Kostia Chardonnet

Alexis Saurin

Benoît Valiron

Équipe Πr

A Curry-Howard Correspondence for Linear, Reversible Computation

Keywords: 2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation → Equational logic and rewriting Reversible Computation, Linear Logic, Curry-Howard Digital Object Identifier 10.4230/LIPIcs.CSL.2023.36

In this paper, we present a linear and reversible programming language with inductives types and recursion. The semantics of the languages is based on pattern-matching; we show how ensuring syntactical exhaustivity and non-overlapping of clauses is enough to ensure reversibility. The language allows to represent any Primitive Recursive Function. We then give a Curry-Howard correspondence with the logic µMALL: linear logic extended with least xed points allowing inductive statements. The critical part of our work is to show how primitive recursion yields circular proofs that satisfy µMALL validity criterion and how the language simulates the cut-elimination procedure of µMALL.

Introduction

Computation and logic are two faces of the same coin. For instance, consider a proof s s A → B t

A B

Figure 1 Modus Ponens of A → B and a proof t of A. With the logical rule Modus Ponens one can construct a proof of B: Figure 1 features a graphical presentation of the corresponding proof. Horizontal lines stand for deduction steps -they separate conclusions (below) and hypotheses (above). These deduction steps can be stacked vertically up to axioms in order to describe complete proofs. In Figure 1 the proofs of A and A → B are symbolized with vertical ellipses. The ellipsis annotated with s indicates that s is a complete proof of A → B while t stands for a complete proof of A.

This connection is known as the Curry-Howard correspondence [START_REF] Haskell | Functionality in combinatory logic[END_REF][START_REF] William | The formulae-as-types notion of construction. To HB Curry: essays on combinatory logic, lambda calculus and formalism[END_REF]. In this general framework, types correspond to formulas and programs to proofs, while program evaluation is mirrored with proof simpli cation (the so-called cut-elimination). The Curry-Howard correspondence formalizes the fact that the proof s of A → B can be regarded as a function -parametrized by an argument of type A-that produces a proof of B whenever it is fed with a proof of A. Therefore, the computational interpretation of Modus Ponens corresponds to the application of an argument (i.e. t) of type A to a function (i.e. s) of type A → B. When computing the corresponding program, one substitutes the parameter of the function with t and get a result of type B. On the logical side, this corresponds to substituting every axiom introducing A in the proof s with the full proof t of A. This yields a direct proof of B without any invocation of the "lemma" A → B.

Paving the way toward the veri cation of critical softwares, the Curry-Howard correspondence provides a versatile framework. It has been used to mirror rst and second-order logics with dependent-type systems [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF][START_REF] Leroy | Formal veri cation of a realistic compiler[END_REF], separation logics with memory-aware type systems [START_REF] John | Separation logic: A logic for shared mutable data structures[END_REF][START_REF] Jung | Rustbelt: Securing the foundations of the rust programming language[END_REF], resource-sensitive logics with di erential privacy [START_REF] Gaboardi | Linear dependent types for di erential privacy[END_REF], logics with monads with reasoning on sidee ects [START_REF] Swamy | Dependent types and multi-monadic e ects in f[END_REF][START_REF] Maillard | The next 700 relational program logics[END_REF], etc.

Reversible computation is a paradigm of computation which emerged as an energy-preserving model of computation in which data is never erased [START_REF] Fredkin | Conservative logic[END_REF] that makes sure that, given some process f , there always exists an inverse process f -1 such that f • f -1 = Id = f -1 • f . Many aspects of reversible computation have been considered, such as the development of reversible Turing Machines [START_REF] Morita | A universal reversible turing machine[END_REF], reversible programming languages [START_REF] Rosham | Theseus: A high-level language for reversible computing[END_REF] and their semantics [START_REF] Chardonnet | Categorical semantics of reversible patternmatching[END_REF][START_REF] Kaarsgaard | Join inverse rig categories for reversible functional programming, and beyond[END_REF]. However, the formal relationship between a logical system and a computational model have not been developed yet.

This paper aims at proposing a type system featuring inductive types for a purely linear and reversible language. We base our study on the approach presented in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF]. In this model, reversible computation is restricted to two main types: the tensor, written A ⊗ B and the co-product, written A ⊕ B. The former corresponds to the type of all pairs of elements of type A and elements of type B, while the latter represents the disjoint union of all elements of type A and elements of type B. For instance, a bit can be typed with 1 ⊕ 1, where 1 is a type with only one element. The language in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] o ers the possibility to code isos -reversible maps-with pattern matching. An iso is for instance the swap operation, typed with A ⊗ B ↔ B ⊗ A. However, if [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] hints at an extension towards pure quantum computation, the type system is not formally connected to any logical system.

The problem of reversibility between nite type of same cardinality simply requires to check that the function is injective. That is no longer the case when we work with types of in nite cardinality such as natural numbers.

The main contribution of this work is a Curry-Howard correspondence for a purely reversible typed language in the style of [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF], with added generalised inductive types and terminating recursion, enforced by the fact that recursive functions must be structurally recursive: each recursive call must be applied to a decreasing argument. We show how ensuring exhaustivity and non-overlapping of the clauses of the pattern-matching are enough to ensure reversibility and that the obtained language can encode any Primitive Recursive function [START_REF] Rogers | Theory of recursive functions and e ective computability[END_REF]. For the Curry-Howard part, we capitalize on the logic µMALL [START_REF] Baelde | Least and greatest xed points in linear logic[END_REF][START_REF] Baelde | In nitary Proof Theory: the Multiplicative Additive Case[END_REF]: an extension of the additive and multiplicative fragment of linear logic with least and greatest xed points allowing inductive and coinductive statements. This logic contains both a tensor and a co-product, and its strict linearity makes it a good t for a reversible type system. In the literature, multiple proofs systems have been considered for µMALL, some nitary proof system with explicit induction inferences à la Park [START_REF] Baelde | Least and greatest xed points in linear logic[END_REF] as well as non-well-founded proof systems which allow to build in nite derivation [START_REF] Baelde | In nitary Proof Theory: the Multiplicative Additive Case[END_REF][START_REF] Baelde | Bouncing Threads for Circular and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs[END_REF]. The present paper focuses on the latter. In general, an in nite derivation is called a pre-proof and is not necessarily consistent. To solve this problem µMALL comes equipped with a validity criterion, telling us when an in nite derivation can be considered as a logical proof. We show how the syntactical constraints of being structurally recursive imply the validity of pre-proofs.

