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Abstract
In this paper, we present a linear and reversible programming language with inductives types and recursion.
The semantics of the languages is based on pattern-matching; we show how ensuring syntactical exhaustivity
and non-overlapping of clauses is enough to ensure reversibility. The language allows to represent any
Primitive Recursive Function. We then give a Curry-Howard correspondence with the logic µMALL: linear
logic extended with least �xed points allowing inductive statements. The critical part of our work is to show
how primitive recursion yields circular proofs that satisfy µMALL validity criterion and how the language
simulates the cut-elimination procedure of µMALL.
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1 Introduction

Computation and logic are two faces of the same coin. For instance, consider a proof s

s....
A→ B

t....
A

B

Figure 1 Modus Ponens

of A → B and a proof t of A. With the logical rule Modus Pon-
ens one can construct a proof of B: Figure 1 features a graphical
presentation of the corresponding proof. Horizontal lines stand
for deduction steps —they separate conclusions (below) and hy-
potheses (above). These deduction steps can be stacked vertically
up to axioms in order to describe complete proofs. In Figure 1 the
proofs of A and A→ B are symbolized with vertical ellipses. The
ellipsis annotated with s indicates that s is a complete proof ofA→ B while t stands for a complete
proof of A.

This connection is known as the Curry-Howard correspondence [7, 10]. In this general framework,
types correspond to formulas and programs to proofs, while program evaluation is mirrored with
proof simpli�cation (the so-called cut-elimination). The Curry-Howard correspondence formalizes
the fact that the proof s of A→ B can be regarded as a function —parametrized by an argument
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36:2 A Curry-Howard Correspondence for Linear, Reversible Computation

of type A— that produces a proof of B whenever it is fed with a proof of A. Therefore, the
computational interpretation of Modus Ponens corresponds to the application of an argument (i.e.
t) of type A to a function (i.e. s) of type A→ B. When computing the corresponding program, one
substitutes the parameter of the function with t and get a result of type B. On the logical side, this
corresponds to substituting every axiom introducing A in the proof s with the full proof t of A.
This yields a direct proof of B without any invocation of the “lemma” A→ B.

Paving the way toward the veri�cation of critical softwares, the Curry-Howard correspond-
ence provides a versatile framework. It has been used to mirror �rst and second-order logics
with dependent-type systems [5, 14], separation logics with memory-aware type systems [18, 12],
resource-sensitive logics with di�erential privacy [9], logics with monads with reasoning on side-
e�ects [21, 15], etc.

Reversible computation is a paradigm of computation which emerged as an energy-preserving
model of computation in which data is never erased [8] that makes sure that, given some process
f , there always exists an inverse process f−1 such that f ◦ f−1 = Id = f−1 ◦ f . Many aspects
of reversible computation have been considered, such as the development of reversible Turing
Machines [16], reversible programming languages [11] and their semantics [6, 13]. However, the
formal relationship between a logical system and a computational model have not been developed
yet.

This paper aims at proposing a type system featuring inductive types for a purely linear and
reversible language. We base our study on the approach presented in [20]. In this model, reversible
computation is restricted to two main types: the tensor, written A⊗B and the co-product, written
A⊕B. The former corresponds to the type of all pairs of elements of type A and elements of type
B, while the latter represents the disjoint union of all elements of type A and elements of type
B. For instance, a bit can be typed with 1 ⊕ 1, where 1 is a type with only one element. The
language in [20] o�ers the possibility to code isos —reversible maps— with pattern matching. An
iso is for instance the swap operation, typed with A⊗B ↔ B ⊗A. However, if [20] hints at an
extension towards pure quantum computation, the type system is not formally connected to any
logical system.

The problem of reversibility between �nite type of same cardinality simply requires to check that
the function is injective. That is no longer the case when we work with types of in�nite cardinality
such as natural numbers.

The main contribution of this work is a Curry-Howard correspondence for a purely reversible
typed language in the style of [20], with added generalised inductive types and terminating recursion,
enforced by the fact that recursive functions must be structurally recursive: each recursive call must
be applied to a decreasing argument. We show how ensuring exhaustivity and non-overlapping of
the clauses of the pattern-matching are enough to ensure reversibility and that the obtained language
can encode any Primitive Recursive function [19]. For the Curry-Howard part, we capitalize on the
logic µMALL [1, 3]: an extension of the additive and multiplicative fragment of linear logic with
least and greatest �xed points allowing inductive and coinductive statements. This logic contains
both a tensor and a co-product, and its strict linearity makes it a good �t for a reversible type
system. In the literature, multiple proofs systems have been considered for µMALL, some �nitary
proof system with explicit induction inferences à la Park [1] as well as non-well-founded proof
systems which allow to build in�nite derivation [3, 2]. The present paper focuses on the latter. In
general, an in�nite derivation is called a pre-proof and is not necessarily consistent. To solve this
problem µMALL comes equipped with a validity criterion, telling us when an in�nite derivation
can be considered as a logical proof. We show how the syntactical constraints of being structurally
recursive imply the validity of pre-proofs.
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Organisation of the paper The paper is organised as follows: in Section 2 we present the
language, its syntax, typing rules and semantics and show that any function that can be encoded
in our language represents an isomorphism. In Section 3 we show that our language can encode
any Primitive Recursive Function [19], this is shown by encoding the set of Recursive Primitive
Permutations [17] functions. Then in Section 4, we develop on the Curry-Howard Correspondence
part: we show, given a well-typed term from our language, how to translate it into a circular
derivation of the logic µMALL and show that the given derivation respects the validity condition
and how our evaluation strategy simulates the cut-elimination procedure of the logic.

2 First-order Isos

Our language is based on the one introduced by Sabry et al [20] which de�ne isomorphisms between
various types, included the type of lists. We build on the reversible part of the paper by extending
the language to support both a more general rewriting system and more general inductive types:
while they only allow the inductive type of lists, we consider arbitrary inductive types. The language
is de�ned by layers. Terms and types are presented in Table 1, while typing derivations, inspired
from µMALL, can be found in Tables 2 and 3. The language consists of the following pieces.

