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Abstract
Systematic reviews are critical summaries of the exiting literature on a given subject and, 
when combined with meta-analysis, provides a quantitative synthesis of evidence to direct 
and inform future research. Such reviews must, however, account for complex sources of 
between study heterogeneity and possible sources of bias, such as publication bias. This 
paper presents the methods and results of a research study using a newly developed soft-
ware tool called ABCal (version 1.0.2) to compute and assess author bias in the literature, 
providing a quantitative measure for the possible effect of overrepresented authors intro-
ducing bias to the overall interpretation of the literature. ABCal includes a new metric 
referred to as author bias, which is a measure of potential biases per paper when the fre-
quency or proportions of contributions from specific authors are considered. The metric 
is able to account for a significant portion of the observed heterogeneity between stud-
ies included in meta-analyses. A meta-regression between observed effect measures and 
author bias values revealed that higher levels of author bias were associated with higher 
effect measures while lower author bias was evident for studies with lower effect measures. 
Furthermore, the software’s capabilities to analyse authorship contributions and produce 
scientometric plots was able to reveal distinct patterns in both the temporal and geographic 
distributions of publications, which may relate to any evident publication bias. Thus, 
ABCal can aid researchers in gaining a deeper understanding of the research landscape and 
assist in identifying both key contributors and holistic research trends.
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Introduction

Scientific studies based on the empirical method contribute dozens of new publications 
pertaining to a central hypothesis under investigation on an annual basis. Over time, how-
ever, it may become apparent that the evidence in support of, or opposing, fundamental 
views within a discipline may not be unanimous (Le Clercq et al., 2023a, 2023b, 2023c) 
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and can confound the overall interpretation of primary findings. As existing evidence 
serves as the foundation for informing the direction of prospective studies, however, scien-
tists are often faced with the difficult task of reading and interpreting the literature to derive 
central tenets for their subject or discipline (Boell & Cecez-Kecmanovic, 2010; Webster & 
Watson, 2002). One convenient method to synthesise and assess the existing evidence is 
through systematic review and meta-analysis.

Systematic reviews were first developed as a tool for the synthesis of evidence for cau-
sality (Le Clercq et al., 2016) or treatment (Honvo et al., 2019) in medical research and can 
be defined as: “a review using a systematic method to summarize evidence on questions 
with a detailed and comprehensive plan of study” (Tawfik et al., 2019). Thus, a systematic 
review seeks to identify and critically evaluate all those studies (Dickersin et al., 1994) per-
taining to a specific research question for the purposes of deriving conclusions from the full 
body of evidence rather than relying on individual studies alone. Furthermore, systematic 
reviews attempt to standardise the methods (Moher et al., 2010; O’Dea et al., 2021) used 
to identify and screen studies in a way that is comprehensive, transparent, and above all 
reproducible and can serve as independent studies (Kraus et al., 2022). This avoids some 
of the pitfalls and biases that could influence narrative reviews (Pae, 2015; Tawfik et al., 
2019). Another advantage of systematic reviews is the possibility to perform a meta-anal-
ysis and scientometric assessment of the included studies (Nakagawa et al., 2023). This is 
done using primary reported statistics to derive the effect size (Cohen, 1988) or treatment 
effect (TE), and variance or standard error (SETE), of the measured outcome. This facili-
tates between-study comparisons and enables the calculation of a pooled effect through a 
fixed- or random effects model (Borenstein et al., 2010). The pooled effect, therefor, serves 
as a quantitative measure of the total evidence.

Meta-analysis is not without possible confounders: several factors could contribute 
to between study differences, called heterogeneity (Higgins & Thompson, 2002), or be a 
source of bias (Felson, 1992; Sterne et al., 2001). Heterogeneity is expressed by two statis-
tics, the heterogeneity measure (I2) and the between-study variance or tau-squared (τ2). The 
I2 measure expresses the percentage of total variance in the effect sizes that is explained by 
between-study variance. The τ2 approximates between-study variances but is reliant upon 
the specific effect sizes and needs to be quantitated by a P-value (Higgins, 2008). As het-
erogeneity could potentially reduce the ability to compare or combine the outcomes from 
all studies that meet inclusion criteria, it is critical for authors to identify possible sources 
of heterogeneity and attempt to account for them.