Organisation of the paper

The paper is organised as follows: in Section 2 we present the language, its syntax, typing rules and semantics and show that any function that can be encoded in our language represents an isomorphism. In Section 3 we show that our language can encode any Primitive Recursive Function [START_REF] Rogers | Theory of recursive functions and e ective computability[END_REF], this is shown by encoding the set of Recursive Primitive Permutations [START_REF] Paolini | A class of recursive permutations which is primitive recursive complete[END_REF] functions. Then in Section 4, we develop on the Curry-Howard Correspondence part: we show, given a well-typed term from our language, how to translate it into a circular derivation of the logic µMALL and show that the given derivation respects the validity condition and how our evaluation strategy simulates the cut-elimination procedure of the logic.

First-order Isos

Our language is based on the one introduced by Sabry et al [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] which de ne isomorphisms between various types, included the type of lists. We build on the reversible part of the paper by extending the language to support both a more general rewriting system and more general inductive types: while they only allow the inductive type of lists, we consider arbitrary inductive types. The language is de ned by layers. Terms and types are presented in Table 1, while typing derivations, inspired from µMALL, can be found in Tables 2 and3. The language consists of the following pieces.

Basic type. They allow us to construct rst-order terms. The constructors inj l and inj r represent the choice between either the left or right-hand side of a type of the form A ⊕ B; the constructor , builds pairs of elements (with the corresponding type constructor ⊗); fold represents inductive structure of the types µX.A. A value can serve both as a result and as a pattern in the de ning clause of an iso. We write (x 1 , . . . , x n) for x 1 , . . . , x n or -→ x when n is non-ambiguous and

A 1 ⊗ • • • ⊗ A n for A 1 ⊗ (• • • ⊗ A n) and A n for A ⊗ • • • ⊗ A n times .
First-order isos. An iso of type A ↔ B acts on terms of base types. An iso is a function of type A ↔ B, de ned as a set of clauses of the form {v 1 ↔ e 1 | . . . | v n ↔ e n }. In the clauses, the tokens v i are open values and e i are expressions. In order to apply an iso to a term, the iso must be of type A ↔ B and the term of type A. In the typing rules of isos, the OD A ({v 1 , . . . , v n }) predicate (corrected from [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF], as their de nition makes it impossible to type To oli) syntactically enforces the exhaustivity and non-overlapping conditions on a set of well-typed values v 1 , . . . , v n of type A. The typing conditions make sure that both the left-hand-side and right-hand-side of clauses satisfy this condition. Its formal de nition can be found in Table 4 where V al(e) is de ned as V al(let p = ω p in e) = V al(e), and V al(v) = v otherwise. These checks are crucial to make sure that our isos are indeed reversible. In the last rule on Table 4, we de ne π 1 (S) and π 2 (S) as respectively {v | v, w ∈ S} and {w | v, w ∈ S} and S 1 v and S 2 v respectively as {w | v, w ∈ S} and {w | w, v ∈ S} Exhaustivity for an iso {v 1 ↔ e 1 | . . . | v n ↔ e n } of type A ↔ B means that the expressions on the left (resp. on the right) of the clauses describe all possible values for the type A (resp. the type B). Non-overlapping means that two expressions cannot match the same value. For instance, the left and right injections inj l v and inj r v are non-overlapping while a variable x is always exhaustive. The construction fix g.ω represents the creation of a recursive function, rewritten as ω[g := fix g.ω] by the operational semantics. Each recursive function needs to satisfy a structural recursion criteria: making sure that one of the input arguments strictly decreases on each recursive call. Indeed, since isos can be non-terminating (due to recursion), we need a criterion that implies termination to ensure that we work with total functions. If ω is of type A ↔ B, we can build its inverse ω ⊥ : B ↔ A and show that their composition is the identity. In order to avoid con icts between variables we will always work up to α-conversion and use Barendregt's convention [4, p.26] which consists in keeping all bound and free variables names distinct, even when this remains implicit.

= 1 | A ⊕ B | A ⊗ B | µX.A (Isos, rst-order) α ::= A ↔ B (Values) v ::= () | x | inj l v | inj r v | v 1 , v 2 | fold v (Pattern) p ::= x | p 1 , p 2 (Expressions) e ::= v | let p 1 = ω p 2 in e (Isos) ω ::= {v 1 ↔ e 1 | . . . | v n ↔ e n } | fix f.ω | f (Terms) t ::= () | x | inj l t | inj r t | t 1 , t 2 | fold t | ω t | let p = t 1 in t 2
Ψ ω f : A ↔ B ∆; Ψ e t : A ∆; Ψ e f t : B ω ω : A ↔ B ∆; Ψ e t : A ∆; Ψ e ω t : B ∆ 1 ; Ψ e t 1 : A 1 ⊗ • • • ⊗ A n ∆ 2 , x 1 : A 1 , . . . , x n : A n ; Ψ e t 2 : B ∆ 1 , ∆ 2 ; Ψ e let (x 1 , . . . , x n) = t 1 in t 2 : B Table 2
Typing of terms and expressions

The type system is split in two parts: one for terms (noted ∆; Ψ e t : A) and one for isos (noted Ψ ω ω : A ↔ B). In the typing rules, the contexts ∆ are sets of pairs that consist of a term-variable and a base type, where each variable can only occur once and Ψ is a singleton set of a pair of an iso-variable and an iso-type association.