Basic type. They allow us to construct �rst-order terms. The constructors injl and injr represent
the choice between either the left or right-hand side of a type of the formA⊕B; the constructor 〈, 〉
builds pairs of elements (with the corresponding type constructor ⊗); fold represents inductive
structure of the types µX.A. A value can serve both as a result and as a pattern in the de�ning
clause of an iso. We write (x1, . . . , xn) for 〈x1, 〈. . . , xn〉〉 or −→x when n is non-ambiguous and
A1 ⊗ · · · ⊗An for A1 ⊗ (· · · ⊗An) and An for A⊗ · · · ⊗A︸ ︷︷ ︸

n times

.

First-order isos. An iso of type A ↔ B acts on terms of base types. An iso is a function of type
A ↔ B, de�ned as a set of clauses of the form {v1 ↔ e1 | . . . | vn ↔ en}. In the clauses,
the tokens vi are open values and ei are expressions. In order to apply an iso to a term, the iso
must be of type A↔ B and the term of type A. In the typing rules of isos, the ODA({v1, . . . , vn})
predicate (corrected from [20], as their de�nition makes it impossible to type To�oli) syntactically
enforces the exhaustivity and non-overlapping conditions on a set of well-typed values v1, . . . , vn
of type A. The typing conditions make sure that both the left-hand-side and right-hand-side of
clauses satisfy this condition. Its formal de�nition can be found in Table 4 where V al(e) is de�ned
as V al(let p = ω p′ in e) = V al(e), and V al(v) = v otherwise. These checks are crucial to make
sure that our isos are indeed reversible. In the last rule on Table 4, we de�ne π1(S) and π2(S) as
respectively {v | 〈v, w〉 ∈ S} and {w | 〈v, w〉 ∈ S} and S1

v and S2
v respectively as {w | 〈v, w〉 ∈ S}

and {w | 〈w, v〉 ∈ S} Exhaustivity for an iso {v1 ↔ e1 | . . . | vn ↔ en} of type A ↔ B

means that the expressions on the left (resp. on the right) of the clauses describe all possible values
for the type A (resp. the type B). Non-overlapping means that two expressions cannot match the
same value. For instance, the left and right injections injl v and injr v

′ are non-overlapping while
a variable x is always exhaustive. The construction fix g.ω represents the creation of a recursive
function, rewritten as ω[g := fix g.ω] by the operational semantics. Each recursive function needs
to satisfy a structural recursion criteria: making sure that one of the input arguments strictly
decreases on each recursive call. Indeed, since isos can be non-terminating (due to recursion), we
need a criterion that implies termination to ensure that we work with total functions. If ω is of
type A↔ B, we can build its inverse ω⊥ : B ↔ A and show that their composition is the identity.
In order to avoid con�icts between variables we will always work up to α-conversion and use
Barendregt’s convention [4, p.26] which consists in keeping all bound and free variables names
distinct, even when this remains implicit.

CSL 2023



36:4 A Curry-Howard Correspondence for Linear, Reversible Computation

(Base types) A,B ::= 1 | A⊕B | A⊗B | µX.A
(Isos, �rst-order) α ::= A↔ B

(Values) v ::= () | x | injl v | injr v | 〈v1, v2〉 | fold v

(Pattern) p ::= x | 〈p1, p2〉
(Expressions) e ::= v | let p1 = ω p2 in e

(Isos) ω ::= {v1 ↔ e1 | . . . | vn ↔ en} | fix f.ω | f
(Terms) t ::= () | x | injl t | injr t | 〈t1, t2〉 |

fold t | ω t | let p = t1 in t2

Table 1 Terms and types

∅; Ψ `e () : 1 x : A; Ψ `e x : A
∆; Ψ `e t : A

∆; Ψ `e injl t : A⊕B
∆; Ψ `e t : B

∆; Ψ `e injr t : A⊕B
∆1; Ψ `e t1 : A ∆2; Ψ `e t2 : B

∆1,∆2; Ψ `e 〈t1, t2〉 : A⊗B
∆; Ψ `e t : A[X ← µX.A]

∆; Ψ `e fold t : µX.A
Ψ `ω f : A↔ B ∆; Ψ `e t : A

∆; Ψ `e f t : B
`ω ω : A↔ B ∆; Ψ `e t : A

∆; Ψ `e ω t : B
∆1; Ψ `e t1 : A1 ⊗ · · · ⊗An ∆2, x1 : A1, . . . , xn : An; Ψ `e t2 : B

∆1,∆2; Ψ `e let (x1, . . . , xn) = t1 in t2 : B

Table 2 Typing of terms and expressions

The type system is split in two parts: one for terms (noted ∆; Ψ `e t : A) and one for isos
(noted Ψ `ω ω : A ↔ B). In the typing rules, the contexts ∆ are sets of pairs that consist of a
term-variable and a base type, where each variable can only occur once and Ψ is a singleton set of a
pair of an iso-variable and an iso-type association.

I Definition 1 (Structurally Recursive). Given an iso fix f.{v1 ↔ e1 | . . . | vn ↔ en} :
A1 ⊗ · · · ⊗Am ↔ C , it is structurally recursive if there is 1 ≤ j ≤ m such that Aj = µX.B and for
all i ∈ {1, . . . , n} we have that vi is of the form (v1

i , . . . , v
m
i ) such that vji is either:

A closed value, in which case ei does not contain the subterm f p

Open, in which case for all subterm of the form f p in ei we have p = (x1, . . . , xm) and xj : µX.B
is a strict subterm of vji .

Given a clause v ↔ e, we call the value vji (resp. the variable xj) the decreasing argument (resp. the
focus) of the structurally recursive criterion.

I Remark 2. As we are focused on a very basic notion of structurally recursive function, the typing
rules of isos allow to have at most one iso-variable in the context, meaning that we cannot have
intertwined recursive call.

