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ABSTRACT: Expanding shrubs in the Arctic trap blowing snow, increasing snow height and accelerating permafrost
warming. Topography also affects snow height as snow accumulates in hollows. The respective roles of topography and
erect vegetation in snow accumulation were investigated using a UAV-borne lidar at two nearby contrasted sites in north-
ern Quebec, Canada. The North site featured tall vegetation up to 2.5 m high, moderate snow height, and smooth topogra-
phy. The South site featured lower vegetation, greater snow height, and rougher topography. There was little correlation
between topography and vegetation height at both sites. Vegetation lower than snow height had very little effect on snow
height. When vegetation protruded above the snow, snow height was well correlated with vegetation height. The topo-
graphic position index (TPI) was well correlated with snow height when it was not masked by the effect of protruding vege-
tation. The North site with taller vegetation therefore showed a good correlation between vegetation height and snow
height, R2 5 0.37, versus R2 5 0.04 at the South site. Regarding topography, the reverse was observed between TPI and
snow height, with R2 5 0.29 at the North site and R2 5 0.67 at the South site. The combination of vegetation height and
TPI improved the prediction of snow height at the North site (R2 5 0.59) but not at the South site because vegetation
height has little influence there. Vegetation was therefore the main factor determining snow height when it protruded
above the snow. When it did not protrude, snow height was mostly determined by topography.

SIGNIFICANCE STATEMENT: Wind-induced snow drifting is a major snow redistribution process in the Arctic.
Shrubs trap drifting snow, and drifting snow accumulates in hollows. Determining the respective roles of both these
processes in snow accumulation is required to predict permafrost temperature and its emission of greenhouse gases, be-
cause thicker snow limits permafrost winter cooling. Using a UAV-borne lidar, we have determined snow height distri-
bution over two contrasted sites in the Canadian low Arctic, with varied vegetation height and topography. When snow
height exceeds vegetation height, topography is a good predictor of snow height, with negligible effect of buried vegeta-
tion. When vegetation protrudes above the snow, combining both topography and vegetation height is required for a
good prediction of snow height.

KEYWORDS: Complex terrain; Snow; Vegetation; Snow cover; Lidars/Lidar observations

1. Introduction

In northern regions, the snow cover insulates the ground from
the winter cold air and therefore plays a key role in the perma-
frost thermal regime (Zhang 2005). With global warming, shrubs

are expanding on Arctic tundra (Ju and Masek 2016; Tremblay
et al. 2012) and this has been observed to lead to increases in
snow height in some cases (Busseau et al. 2017; Sturm et al.
2001). Here, we use the term “snow height” rather than the
more common “snow depth” because we take the ground sur-
face as the origin, for consistency with vegetation height. Since
the thermal insulance of the snowpack increases with height
(Sturm et al. 2005b), and since furthermore snow in shrubs can
be more insulating because of a lower thermal conductivity
(Domine et al. 2016; Sturm et al. 2001), shrub expansion and
growth on Arctic tundra may reduce permafrost winter cooling
and therefore accelerate permafrost warming. Such warming
leads to active layer thickening (Boike et al. 2018) and to geo-
morphological changes such as active layer detachment slides
(Costard et al. 2021; Mithan et al. 2021) and the formation of
thermokarst ponds (Farquharson et al. 2019). These processes
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lead to the thawing of some of the organic matter stored
in permafrost, allowing their microbial degradation, which re-
sults in emissions of CO2 and CH4, positively feeding back on
climate warming (McGuire et al. 2018).

How shrub expansion and growth impacts snow height is
therefore an important aspect in the thermal evolution of per-
mafrost and climate. This process is not simple because many
factors are involved. Conventional wisdom on the topic is that
since shrubs decrease wind speed within or around them, they
facilitate snow trapping within their structure and downwind
of it and therefore higher vegetation leads to greater snow ac-
cumulation (Duguay and Bernier 2012; Essery and Pomeroy
2004; Sturm et al. 2001). However, shrubs may grow preferen-
tially in hollows where the soil is more humid and where snow
preferentially accumulates (Gagnon et al. 2019; Marsh et al.
2020; Pelletier et al. 2019; Revuelto et al. 2020; Sturm et al.
2001; Winstral and Marks 2002) so that the greater snow
height in shrubs may partly or wholly be ascribed to topogra-
phy. The efficacy of snow accumulation in shrubs may also be
highly variable and in particular may depend on the snow sup-
ply. Essery and Pomeroy (2004) modeled that beyond a certain
height, taller shrubs did not increase snow accumulation because
of limitations in snow supply. Furthermore, shrubs absorb solar
radiation and emit longwave radiation, sometimes leading to
snowmelt and a decrease in snow height. This is frequent in fall
and spring (Barrere et al. 2018; Busseau et al. 2017; Sturm et al.
2005a) but may also happen during winter warm spells.

Snow–shrub interactions are complex and multifaceted, so
it may not be possible to simply sum up the impact of shrubs
on snow height by invoking a wind reduction–snow accumula-
tion effect. Relevant observations at the microscale (1–10 m),
adequate for detailed process understanding are few in the
Arctic (Sturm et al. 2001). Modeling studies have investigated
the impact of topography and/or vegetation on snow redistri-
bution by wind (Essery and Pomeroy 2004; Marsh et al. 2020;
Pomeroy et al. 1993; Vionnet et al. 2017; Winstral and Marks
2002; Winstral et al. 2013). Those studies had mainly hydro-
logical objectives and focused on snow redistribution at a
large scale. Field validation consisted mostly in global snow
mass budgets. They concluded that large snow accumulations
in the absence of vegetation were indeed largely dictated by
topography (Winstral and Marks 2002) and that taller shrubs
or stubble usually led to greater snow accumulation than
shorter vegetation (Essery and Pomeroy 2004; Pomeroy et al.
1993) provided that there was a sufficient snow supply.

