to the surface, forming, for instance, flower
structures above strike-slip faults (e.g. Harding, 1985).
These include transition from unstable to stable slid-
ing, which limits co-seismic slip on fault surfaces to-
ward the surface (Scholz, 1998), and increasingly dis-
tributed damage due to relatively weaker shallow ma-
terials and the geometrical effect of the free surface,
as shown in numerical and analog models (e.g. McClay
and Bonora, 2001; Finzi et al., 2009; Wu et al., 2009; Ma
and Andrews, 2010). For basic understanding of large
earthquake faulting and hazard it is important to bet-
ter define the geometrical transitions and physical con-
nections between complex shallow faulting and poten-
tially simpler and smoother fault segments at seismo-
genic depth.

4.6 Earthquake rupturemodeling

The occurrence of earthquake rupture on multi-scale
smooth faults justifies and would require the use of pla-
nar or smoothly curved fault segments for kinematic
or dynamic numerical modeling (Ramos et al., 2022)
of primary rupture and energy release of an earth-
quake at seismogenic depth. However, modeling of sec-
ondary, splay and damage zone faulting, such as is ap-
parent around the main ruptures for the Mount Lewis
and Monte Cristo sequences, likely requires use of
complicated and rough model fault geometries (Ramos
et al., 2022) or may be better represented by continuum
mechanics-based numerical modeling (Preuss et al.,
2020) across 3D volumes. Additionally, an indirect re-
lation of surface fault traces to main rupture surfaces
at seismogenic depth may preclude simple, downward
projection of these shallow traces for rupturemodeling;
available information from aftershock or background
seismicity, and geophysical and geologic studies should
always be considered for constructing fault segments at
seismogenic depth.

5 Conclusions

Our NLL-SSST-coherence relocations for California
along major, strike-slip faults and surrounding large-
earthquake ruptures show narrow, planar, or arcuate,
near-vertical, multi-scale smooth faulting at seismo-
genic depth across the sub-km to 10’s of km scales.
These results suggest that multi-scale smooth faulting
may be a characteristic of segments of major, strike-
slip fault zones, of large earthquake rupture within in-
dividual fault segments, and, in a self-similar manner,
of earthquake ruptures of smaller sizes.
The smoothness and curvature of faults likely influ-

ences large earthquake initiation (possible anywhere
within or at the limits of smooth fault segments), rup-
ture (multi-scale smooth faults facilitate, and may be
required, for large earthquake rupture; if the fault is
curved, there may be a preferred direction for rup-
ture), and arrest (favored at kinks, steps, or other non-
smooth fault complexities). Consequently, zones of
earthquake hazard can be identified directly from pla-
nar and smooth alignments of seismicity and indirectly
from patterns in clustered or diffuse seismicity.
Our findings provide further evidence that surface

traces and offsets of strike-slip fault zones reflect com-
plex, shallow deformation, and not may not corre-
spond directly to simpler, smoother slip surfaces at
depthwheremost co-seismic slip and energy release oc-
curs. This relationhas important implications for earth-
quake hazard assessment, and supports use of planar or
smoothly curved surfaces, but not necessarily the com-
plexity of surface rupture traces, for earthquake rupture
modeling.
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