Finally, our language is equipped with a rewriting system→ on terms, de�ned in De�nition 4,
that follows a deterministic call-by-value strategy: each argument of a function is fully evaluated



K. Chardonnet and A. Saurin and B. Valiron 36:5

∆1 `e v1 : A . . . ∆n `e vn : A ODA({v1, . . . , vn})
∆1; Ψ `e e1 : B . . . ∆n; Ψ `e en : B ODB({V al(e1), . . . , V al(en)})

Ψ `ω {v1 ↔ e1 | . . . | vn ↔ en} : A↔ B.

f : α `ω f : α
f : α `ω ω : α fix f.ω is structurally recursive

Ψ `ω fix f.ω : α

Table 3 Typing of isos

ODA({x}) OD1({()})
ODA(S) ODB(T )

ODA⊕B({injl v | v ∈ S} ∪ {injr v | v ∈ T})

ODA[X←µX.A](S)
ODµX.A({fold v | v ∈ S})

ODA(π1(S)),∀v ∈ π1(S), ODB(S1
v)

or ODB(π2(S)),∀v ∈ π2(S), ODA(S2
v)

ODA⊗B(S = {〈v1, v
′
1〉, . . . , 〈vn, v′n〉})

Table 4 Exhaustivity and Non-Overlapping

before applying the substitution. This is done through the use of an evaluation context C[], which
consists of a term with a hole (where C[t] is C where the hole has been �lled with t). Due to the
deterministic nature of the strategy we directly obtain the unicity of the normal form. The evaluation
of an iso applied to a value relies on pattern-matching : the argument is matched against the left-hand-
side of each clause until one of them matches (written σ[v] = v′), in which case the pattern-matching,
as de�ned in Table 5, returns a substitution σ that sends variables to values. Because we ensure
exhaustivity and non-overlapping (Lemma 5), the pattern-matching can always occur on well-typed
terms. The support of a substitution σ is de�ned as supp(σ) = {x | (x 7→ v) ∈ σ}.

IDefinition 3 (Substitution). Applying substitution σ on an expression t, written σ(t), is de�ned as :
σ(()) = (), σ(x) = v if {x 7→ v} ⊆ σ, σ(injr t) = injr σ(t), σ(injl t) = injl σ(t), σ(〈t, t′〉) =
〈σ(t), σ(t′)〉, σ(ω t) = ω σ(t) and σ(let p = t1 in t2) = (let p = σ(t1) in σ(t2)).

I Definition 4 (Evaluation relation →). We de�ne → the rewriting system of our language as
follows:

t1 → t2
C[t1]→ C[t2]

Cong
σ[p] = v

let p = v in t→ σ(t) LetE (fix f.ω)→ ω[f := (fix f.ω)] IsoRec

σ[vi] = v′

{v1 ↔ e1 | . . . | vn ↔ en} v′ → σ(ei)
IsoApp

with C ::= [ ] | injl C | injr C | ω C | let p = C in t | 〈C, v〉 | 〈v, C〉
As usual we note→∗ for the re�exive transitive closure of→.

I Lemma 5 (ODA(A) ensures exhaustivity and non-overlapping.). Let ODA(S) and `e v : A,
then there exists a unique v′ ∈ S such that v′ matches v under substitution σ, i.e. σ[v′] = v.

As mentioned above, from any iso ω : A↔ B we can build its inverse ω⊥ : B ↔ A, the inverse
operation is de�ned inductively on ω and is given in De�nition 6.

CSL 2023
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σ[e] = e′

σ[injl e] = injl e
′

σ[e] = e′

σ[injr e] = injr e
′
σ = {x 7→ e}
σ[x] = e

σ[e] = e′

σ[fold e] = fold e′

σ2[e1] = e′1 σ1[e2] = e′2 supp(σ1) ∩ supp(σ2) = ∅ σ = σ1 ∪ σ2

σ[〈e1, e2〉] = 〈e′1, e′2〉 σ[()] = ()

Table 5 Pattern-matching

I Definition 6 (Inversion). Given an iso ω, we de�ne its dual ω⊥ as : f⊥ = f, (fix f.ω)⊥ =
fix f.ω⊥, {(vi ↔ ei)i∈I}⊥ = {((vi ↔ ei)⊥)i∈I} And the inverse of a clause as : v1 ↔ let p1 = ω1 p

′
1 in

· · ·
let pn = ωn p

′
n in v′1

⊥ :=

 v′1 ↔ let p′n= ω⊥n pn in
· · ·
let p′1 = ω⊥1 p1 in v1

 .

We can show that the inverse is well-typed and behaves as expected:

I Lemma 7 (Inversion is well-typed). Given Ψ `ω ω : A↔ B, then Ψ `ω ω⊥ : B ↔ A.

I Theorem 8 (Isos are isomorphisms). For all well-typed isos `ω ω : A↔ B, and for all well-typed
values `e v : A, if (ω (ω⊥ v))→∗ v′ then v = v′.

I Example 9. We can de�ne the iso of type : A⊕ (B ⊕ C)↔ C ⊕ (A⊕B) as


injl (a) ↔ injr (injl (a))
injr (injl (b)) ↔ injr (injr (b))
injr (injr (c))↔ injl (c)


I Example 10. We give the encoding of the isomorphism map(ω) and its inverse: for any given iso
` ω : A↔ B in our language, we can de�ne map(ω) : [A]↔ [B] where [A] = µX.1⊕ (A⊗X) is
the type of lists of type A and [ ] is the empty list (fold (injl ())) and h :: t is the list construction
(fold (injr 〈h, t〉)). We also give its dual map(ω)⊥ below, as given by De�nition 6.

map(ω) : [A]↔ [B]

= fix f.


[ ] ↔ [ ]
h :: t↔ leth′ = ω h in

let t′ = f t in
h′ :: t′


map(ω)⊥ : [B]↔ [A]

= fix f.


[ ] ↔ [ ]
h′ :: t′↔ let t = f t′ in

leth = ω⊥h′ in
h :: t


I Remark 11. In our two examples, the left and right-hand side of the ↔ on each function re-
spect both the criteria of exhaustivity —every-value of each type is being covered by at least one
expression— and non-overlapping —no two expressions cover the same value. Both isos are therefore
bijections.

The language enjoys the standard properties of typed languages of progress and subject reduc-
tion:

I Lemma 12 (Subject Reduction). If ∆; Ψ `e t : A and t→ t′ then ∆; Ψ `e t′ : A.

I Lemma 13 (Progress). If `e t : A then, either t is a value, or t→ t′.
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[
x S x+ 1

] [
x P x− 1

] [
x Sign −x

] [
x Id x

] [
x
X

y

y x

]

x1 y1
... f ; g

...
xn yn

 =

x1
... f

xn


 y1

g
...
yn





x1 y1
...