Snow height mapping at fine spatial resolution by airborne
investigations have until fairly recently been unable to investi-
gate the effect of shrubs on snow height. Photogrammetry
(structure from motion) has been used for this purpose on
open environments with accuracies better than 5 cm (Harder
et al. 2016; Revuelto et al. 2021). However, in the presence of
erect vegetation such as shrubs or trees, photogrammetry
only senses the top of the vegetation rather than the actual
ground (De Michele et al. 2016; Fernandes et al. 2018; Harder
et al. 2020) so that snow height cannot be determined by com-
paring summer and winter elevation maps.

Lidar studies have been more successful because the lidar
beam is reflected by both the vegetation and the ground if the

leaf density remains moderate. This allows the determination
of the ground level below vegetation in the snow-free season,
so that snow height can subsequently be determined by winter
measurements (Deems et al. 2013; Harder et al. 2020). This
has been used successfully to map snow height in forests
(Koutantou et al. 2022; Mazzotti et al. 2019; Schneider et al.
2020; Uhlmann et al. 2018). However, to the best of our
knowledge, snow height distribution on shrub tundra has not
been investigated by lidar, other than for methodological ob-
jectives (Currier et al. 2019; Painter et al. 2016; Tinkham et al.
2014). Shrubs and forest affect snow drift differently because
trees are always higher than snow and prevent snow erosion
over large expanses. Snow in forest thus remains of low den-
sity over the whole forested areas (Sturm et al. 1995). Shrub
tundra on the contrary is less homogeneous with numerous
shrubless patches (Belke-Brea et al. 2020; Domine et al. 2022;
Lemay et al. 2018; Sturm et al. 2001) so that shrubs are not ex-
pected to prevent snow drifting as efficiently as trees.

The detailed understanding of the combined effects of
topographic and shrub vegetation on snow accumulation in
windy conditions requires data at very fine spatial resolution,
of the order of vegetation height. Such detailed processes
have not been investigated by modeling, and no detailed field
measurements are available. As recently stated by Marsh et al.
(2020), topography and vegetation have different interactions
with wind: “The inclusion of vegetation interactions on the
wind field is a major source of uncertainty, and properly cap-
turing the wind flow through protruding vegetation would re-
quire even greater detail in the wind model and is an open
research question.” Investigating the detailed impact of topo-
graphic and vegetation features on snow redistribution, and
comparing the effects of both types of features is therefore
timely and necessary for improving our understanding of wind–
snow–vegetation–topography interactions.

To contribute to these questions, we have measured snow
height at the cm scale over low-Arctic tundra comprised of a
variety of vegetation covers including lichen, low shrubs, tall
shrubs, and stunted trees, using lidar scanning by an unmanned
aerial vehicle (UAV). The selected location is Tasiapik valley
near Umiujaq, northern Quebec, Canada, which features varied
topography with flat areas, slopes, gullies, and permafrost mounds
(lithalsas) (Beck et al. 2015; Fortier et al. 2020; Provencher-Nolet
et al. 2014). We obtained data near peak snow height so that
the possible impacts of fall and spring melt episodes were not
explored. The main questions addressed here are:

(i) Does vegetation height impact snow height?
(ii) Does topography impact snow height?
(iii) How do topography and vegetation height interact in

determining snow height?

2. Methods

a. Site

We performed high-resolution snow height measurements
over two ;0.5-km-long areas (hereafter North site and South
site) near the community of Umiujaq, in Tasiapik Valley (Fig. 1).
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The North site is centered around 56.56848N, 76.48958W
(elevation 122 m) and the South site around 56.55948N,
76.48168W (elevation 133 m). The centers of both sites are
1080 m apart. The South site features lichen tundra (Cladonia
spp., mostly C. stellaris and C. rangiferina), always accompanied
with herbaceous species, mostly Carex sp., low and medium
shrub tundra (Betula glandulosa, 0.2–1 m high, with some shorter
Vaccinium sp., 0.1–0.25 cm high) and a few small thickets of
krummholz spruce (Picea mariana, up to 2.5 m high), as detailed
in Gagnon et al. (2019). This site is equipped with extensive me-
teorological, snow and soil monitoring instruments (Domine
et al. 2015), including shortwave and longwave radiation,
snow height, snow and soil temperature, and thermal conduc-
tivity. Complete meteorological data since 2012 except wind
direction are reported in Lackner et al. (2022). Wind direction
at 10-m height is available at https://nordicana.cen.ulaval.ca/
dpage.aspx?doi=45120SL-067305A53E914AF0. The North site
has in general taller vegetation and also features willow shrubs
(Salix spp., mostly S. planifolia and S. glauca) and more exten-
sive areas of krummholz spruce. The North site is on the west
side of the pass between Hudson Bay to the west and Lake
Tasiujaq (formerly Lake Guillaume-Delisle) on the east, while
the South site is on the east side of the pass. Photographs
of the sites are shown in Fig. 2 and Fig. S1 in the online
supplemental material. There are no meteorological instru-
ments on the North site, but frequent visits there and discus-
sions with the locals indicate that the North site is significantly
windier than the South site.

The snow supply here is probably much less limited than at
other sites where snow–shrub interactions have been studied
(Essery and Pomeroy 2004; Liston et al. 2002; Sturm et al.
2001). This is because of the presence of Hudson Bay to the
west and of Tasiujaq Lake to the east, and also to the wide-
spread presence of barren or lichen tundra expanses on the
cuestas surrounding our site and on many parts of the valley.

b. Experimental methods

1) OVERVIEW

The principle of snow height mapping using a UAV is to ob-
tain a digital terrain model (DTM) in winter and another one in
summer. Subtracting the summer from the winter DTM yields
snow height. The lidar beam is reflected by both the vegetation
and the ground, allowing the determination of the DTM as well
as the digital surface model (DSM), which represents the top of
the vegetation. Subtracting theDTM from theDSM yields amap
of the vegetation height in summer and of vegetation protruding
above the snow in winter (Deems et al. 2013; Harder et al. 2020).