Common factors that contribute to heterogeneity include sample size, quantitative 
method, and study population. Two approaches can be used to account for these variables: 
meta-analysis with subgroups and meta-regression of factors. The first, meta-analysis with 
subgroups, determines if effect sizes and their corresponding variances differ between sub-
groups (Borenstein & Higgins, 2013). In the case of study populations representing differ-
ent species, as may be the case in reviews in animal sciences or ecology, several methods 
have also been developed to account for phylogeny (Chamberlain et  al., 2012) and tax-
onomy by performing a phylogenetic meta-analysis (Adams, 2008; Lajeunesse, 2009). The 
second approach, meta regression, determines if a significant part of the heterogeneity can 
be accounted for my individual study attributes, which may be more useful for continuous 
variables such as sample size (Baker et al., 2009).
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The other, and perhaps more difficult, task is to identify and quantify potential sources 
of bias (Boutron et al., 2019; Felson, 1992; Sterne et al., 2001). The most (Bouyssou & 
Marchant, 2016; Perianes-Rodriguez et al., 2016; Zhou & Leydesdorff, 2010) established 
form is publication bias (Lortie et al., 2007; Møller & Jennions, 2001; Thornton & Lee, 
2000). This form of bias is detected through funnel-plots or through weighed linear models 
and focusses on detecting small study effects (Egger et al., 1997; Sterne et al., 2001). This 
includes the absence of studies that have smaller sample sizes, possibly due to the difficul-
ties associated with the peer-review and publishing of such studies, as well as the inclu-
sion of studies with small sample sizes and very low variance. There is, however, another 
related source of bias that has received little to no recognition thus far–bias from the over-
representation of studies from specific authors (Ausloos, 2013); hereafter, author bias.

Author bias, when not accounted for, has the inherent ability to skew the overview and 
interpretation of the literature in several ways. In the first, a specific view may be held by a 
particular group of authors who publish at a much higher frequency than other scientists in 
their field (Lortie et al., 2007), resulting in many publications in support of a view from a 
narrow pool of authors. This may create the illusion that opinions reported in their papers 
represent a majority consensus even when few independent studies support their claims. 
Secondly, views derived from primary findings based on a novel and ‘in-house’ method 
may not be fully reproducible if no independent studies exist where other authors repeated 
and confirmed the validity of such methods. This can further be confounded by the fact that 
negative or disconfirming results are often published at a delay (Boutron et al., 2019) or 
in less prominent journals (Leimu & Koricheva, 2004). Lastly, a majority of studies may 
have been conducted in a specific country, region (Collyer, 2018), and context (Fohringer 
et  al., 2022) which–in cases where study populations may vary significantly between 
regions–may result in interpretations and generalisations that aren’t universal. This makes 
the scientometric analysis of studies by author, year, and location, critical in providing an 
appraisal of the literature.

At present, the most common methods used to access author contributions are the use 
of fractional citation counts (Bouyssou & Marchant, 2016; Perianes-Rodriguez et al., 2016; 
Zhou & Leydesdorff, 2010). This method emerged as a practical approach in response to 
the various complexities of assessing the contribution levels within scholarly works attrib-
uted to specific authors. While this method has proven useful in illuminating prominent 
contributors in differing fields (Bedru et al., 2023; Small & Garfield, 1985) and in citation 
network analyses (Perianes-Rodriguez et al., 2016), no clear link has been made between 
scores for individual authors from fractional counting and bias introduced in reviews from 
contribution levels. Furthermore, many of the methods that have been described still lack 
available software that implements the method (Bedru et al., 2023), or are available with 
very limited functionality (Keirstead, 2016; Kozlowski, 2019). To address the current need 
to quantitate author contribution levels as a measure of bias, and perform scientometric 
checks on publication year and location, ABCal (version 1.0.2) was created to compute 
author bias and plot scientometric aspects of studies included in systematic reviews and 
meta-analyses. In this paper, a full description is given of how the author bias metric is 
computed along with examples of how ABCal can be used to evaluate potential sources 
of bias using real data from two datasets from a recent systematic review (Le Clercq et al., 
2023a, 2023b, 2023c).
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Methods

Author bias metric

To assess relevant attributes of included studies, ABCal includes a new metric referred 
to as “author bias” to provide a quantitative measure for the possible effect of overrepre-
sented authors introducing bias to the overall interpretation of the literature. This measure 
is derived in several steps. First, the full list of authors ( LAll ) for all included studies is used 
to determine the total number of times, nAuthor , the name of a specific author occurs when 
iterating through each position from i = 1 to #LAll in the list (Eq. 1).

