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Abstract In this note, we study skew cyclic and skew constacyclic codes over the mixed alphabet R =
FqR1R2 where R1 = Fq + uFq with u2 = u and R2 = Fq + uFq + vFq with u2 = u, v2 = v, uv = vu = 0.
Such codes consist of the juxtaposition of three codes of the same size over respectively Fq, R1, and R2.

We investigate the generator polynomial for skew cyclic codes over R. Furthermore, we discuss the
structural properties of the skew cyclic and skew constacyclic codes over R. We also study their q-ary
images under suitable Gray maps.
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1 Introduction

Constacyclic codes constitute a remarkable generalization of cyclic codes and form an important class of
linear codes in the coding theory. They were introduced by Berlekamp to construct the analogue of BCH
codes in the Lee metric [9].

In 2007, Boucher et al. [14] was the first one to study cyclic codes using a non commutative ring
over the skew polynomials ring F[x; θ] where θ denotes the automorphism of the finite field F and they
produced many numerical examples which improved the tables of best known codes. The advantage of
skew polynomials ring is that the polynomial xn − 1 has more factors in skew polynomials ring than
in commutative rings. Later, in [15] Boucher et al. generalised this idea to skew constacyclic codes. In
2011, Siap et al. [34] studied skew cyclic codes of arbitrary length, and established a strong connection
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with classical cyclic and quasi-cyclic codes. In 2012, Abualrub et al. [1] studied θ-cyclic codes over the
non-chain ring F2 + uF2, v

2 = v with respect to Euclidean and Hermitian inner products, and Jitman
et al. [27] studied skew constacyclic codes over finite chain rings, and gave the generators of Euclidean
and Hermitian dual codes. Later, these codes over non-chain rings are extensively studied. For instance,
the rings F3 + vF3 in [3], Fq + vFq, v2 = v in [21], Fq + uFq + vFq, u2 = u, v2 = v, uv = vu = 0 in
[4] are considered as alphabet for skew cyclic codes. Also, Yao et al. [33] and Dertli & Cengellenmis
[17] studied these codes over Fq + uFq + vFq + uvFq, u2 = u, v2 = v, uv = vu. In 2017, Gao et al.
[20] obtained the structure of skew constacyclic codes over the non-chain ring Fq + vFq, v2 = v and
they obtained skew (−1 + 2v)- constacyclic codes. Islam and Prakash have determined the structural
properties of skew constacyclic codes over Fq + uFq + vFq + uvFq, u2 = u, v2 = v, uv = vu in [24], and
Fq + uFq + vFq, u2 = u, v2 = v, uv = vu = 0 in [25]. In 2019, Bhardwaj and Raka [12] studied the skew
constacyclic codes over the ring Fq[u, v]〈f(u), g(v), uv − vu〉 by using two non trivial automorphisms.

In another tack, Borges et al. [10] introduced Z2Z4-linear codes that is to say codes over the mixed
alphabet Z2Z4, where some coordinates are binary and the rest is quaternary. They have obtained their
dual codes as well as their generator matrices. In continuation, Fernandez-Cordoba et al. [19] determined
the rank and kernel of Z2Z4-linear codes. These codes found an engineering application in the area of
steganography [29]. Additive codes over the mixed alphabet Z2Z2s were considered in [5]. Then, the
mixed alphabet ZpZps , and, more generally ZprZps was studied in [7,31,35,36]. On the other hand, to
the progress of cyclic codes on mixed alphabets, in 2014, Abualrub et al. [2] defined Z2Z4-additive cyclic
codes as Z4[x]-submodule of Z2[x]/〈xr−1〉×Z4[x]/〈xs−1〉 and derived the unique set of generators, and
minimal spanning set for these codes where s is an odd integer. Also, Borges et al. [11] found generator
polynomials and duals for Z2Z4-additive cyclic codes. After introducing the new mixed alphabets Z2Z2[u]-
additive codes, where u2 = 0 in [6], Aydogdu et al. [8] were also investigated constacyclic codes over
mixed alphabets by defining them as Z2[u][x]-submodules of Z2[x]/〈xα − 1〉 × Z2[u][x]/〈xβ − (1 + u)〉.
They obtained some optimal binary linear codes as the Gray images of Z2Z2[u]-cyclic codes. Meanwhile,
[32] studied the algebraic properties of Z2Z2[u]-additive cyclic and constacyclic codes with the unit 1+u,
respectively. Therefore, in continuation of these studies, the expected generalization should be Z2rZ2s [u]-
additive cyclic and constacyclic codes, where u2 = 0.

Motivated by the two kinds of above studies, here we consider a mixed alphabet R = FqR1R2 where
R1 = Fq + uFq with u2 = u and R2 = Fq + uFq + vFq with u2 = u, v2 = v, uv = vu = 0 and study
θt-cyclic and (θt, α)-cyclic codes over R. We completely determine the algebraic structure of these codes.
We study their q-ary images under Gray maps, and give some numerical examples in short lengths.

The material is organized as follows. The next section collects some background material. Section 3
studies Gray maps. Section 4 is dedicated to skew cyclic codes, and Section 5 to skew constacyclic codes.
Section 6 concludes the article.