Definition 1 (Structurally Recursive). Given an iso fix f.{v

1 ↔ e 1 | . . . | v n ↔ e n } : A 1 ⊗ • • • ⊗ A m ↔ C, it is structurally recursive if there is 1 ≤ j ≤ m such that A j = µX.B and for all i ∈ {1, . . . , n} we have that v i is of the form (v 1 i , . . . , v m i) such that v j i is either:
A closed value, in which case e i does not contain the subterm f p Open, in which case for all subterm of the form f p in e i we have p = (x 1 , . . . , x m) and x j : µX.B is a strict subterm of v j i .

Given a clause v ↔ e, we call the value v j i (resp. the variable x j) the decreasing argument (resp. the focus) of the structurally recursive criterion.

Remark 2. As we are focused on a very basic notion of structurally recursive function, the typing rules of isos allow to have at most one iso-variable in the context, meaning that we cannot have intertwined recursive call.

Finally, our language is equipped with a rewriting system → on terms, de ned in De nition 4, that follows a deterministic call-by-value strategy: each argument of a function is fully evaluated

∆ 1 e v 1 : A . . . ∆ n e v n : A OD A ({v 1 , . . . , v n }) ∆ 1 ; Ψ e e 1 : B . . . ∆ n ; Ψ e e n : B OD B ({V al(e 1), . . . , V al(e n)}) Ψ ω {v 1 ↔ e 1 | . . . | v n ↔ e n } : A ↔ B. f : α ω f : α f : α ω ω : α fix f.ω is structurally recursive Ψ ω fix f.ω : α Table 3 Typing of isos OD A ({x}) OD 1 ({()}) OD A (S) OD B (T) OD A⊕B ({inj l v | v ∈ S} ∪ {inj r v | v ∈ T }) OD A[X←µX.A] (S) OD µX.A ({fold v | v ∈ S}) OD A (π 1 (S)), ∀v ∈ π 1 (S), OD B (S 1 v) or OD B (π 2 (S)), ∀v ∈ π 2 (S), OD A (S 2 v) OD A⊗B (S = { v 1 , v 1 , . . . , v n , v n })
Table 4 Exhaustivity and Non-Overlapping before applying the substitution. This is done through the use of an evaluation context C[], which consists of a term with a hole (where C[t] is C where the hole has been lled with t). Due to the deterministic nature of the strategy we directly obtain the unicity of the normal form. The evaluation of an iso applied to a value relies on pattern-matching : the argument is matched against the left-handside of each clause until one of them matches (written σ[v] = v), in which case the pattern-matching, as de ned in Table 5, returns a substitution σ that sends variables to values. Because we ensure exhaustivity and non-overlapping (Lemma 5), the pattern-matching can always occur on well-typed terms. The support of a substitution σ is de ned as supp(σ) = {x | (x → v) ∈ σ}. Definition 3 (Substitution). Applying substitution σ on an expression t, written σ(t), is de ned as :

σ(()) = (), σ(x) = v if {x → v} ⊆ σ, σ(inj r t) = inj r σ(t), σ(inj l t) = inj l σ(t), σ(t, t) = σ(t), σ(t) , σ(ω t) = ω σ(t) and σ(let p = t 1 in t 2) = (let p = σ(t 1) in σ(t 2)).
Definition 4 (Evaluation relation →). We de ne → the rewriting system of our language as follows:

t 1 → t 2 C[t 1] → C[t 2] Cong σ[p] = v let p = v in t → σ(t) LetE (fix f.ω) → ω[f := (fix f.ω)] IsoRec σ[v i] = v {v 1 ↔ e 1 | . . . | v n ↔ e n } v → σ(e i)
IsoApp

with C ::= [] | inj l C | inj r C | ω C | let p = C in t | C, v | v, C
As usual we note → * for the re exive transitive closure of →.

Lemma 5 (OD A (A) ensures exhaustivity and non-overlapping.). Let OD A (S) and e v : A, then there exists a unique v ∈ S such that v matches v under substitution σ, i.e. σ[v] = v.

As mentioned above, from any iso ω : A ↔ B we can build its inverse ω ⊥ : B ↔ A, the inverse operation is de ned inductively on ω and is given in De nition 6. Definition 6 (Inversion). Given an iso ω, we de ne its dual ω ⊥ as :

f ⊥ = f, (fix f.ω) ⊥ = fix f.ω ⊥ , {(v i ↔ e i) i∈I } ⊥ = {((v i ↔ e i) ⊥
) i∈I } And the inverse of a clause as :

  v 1 ↔ let p 1 = ω 1 p 1 in • • • let p n = ω n p n in v 1   ⊥ :=   v 1 ↔ let p n = ω ⊥ n p n in • • • let p 1 = ω ⊥ 1 p 1 in v 1   .
We can show that the inverse is well-typed and behaves as expected:

Lemma 7 (Inversion is well-typed). Given Ψ ω ω : A ↔ B, then Ψ ω ω ⊥ : B ↔ A.
Theorem 8 (Isos are isomorphisms). For all well-typed isos ω ω : A ↔ B, and for all well-typed values

e v : A, if (ω (ω ⊥ v)) → * v then v = v .
Example 9. We can de ne the iso of type :

A ⊕ (B ⊕ C) ↔ C ⊕ (A ⊕ B) as    inj l (a) ↔ inj r (inj l (a)) inj r (inj l (b)) ↔ inj r (inj r (b)) inj r (inj r (c)) ↔ inj l (c)    Example 10.
We give the encoding of the isomorphism map(ω) and its inverse: for any given iso ω : A ↔ B in our language, we can de ne map(ω)

: [A] ↔ [B] where [A] = µX.1 ⊕ (A ⊗ X)
is the type of lists of type A and [] is the empty list (fold (inj l ())) and h :: t is the list construction (fold (inj r h, t)). We also give its dual map(ω) ⊥ below, as given by De nition 6.

map(ω) : [

A] ↔ [B] = fix f.        [] ↔ [] h :: t ↔ let h = ω h in let t = f t in h :: t        map(ω) ⊥ : [B] ↔ [A] = fix f.        [] ↔ [] h :: t ↔ let t = f t in let h = ω ⊥ h in h :: t       
Remark 11. In our two examples, the left and right-hand side of the ↔ on each function respect both the criteria of exhaustivity -every-value of each type is being covered by at least one expression-and non-overlapping -no two expressions cover the same value. Both isos are therefore bijections.