This value is then divided by the total number of authors in the list, #LAll , for which pro-
vides the individual author bias, ABIndividual , as the proportion of total authorship contribu-
tions that belong to individuals (Eq. 2).

Next the bias derived from authorship is calculated per study ( ABStudy) by adding the 
individual bias values, ABInd , for each author in the author list for a specific study LPaper , 
from i = 1 to the #LPaper , per Eq. 3.

To facilitate the interpretation of these values, the final steps are calibration (Eq. 4), by 
dividing total bias per study, ABStudy , by the number of authors per paper, #LPaper.

These are further categorised by assessing the distribution of author bias values by iden-
tifying those studies that fall in the bottom, middle, and upper third range, or percentiles 
(Eq. 5) of thirty-three, to assign bias status as being low, medium, or high based on the 
calculated quantiles.

The percentile ( p ) is interpolated by adding the value for x at position ri to the product 
of the position ( rf  ) and the difference between the values for x at position ri + 1 and ri . 
ABCal also provides some functionality to assess the normality of the author bias values 
using three approaches: a Shapiro–Wilk test (Shapiro & Wilk, 1965), a Quantile–Quantile 
(QQ) plot (Wilk & Gnanadesikan, 1968), and a histogram of distributions. The plotting 
sub-menu also provides an option for plotting the distribution of z-score transformed bias 
values which is useful in comparing distributions for different meta-analysis datasets.

The performance of the author bias metric was assessed for both validity and reliability 
(Cohen et al., 2017; Hammersley, 1987). Validity, in this context, refers to the ability of 
the metric to accurately measure the intended attribute. This was verified by comparing 
those studies for which a higher author bias value was computed to whether the authors 

(1)nAuthor =

n=#LAll
∑

i=1

fi(Author)

(2)ABInd = nAuthor∕#LAll

(3)ABStudy =

n=#LPaper
∑

i=1

ABInd(i)

(4)ABCalibrated = ABStudy

/

#LPaper

(5)p = xri + rf ∗
(

xri+1 − xri
)
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listed on the paper ranked within the top 10 contributing authors for the field. Agreement 
was measured in R 4.0.6 (R Core Team, 2020) using Cohen’s kappa (Cohen, 1960) with 
the vcd 1.4–11 package (Meyer et  al., 2023). Reliability or repeatability of the measure 
was assessed by comparing the paper level calibrated author bias levels coded as low (1), 
medium (2), or high (3), for two different datasets (Le Clercq et al., 2023a, 2023b, 2023c). 
This was done by assessing their independent validity as well as internal consistency 
between the distributions using Cronbach’s alpha (Cronbach, 1951) with the ltm 1.2–0 
package (Rizopoulos, 2006).

Implementation

ABCal, version 1.0.2 (Le Clercq, 2023), was scripted in the Spyder 5 IDE using the 
PYTHON 3 language (Python Team, 2021) and should be compatible with all versions 
upward of version 3.6. The list of packages that form part of the dependencies is provided 
on the GitHub repository and within the README file, along with detailed instructions 
for the download and installation. Dependencies include the use of several core PYTHON 
based libraries such as NumPy 1.20.1 and pandas 1.2.4 to handle input files and mould data 
structures for analyses (Harris et al., 2020; McKinney, 2010). Other dependencies include 
packages for statistical analyses, such as SciPy 1.6.2 (Virtanen et al., 2020) and statsmodels 
0.12.2 (Seabold & Perktold, 2010), and packages for graphical plotting, such as matplotlib 
3.3.4 (Barrett et al., 2005) and GeoPy 2.3.0 (Lopez Gonzalez-Nieto et al., 2020). ABCal 
further uses the plotting functionality implemented in folium 0.14.0 with selected func-
tions from the IO tools, for input and output, as well as the PYTHON Image Library (PIL 
10.0.0). Menu options (detailed in Section "Usage") provide the utilities to calculate author 
bias, test the distributions of author bias values, and generate several scientometric plots. 
Scientometric plotting options include the ability to plot publications by the top contribut-
ing authors (to identify and visualise the extent to which top authors may skew overall 
interpretation), by year, and by location.