2 Preliminaries

Let Fq denote the finite field of characteristic p with q elements, where q = pm for odd prime p and positive
integer m. The set Fnq of all ordered n-tuples over Fq forms a vector space with the usual component-wise
addition and scalar multiplication of vectors. A non-empty subset C of Fnq is called a code of length n over
Fq and it is called a linear code if C is a subspace of Fnq . From now onward, we denote R1 = Fq + uFq,
with u2 = u and R2 = Fq + uFq + vFq, with u2 = u, v2 = v, uv = vu = 0, where q = pm for odd prime p
and positive integer m.
Note that R1 and R2 are finite non-chain rings. Let a+ub+ vc be an element of R2. Then we define two
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maps η and δ as follows:

η : R2 → Fq, δ : R2 → R1,

η(a+ ub+ vc) = a, δ(a+ ub+ vc) = a+ ub,

It is clear that η and δ are ring homomorphisms. We consider the ring R,

R = FqR1R2 = {(x, y, z) | x ∈ Fq, y ∈ R1 and z ∈ R2}

We define a R2-multiplication in this ring as follows,

? : R2 ×R → R
r ? (x, y, z) = (η(r)x, δ(r)y, rz)

This is a well defined multiplication and it can be extended componentwise to Rγ = Fn1
q ×R

n2
1 ×R

n3
2 by

? : R2 ×Rγ → Rγ
r ? (x1, · · · , xn1 , y1, · · · , yn2 , z1, · · · , zn3) = (η(r)x1, · · · , η(r)xn1 , δ(r)y1, · · · , δ(r)yn2 , rz1, · · · , rzn3)

where (x1, · · · , xn1
, y1, · · · , yn2

, z1, · · · , zn3
) ∈ Rγ . By this multiplication, Rγ is a R2 module. A non-

empty subset C of Rγ is said to be a R-linear code of length (n1, n2, n3) if C is an R2-submodule of Rγ .
Now we define the inner product as follows,

〈c, c′〉 =

n1∑
1

xix
′
i +

n2∑
1

yjy
′
j +

n3∑
1

zkz
′
k

where c = (x1, · · · , xn1 , y1, · · · , yn2 , z1, · · · , zn3), c′ = (x′1, · · · , x′n1
, y′1, · · · , y′n2

, z′1, · · · , z′n3
) are in Rγ .

Let C be a R-linear code of length (n1, n2, n3). Then the dual code of C is defined as,

C⊥ = {c′ ∈ Rγ | 〈c, c′〉 = 0 ∀ c ∈ C}

3 Decomposition and Properties of Gray Maps

Recall that, R1 = Fq + uFq, with u2 = u. Consider the idempotent orthogonal elements e1 = u and
e2 = 1− u, then

R1 = e1R1 ⊕ e2R1
∼= e1Fq ⊕ e2Fq

∵ e1e2 = 0, e21 = e1, e1 + e2 = 1. Hence, R1 = {ae1 + be2 | a, b in Fq}. We now define the Gray map,

ϕ1 : R1 → F2
q

ϕ1(ae1 + be2) = (a, b)

It can be extended to the length n by

ϕ1 : Rn1 → F2n
q

ϕ1((a1, · · · , an)e1 + (b1, · · · , bn)e2) = (a1, · · · , an, b1, · · · , bn)

Note that it is a linear map. We define the Gray weight of a codeword in R1 as

wtG(ae1 + be2) = wtH(a, b)
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where wtH denotes the Hamming weight. If x, y lie in Rn1 , then their mutual distance is given by

dG(x, y) =

n∑
1

wtG(xi − yi) =

2n∑
1

wtH(ϕ1(x)− ϕ1(y)) = dH(ϕ1(x), ϕ1(y)).

Hence ϕ1 is a weight preserving map. A non-empty subset C of Rni is said to be a linear code of length
n if C is Ri submodule of Rni .

For i ∈ {1, 2}, Ai ⊆ R1

A1 ⊕A2 = {a1 + a2 | ai ∈ Ai} and A1 ⊗A2 = {(a1, a2) | ai ∈ Ai}.

Let Ce be a linear code of length n over R1. Then we define,

Ce1 = {y1 ∈ Fnq | e1y1 + e2y2 ∈ Ce, for some y2 ∈ Fnq }

Ce2 = {y2 ∈ Fnq | e1y1 + e2y2 ∈ Ce, for some y1 ∈ Fnq }
Therefore any linear code Ce over R1 can be represented as Ce = e1Ce1 ⊕ e2Ce2 and ϕ1(Ce) = Ce1 ⊗ Ce2 .
Hence Ce1 and Ce2 are Fq-linear codes. Also note that ϕ1(C⊥e ) = ϕ1(Ce)⊥.
Recall that, R2 = Fq + uFq + vFq, with u2 = u, v2 = v, uv = vu = 0. Let o1 = (1− u− v), o2 = u, o3 = v
be idempotent orthogonal elements in R2, then

R2 = o1R2 ⊕ o2R2 ⊕ o3R2
∼= o1Fq ⊕ o2Fq ⊕ o2Fq

∵ oioj = 0 (i 6= j), o2i = oi, o1 + o2 + o3 = 1. Hence any element in R2 can be written as ao1 + bo2 + o3c3.
We now define a weight preserving linear Gray map ϕ2,

ϕ2 : R2 → F3
q

ϕ2(ao1 + bo2 + co3) = (a, b, c)

It can be extended to length n by the formula

ϕ2((a1, · · · , an)o1 + (b1, · · · , bn)o2 + (c1, · · · , cn)o2) = (a1, · · · , an, b1, · · · , bn, c1, · · · , cn).