The language enjoys the standard properties of typed languages of progress and subject reduction:

Lemma 12 (Subject Reduction). If ∆; Ψ e t : A and t → t then ∆; Ψ e t : A.

Lemma 13 (Progress). If e t : A then, either t is a value, or t → t .

x S x + 1

x P x -1 x Sign -x x Id x x X y y x    x 1 y 1 . . . f ; g . . . x n y n    =    x 1 . . . f x n       y 1 g . . . y n               x 1 y 1 x k f || g y k x 1 y 1 x l y l            =    x 1 y 1 . . . f . . . x k y n       x 1 y 1 . . . g . . . x l y l         x 1 y 1 . . . If[f, g, h]
. . .

x n y n x x           =    f (x 1 , . . . , x n) if x > 0 g (x 1 , . . . , x n) if x = 0 h (x 1 , . . . , x n) if x < 0      x 1 y 1 . . . It[f] . . . x n y n x x           = (f ; . . . ; f) | x | (x 1 , . . . , x n) Figure 2 Generators of RPP

Computational Content

In this section, we study the computational content of our language. In the case of only nite types made up of the tensor, plus and unit, one can represent any bijection by case analysis. Homewer, with in nite types, the expressivity becomes less clear. We show that we can encode Recursive Primitive Permutations [START_REF] Paolini | A class of recursive permutations which is primitive recursive complete[END_REF] (RPP), which shows us that we can encode at least all Primitive Recursive Functions [START_REF] Rogers | Theory of recursive functions and e ective computability[END_REF].

We give a few reminders on the language RPP and its main results, then show how to encode it.

Reminder on RPP

RPP is a set of integer-valued functions of variable arity; we de ne it by arity as follows: we note RPP k for the set of functions in RPP from Z k to Z k , it is built inductively on k ∈ N by: the successor (S), the predecessor (P), the identity (ID) and the sign-change that are part of RPP 1 . The swap function (X) and the binary permutation X which sends the pair (x, y) to (y, x) are part of RPP 2 and then, for any function f, g, h ∈ RPP k and j ∈ RPP l , we can build (i) the sequential composition f ;

g ∈ RPP k , (ii) the parallel composition f || j ∈ RPP k+l (iii) the iterator It[f] ∈ RPP k+1 and (iv) the selection If[f, g, h] ∈ RPP k+1 .
Finally, the set of all functions that form RPP is taken as the union for all k of the RPP k :

RPP = ∪ k∈N RPP k
We present the semantics of each constructors of RPP under a graphical form, as in [START_REF] Paolini | A class of recursive permutations which is primitive recursive complete[END_REF], where the left-hand-side variables of the diagram represent the input of the function and the right-hand-side is the output of the function. The semantics of all those operators are given in Figure 2.

Remark 14. In their paper [START_REF] Paolini | A class of recursive permutations which is primitive recursive complete[END_REF], the authors make use of two other constructors: generalised permutations over Z k and weakenings of functions, but those can actually be de ned from the other constructors so that in the following section we do not give their encoding. Then, if f ∈ RPP k we can de ne an inverse f -1 :

Definition 15 (Inversion). The inversion is de ned as follow :

Id -1 = Id S -1 = P P -1 = S Sign -1 = Sign X -1 = X (g; f) -1 = f -1 ; g -1 (f || g) -1 = f -1 || g -1 (It[f]) -1 = It[f -1] (If [f, g, h]) -1 = If [f -1 , g -1 , h -1]
Proposition 16 (Inversion defines an inverse [START_REF] Paolini | A class of recursive permutations which is primitive recursive complete[END_REF]). [START_REF] Paolini | A class of recursive permutations which is primitive recursive complete[END_REF]). RPP is PRF-Complete and PRF-Sound: it can represent any Primitive Recursive Function and every function in RPP can be represented in PRF.

Given f ∈ RPP k then f ; f -1 = Id = f -1 ; f Theorem 17 (Soudness & Completeness

From RPP to Isos

We start by de ning the type of stricly positive natural numbers, npos, as npos = µX.1 ⊕ X. We de ne n, the encoding of a positive natural number into a value of type npos as 1 = fold inj l () and n + 1 = fold inj r n. Finally, we de ne the type of integers as Z = 1 ⊕ (npos ⊕ npos) along with z the encoding of any z ∈ Z into a value of type Z de ned as: 0 = inj l (), z = inj r inj l z for z positive, and z = inj r inj r -z for z negative. Given some function f ∈ RPP k , we will build an iso isos(f) : Z k ↔ Z k which simulates f . isos(f) is de ned by the size of the proof that f is in RPP k .

Definition 18 (Encoding of the primitives).