2) LIDAR SURVEYS

Both lidar surveys used a YellowScan Surveyor (16 lasers)
lidar system (https://www.yellowscan-lidar.com/, last accessed
on 30 August 2022) operating at 903 nm, ensuring good reflec-
tion by both snow and vegetation. Furthermore, at this IR
wavelength, radiation penetration in snow is ,1 cm (Deems
et al. 2013), so that the actual snow surface can be determined

FIG. 1. Location of the two study areas near Umiujaq, northern Quebec, Canada. The star in the South site indicates the meteorological
station. Contour lines: 20 m. Map sources: atlas: Natural Resources Canada (http://atlas.gc.ca/toporama/en/index.html), overview: Lokal_Profil
(CC-BY-SA-2.5), DTM and contour lines: Natural Resources Canada.
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with an excellent accuracy. The lidar was mounted on a DJI
Matrice 600 Pro (user manual: https://manuals.plus/dji/matrice-
600-pro-manual.pdf, last accessed on 30 August 2022). The lidar
system is an all-integrated solution that includes laser scanner,
Global Navigation Satellite System–Inertial Navigation System
(GNSS-INS), embedded computer and batteries and is capable
of 600000 shots per second. The laser scanner data are coupled
with the Applanix APX-15 GNSS-INS that records the position
and inertial data of the lidar system. The dronewas also equipped
with a DJI Zenmuse X3 camera for FPV (first-person view) pur-
poses to ensure the safety of the equipment and the crew.

All flights were done in automatic mode. UAV takeoffs and
landings were done inmanualmode as well as the initialization of
theGNSS-INS platform integrated in the lidar system before and
after data acquisition. During data acquisition, the UAV flight
speed was set to 5 m s21 and the altitude was set to 40 6 5 m
above ground. For the lidar data, a minimum lateral overlap of
50%between scans is respected. Flights had amaximumduration
of 15 min and covered areas of 4 ha (North site) and 6 ha (South
site). The snow-free survey was performed on 28/29 September
2017 and the snow survey on 25/26April 2018.

3) GEOREFERENCING

To georeference the lidar point cloud, a GNSS base station
was installed on a geodesic benchmark (point 83KP057 from
Natural Resources Canada) at approximately 2-km distance
from the area of interest (AOI). Raw GNSS data collected by
the base station throughout the entire duration of the flights
and for a minimum of at least 5 h is then postprocessed with
Rinex data from the Canadian Spatial Reference System
Precise Point Positioning (CSRS-PPP) of Natural Resources
Canada (NRCan) to get the precise position of the base, with
an uncertainty on the position better than 1.15 cm. The coor-
dinates in the vertical Canadian datum GCVD28 (used here-
inafter for all coordinates) were then calculated with the PPP
tool from the NRCan CRSP-PPP online service and the lati-
tude and longitude of the 83KP057 geodesic benchmark was
validated in terms of accuracy. The final accuracies of the geo-
detic benchmark were 0.009 m in latitude and 0.011 m in
longitude.

The first quality control to validate lidar acquisitions was
through the precision of the postprocessed trajectories of the
UAV. The root-mean-square (RMS) error for each compo-
nent (north, east, and down) needed to respect the expected
values of a Global Navigation Satellite System–Post Proc-
essed Kinematic (GNSS-PPK) positioning, which are 2 cm for
north and east components and 3 cm for the vertical compo-
nent. These RMS errors were satisfied in all UAV flights
processed in this work.

For both surveys (snow-free and the snow-covered UAV
flights), to control the accuracy of the final point clouds, five
check ground control point (GCP), using high reflective tar-
gets (with size 1.21 m 3 0.61 m), were installed before the
flights in representative sectors of the terrain. The four cor-
ners of each target were measured with a GNSS-RTK (Real-
Time Kinematics) rover connected to the GNSS base station.

The next quality control was the validation of the point
cloud georeferencing which was performed by comparing the
position of the check GCP corners and their positions in the
point clouds. The latter was displayed on intensity mode to
see the high reflective targets. The three components of each
corner (XYZ) of the point clouds were compared to their ap-
propriate values measured with the GNSS-RTK rover. The
mean geolocation errors on the components of the five GCPs
were below 2.8 cm in X, 3.1 cm in Y, and 4.4 cm in Z for the
two lidar acquisitions (summer and winter).

The digital terrain model was also checked by comparing
the value XYZ of the check GCPs to their appropriate value
on the surface, which had an RMS below 5 cm.

The GCP validation of summer and winter point clouds
derived from the UAV lidar system are equivalent to the ac-
curacies obtained in previous works based in this technology
(Harder et al. 2020; Koutantou et al. 2021). Despite the differ-
ences between the study areas of these works, a maximum
RMS of 0.15 m in the snow and vegetation heights estimation
may be expected in North and South sites.

No field validation of snow heights was performed using
manual probes. Probes easily penetrate the lichen layer whose
depth varies between 5 and 20 cm. Under tall shrubs the li-
chen is often replaced by moss, which freezes in winter and in
this case, there would be no probe penetration. Probe

FIG. 2. (left) South site showing the various vegetation covers: lichen, low- tomedium-size birch shrubs, and two spruce
thickets. Lithalsas are visible on the right of this photograph. (right) North site showing birch shrubs, willows with yellow
leaves, andmore abundant spruce. Lichens are also present. Photographs taken on 28 Sep 2017 during the lidar survey.
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measurements would then have a random bias between 0 and
20 cm, greater than the expected accuracy from the lidar. This
overprobing issue has already been explicitly or implicitly en-
countered in previous studies. Proulx et al. (2022) observed
that lidar snow heights were lower than manual measure-
ments and attributed this to overprobing into leaf litter.
Harder et al. (2020) compared lidar and manual snow height
measurements and almost always obtained greater heights
with manual measurements. Although they do not specifi-
cally identify overprobing into soft layers as the cause, it
appears as the most likely reason. Considering the highly var-
iable nature of the surface litter/vegetation layer at our site,
the interest of manual validation measurements is therefore
very limited. Moreover, the uncertainty associated not only
to probe measurements but also to the probing spot position-
ing (usually based on manual GPS devices) also introduces
more noise to this evaluation and require a comparison over
extended areas to evaluate the spatial variability of both
manual and lidar snow height acquisitions (Revuelto et al.
2014).