...
xk f || g yk
x′1 y′1

...
...

x′l y′l


=

x1 y1
... f

...
xk yn


x′1 y′1
... g

...
xl y′l




x1 y1
... If[f, g, h]

...
xn yn
x x


 =


f (x1, . . . , xn) if x > 0
g (x1, . . . , xn) if x = 0
h (x1, . . . , xn) if x < 0


x1 y1

... It[f ]
...

xn yn
x x


 = (f ; . . . ; f)︸ ︷︷ ︸

| x |

(x1, . . . , xn)

Figure 2 Generators of RPP

3 Computational Content

In this section, we study the computational content of our language. In the case of only �nite types
made up of the tensor, plus and unit, one can represent any bijection by case analysis. Homewer,
with in�nite types, the expressivity becomes less clear. We show that we can encode Recursive
Primitive Permutations [17] (RPP), which shows us that we can encode at least all Primitive Recursive
Functions [19].

We give a few reminders on the language RPP and its main results, then show how to encode it.

3.1 Reminder on RPP

RPP is a set of integer-valued functions of variable arity; we de�ne it by arity as follows: we note
RPPk for the set of functions in RPP from Zk to Zk, it is built inductively on k ∈ N by: the
successor (S), the predecessor (P ), the identity (ID) and the sign-change that are part of RPP1.
The swap function (X ) and the binary permutation X which sends the pair (x, y) to (y, x) are
part of RPP2 and then, for any function f, g, h ∈ RPPk and j ∈ RPPl, we can build (i) the
sequential composition f ; g ∈ RPPk , (ii) the parallel composition f || j ∈ RPPk+l (iii) the iterator
It[f ] ∈ RPPk+1 and (iv) the selection If[f, g, h] ∈ RPPk+1.

Finally, the set of all functions that form RPP is taken as the union for all k of the RPPk:

RPP = ∪k∈N RPPk

We present the semantics of each constructors of RPP under a graphical form, as in [17], where
the left-hand-side variables of the diagram represent the input of the function and the right-hand-side
is the output of the function. The semantics of all those operators are given in Figure 2.
I Remark 14. In their paper [17], the authors make use of two other constructors: generalised
permutations over Zk and weakenings of functions, but those can actually be de�ned from the other
constructors so that in the following section we do not give their encoding.
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Then, if f ∈ RPPk we can de�ne an inverse f−1:

I Definition 15 (Inversion). The inversion is de�ned as follow :
Id−1 = Id S−1 = P P−1 = S

Sign−1 = Sign X−1 = X (g; f)−1 = f−1; g−1

(f || g)−1 = f−1 || g−1 (It[f ])−1 = It[f−1] (If [f, g, h])−1 = If [f−1, g−1, h−1]

I Proposition 16 (Inversion defines an inverse [17]). Given f ∈ RPPk then f ; f−1 = Id = f−1; f

I Theorem 17 (Soudness & Completeness [17]). RPP is PRF-Complete and PRF-Sound: it can
represent any Primitive Recursive Function and every function in RPP can be represented in PRF.

3.2 From RPP to Isos

We start by de�ning the type of stricly positive natural numbers, npos, as npos = µX.1⊕X . We
de�ne n, the encoding of a positive natural number into a value of type npos as 1 = fold injl ()
and n+ 1 = fold injr n. Finally, we de�ne the type of integers as Z = 1⊕ (npos⊕npos) along
with z the encoding of any z ∈ Z into a value of type Z de�ned as: 0 = injl (), z = injr injl z
for z positive, and z = injr injr −z for z negative. Given some function f ∈ RPPk , we will build
an iso isos(f) : Zk ↔ Zk which simulates f . isos(f) is de�ned by the size of the proof that f is in
RPPk .

I Definition 18 (Encoding of the primitives).
The Sign-change of type Z ↔ Z is

injr (injl x) ↔ injr (injr x)
injr (injr (x)) ↔ injr (injl x)

injl () ↔ injl ()


The identity is {x↔ x} : Z ↔ Z

The Swap is {(x, y)↔ (y, x)} : Z2 ↔ Z2

The Predecessor is the inverse of the Successor

The Successor is
injl () ↔ injr (injl (fold (injl ())))

injr (injl x) ↔ injr (injl (fold (injr x)))
injr (injr (fold (injl ()))) ↔ injl ()
injr (injr (fold (injr x))) ↔ injr (injr x)

 : Z ↔ Z

I Definition 19 (Encoding of Composition). Let f, g ∈ RPPj , ωf = isos(f) and ωg = isos(g)
the isos encoding f and g, we build isos(f ; g) of type Zj ↔ Zj as:

isos(f ; g) =


let (y1, . . . , yj) = ωf (x1, . . . , xj) in

(x1, . . . , xj) ↔ let (z1, . . . , zj) = ωg (y1, . . . , yj) in
(z1, . . . , zj)


I Definition 20 (Encoding of Parallel Composition). Let f ∈ RPPj and g ∈ RPPk, and ωf =
isos(f) and ωg = isos(g), we de�ne isos(f || g) of type Zj+k ↔ Zj+k as:.

isos(f || g) =


let (x′1, . . . , x′j) = ωf (x1, . . . , xj) in

(x1, . . . , xj , y1, . . . , yk) ↔ let (y′1, . . . , y′k) = ωg (y1, . . . , yk) in
(x′1, . . . , x′j , y′1, . . . , y′k)


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I Definition 21 (Encoding of Finite Iteration). Let f ∈ RPPk , and ωf = isos(f), we encode the �-
nite iteration It[f ] ∈ RPPk+1 with the help of an auxiliary iso, ωaux, of typeZk⊗ npos↔ Zk⊗ npos
doing the �nite iteration using npos, de�ned as:

ωaux = fixg.