Input and output file formats

All input files used by ABCal are in the standard comma separated value (CSV) format. 
For most functions the first column of these files should contain the heading “Paper” with 
the studies listed by name in the column e.g., “Le Clercq et al. (2023a, b, c)”. To calculate 
the author bias, the CSV file should contain columns for each author, first to last, labelled 
with appropriate headings such as “Author1” etc. These columns should contain the last 
name and initials of each author associated with a specific paper e.g., “Le Clercq, L.S”. 
The function to compute author bias moves through several steps to perform each interme-
diate step to derive the values and provides intermediate output files with relevant meas-
ures for later steps or scientometric plotting, detailed under the usage section. These files 
provide the option to specify unique output file names and are stored as CSV files within 
the current working directory.

For most of the plotting options, either the CSV files generated from author bias compu-
tation or CSV files containing additional study attributes for plotting are used. An example 
of such a file to plot the distribution of publications by year, includes a file containing two 
columns with the headers “Paper” and “Year”, which should contain the study name as 
well as the year of publication. Another example is for the plotting of studies by location, 
where a CSV is required containing two columns with the headers “Paper” and “Location”. 
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For this file, the full name of the country in which the study was conducted is required; 
if more than one location was included these should be listed on separate lines with the 
study name and second or third location. The output generated from plotting is saved with 
a standard name for the type of plot in the portable network graphic (PNG) format, with the 
exception of the location plot which is also stored in the interactive HTML format.

Usage

To illustrate the usage of ABCal, two datasets (Le Clercq et al., 2023a, 2023b, 2023c) gen-
erated as part of a recent systematic review on biomarkers for age in animals (Le Clercq 
et  al. 2023c), comprising age models from included studies on the use of methylation 
(N = 41 studies, 60 models) and telomeres (N = 67 studies, 99 models) respectively, will be 
used. For each dataset, three input files were generated: one with the paper name and list 
of authors, a second with the paper name and publication date, and a third with the paper 
name and study location.

The first file was used to compute the author bias (example A). Once ABCal is initi-
ated, the first option (a) is to calculate the total author bias per paper. Selecting this option 
initiated the function to perform the needed steps to do the calculation. A prompt appeared 
to specify the name of the file containing the author lists e.g., “Auth_Meth.csv”. The first 
step generated a list of all authors along with the total counts of times the specific author 
appeared in an author list. This data was exported as the first file for output from the func-
tion and was saved as a CSV containing the number of publications per author. Next, the 
individual author bias was computed by determining the fraction of total authorship contri-
butions per author. These values were stored in the second output and contained the author 
names and their associated individual bias. The final step computed the total author bias 
per paper by adding the individual bias value of each author associated with the author list 
for a paper. This data was saved as the third output and contained the data used to compute 
total bias per paper. As an additional step, and to assist in the interpretation of values, the 
second menu option (b), which takes the final output file from the first option, was used 
to calibrate the bias value by dividing the total bias by the number of authors per paper. 
The newly calibrated values were exported as the fourth output file. Furthermore, the third 
menu option (c) was used for testing the distributions for normality and the fourth menu 
option (d) was used to get the upper, middle, and lower third quantiles of the author bias 
distributions.

Hereafter, the author bias values and their respective levels were incorporated into two 
meta-analyses as part of a review (Le Clercq et al. 2023c). The meta-analysis was done in 
RStudio 1.4.1106 (RStudio Team, 2021), running R 4.0.5 (R Core Team, 2020) with the 
package meta 5.5–0 (Harrer et al., 2021; Schwarzer et al., 2015). A meta-regression was 
done between the random effects model and author bias as a predictor of heterogeneity for 
a functional test of validity. The results were visualised using a bubble plot implemented in 
the metafor 3.8–0 package (Viechtbauer, 2010) with grouping based on the three quantiles. 
Furthermore, potential publication bias as measured by funnel plot asymmetry was also 
assessed using the Egger’s test (Egger et al., 1997) as implemented in metafor 3.8–0, also 
plotting the relationship between the standardized measured effect and the inverse of the 
standard error.