The Sign-change of type

Z ↔ Z is    inj r (inj l x) ↔ inj r (inj r x) inj r (inj r (x)) ↔ inj r (inj l x) inj l () ↔ inj l ()    The identity is {x ↔ x} : Z ↔ Z The Swap is {(x, y) ↔ (y, x)} : Z 2 ↔ Z 2
The Predecessor is the inverse of the Successor

The Successor is

       inj l () ↔ inj r (inj l (fold (inj l ()))) inj r (inj l x) ↔ inj r (inj l (fold (inj r x))) inj r (inj r (fold (inj l ()))) ↔ inj l () inj r (inj r (fold (inj r x))) ↔ inj r (inj r x)        : Z ↔ Z
Definition 19 (Encoding of Composition). Let f, g ∈ RPP j , ω f = isos(f) and ω g = isos(g) the isos encoding f and g, we build isos(f ; g) of type Z j ↔ Z j as:

isos(f ; g) =    let (y 1 , . . . , y j) = ω f (x 1 , . . . , x j) in (x 1 , . . . , x j) ↔ let (z 1 , . . . , z j) = ω g (y 1 , . . . , y j) in (z 1 , . . . , z j)   
Definition 20 (Encoding of Parallel Composition). Let f ∈ RPP j and g ∈ RPP k , and ω f = isos(f) and ω g = isos(g), we de ne isos(f || g) of type Z j+k ↔ Z j+k as:.

isos(f || g) =    let (x 1 , . . . , x j) = ω f (x 1 , . . . , x j) in (x 1 , . . . , x j , y 1 , . . . , y k) ↔ let (y 1 , . . . , y k) = ω g (y 1 , . . . , y k) in (x 1 , . . . , x j , y 1 , . . . , y k)   
Definition 21 (Encoding of Finite Iteration). Let f ∈ RPP k , and ω f = isos(f), we encode thenite iteration It[f] ∈ RPP k+1 with the help of an auxiliary iso, ω aux , of type Z k ⊗ npos ↔ Z k ⊗ npos doing the nite iteration using npos, de ned as:

ω aux = fixg.                (- → x , fold (inj l ())) ↔ let - → y = ω f - → x in (- → y , fold (inj l ())) (- → x , fold (inj r n)) ↔ let (- → y) = ω f (- → x) in let (- → z , n) = g (- → y , n) in (- → z , fold (inj r n))                We can now properly de ne isos(It[f]) of type Z k+1 ↔ Z k+1 as: isos(It[f]) =                  (- → x , inj l ()) ↔ (- → x , inj l ()) (- → x , inj r (inj l z)) ↔ let (- → y , z) = ω aux (- → x , z) in (- → y , inj r (inj l z)) (- → x , inj r (inj r z)) ↔ let (- → y , z) = ω aux (- → x , z) in (- → y , inj r (inj r z))                 
Definition 22 (Encoding of Selection). Let f, g, h ∈ RPP k and their corresponding isos

ω f = isos(f), ω g = isos(g), ω h = isos(h). We de ne isos(If[f, g, h]) of type Z k+1 ↔ Z k+1 as: isos(If[f, g, h]) =      (- → x , inj r (inj l z)) ↔ let - → x = ω f (- → x) in (- → x , inj r (inj l z)) (- → x , inj l ()) ↔ let - → x = ω g (- → x) in (- → x , inj l ()) (- → x , inj r (inj r z)) ↔ let - → x = ω h (- → x) in (- → x , inj r (inj r z))     
Theorem 23 (The encoding is well-typed). Let f ∈ RPP k , then ω isos(f) :

Z k ↔ Z k .
Theorem 24 (Simulation). Let f ∈ RPP k and n 1 , . . . , n k elements of Z such that f (n 1 , . . . , n k) = (m 1 , . . . , m k) then isos(f)(n 1 , . . . , n k) → * (m 1 , . . . , m k) Remark 25. Notice that isos(f) ⊥ = isos(f -1), due to the fact that isos(f) ⊥ will inverse the order of the let constructions, which will not be the case for isos(f -1). They can nonetheless be considered equivalent up to a permutation of let constructions and renaming of variable.

Proof Theorical Content

We want to relate our langage of isos to proofs in a suitable logic. As mentioned earlier, an iso ω ω : A ↔ B corresponds to both a computation sending a value of type A to a result of type B and a computation sending a value of type B to a result of type A. Therefore we want to be able to translate an iso into a proof isomorphism : two proofs π and π ⊥ of respectively A B and B A such that their composition reduces through the cut-elimination to the identity either on A or on B depending on the way we make the cut between those proofs. Since we are working in a linear system with inductive types we will use an extension of Linear Logic called µMALL : linear logic with least and greatest xed points, which allows us to reason about inductive and coinductive statements. µMALL also allows us to consider in nite derivation trees, which is required as our isos can contain recursive variables. We need to be careful though: in nite derivations cannot always be considered as proofs, hence µMALL comes with a validity criterion on in nite derivations trees (called pre-proofs) that tells us whether such derivations are indeed proofs. We recall brie y the basic notions of µMALL, while more details can be found in [START_REF] Baelde | Bouncing Threads for Circular and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs[END_REF].

C S L 2 0 2 3 36:10 A Curry-Howard Correspondence for Linear, Reversible Computation

F ≡ G F ⊥ , G id Σ, F Φ, F ⊥ Σ, Φ cut , Σ 1 1 F, G, Σ F `G, Σ ` F, Σ G, Φ F ⊗ G, Σ, Φ ⊗ F, Σ G, Σ F & G, Σ & Fi, Σ F1 ⊕ F2, Σ ⊕ i i ∈ {1, 2} Σ Σ, ⊥ ⊥ F [X ← µX.F], Σ µX.F, Σ µ F [X ← νX.F], Σ νX.F, Σ ν Figure 3
Rules for µMALL.

Background on µMALL

Given an in nite set of variables V = {X, Y, . . . }, we call formulas of µMALL the objects generated by A, B ::

= X | 1 | 0 | | ⊥ | A ⊗ B | A `B | A ⊕ B | A & B | µX.A | νX.
A where µ and ν bind the variable X in A. The negation on formula is de ned in the usual way:

X ⊥ = X, 0 ⊥ = , 1 ⊥ = ⊥, (A `B) ⊥ = A ⊥ ⊗ B ⊥ , (A ⊕ B) ⊥ = A ⊥ & B ⊥ , (νX.A) ⊥ = µX.A ⊥ having X ⊥ = X
is harmless since we only deal with closed formulas.