We can, however, compare the lidar value with that of our
SR50 acoustic snow gauge. The gauge value is 1.14 m. For the
30-cm diameter circle just below the gauge, lidar values are in
the range 1.02–1.15 m, with an average of 1.07 m. This shows
that even though it is a single point observation, both snow
height observations are in good agreement, especially consid-
ering that the penetration depth of the lidar and ultrasonic
beams in lichen may be different. Additionally, lidar observa-
tions also have intrinsic errors. For instance, the laser beam
divergence has an associated elliptical footprint within which
multiple returns can be retrieved from different objects (soil
surface, bush branches, leaves, etc.), which then might be in-
terpreted as a single point that has multiple returns (Deems
et al. 2013). Similarly, the georeferencing of the point cloud
or the minor penetration that the laser beam might have on
different surfaces impact the overall accuracy of airborne lidar
observations. Nonetheless, if a well-established acquisition
and processing protocol is followed, lidar snow height devia-
tions from manual measurements are expected to be low
(,10 cm in no lichen/moss areas) as previous works have
shown in other study areas with contrasted differences (Cur-
rier and Lundquist 2018; Harder et al. 2020; Jacobs et al. 2021;
Mazzotti et al. 2019).

Last, to support this accuracy estimate, we estimated lidar
returns in representative areas of the South site by selecting
an area with mostly birch and another area with mostly lichen.
In the birch-dominated area, the average point cloud density
was 540 points m22 for points classified as lichen, 750 points
m22 for low vegetation points (grasses and very small shrubs
such as Vaccinium sp.) and 2540 points m22 for those classi-
fied as birch (Betula glandulosa). In the lichen-dominated
area, the average point cloud densities were 1500 points m22

for lichen classified points and 770 points m22 for grasses and
low shrub points. These high point cloud densities guarantee
the reliable computation of snow and vegetation heights at
10-cm spatial resolution, with an estimated accuracy around
10 cm, equivalent to similar studies.

4) AUTOMATIC CLASSIFICATION OF TERRAIN TYPES

The points clouds obtained in the different UAV flights were
classified using an automatic classification macro from Terra
Match software. The point cloud was classified in three classes as
bare ground, vegetation, and others. If the automatic classifica-
tion method did not perform properly, manual classification was
done to ensure the right delimitation of each class.

5) SNOW COVER THICKNESS CALCULATION

The first step was to create two digital terrain models
(DTM) using the bilinear interpolation method to finally pro-
duce 10-cm spatial resolution maps DTM. To interpolate a
pixel located between a 10-cm known pixels distance, we cal-
culated an average between these pixels that we weight ac-
cording to the distance of the interpolated pixel to each of the
original pixels. In this case a bivariate function was applied.
The second step was the calculation of the snow cover thick-
ness by applying a differential between the winter DTM
(snow-covered) and the fall DTM (snow-free) for generating
a distribution map in which each pixel gives the value of the
snow cover thickness for a given geographic location.

Both high and low branches and leaves of vegetation reflect
the lidar beam. Here we define the average vegetation height
over a 99 cm 3 99 cm cell (referred to as 1 m for ease) as the
average height of the 90th–98th percentile of vegetation
height pixels (Fig. 3). Vegetation height is indeed perceived at
the height of the tallest branches, but we leave out the upper
percentiles to reduce the impact or very high outliers. We sub-
sequently often consider snow height with a 1-m resolution.
De Michele et al. (2016) have shown that increasing the spa-
tial resolution of snow height maps below 1 m does not add
significant information about the snow height variability.

When snow-free data were acquired on 28/29 September
2017, the foliage of the deciduous shrubs was in fall colors and
part of the leaves had fallen (Fig. 2), with a leaf area index visi-
bly under unity, ensuring that the lidar beam easily reached the
ground. The limited density of spruce also allowed ground de-
tection. During the snow season survey on 25/26 April 2018, the
snowpack was almost at peak accumulation. The snow height at
our automatic SR50 gauge at the southwest edge of the South
site then read 1.14 m and the snow height was within 0.05 m of
that value between 20 January and 13 May, when a late spring
snowfall added 0.2 m of snow which quickly settled. The snow
height during measurement was therefore representative of the
winter. However, the 2018 snow season had a high snow accu-
mulation when compared to other years. Peak snow was 1.0 m
in 2019, 0.6 m in 2017, 0.9 m in 2016 and 2015, and 1.28 m in
2012.

3. Results

a. Topography and distributions of snow and
vegetation heights

Figure 4 shows the summer DTM, vegetation height, and
snow height maps at both sites. The North site has a very gen-
tle slope of 1.7% to the northwest and a 4-m-deep gully on its
southern edge. A readily visible part of the vegetation exceeds
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1.5 m height, because of the presence of willows and of many
spruce trees. The South site has a steeper slope to the southeast
in its northwest part, of 8.5%, which flattens out to 2.3% in the
southeast part. There are lithalsas on its southern edge that are
about 4 m high, but no well-marked gully. Vegetation exceeds

1.5 m in height only for two spruce thickets. There are no spruce
beyond these thickets and no willows.

Figure 5 shows the distribution of vegetation heights at
both sites and confirms the maps of Fig. 4: there is much more
high vegetation on the North site, and the average height is

FIG. 3. Example of the resampling method of the 3-cm horizontal resolution vegetation height maps to 1 m.
(left) All the pixels of the 3-cm resolution map within a 1 3 1 m2 pixel (average vegetation height: 1.58 m).
(right) The pixels retained for the averaging step (90th–98th percentile; average vegetation height: 2.04 m).