We define the Gray weight of a codeword in R2 as

wtG(ao1 + bo2 + co3) = wtH(a, b, c)

where wtH denotes the Hamming weight. If x, y are in Rn2 , then their Gray distance is given by

dG(x, y) =

n∑
1

wtG(xi − yi) =

3n∑
1

wtH(ϕ2(x)− ϕ2(y)) = dH(ϕ2(x), ϕ2(y)).

For i ∈ {1, 2, 3}, Ai ⊆ R2

A1 ⊕A2 ⊕A3 = {a1 + a2 + a3 | ai ∈ Ai} and A1 ⊗A2 ⊗A3 = {(a1, a2, a3) | ai ∈ Ai}.

Let Co be a linear code of length n over R2. We define,

Co1 = {z1 ∈ Fnq | o1z1 + o2z2 + o3z3 ∈ Co, for some z2, z3 ∈ Fnq }
Co2 = {z2 ∈ Fnq | o1z1 + o2z2 + o3z3 ∈ Co, for some z1, z3 ∈ Fnq }
Co3 = {z3 ∈ Fnq | o1z1 + o2z2 + o3z3 ∈ Co, for some z1, z2 ∈ Fnq }
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Then any linear code Co over R2 can be represented as Co = o1Co1 ⊕ o2Co2 ⊕ o3Co3 and ϕ2(Co) =
Co1 ⊗ Co2 ⊗ Co3 , where Co1 , Co2 and Co3 are Fq-linear codes. Also note that ϕ2(C⊥o ) = ϕ2(Co)⊥.
Henceforth, we define the Gray map ϕ on R using the maps defined previously,

ϕ : R → F6
q

ϕ(x, y, z) = (x, ϕ1(y), ϕ2(z))

now we can extend this map to Rγ ,

ϕ(x1, · · · , xn1
, y1, · · · , yn2

, z1, · · · , zn3
) = (x1, · · · , xn1

, ϕ1(y1), · · · , ϕ1(yn2
), ϕ2(z1), · · · , ϕ2(zn3

))

then the Gray weight of an element in Rγ can be denoted by wtG(α) = wtH(ϕ(α)) Any linear code C of
Rγ can be represented by C = C1 ⊗ Ce ⊗ Co, where C1, Ce and Co are linear code over Fq,R1 and R2. Let
GFq

be the generator matrix for linear code over Fq. The generator matrix GR1
for a linear code over R1

is denoted by

GR1
=

[
e1Ge1
e2Ge2

]
where Gei is the generator matrix for the linear code Cei, for i = {1, 2}. The generator matrix GR2

for
the linear code over R2 is

GR2
=

 o1Go1o2Go2
o3Go3


where Goi is the generator matrix for the linear code Coi, for i = {1, 2, 3}. Using the generator matrices
above, we can say that the generator matrix G for the linear code over R is,

G =

GFq
0 0

0 GR1 0
0 0 GR2


Note that the minimum distance of C is min{dH(C1), dH(ϕ1(Ce)), dH(ϕ2(Co))}. The following Theorem
provides the weight preserving nature of the Gray map,

Theorem 1 The Gray map ϕ defined above is linear and weight preserving.

Proof Let x = (x1, x2, x3), x′ = (x′1, x
′
2, x
′
3) be in Rγ where x1, x

′
1 ∈ Fn1

q , x2, x
′
2 ∈ R

n2
1 , x3, x

′
3 ∈ R

n3
2

ϕ(x+ x′) = ϕ(x1 + x′1, x2 + x′2, x3 + x′3)

= (x1 + x′1, ϕ1(x2 + x′2), ϕ2(x3 + x′3))

= (x1, ϕ1(x2), ϕ2(x3)) + (x′1, ϕ1(x′2), ϕ2(x′3))(∵ ϕ1 and ϕ2 are linear)

= ϕ(x) + ϕ(x′)

Using the linear map ϕ,

dG(x, x′) = wtG(x− x′) = wtH(ϕ(x)− ϕ(x′)) = dH(ϕ(x), ϕ(x′))

Hence ϕ is a weight preserving linear map.

The following theorem gives the parameters of the Gray image of a linear code.
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Theorem 2 Let C ⊆ Rγ be (n1 + n2 + n3, dG) linear code then ϕ(C) is (n1 + 2(n2) + 3(n3), dH) linear
code over Fq, where dG = dH .

Proof The proof can extended from the proof of Theorem 1.

The following Theorem characterizes ϕ(C),

Theorem 3 Let C ⊆ Rγ be linear, then ϕ(C) = C1⊗i=2
i=1 Cei ⊗

j=3
j=1 Coj , | C |=| C1 |

∏i=2
i=1 | Cei |

∏j=3
j=1 | Coj |.

Proof Let
ϕ(x, y, z) = (x, ϕ1(y), ϕ3(z)) = (a1, . . . , a6) ∈ ϕ(C) ⊆ F6

q.