We call an occurrence, a word of the form α•w where α ∈ A fresh an in nite set of atomic addresses and its dual A ⊥ fresh = {α ⊥ | α ∈ A fresh } and w a word over {l, r, i} * (for left, right and inside) and formulas occurrences F, G, H, . . . as a pair of a formula and an occurrence, written A α Finally we write Σ, Φ for formula contexts: sets of formulas occurrences. We write

A α ≡ B β when A = B. Negation is lifted to formulas with (A α) ⊥ = A ⊥ α ⊥ where (α • w) ⊥ = α ⊥ • w and (α ⊥ • w) ⊥ = α • w.
In general, we write α, β for occurrences.

The connectives need then to be lifted to occurrences as well:

Given # ∈ {⊗, ⊕, `, &}, if F = A αl and G = B αr then (F #G) = (A#B) α Given # ∈ {µ, ν} if F = A αi then #X.F = (#X.A) α
Occurrences allow us to follow a subformula uniquely inside a derivation. Since in µMALL we only work with formula occurrences, we simply use the term formula.

The (possibly in nite) derivation trees of µMALL, called pre-proofs are coinductively generated by the rules given in Figure 3. We say that a formula is principal when it is the formula that the rule is being applied to.

Among the in nite derivations that µMALL o er we can look at the circular ones: an in nite derivation is circular if it has nitely many di erent subtrees. The circular derivation can therefore be represented in a more compact way with the help of back-edges: arrows in the derivation that represent a repetition of the derivation. Derivations with back-edge are represented with the addition of sequents marked by a back-edge label, noted f , and an additional rule, Σ be(f) , which represent a back-edge pointing to the sequent f . We take the convention that from the root of the derivation from to rule be(f) there must be exactly one sequent annotated by f . Example 26. An in nite derivation and two di erent circular representations with back-edges. . . .

µ µX.X µ µX.X be(f) µX.X µ f µX.X be(f) µX.X µ µX.X µ f µX.X
While a circular proof has multiple nite representations (depending on where the back-edge is placed), they can all be mapped back to the same in nite derivation via an in nite unfolding of the back-edge and forgetting the back-edge labels: Definition 27 (Unfolding). We de ne the unfolding of a circular derivation P with a valuation v from back-edge labels to derivations by: U P :

P 1 , . . . , P n Σ r , v = U(P 1 , v), . . . , U(P n , v) Σ r U(be(f), v) = v(f) U P : P 1 , . . . , P n f Σ r , v = π = U(P 1 , v), . . . , U(P n , v) Σ r with v (g) = π if g = f else v(g).
µMALL comes with a validity criterion on pre-proofs that determines when a pre-proof can be considered as a proof: mainly, whether or not each in nite branch can be justi ed by a form of coinductive reasoning. The criterion also ensures that the cut-elimination procedure holds. For that, we can de ne a notion of thread [START_REF] Baelde | In nitary Proof Theory: the Multiplicative Additive Case[END_REF][START_REF] Baelde | Bouncing Threads for Circular and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs[END_REF]: an in nite sequence of tuples of formulas, sequents and directions (either up or down). Intuitively, these threads follow some formula starting from the root of the derivation and start by going up. If the thread encounters an axiom rule, it will bounce back and start going down in the dual formula of the axiom rule. It may bounce back again, when going down on a cut rule, if it follows the cut-formula. A thread will be called valid when it is non-stationary (does not follow a formula that is never a principal formula of a rule), and when in the set of formulas appearing in nitely often, the minimum formula (according to the subformula ordering) is a ν formula. For the multiplicative fragment, we say that a pre-proof is valid if for all in nite branches, there exists a valid thread, while for the additive part, we require a notion of additive slices and persistent slices which we do not detail here. Example 31 features an example of a valid proof together with its thread. More details can be found in [START_REF] Baelde | Bouncing Threads for Circular and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs[END_REF].

Translating isos into µMALL

We start by giving the translation from isos to pre-proofs, and then show that they are actually proofs, therefore obtaining a static correspondence between programs and proofs. We then show that our translation entails a dynamic correspondence between the evaluation procedure of our language and the cut-elimination procedure of µMALL. This will imply that the proofs we obtain are indeed isomorphisms, meaning that if we cut the aforementioned proofs π and π ⊥ , performing the cut-elimination procedure would give either the identity on A or the identity on B.

The derivation we obtain are circular, and we therefore translate the isos directly into nite derivations with back-edge, written circ(ω). We can de ne another translation into in nite derivations as the composition of circ() with the unfolding: ω = U(circ(ω)).

Because we need to keep track of which formula is associated to which variable from the typing context, the translation uses a slightly modi ed version of µMALL in which contexts are split in two parts, written Υ; Θ, where Υ is a list of formulas and Θ is a set of formulas associated with a term-variable (written x : F). When starting the translation of an iso of type A ↔ B, we start in the context [A α]; ∅ (for some address α) and end in the context []; Θ. The additional information of the variable in Θ is here to make sure we know how to split the contexts accordingly when needed later during the translation, with respect to the way they are split in the typing derivation. We write Θ = {F | x : F ∈ Θ} and Θ = {x : A | x : A α ∈ Θ}. We also use another rule which allow to send the rst formula from Υ to Θ and associate it a variable to the formula:

Υ; x : F, Θ G F :: Υ; Θ G ex(x)
C S L 2 0 2 3 36:12

A Curry-Howard Correspondence for Linear, Reversible Computation

Given a derivation ι in this system, we write ι for the function that sends ι into a derivation of µMALL where (i) we remove all occurrence of the exchange rule (ii) the contexts []; Θ becomes Θ.

Given an iso ω : A ↔ B and initial addresses α, β, its translation into a derivation of µMALL of A α B β is described with three separate phases: Iso Phase. The rst phase consists in travelling through the syntactical de nition of an iso, keeping as information the last encountered iso-variable bounded by a fix f.ω and calling the negative phase when encountering an iso of the form {v 1 ↔ e 1 | . . . | v n ↔ e n } and attaching to the formulas A and B two distinct addresses α and β and to the sequent as a label of name of the last encountered iso-variable. Later on during the translation, this phase will be recalled when encountering another iso in one of the e i , and, if said iso correspond to an iso-variable, we will create a back-edge pointing towards the corresponding sequents.