FIG. 4. (a) Elevation, (b) vegetation height using the 1-m resolution product, and (c) snow height maps of the North site. (d) Elevation,
(e) vegetation height, and (f) snow height maps of the South site.
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0.35 m versus 0.19 m for the South site. The peak in height
frequency distribution at both sites is around 0.09 m and cor-
responds to lichen tundra. Field observations revealed that
the lichen can be up to 0.2 m thick, but it is visibly optically thick
so that the lidar beam cannot penetrate 0.2 m deep. There are
some grasses on lichen tundra, and given our definition of vege-
tation height at 1-m resolution, lichen with a few blades of grass
show up as vegetation with a height around 0.09 m. There is a
much wider distribution of heights at the North site, due to
much more frequent tall vegetation, such as spruce and willows.
At the South site, birches rarely reach 1 m in height, there are
no willows, and there are only two spruce thickets where the top
of trees cover at the most 200 one-meter pixels.

Despite the taller vegetation at the North site, Fig. 6 shows that
snow height is lower at the North site with average, median, and
mode values of 0.95, 0.91, and 0.80 m, respectively, versus 1.02,
1.02, and 1.01 m for the South site. There are striking differences
in snow height distributions between both sites. There are many
pixels with little or no snow in the South site, because of bumps
(lithalsas) where snow is blown off. The North site distribution is
more asymmetric with a tail on the greater heights side, due to
themuchmore frequent tall vegetation.

We compared the topography of both sites using the topo-
graphic position index (TPI). The TPI “measures the relative
topographic position of the central point as the difference be-
tween the elevation at this point and the mean elevation
within a predetermined neighbourhood” (De Reu et al.
2013). A point at the top of a hill therefore has a positive TPI
whereas a point in a hollow has a negative TPI, as clearly il-
lustrated in Fig. 2 of Salinas-Melgoza et al. (2018). The TPI is
calculated by comparing its position with points within a given
distance called the search distance. TPI distributions for both
sites are shown in Fig. 7, for a search distance of 31 m. The im-
pact of other search distances is detailed in Fig. S3. The South
site has higher extreme TPI values and is clearly more rugged
than the North site. Figure 7 also shows that the South site
has a wider TPI distribution than the North site. This is

further illustrated by the box-and-whisker plot of the TPI dis-
tribution, in Fig. S2 in the supplemental material.

b. Global correlations

The next step is to examine correlations between snow
height, vegetation height, and topography.

1) SNOW HEIGHT VERSUS VEGETATION HEIGHT

Figure 8 plots snow height as a function of vegetation
height for the North site. However, using data at 1-m resolu-
tion may not be the most relevant approach. For example,
snow accumulates not only within vegetation but also in the
lee of protruding vegetation, as evidenced, for example, at
forest edges (Currier and Lundquist 2018) and for low shrubs
(Domine et al. 2016; Sturm et al. 2001). We therefore also ex-
amined pixel sizes of 10 and 20 m (i.e., spatial resolutions of
10 and 20 m). Figure 8 shows that the correlation coefficient
increases significantly when larger pixels are considered. For
20-m resolution, r 5 0.80. For the South site, however, the

FIG. 5. Distribution of the vegetation height at both study sites,
using the 1-m resolution products. The bin size of the histogram
was set to 1 cm. The average, median, and mode vegetation heights
are 0.19, 0.12, and 0.08 m for the South site and 0.31, 0.14, and
0.07 m for the North site. Modes are not shown for clarity.

FIG. 6. Snow height distribution at both study sites, using the
1-m resolution products. The bin size of the histogram was set to
1 cm. The average, median, and mode snow heights are 1.02, 1.02,
and 1.01 m for the South site and 0.95, 0.91, and 0.80 m for the
North site. Modes are not shown for clarity.

FIG. 7. TPI distribution at both study sites, using the 1-m reso-
lution products. The TPI search radius was set to 31 m. The bin
size of the histogram was set to 0.01. Both averages are nearly
identical.
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correlation between snow height and vegetation height is very
low (Fig. 9), as r5 0.28 at 20-m resolution.

2) SNOW HEIGHT VERSUS TOPOGRAPHY

Figure 10 shows a strong correlation between TPI and snow
height for the South site (r5 20.82), but a weaker correlation
for the North site (r 5 20.54). The correlation expectedly
shows greater snow heights for negative TPI values (hollows).

3) TOPOGRAPHY VERSUS VEGETATION HEIGHT

It is also relevant to investigate the correlation between to-
pography and vegetation height as case studies have reported
that vegetation could be higher in hollows (Pelletier et al. 2019).
Figure 11, however, shows a fairly symmetrical distribution of
vegetation heights around TPI 5 0. There is only a very slight

tendency for vegetation to be higher for negative TPI values, but
r values are very low (r 5 20.08, North site and r 5 20.13,
South site) for the TPI with a 31-m search distance. Any value of
the search distance leads to a similar conclusion. Figures S4 and
S5 show correlation using the TPI with 5- and 10-m search dis-
tances, with r values lower than 0.1. There is no well-marked
trend for taller vegetation in hollows.

4) MULTIVARIATE CORRELATIONS

To test for the combined effects of vegetation height and to-
pography on snow height, snow height is plotted as a function of
TPI for different ranges of vegetation height or the North and
South sites (Fig. 12). In the North site, taller vegetation and
more negative TPI values combine to produce thicker snow.
However, in the South site, there is no obvious impact of vegeta-
tion height on snow height, in addition to the impact of the TPI.

FIG. 8. Scatterplots of the relationship between vegetation height and snow height at the North site for pixel sizes of 1, 10, and 20 m.
Owing to the large number of data points, the scatterplot was represented as hexbins colored by the number of data points contained
within each bin. In this plot, each hexbin represents 1.5 cm3 1.5 cm. For all correlations, p values are,0.001.