(−→x , fold (injl ())) ↔ let−→y = ωf
−→x in

(−→y , fold (injl ()))

(−→x , fold (injr n)) ↔ let (−→y ) = ωf (−→x ) in
let (−→z , n′) = g (−→y , n) in

(−→z , fold (injr n
′))


We can now properly de�ne isos(It[f ]) of type Zk+1 ↔ Zk+1 as:

isos(It[f ]) =



(−→x , injl ()) ↔ (−→x , injl ())

(−→x , injr (injl z)) ↔ let (−→y , z′) = ωaux(−→x , z) in
(−→y , injr (injl z

′))

(−→x , injr (injr z)) ↔ let (−→y , z′) = ωaux(−→x , z) in
(−→y , injr (injr z

′))


I Definition 22 (Encoding of Selection). Let f, g, h ∈ RPPk and their corresponding isos ωf =
isos(f), ωg = isos(g), ωh = isos(h). We de�ne isos(If[f, g, h]) of type Zk+1 ↔ Zk+1 as:

isos(If[f, g, h]) =


(−→x , injr (injl z)) ↔ let

−→
x′ = ωf (−→x ) in (

−→
x′ , injr (injl z))

(−→x , injl ()) ↔ let
−→
x′ = ωg(−→x ) in (

−→
x′ , injl ())

(−→x , injr (injr z)) ↔ let
−→
x′ = ωh(−→x ) in (

−→
x′ , injr (injr z))


I Theorem 23 (The encoding is well-typed). Let f ∈ RPPk , then `ω isos(f) : Zk ↔ Zk .

ITheorem24 (Simulation). Let f ∈ RPPk and n1, . . . , nk elements of Z such that f(n1, . . . , nk) =
(m1, . . . ,mk) then isos(f)(n1, . . . , nk)→∗ (m1, . . . ,mk)

I Remark 25. Notice that isos(f)⊥ 6= isos(f−1), due to the fact that isos(f)⊥ will inverse the
order of the let constructions, which will not be the case for isos(f−1). They can nonetheless be
considered equivalent up to a permutation of let constructions and renaming of variable.

4 Proof Theorical Content

We want to relate our langage of isos to proofs in a suitable logic. As mentioned earlier, an iso
`ω ω : A↔ B corresponds to both a computation sending a value of type A to a result of type B
and a computation sending a value of type B to a result of type A. Therefore we want to be able to
translate an iso into a proof isomorphism : two proofs π and π⊥ of respectively A ` B and B ` A
such that their composition reduces through the cut-elimination to the identity either on A or on B
depending on the way we make the cut between those proofs.
Since we are working in a linear system with inductive types we will use an extension of Linear
Logic called µMALL : linear logic with least and greatest �xed points, which allows us to reason
about inductive and coinductive statements. µMALL also allows us to consider in�nite derivation
trees, which is required as our isos can contain recursive variables. We need to be careful though:
in�nite derivations cannot always be considered as proofs, hence µMALL comes with a validity
criterion on in�nite derivations trees (called pre-proofs) that tells us whether such derivations are
indeed proofs. We recall brie�y the basic notions of µMALL, while more details can be found in [2].
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F ≡ G
` F⊥, G

id
` Σ, F ` Φ, F⊥

` Σ,Φ cut ` >,Σ >

` 1 1
` F,G,Σ
` F `G,Σ ` ` F,Σ ` G,Φ

` F ⊗G,Σ,Φ ⊗

` F,Σ ` G,Σ
` F &G,Σ &

` Fi,Σ
` F1 ⊕ F2,Σ

⊕i i ∈ {1, 2} Σ
` Σ,⊥ ⊥

` F [X ← µX.F ],Σ
` µX.F,Σ

µ
` F [X ← νX.F ],Σ
` νX.F,Σ

ν

Figure 3 Rules for µMALL.

4.1 Background on µMALL

Given an in�nite set of variables V = {X,Y, . . . }, we call formulas of µMALL the objects generated
by A,B ::= X | 1 | 0 | > | ⊥ | A ⊗ B | A ` B | A ⊕ B | A & B | µX.A | νX.A
where µ and ν bind the variable X in A. The negation on formula is de�ned in the usual way:
X⊥ = X, 0⊥ = >,1⊥ = ⊥, (A`B)⊥ = A⊥⊗B⊥, (A⊕B)⊥ = A⊥&B⊥, (νX.A)⊥ = µX.A⊥

having X⊥ = X is harmless since we only deal with closed formulas.
We call an occurrence, a word of the form α·w where α ∈ Afresh an in�nite set of atomic addresses

and its dual A⊥fresh = {α⊥ | α ∈ Afresh} and w a word over {l, r, i}∗ (for left, right and inside) and
formulas occurrences F,G,H, . . . as a pair of a formula and an occurrence, written Aα. Finally we
write Σ,Φ for formula contexts: sets of formulas occurrences. We write Aα ≡ Bβ when A = B.
Negation is lifted to formulas with (Aα)⊥ = A⊥α⊥ where (α ·w)⊥ = α⊥ ·w and (α⊥ ·w)⊥ = α ·w.
In general, we write α, β for occurrences.

The connectives need then to be lifted to occurrences as well:

Given # ∈ {⊗,⊕,`,&}, if F = Aαl and G = Bαr then (F#G) = (A#B)α
Given # ∈ {µ, ν} if F = Aαi then #X.F = (#X.A)α

Occurrences allow us to follow a subformula uniquely inside a derivation. Since in µMALL we
only work with formula occurrences, we simply use the term formula.

The (possibly in�nite) derivation trees of µMALL, called pre-proofs are coinductively generated
by the rules given in Figure 3. We say that a formula is principal when it is the formula that the rule
is being applied to.

Among the in�nite derivations that µMALL o�er we can look at the circular ones: an in�nite
derivation is circular if it has �nitely many di�erent subtrees. The circular derivation can therefore
be represented in a more compact way with the help of back-edges: arrows in the derivation that
represent a repetition of the derivation. Derivations with back-edge are represented with the

addition of sequents marked by a back-edge label, noted `f , and an additional rule, ` Σ be(f),
which represent a back-edge pointing to the sequent `f . We take the convention that from the root
of the derivation from to rule be(f) there must be exactly one sequent annotated by f .

I Example 26. An in�nite derivation and two di�erent circular representations with back-edges.
...