Note that ϕ is bijective and C = C1 ⊗ Ce ⊗ Co is linear. So a1 = x ∈ C1. Also note that ϕ1(y) =
(a2, a3), ϕ2(z) = (a4, a5, a6). Since ϕ′is are bijective, a2e1 + a3e2 ∈ e1Ce1 ⊕ e2Ce2 = Ce. Hence (a2, a3) ∈
Ce1 ⊗Ce2 and similarly (a4, a5, a6) ∈ Co1 ⊗Co2 ⊗Co2 . The converse holds in a similar way. The second part
of the statement follows from the fact that ϕ is bijective.

The following Theorem furnishes the decompostion of the dual of the linear code C.

Theorem 4 Let C = C1⊗Ce⊗Co be a linear code over R then C⊥ = C⊥1 ⊗C⊥e ⊗C⊥o where C⊥1 , C⊥e and C⊥o
are duals for the respective linear codes.

Proof Let C⊥ = {c′ ∈ Rγ |〈c, c′〉 = 0 for all c ∈ C} = {(x′, y′, z′) ∈ Rγ |x′ ∈ Fn1
q , y

′ ∈ Rn2
1 , z′ ∈ Rn3

2 }. Let
c = (x, y, z) ∈ C = C1 ⊗ Ce ⊗ Co. Then

〈c, c′〉 = xx′ + yy′ + zz′ = 0.

So x′ ∈ C⊥1 , y′ ∈ C⊥e , z′ ∈ C⊥o and so C⊥ ⊆ C⊥1 ⊗C⊥e ⊗C⊥o . Since |C⊥| = |C⊥1 ||C⊥e ||C⊥o |, the statement holds.

The next result shows that the Gray maps is compatible with duality.

Theorem 5 If C ⊆ Rγ is linear, then ϕ(C⊥) = ϕ(C)⊥.

Proof Let (x, y, z) ∈ C and (x′, y′, z′) ∈ C⊥ where x ∈ C1, y ∈ Ce, z ∈ Co and x′ ∈ C⊥1 , y′ ∈ C⊥e , z′ ∈ C⊥o ,
then 〈(x|y|z, x′|y′|z′)〉 = 0. Using Theorem 4, C⊥1 , C⊥e and C⊥o are duals for C1, Ce and Co. Now, we have
ϕ(x, y, z) = (x, ϕ1(y), ϕ2(z)), ϕ(x′, y′, z′) = (x′, ϕ1(y′), ϕ2(z′)), then the inner product is given by

〈ϕ(x, y, z), ϕ(x′, y′, z′)〉 = 〈(x, ϕ1(y), ϕ2(z)), (x′, ϕ1(y′), ϕ2(z′))〉
= 〈(x, 0, 0), (x′, 0, 0)〉+ 〈(0, ϕ1(y), 0), (0, ϕ1(y′), 0)〉

+〈(0, 0, ϕ2(z)), (0, 0, ϕ2(z′))〉
= 0 (∵ ϕ1(C⊥) = ϕ1(C)⊥, ϕ2(C⊥) = ϕ2(C)⊥)

So, ϕ(C⊥) ⊆ ϕ(C)⊥. Since the cardinality is same, the statement holds.

The following result provides the self duality nature of the linear code and its Gray image,

Corollary 1 Let C ⊆ Rγ be linear, then C is self-dual iff ϕ(C) is self-dual. Further ϕ(C) is a self-
orthogonal over Fq iff C is self-orthogonal.

Proof Let C be a self-dual linear code of length n over R. That is C = C⊥. Then ϕ(C) = ϕ(C⊥), and hence
by Theorem 5, we have ϕ(C) = (ϕ(C))⊥. Thus ϕ(C) is a self-dual linear code of length n1 +2n2 +3n3 over
Fq. Conversely, let ϕ(C) be a self-dual linear code of length n1 +2n2 +3n3 over Fq. Then ϕ(C) = (ϕ(C))⊥,
and hence by Theorem 5, we have ϕ(C) = ϕ(C⊥). Since ϕ is bijection, C = C⊥. Therefore, C is a self-dual
linear code over Rγ . Similarly the self orthogonal case holds.
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4 Skew Cyclic R-codes

Let θt be a non-trivial Frobenius automorphism defined by

θt : Fq → Fq, θt(a) = ap
t

,

where t divides m. It can be extended to R1 and R2 by

θt(a+ ub) = θt(a) + uθt(b), θt(a+ ub+ vc) = θt(a) + uθt(b) + vθt(b).

Since t|m, the order of automorphism θt is m
t . We define a polynomial ring Ri[x, θt] (1 ≤ i ≤ 2) as

follows,
Ri[x, θt] = {a1 + · · ·+ anx

n|aj ∈ Ri, 1 ≤ j ≤ n}

Clearly Ri[x, θt] is a ring with respect to usual addition and the multiplication defined by

axmbxn = aθmt (a)xm+n

Note that it is a non commutative ring unless θt is an identity map. A non empty set C is said to be
linear code of length ni over Ri if it is a Ri submodule of Rni

i . Using the above polynomial rings above,
we extend the polynomial ring to R by

R[x, θt] = {(a(x), b(x), c(x)) : a(x) ∈ Fq[x], b(x) ∈ R1[x], c(x) ∈ R2[x]}.