FIG. 9. Scatterplots of the relationship between vegetation height and snow height at the South site for pixel sizes of 1, 10, and 20 m.
For all correlations, p values are,0.001.
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These multivariate correlations are even more clearly evi-
denced in the 3D plots shown in Fig. 13, for 1-m pixels and
with the TPI calculated with a 31-m search distance. Views
along the axis of the correlation plane are shown in Fig. S6 to
reveal residuals. For the North site, Fig. 13a, the addition of
vegetation height to the TPI to predict snow height increases
the determination coefficient R2 from 0.29 to 0.59, a large im-
provement. This is not surprising since vegetation height is
also a good predictor of snow height, with R2 5 0.37 (Fig. 8).
For the South site, however, R2 increases only from 0.672 to
0.675 when two predicting variables are used, a negligible im-
provement. This is expected since vegetation height is here a
poor predictor of snow height, with R2 5 0.04 (Fig. 9). TPI is
clearly the main predictor of snow height in the South site,
while vegetation height is the main predictor in the North
site. Table 1 sums up correlations for both sites.

5) SUMMARY OF MAIN CORRELATION CONCLUSIONS

To sum up observations, it is interesting to stress the differ-
ences between both sites. The North site is windier, has taller
vegetation, is less rugged, and has less snow than the South
site. In the North site, snow height is strongly correlated with
vegetation height but less correlated with topography as
smoother terrain is observed here. However, the multivariate

analysis shows that combining TPI and vegetation height bet-
ter predicts snow height than vegetation height alone. The
South site shows different effects. There, snow height is
strongly correlated with topography, probably accounting for
the higher terrain heterogeneity that characterizes this site,
and shows almost no correlation with vegetation height. Com-
bining vegetation height with TPI to predict snow height only
leads to a negligible improvement over TPI alone.

c. Process studies

General correlations are useful for an overview of inter-
actions, but a more detailed understanding benefits from the
examination of selected cases. Below, we present transects
with profiles of relevant variables: summer and winter DTM,
summer DSM, snow and vegetation heights, and TPI com-
puted for the best search distance (31 m). The representativity
of a single transect line may be questioned, as, for example, a
tall shrub just next to that line could affect snow height

FIG. 10. Scatterplots of the relationship between TPI with a
search distance of 31 m and snow height at (a) the North site and
(b) the South site. The p values are all,0.001.

FIG. 11. Scatterplots of the relationship between TPI with a
search distance of 31 m and vegetation height at (a) the North site
and (b) the South site. The p values are all,0.001.
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without showing up on our profiles. In each case we therefore
investigated eight parallel profiles 0.5 m apart. Each profile is
shown in a light color and the average in a dark color. For each
average profile of snow height, vegetation height, and TPI, we
calculated the determination coefficient between these three var-
iables, which are summed up in Table 2. We stress that the trans-
ects selected here are to illustrate specific processes are not
meant to be representative of both areas studied.

1) NORTH SITE TRANSECTS

Figure 14 shows transects over an extended patch of me-
dium to tall vegetation comprised of spruce, willows, and
some birch. The deepest snow coincides with the tallest vege-
tation and with a well-marked hollow (the lowest TPI in this

transect). Snow height is reasonably well correlated to vegeta-
tion height (R2 5 0.25) and to TPI (R2 5 0.37). Combining
both vegetation height and TPI to predict snow height im-
proves the correlation (R2 5 0.64). Correlation coefficients, as
well as the trivariate best-fit correlation linking snow height
to vegetation height and TPI, are summed up in Table 2.

Transect 2 (Fig. 15) is over mixed vegetation comprised of
birch as well as spruce and willows and with more varied to-
pography. The distance range 140–180 m shows that vegeta-
tion causes accumulation potentially up to 20 m from the
spruce patch. When vegetation is lower, as at the start of the
transect, the effect of topography is obvious with snow accu-
mulation in a hollow. On this transect with large variations in
vegetation height and little topography, the correlation is

FIG. 12. Scatterplots of the relationship between TPI and vegetation height for (a) the North site and (b) South site. This is similar to Fig. 10,
but with vegetation heights binned in 0.5–1.5-m ranges. The color scale is similar to Fig. 10.

FIG. 13. 3D plot of the combined impact of TPI and vegetation height on snow height. Open circles are above the
plane; closed circles are below the plane. (a) North site. The equation of the best-fit correlation plane is snow
height 5 0.3592 3 vegetation height 2 0.9500 3 TPI 1 0.8288, with R2 5 0.594. (b) South site. The equation of the
best-fit correlation plane is snow height5 0.14853 vegetation height2 1.06403 TPI1 0.9876, with R2 5 0.675.
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much more marked with vegetation (R2 5 0.44) than with
TPI (R2 5 0.05). While some intuitive correlation with topog-
raphy appears upon visual inspection, statistics indicate that
this correlation is in fact masked by the much greater effect of
vegetation. The trivariate correlation is significantly improved
over bivariate ones, with R2 5 0.65 (Table 2).

The originality of transect 3 (Fig. 16) is that there is no pro-
truding vegetation. Data between 0 and 35 m show that the
snow surface is smooth over variable vegetation, suggesting
that once vegetation is covered, its impact on snow height is
reduced. The topography is rather smooth, and the one signif-
icant hollow features the greatest snow height. In those pecu-
liar conditions, the correlation with vegetation height is low
(R2 5 0.143) while that with TPI is very high (R2 5 0.96).
Contrary to the previous transect, vegetation effects do not
mask the impact of topography, leading to a high correlation
between topography and snow height. The trivariate corre-
lation is therefore not improved over that with TPI alone
(Table 2).

Transect 4 (Fig. 17) is across a gully. Both sides of the gully
have little erect vegetation, with mostly lichen, while the gully
itself harbors low shrubs. The snow surface is smooth and
does not reveal the presence of underlying elements. The
snow height is greatest over the gully and expectedly is highly
correlated with TPI (R2 5 0.95) and also well correlated with
vegetation height (R2 5 0.64), since vegetation and TPI are
well correlated (R2 5 0.66). The trivariate correlation is not
improved over the TPI one (Table 2) because snow height
and TPI are already well correlated.