µ
` µX.X

µ
` µX.X

be(f)
`µX.X

µ
`f µX.X

be(f)
`µX.X

µ
` µX.X

µ
`f µX.X
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While a circular proof has multiple �nite representations (depending on where the back-edge is
placed), they can all be mapped back to the same in�nite derivation via an in�nite unfolding of the
back-edge and forgetting the back-edge labels:

I Definition 27 (Unfolding). We de�ne the unfolding of a circular derivation P with a valuation v
from back-edge labels to derivations by:

U
(
P :

P1, . . . , Pn
` Σ r , v

)
=
U(P1, v), . . . ,U(Pn, v)

` Σ r

U(be(f), v) = v(f)

U
(
P :

P1, . . . , Pn

`f Σ
r , v

)
=
(
π =

U(P1, v
′), . . . ,U(Pn, v′)
` Σ r

)
with v′(g) = π if g = f

else v(g).

µMALL comes with a validity criterion on pre-proofs that determines when a pre-proof can
be considered as a proof: mainly, whether or not each in�nite branch can be justi�ed by a form
of coinductive reasoning. The criterion also ensures that the cut-elimination procedure holds. For
that, we can de�ne a notion of thread [3, 2]: an in�nite sequence of tuples of formulas, sequents
and directions (either up or down). Intuitively, these threads follow some formula starting from the
root of the derivation and start by going up. If the thread encounters an axiom rule, it will bounce
back and start going down in the dual formula of the axiom rule. It may bounce back again, when
going down on a cut rule, if it follows the cut-formula. A thread will be called valid when it is
non-stationary (does not follow a formula that is never a principal formula of a rule), and when in
the set of formulas appearing in�nitely often, the minimum formula (according to the subformula
ordering) is a ν formula. For the multiplicative fragment, we say that a pre-proof is valid if for all
in�nite branches, there exists a valid thread, while for the additive part, we require a notion of
additive slices and persistent slices which we do not detail here. Example 31 features an example of a
valid proof together with its thread. More details can be found in [2].

4.2 Translating isos into µMALL

We start by giving the translation from isos to pre-proofs, and then show that they are actually
proofs, therefore obtaining a static correspondence between programs and proofs. We then show
that our translation entails a dynamic correspondence between the evaluation procedure of our
language and the cut-elimination procedure of µMALL. This will imply that the proofs we obtain
are indeed isomorphisms, meaning that if we cut the aforementioned proofs π and π⊥, performing
the cut-elimination procedure would give either the identity on A or the identity on B.

The derivation we obtain are circular, and we therefore translate the isos directly into �nite de-
rivations with back-edge, written circ(ω). We can de�ne another translation into in�nite derivations
as the composition of circ() with the unfolding: JωK = U(circ(ω)).

Because we need to keep track of which formula is associated to which variable from the typing
context, the translation uses a slightly modi�ed version of µMALL in which contexts are split in
two parts, written Υ; Θ, where Υ is a list of formulas and Θ is a set of formulas associated with a
term-variable (written x : F ). When starting the translation of an iso of type A↔ B, we start in
the context [Aα]; ∅ (for some address α) and end in the context []; Θ. The additional information of
the variable in Θ is here to make sure we know how to split the contexts accordingly when needed
later during the translation, with respect to the way they are split in the typing derivation. We write
Θ = {F | x : F ∈ Θ} and Θ = {x : A | x : Aα ∈ Θ}. We also use another rule which allow to
send the �rst formula from Υ to Θ and associate it a variable to the formula:

Υ;x : F,Θ ` G
F :: Υ; Θ ` G ex(x)
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Given a derivation ι in this system, we write TιU for the function that sends ι into a derivation of
µMALL where (i) we remove all occurrence of the exchange rule (ii) the contexts []; Θ becomes Θ.

Given an iso ω : A↔ B and initial addresses α, β, its translation into a derivation of µMALL
of Aα ` Bβ is described with three separate phases:

Iso Phase. The �rst phase consists in travelling through the syntactical de�nition of an iso, keeping
as information the last encountered iso-variable bounded by a fix f.ω and calling the negative
phase when encountering an iso of the form {v1 ↔ e1 | . . . | vn ↔ en} and attaching to
the formulas A and B two distinct addresses α and β and to the sequent as a label of name of the
last encountered iso-variable. Later on during the translation, this phase will be recalled when
encountering another iso in one of the ei, and, if said iso correspond to an iso-variable, we will
create a back-edge pointing towards the corresponding sequents.

Negative Phase. Starting from some context [Aα],Θ, the negative phase consists into decomposing
the formula A according to the way in which the values of type A on the left-hand-side of ω are
decomposed. The negative phase works as follows: we consider a set of (list of values, typing
judgement), written (l, ξ) where each element of the set corresponds to one clause v ↔ e of the
given iso and ξ is the typing judgement of e. The list of values corresponds to what is left to be
decomposed in the left-hand-side of the clause (for instance if v is a pair 〈v1, v2〉 the list will have
two elements to decompose). Each element of the list Υ will correspond to exactly one value in the
list l. If the term that needs to be decomposed is a variable x, then we will apply the ex(x) rule,
sending the formula to the context Θ. The negative phase ends when the list is empty and hence
when Υ = []. When it is the case, we can start decomposing ξ and the positive phase start. The
negative phase is de�ned inductively on the �rst element of the list of every set, which are known
by typing to have the same pre�x, and is given in Figure 4.

Positive phase. The translation of an expression is pretty straightforward: each let and iso-application
is represented by two cut rules, as usual in Curry-Howard correspondence. Keeping the variable-
formula pair in the derivation is here to help us know how to split accordingly the context Θ when
needed, while Υ is always empty and is therefore omitted. While the positive phase carry over the
information of the last-seen iso-variable, it is not noted explicitly as it is only needed when calling
the Iso Phase. The positive phase is given in Figure 5.

I Remark 28. While µMALL is presented in a one-sided way, we write Σ ` Φ for ` Σ⊥,Φ in order
to stay closer to the formalism of the type system of isos.

I Definition 29. circ(ω, S, α, β) = π takes a well-typed iso, a singleton set S of an iso-variable
corresponding to the last iso-variable seen in the induction de�nition of ω and two fresh addresses
α, β and produces a circular derivation of the variant of µMALL described above with back-edges.
circ(ω, S, α, β) is de�ned inductively on ω:

circ(fix f.ω, S, α, β) = circ(ω, {f}, α, β)

circ(f, {f}, α, β) = Aα ` Bβ
be(f)

circ({(vi ↔ ei)i∈I} : A ↔ B, {f}, α, β) = T Neg(([vi], ξi)i∈I)
Aα `f Bβ U where ξi is the typing

derivation of ei.