Scientometric plotting capabilities of ABCal, accessed via a submenu when selecting 
option e, were illustrated in example B for methylation studies and example C for telomere 
studies. For the first option (a) from the submenu, the second file with two columns for 
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‘Paper’ and ‘Year’ was used to plot the total number of publications per year. The first file 
given as output from the author bias computation steps, containing the authorship counts, 
was used for the second option (b) to plot the number of contributions from the top ten 
contributing authors. Lastly, the third file containing two columns for ‘Paper’ and ‘Loca-
tion’ was used to plot a choropleth map of the geographical distribution for study locations 
using the third option (c) from the submenu.

Results

Example A: author bias computation

Author bias values per paper for methylation studies ranged from 0.0024 to 0.0302 with 
a mean of 0.0124 (Table 1). The histogram plot of distributions (Fig. 1A) showed many 
values (N = 19) were well below the mean, skewing the distribution left, with a moderate 
number of studies (N = 10) falling in and around the mean and few studies (N = 12) having 
higher values. The position for setting the first (Q1) and third (Q3) quartiles were 0.004 
and 0.018 respectively, with 14 studies classified as low, 13 as medium, and 14 as high. 
The box plot of z-score transformed values (Fig. 1B), to express the bias values in terms 
of standard deviations from the median, showed that the median was low (approximately 
− 0.094) with most studies (95%) being evenly distributed around the median. A few stud-
ies had higher values; however, they still fell within two standard deviations of the median 
and no clear outliers were detected. The overall distributions were found to not be normally 
distributed (Table 1; P < 0.01). Tests for validity by means of Cohen’s kappa showed high 

Table 1   Summary of characteristics of calibrated author bias values

Values are reported for both the calibrated author bias (AB) values as well as the Z-Score transformed val-
ues. The mean, standard error of the mean (SE), minimum (Min), maximum (Max) and positions of the cut-
off points for the lower (Q1) and upper (Q3) third percentiles are given. The results for the normality test, 
tested using the Shapiro–Wilk test, are also given along with the significance. The calibrated author bias for 
both datasets was not normally distributed (P < 0.01). The number of studies identified by level as having 
either low, medium, or high risk of bias are also indicated

Mean SE Min Max Q1 Q3 Shapiro–Wilk

Methylation
 Author bias 0.014 0.001 0.002 0.030 0.004 0.018 0.869 (P < 0.01)
 Z-score − 1.08 × 1016 0.16 − 1.07 1.90 − 1.00 0.75

  (1) Low 14
  (2) Medium 13
  (3) High 14

Telomeres
 Author bias 0.004 0.0001 0.002 0.012 0.003 0.004 0.780 (P < 0.01)
 Z-score − 2.10 × 1016 0.12 − 0.79 4.13 − 0.79 0.44
  (1) Low 23
  (2) Medium 21
  (3) High 23
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levels of agreement (Table 2; κ = 0.94, P < 0.01) between studies ranked as having medium 
to high risk of bias as compared to the list of top contributing authors.

Author bias values for telomere studies ranged from 0.0024 to 0.0124 with a mean of 
0.0040 (Table 1). The position for setting the first (Q1) and third (Q3) quartiles were 0.003 
and 0.004 respectively, with 23 studies classified as low, 21 as medium, and 23 as high. The 
values followed a similar pattern to that observed for methylation studies (Fig. 1C), with a 
large number of studies (N = 48) falling below the mean. Most of the remaining studies 
followed a near bell shape around the mean, with several (N = 9) having higher values. 
The box plot (Fig. 1D) showed a slightly higher number of studies fell above the median, 
while most studies were still within one standard deviation of the median. Several studies 
had values between one and two standard deviations of the median, with two studies that 
were more than two standard deviations from the median and thus detected as outliers. 
Once more, the distributions were found to not be normally distributed (Table 1; P < 0.01). 
Tests for validity showed a moderate, yet significant, level of agreement (Table 2; κ = 0.52, 