To sum up our observations of the North site, when there
are varied vegetation heights with protruding vegetation,
snow height correlates well with vegetation height. When

vegetation does not protrude, its impact on snow height is re-
duced. Topography does affect snow height, but this correla-
tion can be masked by the greatest impact of vegetation
height at this North site. Topography and vegetation interact,
as illustrated in transect 4, where a hollow and higher vegeta-
tion coincide, and both vegetation and TPI are correlated
with snow height. Trivariate correlations are improved over
bivariate ones only when TPI and vegetation heights are little
correlated (Table 2).

2) SOUTH SITE TRANSECTS

The South site features much less tall vegetation than the
North site (Fig. 5) except for two spruce thickets (Fig. 2).
However, it features a more heterogeneous topography. We
first explore the main part of the area before studying the ef-
fect of the thickets.

Transect 5 (Fig. 18) investigates a line with low, nonpro-
truding vegetation and marked topography with a 1-m-high
bump next to a slight hollow. Data confirm the observation at
the North site, i.e., that nonprotruding vegetation has little
impact on snow height (R2 5 0.002). Without any significant
effect of vegetation, the correlation between TPI and snow
height is obvious (R2 5 0.64). The trivariate correlation is ex-
pectedly not improved over the TPI one (Table 2).

Transect 6 (Fig. 19) was chosen to confirm the conclusions
of transect 5. We again chose a line with low, nonprotruding
vegetation. However, in this case, we selected a place with no
well-marked topography. We again have a fairly smooth snow
surface with mild wind structures that are unaffected by vege-
tation (R2 5 0.002) while what little topography exists does
affect snow height, as snow accumulates in the small hollows
(R2 5 0.48). TPI and vegetation height are not correlated,

TABLE 1. Correlation parameters between vegetation height, snow height, and TPI (search radius of 31 m) for the North and
South sites. Bivariate and trivariate R2 values are shown. The coefficients for the best-fit equation, snow height 5 A 3 vegetation
height 1 B 3 TPI 1 C, are also shown.

Bivariate R2 Trivariate coefficients

Site Vegetation–snow TPI–snow Vegetation–TPI Trivariate R2 A (vegetation height) B (TPI) C (constant)

North 0.372 0.292 0.006 0.594 0.3592 20.9500 0.8288
South 0.040 0.672 0.017 0.675 0.1485 21.0640 0.9876

TABLE 2. Correlation parameters between vegetation height, snow height, and TPI (search radius of 31 m) for the 8 transects
presented in Figs. 14–21. Bivariate and trivariate R2 values are shown. The coefficients for the best-fit equation, snow height 5 A 3

vegetation height 1 B 3 TPI 1 C, are also shown.

Bivariate R2 Trivariate coefficients

Transect No. Site Vegetation–snow TPI–snow Vegetation–TPI Trivariate R2 A (vegetation height) B (TPI) C (constant)

1 (Fig. 14) North 0.253 0.373 0.000 0.639 0.5981 21.3097 0.8858
2 (Fig. 15) North 0.440 0.053 0.099 0.654 0.5869 20.8631 0.8048
3 (Fig. 16) North 0.139 0.964 0.128 0.965 20.0128 20.7967 1.2691
4 (Fig. 17) North 0.635 0.950 0.661 0.950 0.0353 20.9362 0.8462
5 (Fig. 18) South 0.002 0.642 0.004 0.642 20.0130 21.0234 1.0087
6 (Fig. 19) South 0.002 0.482 0.001 0.483 0.0261 21.1689 1.0671
7 (Fig. 20) South 0.096 0.135 0.063 0.186 0.3863 20.2158 0.9432
8 (Fig. 21) South 0.220 0.009 0.081 0.277 0.5182 20.7123 1.0187
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and again the trivariate correlation is not improved over the
TPI one (Table 2).

Transect 7 (Fig. 20) is fairly similar to transect 6, with no
protruding vegetation, but it is on a slope. Again, the best

predictor of snow height is the TPI (R2 5 0.14) but since there
is a slight correlation between TPI and vegetation (R2 5 0.06),
the determination coefficient between snow height and vegeta-
tion height is 0.10. The trivariate correlation is therefore slightly

FIG. 14. Transect 1 in North site. Eight transects of 200 m in length evenly distributed over a width of 4 m, as well as
their average values are shown. The start point of the averaged eight parallel transects is 56.567558, 276.488448 [World
Geodetic System 1984 (WGS84)]. The direction drawn is from south to north (08). The top-left color scale applies to the
three color graphics at the left of the figure. DEM stands for digital elevation model, which is equivalent to DTM.

FIG. 15. Transect 2 in North site, as in Fig. 13. The start point of the averaged 8 parallel transects is 56.567358,276.48008
(WGS84). The direction drawn is from south to north (108).
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improved over the TPI one alone (R2 5 0.19). The correlation
between snow height and topography is much lower than for
transects 5 and 6. We hypothesize that this is due to random vari-
ation in the positions of wind structures such as sastrugi. The

wind rose in Fig. S7 indeed shows that the main wind direction
in the two months prior to the snow season survey was parallel
to the transect, which would maximize the visibility of wind ef-
fects on the snow surface. These wind-induced surface structures

FIG. 16. Transect 3 in North site, as in Fig. 13, but over a 50-m distance. The start point of the averaged eight parallel
transects is 56.568458,276.487588 (WGS84). The direction drawn is from northwest to southeast (1308).

FIG. 17. Transect 4 in North site, as in Fig. 13, but over a 60-m distance. The start point of the averaged eight parallel
transects is 56.568128, 276.490128 (WGS84). The direction drawn is from southwest to northeast (308). Owing to the
proximity to the edge of the raster and a search radius of 31 m, the TPI could not be computed for the first 10 m of the
transect.
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then partly mask the effect of topography and explain the low
correlation.