It can be seen that R[x, θt] is a R2[x; θt] submodule with respect to usual addition and multiplication
defined by

? : R2[x]×R[x, θt] → R[x, θt]

(axs) ? (b1x
i, b2x

j , b3x
k) = (η(a)xsb1x

i, δ(a)xsb2x
j , axsb3x

k)

= (η(a)θst (b1)xs+i, δ(a)θst (b2)xs+j , aθst (b3)xs+k)

However under associative and distributive laws, the multiplication can be extended to Rγ [x; θt] =
Fq [x;θt]
〈xn1−1〉 ×

R1[x;θt]
〈xn2−1〉 ×

R2[x;θt]
〈xn3−1〉 as follows,

? : R2[x; θt]×Rγ [x; θt]→ Rγ [x; θt]

r(x)?(f1(x)+〈xn1−1〉, f2(x)+〈xn2−1〉, f3(x)+〈xn3−1〉) = (η(r(x))f1(x)+〈xn1−1〉, δ(r(x))f2(x)+〈xn2−1〉,

r(x)f3(x) + 〈xn3 − 1〉)

Definition 1 [14] A non-trivialR-submodule C ofRn is called a θt-cyclic code if for any c = (c0, c1, . . . , cn−1) ∈
C, σ1(c) = (θt(cn−1), θt(c0), . . . , θt(cn−2)) ∈ C. The operator σ1 is called a θt-cyclic shift operator on Rn.

Definition 2 A non-trivial R2-submodule C of Rγ is called a θt-cyclic code if for any
c = (c0,1, c1,1, . . . , cn1−1,1, c0,e, c1,e, . . . , cn2−1,e, c0,o, c1,o, . . . , cn3−1,o) ∈ C, σ(c) = (θ(cn1−1,1), θ(c0,1)
, . . . , θ(cn1−2,1), θ(cn2−1,e), θ(c0,e), . . . , θ(cn2−2,e), θ(cn3−1,o), θ(c0,o), . . . , θ(cn3−2,o)) ∈ C. The operator σ
is called as θt-cyclic shift operator on Rn.

The following result yields the relationship between the θt-cyclic codes over R and Fq,

Theorem 6 Let C = C1 ⊗ Ce ⊗ Co ⊆ Rγ be linear. Then C is a θt-cyclic code if and only if C1, Ce and Co
are θt-cyclic codes of length n1, n2 and n3 over Fq,R1 and R2 respectively.
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Proof Let C = C1 ⊗ Ce ⊗ Co be a θt-cyclic code over R. Let z = (z1, ze, zo) ∈ C that is

z = (z0,1, z1,1, . . . , zn1−1,1, z0,e, z1,e, . . . , zn2−1,e, z0,o, z1,o, . . . , zn3−1,o) ∈ C.

Then σ(z) = (θ(zn1−1,1), θ(z0,1), . . . , θ(zn1−2,1), θ(zn2−1,e), θ(z0,e), . . . , θ(zn2−2,e), θ(zn3−1,o)
, θ(z0,o), . . . , θ(zn3−2,o)) = (σ(z1), σ(ze), σ(zo)) ∈ C. From this we can conclude that,

σ(z1) ∈ C1, σ(ze) ∈ Ce and σ(zo) ∈ Co

Hence C1, Ce and Co are θt-cyclic code of length ni. The converse holds in a similar way.

We recall the following Theorem from [4].

Theorem 7 [4] Let Co = o1Co1 ⊕ o2Co2 ⊕ o3Co3 be a linear code over R2 of length n3 then Co is θt-cyclic
code iff Coi(1 ≤ i ≤ 3) is a θt-cyclic code of length n3 over Fq.

The analogue of this result in our setting is as follows.

Theorem 8 [21] Let Ce = e1Ce1 ⊕ e2Ce2 be a linear code over R1 of length n2 then Ce is θt-cyclic code
iff Cei(1 ≤ i ≤ 2) is a θt-cyclic code of length n2 over Fq.

Theorem 9 C = C1 ⊗ Ce ⊗ Co be a linear code of length γ = n1 + n2 + n3, then C is θt-cyclic iff
C1, Cei , Coj (1 ≤ i ≤ 2, 1 ≤ j ≤ 3) are θt-cyclic code of length n1, n2, n3 over Fq respecively.

Proof We obtain the proof on combining proofs of Theorem 6,7 and 8.

These notions are well-behaved with respect to duality as the next result shows.

Theorem 10 If C is a θt-cyclic code of length n, then its dual C⊥ is also a θt-cyclic code.

Proof From Theorem 9, C1, Cei , Coj (1 ≤ i ≤ 2, 1 ≤ j ≤ 3) are θt-cyclic codes over Fq. Then C⊥1 , C⊥ei , C
⊥
oj (1 ≤

i ≤ 2, 1 ≤ j ≤ 3) are θt-cyclic codes over Fq from [16] and once again by using Theorem 9, C⊥ becomes a
θt-cylic code.

Recall the following result from [34].

Lemma 1 [34] Let C be a θt-cyclic code of length n over Fq. Then there exists a polynomial f(x) ∈
Fq[x; θt] such that C = 〈f(x)〉 and xn − 1 = g(x)f(x) in Fq[x; θt].

By assuming o(θt)|n, the counterpart follows;

Theorem 11 Let C = C1⊗Ce⊗Co be a θt-cyclic code of length n over R and order of θt divides n. Then
C = 〈B1, Be, Bo〉 where B1 = 〈(f1(x), 0, 0)〉, Be = 〈(0, fe(x), 0)〉, and Bo = 〈(b1(x), be(x), fo(x))〉, such
that C1 = 〈f1(x)〉, Ce = 〈fe(x)〉, Co = 〈fo(x)〉, b1(x) ∈ C1 and b2(x) ∈ Ce.