Negative Phase. Starting from some context [A α], Θ, the negative phase consists into decomposing the formula A according to the way in which the values of type A on the left-hand-side of ω are decomposed. The negative phase works as follows: we consider a set of (list of values, typing judgement), written (l, ξ) where each element of the set corresponds to one clause v ↔ e of the given iso and ξ is the typing judgement of e. The list of values corresponds to what is left to be decomposed in the left-hand-side of the clause (for instance if v is a pair v 1 , v 2 the list will have two elements to decompose). Each element of the list Υ will correspond to exactly one value in the list l. If the term that needs to be decomposed is a variable x, then we will apply the ex(x) rule, sending the formula to the context Θ. The negative phase ends when the list is empty and hence when Υ = []. When it is the case, we can start decomposing ξ and the positive phase start. The negative phase is de ned inductively on the rst element of the list of every set, which are known by typing to have the same pre x, and is given in Figure 4.

Positive phase. The translation of an expression is pretty straightforward: each let and iso-application is represented by two cut rules, as usual in Curry-Howard correspondence. Keeping the variableformula pair in the derivation is here to help us know how to split accordingly the context Θ when needed, while Υ is always empty and is therefore omitted. While the positive phase carry over the information of the last-seen iso-variable, it is not noted explicitly as it is only needed when calling the Iso Phase. The positive phase is given in Figure 5.

Remark 28. While µMALL is presented in a one-sided way, we write Σ Φ for Σ ⊥ , Φ in order to stay closer to the formalism of the type system of isos.

Definition 29. circ(ω, S, α, β) = π takes a well-typed iso, a singleton set S of an iso-variable corresponding to the last iso-variable seen in the induction de nition of ω and two fresh addresses α, β and produces a circular derivation of the variant of µMALL described above with back-edges. circ(ω, S, α, β) is de ned inductively on ω:

circ(fix f.ω, S, α, β) = circ(ω, {f }, α, β) circ(f, {f }, α, β) = A α B β be(f) circ({(v i ↔ e i) i∈I } : A ↔ B, {f }, α, β) = Neg(([v i], ξ i) i∈I) A α f B β
where ξ i is the typing derivation of e i .

Example 30. The translation circ(ω, ∅, α, β) of the iso ω from Example 9 is, with Proof Sketch. In order to show the validity of our derivation we need, for each in nite branch, to build a valid thread. From the previous lemmas and the syntactical constraints of the language, we get that any in nite branch is completely de ned by a single iso-variable, which allows us to reason entirely about a single recursive iso fix f.{v

F = A αl , G = B αrl , H = C αrr and F = A βrl , G = B βrr , H = C βl : Pos e () : 1 = []; ∅ 1 α 1 Pos x : A e x : A = []; x : A α A β id Pos   ξ Θ e t : A 1 Θ e inj l t : A 1 ⊕ A 2   = Pos(ξ) Θ (A 1) αl []; Θ (A 1 ⊕ A 2) α ⊕ 1 Pos   ξ Θ e t : A 2 Θ e inj r t : A 1 ⊕ A 2   = Pos(ξ) []; Θ (A 2) αr []; Θ (A 1 ⊕ A 2) α ⊕ 2 Pos   ξ 1 Θ 1 e t 1 ξ 2 Θ 2 e t 2 : A 2 Θ 1 , Θ 2 e t 1 , t 2 : A 1 ⊗ A 2   = Pos(ξ 1) []; Θ 1 (A 1) αl Pos(ξ 2) []; Θ 2 (A 2) αr []; Θ 1 , Θ 2 (A 1 ⊗ A 2) α ⊗ Pos   ξ Θ e t : ← µX.A] Θ e fold t : µX.A   = Pos(ξ) []; Θ (A[X ← µX.A]) αi []; Θ (µX.A) α µ Pos   ξ 1 Θ 1 e t 1 : A 1 ⊗ • • • ⊗ A n ξ 2 Θ 2 , x 1 : A 1 , . . . , x n : A n e t 2 : B Θ 1 , Θ 2 e let (x i) i∈I = t 1 in t 2 : B   = Pos(ξ 1) []; Θ 1 F 1 ⊗ • • • ⊗ F n Neg(([(x i) i∈I], ξ 2)) [F 1 ⊗ • • • ⊗ F n]; Θ 2 B α []; Θ 1 , Θ 2 B α cut Pos   Ψ ω ω : A ↔ B ξ Θ e t : A Θ; Ψ e ω t : B   = Pos(ξ) []; Θ A circ(ω, {f }, α, β) [A]; ∅ B β []; Θ B β cut
1 ↔ e 1 | . . . | v n ↔ e n }.
For each in nite branch, we will build a pre-thread that follows the focus of the primitive recursive criterion. We know that the focus is a strict subvariable of the argument that is called recursively, as a consequence we can split the constructed thread into two parts, p 0 and p 1 , corresponding respectively to the negative phase and the positive phase. We also know that, each argument of a recursive call gives us a purely positive proof which is made only of tensors. We can show that the size of p 0 is bigger than p 1 and also that p 1 is a pre x of p 0 . This allows us to make sure that our pre-thread is a thread where the visible part always encounters a ν formula. Finally, the inductive type is decomposed in the negative phase and not in the positive phase (as the right-hand side of a recursive call is purely made of tensors), we can show that (i) the thread is never stationary and (ii) the thread has for minimal recurring formula that is visited in nitely often a ν formula, hence satisfying validity.

We can also show that the rewriting rules of the language simulate the cut-elimination procedure, as it is described in [START_REF] Baelde | Bouncing Threads for Circular and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs[END_REF]: Proof sketch. The proof relies on the de nition of a novel explicit substitution rewriting system for the language, called → eβ . Explicit substitution are represented as a series of let constructs where the substitution of a variable by a value only occurs when we reach the term let x = v in x. Each rewriting step of this system represents exactly one step of the cut-elimination procedure of µMALL.