These transects all indicate that when vegetation height is
much lower than snow height, there is very little impact of vege-
tation on snow height. The impact of topography is then readily
visible, and the effect of well-marked topography (transect 5)

strongly manifests itself. When topographic variations are more
limited, the correlation between TPI and snow height decreases
and can be masked by wind-induced surface structures such as
sastrugi. We now examine the impact of the spruce thickets.

Transect 8 (Fig. 21) is across one of the two spruce thickets
of the site, essentially parallel to the contour lines. Clearly,

FIG. 18. Transect 5 in South site. Eight transects of 100 m in length evenly distributed over a width of 4 m, as well as
their average values are shown. The start point of the averaged eight parallel transects is 56.559528, 276.481228
(WGS84). The direction drawn is from west-southwest to east-northeast (508).

FIG. 19. Transect 6 in South site, as in Fig. 17. The start point of the averaged eight parallel transects is 56.559488,
276.479838 (WGS84). The direction drawn is from west-southwest to east-northeast (508).
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the effect of the thicket extends far away from it. To the
southwest, extra snow accumulation is visible about 50 m
from the thicket edge. Time lapse photographs reveal that
snow accumulation around the thicket took place early in the
snow season, mostly before mid-December 2017. By the end
of January 2018, the snow height was close to that during the

April 2018 survey. The wind roses of Figs. S8 and S9 show
that the main wind directions during both these periods were
from the southwest and southeast, explaining this accumula-
tion. While the impact of the thicket on snow accumulation is
very obvious in Fig. 21, the high snow accumulation on low
vegetation next to the spruce reduces the correlation between

FIG. 20. Transect 7 in South site, as in Fig. 17. The start point of the averaged eight parallel transects is 56.559628,
276.478278 (WGS84). The direction drawn is from southeast to northwest (3158). Owing to the proximity to the edge
of the raster and a search radius of 31 m, the TPI could not be computed for the first 10 m of the transect.

FIG. 21. Transect 8 in South site, as in Fig. 17. The start point of the averaged eight parallel transects is 56.558878,
276.48548 (WGS84). The direction drawn is from west-southwest to east-northeast (508).
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vegetation and snow heights to R2 5 0.22. The strong impact
of the thicket totally masks the effect of the moderate topo-
graphic features on snow height (R2 5 0.01 with TPI).

To sum up our observations of the south site, data confirm
that when vegetation does not protrude above the snow, its
impact on snow height is very small and snow height is then
well correlated with topography. When topographical fea-
tures are moderate, their impact may be masked by wind
structures. Isolated patches of tall vegetation impact snow
height over several tens of meters beyond their development,
reducing the computed correlation, while leading to highly in-
creased snow height.

4. Discussion and conclusions

We studied two widely different sites in terms of vegetation
height, topography, and snow height. The North site had pro-
truding vegetation and mild topography, while in the South site,
shrubs were completely covered by snow and the topography
was rougher. This revealed that for vegetation higher than snow
height, a significant correlation between snow height and vegeta-
tion height is observed: R2 5 0.37 for the North site as a whole,
and R2 5 0.64 for a favorable transect. For vegetation lower
than snow height, there is essentially no impact of vegetation
height on snow height, as R2 5 0.04 in the South site. In this lat-
ter case, topography is the main predictor of snow height, with
R2 5 0.67 between the TPI and snow height. When vegetation is
taller than snow height (North site) the correlation between the
TPI and snow height is reduced, R2 5 0.29, because of the inter-
ference of vegetation height. However, in this case, combining
the TPI and vegetation height predicts snow height well, with R2

5 0.59.
The South site also featured two spruce thickets whose im-

pacts extend far away because of wind effects, as already
noted by Sturm et al. (2001) for tall Arctic shrubs, and the re-
sulting snow accumulation over nearby zones with lower veg-
etation reduces the correlation. Such snow accumulation is
similar to what is caused by topographic obstacles or snow
fences (Tabler 1980; Vionnet et al. 2017).

A rather simple and intuitive picture emerges from this
study. Well-marked topography and vegetation taller than
snow height can both independently very strongly determine
snow height. When snow height exceeds vegetation height,
only the effect of topography will be significantly observed.
When vegetation protrudes above the snow, its effect pre-
dominates over that of moderate topography. When both pro-
truding vegetation and topography are present, combining
both vegetation height and topography provides a better pre-
diction of snow height at our site than using just one of these
variables.

These novel results, however, were obtained at one site
where the snow supply is probably not limited and at only one
point in time. Ideally, time series over a whole snow season
would shed even more light on the interactions studied and in
particular at the beginning of the season, when snow height is
much lower than vegetation height. Such time series have
been obtained for forests in Alpine areas (Koutantou et al. 2022;
Schneider et al. 2020). This has improved our understanding of

both accumulation and melt processes in forests. Alpine forests
are, however, much easier to access regularly than Arctic tundra,
where access in winter can be problematic and where the very
cold temperatures prevent the use of UAVs. Serious challenges
remain before all the aspects of snow accumulation and melt
can be addressed in Arctic regions with varied vegetation and
complex topography. Other variables may also deserve investi-
gation, and in particular the snow supply. Sites with limited
snow supply because of reduced areas with erodible snow, for
example because of extensive shrub or tree cover (Essery and
Pomeroy 2004), may show correlations different to those ob-
served here.

Regarding ground temperature, this variable is affected by
snow height because of the thermal insulation of snow. Sev-
eral studies have linked variations in ground temperature to
vegetation height (Grünberg et al. 2020; Kropp et al. 2021;
Myers-Smith and Hik 2013; Sturm et al. 2001). Our data suggest
that in areas with snow higher than vegetation such as our South
site, topography may be a more important factor in determining
ground temperature than vegetation height, with warmer ground
temperature in hollows. However, further measurements target-
ing this suggestion are required to confirm it. Detailed modeling
studies of snow redistribution by wind that account for both to-
pography and vegetation (Marsh et al. 2020; Winstral et al. 2013)
may both test and be tested by our conclusion, if performed at
sufficiently high spatial resolution, around 1 m.
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