I Example 30. The translation Tcirc(ω, ∅, α, β)U of the iso ω from Example 9 is, with F =
Aαl, G = Bαrl, H = Cαrr and F ′ = Aβrl, G

′ = Bβrr, H
′ = Cβl:
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id
[]; a : F ` F ′

⊕1

[]; a : F ` F ′ ⊕G′
⊕2

[]; a : F ` H ′ ⊕ (F ′ ⊕G′)
ex(a)

[F ]; ∅ ` H ′ ⊕ (F ′ ⊕G′)

id
[]; b : G ` G′

⊕2

[]; b : G ` F ′ ⊕G′
⊕2

[]; b : G ` H ′ ⊕ (F ′ ⊕G′)
ex(b)

[G]; ∅ ` H ′ ⊕ (F ′ ⊕G′)

id
[]; c : H ` H ′

⊕1

[]; c : H ` H ′ ⊕ (F ′ ⊕G′)
ex(c)

[H]; ∅ ` H ′ ⊕ (F ′ ⊕G′) `
[G⊕H]; ∅ ` H ′ ⊕ (F ′ ⊕G′) `

[F ⊕ (G⊕H)]; ∅ ` H ′ ⊕ (F ′ ⊕G′)

I Example 31. Considering the iso swap of type A⊗B ↔ B ⊗A and its µMALL proof

πS =
Aγl ` Aγ′r

id
Bγr ` Bγ′l

id

Aγl, Bγr ` (B ⊗A)γ′
⊗

(A⊗B)γ ` (B ⊗A)γ′
`

Following Example 10 we give its corresponding proof πmap(S) where F = (A ⊗ B)αirl and
G = (B ⊗A)βirl, then [F ] and [G] are respectively of address α and β:

1
` 1 ⊕1

` 1⊕ (G⊗ [G])
µ

` [G]
⊥

1 ` [G]

id
F ` F

πS

F ` G cut
F ` G

id
[F ] ` [F ]

πmap(S)

[F ] ` [G]
cut

[F ] ` [G]

id
G ` G

id
[G] ` [G]

⊗
G, [G] ` (G)⊗ [G]

⊕2

G, [G] ` 1⊕ (G⊗ [G])
µ

G, [G] ` [G]
G, [G] ` [G]

cut
G, [F ] ` [G]

cut
F, [F ] ` [G] `
F ⊗ [F ] ` [G]

&
1⊕ (F ⊗ [F ]) ` [G]

ν
[F ] ` [G]

We painted in blue the pre-thread that follows the focus of the structurally recursive criterion.
During the negative phase which consists of the ν,&,`,⊥ rules the pre-thread is going up, at
each time going into the subformula corresponding to the focus. Then, during the positive phase
the pre-thread is not active during the multiple cut rules until it reaches the id rule, where the
pre-thread bounces and starts going down before bouncing back up again in the cut rule, into the
in�nite branch, where the behavior of the pre-thread will repeat itself. One can then show that
this pre-thread is indeed a thread, according to [2] and that it is valid: among the formulas it visits
in�nitely often, the minimal formula is [F ], which is a ν formula as since [F ] is on the left hand
side of the sequent, we get [F ] = (µX.1⊕ (F ⊗X))⊥.

I Lemma 32. Given π = circ(ω), for each in�nite branch of π, only a single iso-variable is visited
in�nitely often.

Proof. Since we have at most one iso-variable, we never end up in the case that between an
annotated sequent `f and a back-edge pointing to f we encounter another annotated sequent. J

Among the terms that we translate, the translation of a value yields what we call a Purely Positive
Proof : a �nite derivation whose only rules have for active formula the sole formula on the right of
the sequent. Any such derivation is trivially a valid pre-proof.
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Neg({(injl vj :: lj , ξj)j∈J} ∪ {(injr vk :: lk, ξk)k∈K})
F1 ⊕ F2 :: Υ; Θ ` G =

Neg({(vj :: lj , ξj)j∈J})
F1 :: Υ; Θ ` G

Neg({(vk :: lk, ξk)k∈K})
F2 :: Υ; Θ ` G

F1 ⊕ F2 :: Υ; Θ ` G &

Neg({([], ξ)})
[]; Θ ` G =

Pos(ξ)
[]; Θ ` G

Neg({(() :: l, ξ)})
1 :: Υ; Θ ` G =

Neg({l, ξ})
Υ; Θ ` G

1 :: Υ; Θ ` G >

Neg({(〈v1
i , v

2
i 〉 :: li, ξi)i∈I})

F1 ⊗ F2 :: Υ; Θ ` G =
Neg({(v1

i :: v2
i :: li, ξi)i∈I})

F1, F2 :: Υ; Θ ` G
F1 ⊗ F2 :: Υ; Θ ` G `

Neg({(fold vi :: li, ξi)i∈I})
µX.F :: Υ; Θ ` G =

Neg({(vi :: li, ξi)i∈I})
F [X ← µX.F ] :: Υ; Θ ` G

µX.F :: Υ; Θ ` G ν

Neg({(x :: l, ξ)})
F :: Υ; Θ ` G =

Neg({l, ξ})
Υ; Θ, x : F ` G
F :: Υ; Θ ` G ex(x)

Figure 4 Negative Phase

IDefinition 33 (Purely Positive Proof). A Purely Positive Proof is a �nite, cut-free proof whose rules
are only ⊕i,⊗, µ,1, id for i ∈ {1, 2}.

I Lemma 34 (Values are Purely Positive Proofs). Given x1 : A1, . . . , xn : An ` v : A then
JvK

[];x1 : A1
α1
, . . . , xn : Anαn

` Aα is a purely positive proof.

We can then de�ne the notion of bouncing-cut and their origin:

I Definition 35 (Bouncing-Cut). A Bouncing-cut is a cut of the form :

π
Σ ` G G ` F be(f)

Σ ` F cut

Due to the syntactical restrictions of the language we get the following:

I Property 36 (Origin of Bouncing-Cut). Given a well-typed iso, every occurrence of a rule be(f) in
Tcirc(ω)U is a premise of a bouncing-cut.