Fig. 1   Plots for the distributions of author bias values. A Histogram for the calibrated author bias values 
for papers in the methylation dataset indicating many studies (N = 16) with low values, skewing the dis-
tribution left, with a moderate number of studies (N = 4–6) around the median and a similar number of 
studies (N = 3–6) with high values. B Box plot for the Z-score transformed author bias values for papers in 
the methylation dataset indicating most studies are evenly distributed around the median (orange line) with 
few studies more than one standard deviation from the median, and a small number of studies in the upper 
range without appearing as outliers. C Histogram for the calibrated author bias values for papers in the tel-
omere dataset indicating many studies (N = 25) with low values, skewing the distribution left, with a mod-
erate number of studies (N = 5–10) around the median and two studies with higher values. D Box plot for 
the Z-score transformed author bias values for papers in the telomere dataset indicating most studies were 
slightly above the median (orange line) with most studies within one standard deviation from the median, 
and a small number of studies in the upper range and two outliers. (image created in BioRender.com)
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P < 0.01) and an average validity between datasets of 0.73. The reliability tests between 
datasets also showed a significant (Table 2; α = 0.84, CI 0.74–0.91) level of reproducibility 
for levelled classification of studies.

A meta-regression between observed effect measures and author bias values revealed 
that author bias values were able to account for a significant portion of the observed het-
erogeneity between studies included in meta-analyses. These relationships are illustrated 
as bubble plots in Fig.  2. For methylation studies, a strong relationship was observed 
(P < 0.01) with author bias values accounting for approximately 23% (R2 = 0.23) of the 
study heterogeneity. For telomere studies, a slightly weaker relationship was observed 
(P < 0.02) with author bias values accounting for 6% (R2 = 0.06) of the study heterogeneity. 
In both instances, higher levels of author bias were associated with higher effect measures 
while lower author bias was evident for studies with lower effect measures. Tests for pub-
lication bias (Fig. S1) detected significant funnel plot asymmetry (P < 0.05) indicative of 
possible publication bias. Statistical methods to address publication bias, such as “trim-
and-fill” or linear modelling of a fixed-effect model with factorisation, did not significantly 
alter the overall interpretations from the comparisons (data not shown).

Example B: a meta‑analysis of methylation studies

Scientometric assessment of studies included in the methylation dataset was done by 
plotting three attributes: top contributing authors, publications by year, and publica-
tions by location. For publications per author, the number of publications contributed 
by the top contributing authors (specified as ten) ranged from 3 contributions to a total 
of 24 contributions (Fig. 3A). Five authors, including Zhang, contributed 3 papers each, 
respectively. The top three contributing authors, identified as Horvath, Haghani, and 
Zoller, contributed to approximately half (21–24 out of 41) of the included studies. The 
bar plot for publication by year (Fig.  4A) revealed the first studies were published in 
2014 (Polanowski et  al., 2014) with an annual increase leading to 15 publications in 
2021 (Bors et al., 2021; Mayne et al., 2021; Robeck et al., 2021; Wilkinson et al., 2021) 
and several recent studies (Horvath et al., 2022a, 2022b; Horvath et al., 2022a, 2022b; 
Robeck et al., 2023). The choropleth map (Fig. 4B), showing study locations, showed 

Table 2   Results from tests for 
validity, by mean of Cohen’s 
kappa (κ), as well as reliability, 
by means of Cronbach’s alpha 
(α), for the Author Bias metric

Validity was calculated for both the methylation and telomere dataset 
by assessing the agreement between bias rank and authors listed as 
the top ten contributors. The overall validity was determined by tak-
ing the average for individual results. Agreement for ranking between 
datasets was used to assess between study reliability of the metric. The 
confidence of the calculated values was assessed by either probability 
(P < 0.01) of a z-test or the 98% confidence interval (CI)

Value SE z-value Confidence

Validity
 Methylation κ: 0.94 0.05 17.36 P < 0.01
 Telomeres κ: 0.52 0.13 3.89 P < 0.01
 Between κ: 0.73 0.09 Good

Reliability
 Between α: 0.84 – – CI 0.74–0.91
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the number of studies per country ranged from one study (green) to more than twenty 
studies (red). Several countries, shown in white, were completely data deficient. The 
overall distribution showed that most studies emanated from the Northern hemisphere, 
principally from North America (N > 20) and Europe, with Australia (N > 5) represent-
ing the country with the most publications in the global South.