Proof Let C = C1 ⊗ Ce ⊗ Co be a θt-cyclic code of length γ = n1 + n2 + n3 over R. Then by Thereom 6,
C1, Ce, Co are θt-cyclic codes of length ni over Fq,R1 and R2. Define a homomorphism from C to R as
follows,

ψ : C 7→ R
ψ(c1(x), ce(x), co(x)) = (0, 0, co(x))
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Define

ker(ψ) = {(c1(x), ce(x), 0) : c1(x) ∈ C1, ce(x) ∈ Ce}

I = {(c1(x), ce(x)) ∈ Fq[x; θt]×R1[x; θt] : (c1(x), ce(x), 0) ∈ ker(ψ)}.

Clearly I = I1 × Ie forms a submodule of Fq[x; θt] × R1[x; θt]. Therefore there exist a polynomial
f1(x) and fe(x) in Fq[x; θt] and R1[x; θt] respectively, generating I1 and Ie with f1(x)|xn1 − 1 and
fe(x)|xne − 1. Thus I = 〈(f1(x), 0), (0, fe(x))〉, then for any (c1(x), ce(x), 0) ∈ ker(ψ), (c1(x), ce(x)) =
v(x)?(f1(x), 0), (0, fe(x)) for some v(x) ∈ R1[x; θt]. Finally it leads to ker(ψ) = 〈(f1(x), 0, 0), (0, fe(x), 0)〉.
The fact that C is a submodule implies that ψ(C) is a submodule. By using the first isomorphism theorem,

C/ker(ψ) ∼= ψ(C).

Let (b1(x), be(x), fo(x)) ∈ C then ψ(b1(x), be(x), fo(x)) = (0, 0, fo(x)). From this any θt-cyclic code of
length n can be represented by C = 〈(f1(x), 0, 0)(0, fe(x), 0), (b1(x), be(x), fo(x))〉 where f1(x)|(xn1 −
1), fe(x)|(xn2 − 1) and fo(x)|(xn3 − 1).

Further, we have C is θt-cyclic then Ck where k ∈ {1, e1, e2, o1, o2, o3} is skew θt-cyclic code over Fq with

respective lengths. From Theorem 3, |C| =| C1 |
∏i=2
i=1 | Cei |

∏j=3
j=1 | Coj | since each Ck is θt-cyclic it

is generated by a polynomial fk(x) thus | C |= qγ−
∑6

i=1 εk where γ = n1 + 2(n2) + 3(n3). The following
Theorem provides the generator polynomials for θt-cylic codes over Fq.

Theorem 12 Let C = C1 ⊗ Ce ⊗ Co be a skew cyclic code over R of length γ = n1 + n2 + n3. Then there
exists a polynomial

(i) f1(x) ∈ Fq[x; θt] such that C1 = 〈f1(x)〉 and xn1 − 1 = g1(x)f1(x).

(ii) fe(x) ∈ R1[x; θt] such that Ce = 〈fe(x)〉 and xn2 − 1 = ge(x)fe(x) where fe(x) =
∑2
i=1 eifei(x).

(iii) fo(x) ∈ R2[x; θt] such that Co = 〈fo(x)〉 and xn3 − 1 = go(x)fo(x) where fo(x) =
∑3
i=1 oifoi(x).

Proof Let C be a θt-cyclic code of length γ = n1 + n2 + n3. From Theorem 6, we have that C1, Ce and Co
are θt-cyclic codes. Using Lemma 1, (i) follows.

The the proof of (ii) is as follows, let Ce = e1Ce1 ⊕ e2Ce2 be a θt-cyclic code of length n2 over R1.
Thereom 7 says that, Ce1 and Ce2 are θt-cyclic codes of length n2 over Fq. Lemma 1 says that we have
Ci = 〈fei(x)〉 and xn2 − 1 = gei(x)fei(x) in Fq[x; θt] for i ∈ {1, 2}. Then eifei(x) ∈ C for i ∈ {1, 2}.
Also for any fe(x) ∈ C, we have fe(x) =

∑2
i=1 eihei(x)fei(x) where hei(x) ∈ Fq[x; θt] for i ∈ {1, 2}.

Thus fe(x) ∈ 〈e1fe1(x), e2fe2(x)〉. Therefore, C = 〈e1fe1(x), e2fe2(x)〉. As xn2 − 1 = gei(x)fei(x) in
Fq[x; θt] for i ∈ {1, 2}. Let fe(x) = e1fe1(x) + e2fe2(x) ∈ R1[x; θt]. Then fe(x) ∈ C. On the other hand

eifei(x) = eife(x) ∈ 〈fe(x)〉 for i = 1, 2. Consequently, C = 〈fe(x)〉. Further, [
∑2
i=1 eigei(x)]fe(x) =∑2

i=1 eigei(x)fei(x) =
∑2
i=1 ei(x

n2 − 1) = xn2 − 1. Then xn2 − 1 = ge(x)fe(x) in R1[x; θt], where

ge(x) =
∑2
i=1 eigei(x). Thus (ii) is follows. (iii) is similar to the proof of (ii).