In particular, when following a thread going up into a bouncing-cut, it will always start from the
left-hand-side of the sequent, before going back down on the right-hand-side of the sequent. It will
also always bounce back up on the bouncing-cut to reach the back-edge.

I Theorem 37 (Validity of proofs). If `ω ω : A↔ B and π = Tcirc(ω, ∅, α, β)U then π satis�es
µMALL validity criterion from [2].



K. Chardonnet and A. Saurin and B. Valiron 36:15

Pos
(
`e () : 1

)
= []; ∅ ` 1α

1

Pos
(
x : A `e x : A

)
= [];x : Aα ` Aβ

id

Pos

 ξ

Θ `e t : A1
Θ `e injl t : A1 ⊕A2

 =
Pos(ξ)

Θ ` (A1)αl
[]; Θ ` (A1 ⊕A2)α

⊕1

Pos

 ξ

Θ `e t : A2
Θ `e injr t : A1 ⊕A2

 =
Pos(ξ)

[]; Θ ` (A2)αr
[]; Θ ` (A1 ⊕A2)α

⊕2

Pos

 ξ1
Θ1 `e t1

ξ2
Θ2 `e t2 : A2

Θ1,Θ2 `e 〈t1, t2〉 : A1 ⊗A2

 =
Pos(ξ1)

[]; Θ1 ` (A1)αl
Pos(ξ2)

[]; Θ2 ` (A2)αr
[]; Θ1,Θ2 ` (A1 ⊗A2)α

⊗

Pos

 ξ

Θ `e t : A[X ← µX.A]
Θ `e fold t : µX.A

 =
Pos(ξ)

[]; Θ ` (A[X ← µX.A])αi
[]; Θ ` (µX.A)α

µ

Pos

 ξ1
Θ1 `e t1 : A1 ⊗ · · · ⊗An

ξ2
Θ2, x1 : A1, . . . , xn : An `e t2 : B

Θ1,Θ2 `e let (xi)i∈I = t1 in t2 : B

 =

Pos(ξ1)
[]; Θ1 ` F1 ⊗ · · · ⊗ Fn

Neg(([(xi)i∈I ], ξ2))
[F1 ⊗ · · · ⊗ Fn]; Θ2 ` Bα

[]; Θ1,Θ2 ` Bα
cut

Pos

 Ψ `ω ω : A↔ B

ξ

Θ `e t : A
Θ; Ψ `e ω t : B

 =
Pos(ξ)

[]; Θ ` A
circ(ω, {f}, α, β)

[A]; ∅ ` Bβ
[]; Θ ` Bβ

cut

Figure 5 Positive Phase

Proof Sketch. In order to show the validity of our derivation we need, for each in�nite branch, to
build a valid thread. From the previous lemmas and the syntactical constraints of the language, we
get that any in�nite branch is completely de�ned by a single iso-variable, which allows us to reason
entirely about a single recursive iso fix f.{v1 ↔ e1 | . . . | vn ↔ en}. For each in�nite branch,
we will build a pre-thread that follows the focus of the primitive recursive criterion. We know that
the focus is a strict subvariable of the argument that is called recursively, as a consequence we can
split the constructed thread into two parts, p0 and p1, corresponding respectively to the negative
phase and the positive phase. We also know that, each argument of a recursive call gives us a purely
positive proof which is made only of tensors. We can show that the size of p0 is bigger than p1 and
also that p1 is a pre�x of p0. This allows us to make sure that our pre-thread is a thread where
the visible part always encounters a ν formula. Finally, the inductive type is decomposed in the
negative phase and not in the positive phase (as the right-hand side of a recursive call is purely
made of tensors), we can show that (i) the thread is never stationary and (ii) the thread has for
minimal recurring formula that is visited in�nitely often a ν formula, hence satisfying validity. J

We can also show that the rewriting rules of the language simulate the cut-elimination procedure,
as it is described in [2]:

I Theorem 38 (Simulation). Provided an iso `ω ω : A↔ B and values `e v : A and `e v′ : B, let
π = Pos(ω v) and π′ = Pos(v), if ω v →∗ v′ then π →∗cut-elim π′.
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Proof sketch. The proof relies on the de�nition of a novel explicit substitution rewriting system
for the language, called→eβ . Explicit substitution are represented as a series of let constructs where
the substitution of a variable by a value only occurs when we reach the term letx = v in x. Each
rewriting step of this system represents exactly one step of the cut-elimination procedure of µMALL.
Then we only need to show that the explicit substitution rewriting system matches, meaning that if
σ = {−→x 7→ −→v } then let−→x = −→v in e→∗eβ σ(e). J

This leads to the following corollary:

I Corollary 39 (Isomorphism of proofs.). Given a well-typed iso `ω ω : A↔ B and two well-typed
close value v1 of type A and v2 of type B and the proofs π : F1 ` G1, π⊥ : G2 ` F1, φ : F3, ψ : G2
corresponding respectively to the translation of ω, ω⊥, v1, v2 then:

φ

` F3

 

φ

` F3

π
F1 ` G1

` G1
cut

π⊥

G2 ` F2
` F2

cut

ψ

` G3

π⊥

F2 ` G2
` F2

cut
π

F1 ` G1
` G1

cut
 

ψ

` G3

5 Conclusion

Summary of the contribution. We presented a linear, reversible language with inductive types.
We showed how ensuring non-overlapping and exhaustivity is enough to ensure the reversibility
of the isos. The language comes with both an expressivity result that shows that any Primitive
Recursive Functions can be encoded in this language as well as an interpretation of programs into
µMALL proofs. The latter result rests on the fact that our isos are structurally recursive.

Future works. We showned a one-way encoding from isos to proofs of µMALL, it is clear that
there exists proof-isomorphisms of µMALL that does not correspond to an iso of our language, for
instance taking the reversible map function on streams. Therefore, a �rst extension to our work
would be to consider a two-way encoding and adding coinductive types in the language. This would
require relaxing the condition on recursive isos, as termination would be no longer possible to
ensure. This is a focus of our forthcoming research.

A second direction for future work is to consider quantum computation, by extending our
language with linear combinations of terms. We plan to study purely quantum recursive types and
generalised quantum loops: in [20], lists are the only recursive type which is captured and recursion
is terminating. The logic µMALL would help in providing a �ner understanding of termination and
non-termination
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