Theorem
Then we only need to show that the explicit substitution rewriting system matches, meaning that if

σ = { - → x → - → v } then let - → x = - → v in e → * eβ σ(e).
This leads to the following corollary:

Corollary 39 (Isomorphism of proofs.). Given a well-typed iso ω ω : A ↔ B and two well-typed close value v 1 of type A and v 2 of type B and the proofs π : F 1 G 1 , π ⊥ : G 2 F 1 , φ : F 3 , ψ : G 2 corresponding respectively to the translation of ω, ω ⊥ , v 1 , v 2 then:

φ F 3 φ F 3 π F 1 G 1 G 1 cut π ⊥ G 2 F 2 F 2 cut ψ G 3 π ⊥ F 2 G 2 F 2 cut π F 1 G 1 G 1 cut ψ G 3

Conclusion

Summary of the contribution. We presented a linear, reversible language with inductive types. We showed how ensuring non-overlapping and exhaustivity is enough to ensure the reversibility of the isos. The language comes with both an expressivity result that shows that any Primitive Recursive Functions can be encoded in this language as well as an interpretation of programs into µMALL proofs. The latter result rests on the fact that our isos are structurally recursive.

Future works. We showned a one-way encoding from isos to proofs of µMALL, it is clear that there exists proof-isomorphisms of µMALL that does not correspond to an iso of our language, for instance taking the reversible map function on streams. Therefore, a rst extension to our work would be to consider a two-way encoding and adding coinductive types in the language. This would require relaxing the condition on recursive isos, as termination would be no longer possible to ensure. This is a focus of our forthcoming research.

A second direction for future work is to consider quantum computation, by extending our language with linear combinations of terms. We plan to study purely quantum recursive types and generalised quantum loops: in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF], lists are the only recursive type which is captured and recursion is terminating. The logic µMALL would help in providing a ner understanding of termination and non-termination

6 A

 6 Curry-Howard Correspondence for Linear, Reversible Computation σ[e] = e σ[inj l e] = inj l e σ[e] = e σ[inj r e] = inj r e σ = {x → e} σ[x] = e σ[e] = e σ[fold e] = fold e σ 2 [e 1] = e 1 σ 1 [e 2] = e 2 supp(σ 1) ∩ supp(σ 2) = ∅ σ = σ 1 ∪ σ 2 σ[e 1 , e 2] = e 1 , e 2 σ[()] = ()

Figure 5

 5 Figure 5 Positive Phase

 38 (Simulation). Provided an iso ω ω : A ↔ B and values e v : A and e v : B, let π = Pos(ω v) and π = Pos(v), if ω v → * v then π → * cut-elim π .

Table 1

 1 Terms and types ∆ 1 ; Ψ e t 1 : A ∆ 2 ; Ψ e t 2 : B ∆ 1 , ∆ 2 ; Ψ e t 1 , t 2 : A ⊗ B

		∆; Ψ e t : A	∆; Ψ e t : B
	∅; Ψ e () : 1 x : A; Ψ e x : A	∆; Ψ e inj l t : A ⊕ B	∆; Ψ e inj r t : A ⊕ B
		∆; Ψ e t : A[X ← µX.A]
		∆; Ψ	

e fold t : µX.A

Table 5

 5 Pattern-matching

Funding This work has been partially funded by the French National Research Agency (ANR) under the research projects SoftQPRO ANR17-CE25-0009-02 and RECIPROG ANR-21-CE48-019-01 and within the framework of "Plan France 2030", under the research project ANR-22-PETQ-0007.

https://hal.archives-ouvertes.fr/hal-03747425

Example 31. Considering the iso swap of type A ⊗ B ↔ B ⊗ A and its µMALL proof

Example 10 we give its corresponding proof π map(S) where F = (A ⊗ B) αirl and G = (B ⊗ A) βirl , then [F] and [G] are respectively of address α and β:

We painted in blue the pre-thread that follows the focus of the structurally recursive criterion. During the negative phase which consists of the ν, &, `, ⊥ rules the pre-thread is going up, at each time going into the subformula corresponding to the focus. Then, during the positive phase the pre-thread is not active during the multiple cut rules until it reaches the id rule, where the pre-thread bounces and starts going down before bouncing back up again in the cut rule, into the in nite branch, where the behavior of the pre-thread will repeat itself. One can then show that this pre-thread is indeed a thread, according to [START_REF] Baelde | Bouncing Threads for Circular and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs[END_REF] and that it is valid: among the formulas it visits in nitely often, the minimal formula is [F], which is a ν formula as since [F] is on the left hand side of the sequent, we get

Lemma 32. Given π = circ(ω), for each in nite branch of π, only a single iso-variable is visited in nitely often.

Proof. Since we have at most one iso-variable, we never end up in the case that between an annotated sequent f and a back-edge pointing to f we encounter another annotated sequent.

Among the terms that we translate, the translation of a value yields what we call a Purely Positive Proof : a nite derivation whose only rules have for active formula the sole formula on the right of the sequent. Any such derivation is trivially a valid pre-proof.

C S L 2 0 2 3 36:14 A Curry-Howard Correspondence for Linear, Reversible Computation We can then de ne the notion of bouncing-cut and their origin:

Definition 35 (Bouncing-Cut). A Bouncing-cut is a cut of the form :

Due to the syntactical restrictions of the language we get the following:

Property 36 (Origin of Bouncing-Cut). Given a well-typed iso, every occurrence of a rule be(f) in circ(ω) is a premise of a bouncing-cut.

In particular, when following a thread going up into a bouncing-cut, it will always start from the left-hand-side of the sequent, before going back down on the right-hand-side of the sequent. It will also always bounce back up on the bouncing-cut to reach the back-edge.

Theorem 37 (Validity of proofs). If ω ω : A ↔ B and π = circ(ω, ∅, α, β) then π satis es µMALL validity criterion from [START_REF] Baelde | Bouncing Threads for Circular and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs[END_REF].