5 Skew Constacyclic Code over R

In this section, we study skew θt-constacyclic codes over R. We choose a unit element α ∈ R∗2 such that α
satisfying the condition α2 = 1, (α = 1,−1, · · · ).
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Definition 3 Let αi ∈ Fpt/{0}, a linear code C ⊆ Rγ [x, θ] is called skew α = α1+uα2+vα3-constacyclic
code if it is invariant under the cyclic shift operator λα that is whenever

c = (x0, x1, · · · , xn1−1, y0, y1, · · · , yn2−1, z0, z1, · · · , zn3−1) ∈ C
λα(c) = (α1θt(xn1−1), θt(x0), · · · , θt(xn1

), (α1 + uα2)θt(yn1−1), θt(y1), · · · , θt(yn2−2),

(α1 + uα2 + vα3)θt(zn3−1), θt(z0), · · · , θt(zn3−2)) ∈ C

The following two results translate symmetry conditions into algebraic constraints. The proof of the first
result is immediate and omitted.

Theorem 13 Let Rn,λ = R[x; θt]/〈xn − λ〉. A linear code C of length n over R is (θt, λ)-cyclic code if
and only if C is a left R[x; θt]-submodule of Rn,λ.

Theorem 14 A code C is skew α-cyclic code over Rγ =
Fq [x,θt]
xn1−α ×

R1[x,θt]
xn2−α ×

R2[x,θt]
xn3−α iff C is a left R2[x, θt]

module over Rγ .
Proof Let C be a skew α-cyclic code. Then by definition x ? (f(x)|g(x)|h(x)) ∈ C

x ? (f(x)|g(x)|h(x)) = (θt(f0)x+ θt(f1)x2 + · · ·+ α1θt(fn1−1), θt(g0)x+ θt(g1)x2 + · · ·+ (α1 + uα2)θt(gn2−1),

θt(h0)x+ θt(h1)x2 + · · ·+ (α1 + uα2 + vα3)θt(hn3−1)) ∈ C

And by using linearity of C,
r(x) ? (g1(x)|g2(x)|g3(x)) ∈ C

for some r(x) ∈ R2[x, θt]. Hence C is an left R2[x, θt] submodule over Rγ . Conversely, assume that C is
is an left R2[x, θt] submodule over Rγ , then we have x ? (f(x)|g(x)|h(x)) ∈ C implies C is skew α-cyclic
code.

Theorem 15 Let Co ⊆ Rn2 be a skew α = α1 + uα2 + vα3-cyclic code of length n iff Co1 , Co2 and Co3 are
skew α1, α1 + α2, α1 + α3-cyclic codes over Fq of length n.

Proof Let Co be a skew α-cyclic code, Let a = xo1 + yo2 + zo3 ∈ Co where x = (x0, x1, · · · , xn−1) ∈
Co1 , y = (y0, y1, · · · , yn−1) ∈ Co2 and x = (z0, z1, · · · , zn−1) ∈ Co3 . Then we have by definiton, λα(x) ∈ Co,

λα(o1(x0, x1, · · · , xn−1) + o2(y0, y1, · · ·+ yn−1)

+o3(z0, z1, · · · , zn−1)) = ((α1 + uα2 + vα3) ? o1(θt(xn−1), θt(x0), · · · , θt(xn−2)) +

(α1 + uα2 + vα3) ? o2(θt(yn−1), θt(y0), · · ·+ θt(yn−2)) +

(α1 + uα2 + vα3) ? o3(θt(zn−1), θt(z0), · · · , θt(zn−1)))

=⇒ λα1
(x) + λα1+α2

(y) + λα1+α3
(z) ∈ Co

=⇒ λα1
(x) ∈ Co1 , λα1+α2

(y) ∈ Co2 , λα1+α3
(z) ∈ Co3

Hence, Co1 , Co2 and Co3 are skew α1, α1 + α2, α1 + α3-cyclic codes over Fq of length n.
Conversely, assume that Co1 , Co2 and Co3 are skew α1, α1+α2, α1+α3-cyclic codes over Fq of length n.

Letm0,m1, · · · ,mn−1 be an element in Co, wheremi = o1xi+o2yi+o3zi such that x = (x0, x2, · · · , xn−1) ∈
Co1 , y = (y0, y2, · · · , yn−1) ∈ Co2 and z = (z0, z2, · · · , zn−1) ∈ Co3 . Then we have λα1(x) ∈ Co1 , λα1+α2(y) ∈
Co2 and λα1+α3(z) ∈ Co3 . So we get,

o1λα1
(x) + o2λα1+α2

(y) + o3λα1+α3
(z) = o1λα1

(x0, x1, · · · , xn−1) + o2λα1+α2
(y0, y1, · · ·+ yn−1)

+o3λα1+α3
(z0, z1, · · · , zn−1) ∈ C

= λα(m0,m1, · · · ,mn−1) ∈ C

Hence, C is skew α−cyclic code over Rn2
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Theorem 16 Let Ce be a a skew α = α1 + uα2-cyclic code over R1 iff Ce1 and Ce2 are skew α1 +α2 and
α1-cyclic codes over Fq.

Proof The proof is similar to Theorem 15 taking mod v to the above condition.

Theorem 17 Let C be a skew α = α1 + uα2 + vα3-cyclic code over R of length γ = n1 + n2 + n3 iff
C1, Ce and Co are α1, α1 + uα2 and α1 + uα2 + vα3-cyclic codes over Fq,R1 and R2 respectively.

Proof Let C1, Ce and Co be α1, α1 +uα2 and α1 +uα2 + vα3-cyclic. Consider x = (x0, x1, · · · , xn1−1), y =
(y0, y1, · · · , yn2−1) and z = (z0, z1, · · · , zn3−1). Consider α1 + uα2 = β. Then we have,

(x, y, z) ∈ C =⇒ (λα1(x), λβ(y), λα(y)) ∈ C
Hence C is skew α-cyclic. The converse part holds similarly.

Theorem 18 Let C be a skew α-cyclic code of length γ = n1+n2+n3 iff C1 is skew α1-cyclic code of length
n1, Ce1& Ce2 are α1 + α2, α1-cyclic codes of length n2 and Co1 , Co2& Co3 are skew α1, α1 + α2, α1 + α3-
cyclic codes over Fq of length n3.

Proof Using Theorem 15,16,17 the result follows.

Theorem 19 Let C be a skew α = α1 + uα2 + vα3-cyclic code over R of length γ = n1 + n2 + n3 iff
C⊥1 , C⊥e and C⊥o are (α1)−1, (α1 + uα2)−1 and (α1 + uα2 + vα3)−1-cyclic.

Proof Let C be a skew α-cyclic code, [ Lemma 3.1,[27]] says that C⊥ is skew (α1+uα2+vα3)−1-cyclic code.
From Theorem 17, we have C⊥1 , C⊥e and C⊥o are skew (α1)−1, (α1 +uα2)−1 and (α1 +uα2 + vα3)−1-cyclic.

Corollary 2 Let C = C1 ⊗ Ce ⊗ Co. be a skew α = α1 + uα2 + vα3-cyclic code over R of length γ =
n1 + n2 + n3. Then there exists a polynomial.

(i) f1(x) ∈ Fq[x; θt] such that C1 = 〈f1(x)〉 and xn1 − α1 = g1(x)f1(x) .
(ii) fe(x) ∈ R1[x; θt] such that Ce = 〈fe(x)〉 and xn2 − (α1 + uα2) = ge(x)fe(x).

(iii) fo(x) ∈ R2[x; θt] such that Co = 〈fo(x)〉 and xn3 − (α1 + uα2 + vα3) = go(x)fo(x).

Proof The proof is similar to the proof of Theorem 12.

Theorem 20 Let C = C1 ⊗ Ce ⊗ Co be a θt-constacyclic code of length γ over R. Then C = 〈B1,B2,Bo〉
where B1 = 〈(f1(x), 0, 0)〉, B1 = 〈(0, fe(x), 0)〉, and B1 = 〈(b1(x), be(x), fo(x))〉.
Proof The proof is similar to proof of Theorem 11.

Example 1 Let q = 9 and F9 = F3[z] with z2+1 = 0 then consider the ring Rγ = F9[x,θt]
x4−1 ×

R1[x,θt]
x5−1 ×

R2[x,θt]
x5−1

and θ3 be the Frobenius automorphism that is θ3(a) = a3 where a ∈ F9.
x4 − 1 = (x+ 1)(x+ 2)(x+ z)(x+ 2z) ∈ F9[x, θ3]
x5 − 1 = (x+ 2)(x4 + x3 + x2 + x+ 1) ∈ F9[x, θ3]
f1(x) = 〈(x + 1)〉, fe(x) = 〈e1(x + 2) + e2(x + 2)〉, fo(x) = 〈o1(x + 2) + o2(x + 2) + o3(x + 2)〉 from

Theorem 12 we have fi divides xni − 1 for (i = 1, e, o) thus we have a code with parameter [29, 18, 2] over
F9.

Example 2 Let q = 25 and F9 = F3[z] with z2 +z+1 = 0 then consider the ring Rγ = F25[x,θt]
x4−1 ×

R1[x,θt]
x6−1 ×

R2[x,θt]
x4−1 and θ5 be the frobemious automorphism that is θ5(a) = a5 where a ∈ F25.

x4 − 1 = (x+ 2)(x+ 3)(x+ z)(x+ z + 1) ∈ F25[x, θ5]
x6 − 1 = (x2 − 1)(x2 + x+ 1)(x2 − x+ 1) ∈ F25[x, θ5]
f1(x) = 〈(x+2)〉, fe(x) = 〈e1(x2−1)+e2(x2−1)〉, fo(x) = 〈o1(x+z+1)+o2(x+z+1)+o3(x+z+1)〉

from Theorem 12 we have fi divides xni−1 for (i = 1, e, o) thus we have a code with parameter [28, 20, 2]
over F25.
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6 Conclusion and open problems

In this note, we have studied the algebraic and metric structure of skew cyclic and skew constacyclic
codes over a special mixed alphabet. Thus, our codes have a structure of module over the largest of the
three alphabets R2. Codes over the product ring Fq ×R1 ×R2 would be modules over that larger ring.
The two algebraic structures are different and should not be confused.

The present work leads itself to two paths of generalization: consider different mixed alphabets or
replace the concepts of cyclicity by that of quasi-cyclicity. The former path seems easier than the latter,
in view of the many examples of rings that have been used as alphabets of cyclic codes in recent years.
On the other hand, the structure of quasi-cyclic codes is always more subtle than that of cyclic codes.
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