Fig. 2   Bubble plots for the meta-regression of author bias values as a predictor of heterogeneity in the 
meta-analyses. The Fisher’s-Z values (y-axis) were plotted against the calibrated author bias values per 
paper (x-axis) and studies colour coded according to the quantiles within which they fell and were clas-
sified: low (green), medium (yellow), or high (red). The linear equations for the regressions are indicated 
in the bottom right of each plot. A Meta-regression performed on the methylation dataset found a signifi-
cant association between effect measures and author bias values (P < 0.01), accounting for 23 percent of the 
observed heterogeneity. B Meta-regression for the telomere dataset found a moderate association (P < 0.02), 
accounting for only 6 percent of the heterogeneity. (image created in BioRender.com)
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Example C: a meta‑analysis of telomere studies

The same scientometric plots were also generated for the telomere dataset. For publications 
per author, contributions by the top ten authors ranged from 3 contributions to a total of 8 
contributions (Fig. 3B). Several authors contributed 3 papers while the top three authors, 

Fig. 3   Scientometric plots for the number of publications attributed to the top 10 contributing authors. A 
For methylation studies, the number of publications attributed to top contributing authors ranged from 4 
contributions to as many as 24 contributions: with the top 3 contributing to a half (50%) of the included 
studies. B For telomere studies, the number of publications attributed to the top contributing authors ranged 
from 3 to 8 contributions: here, the top 3 contributing authors made up approximately a tenth (10%) of the 
total studies. (image created in BioRender.com)
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Fig. 4   Scientometric plots for methylation studies, generated with ABCal. A Bar plot for publication by 
year, indicating the first studies published in 2014 with an annual increase leading to 15 publications in 
2021. B Choropleth map showing study locations. The density gradient plots the number of studies per 
country ranging from one study (green) to more than twenty studies (red); countries in white are data defi-
cient. The overall distribution shows most studies are from the Northern hemisphere, principally from 
North America and Europe, as well as Australia. (image created in BioRender.com). (Color figure online)
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Fig. 5   Scientometric plots for telomere studies, generated with ABCal. A Bar plot for publications by year, 
showing the first included studies were published in 2002 with constant publication of 2–3 studies per year 
and increasing from 2012 with several spikes in 2017, 2020, and 2021 to between 6–8 publications. B Cho-
ropleth map showing study locations. The density gradient plots the number of studies per country ranging 
from one study (green) to ten studies (red); countries in white are data deficient. The distribution shows 
most studies are from the Northern hemisphere, principally from North America, as well as Australia. 
(image created in BioRender.com)
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identified as Haussmann, Verhulst, Vleck, and Criscuolo, each contributed between 5 and 
8 studies. This only accounted for about 10% of the included studies (5–8 out of 68). Publi-
cations by year, given as a bar plot (Fig. 5A), indicated the first included studies were pub-
lished circa 2002 (Brümmendorf et  al., 2002; Haussmann & Vleck, 2002) with frequent 
subsequent publications, around 2–3 studies annually, and an increase seen after 2012 
(Fick et  al., 2012; Plot et  al., 2012) with several spikes in 2017 (Cerchiara et  al., 2017; 
Kirby et  al., 2017; Ujvari et  al., 2017), 2020 (Bauch et  al., 2020; Burraco et  al., 2020; 
Cherdsukjai et al., 2020), and 2021 (Molbert et al., 2021; Vernasco et al., 2021). The maxi-
mum number for spikes ranged between 6 to 8 publications. Choropleth mapping of study 
locations as publications per country (Fig. 5B) ranged from one study (green) to ten studies 
(red); data deficient countries are indicated in white. The distribution showed most studies 
originated from the Northern hemisphere, principally from North America (N > 9). The 
most represented country from the Southern hemisphere was Australia (N > 6).

Discussion

This original paper presents the methods and results of a research study using a newly 
developed software tool called ABCal. The tool is implemented in Python and is designed 
to analyse scientometric data from various studies when conducting systematic reviews and 
meta-analyses. The primary focus of the study was to compute and assess author bias in 
the literature, providing a quantitative measure for the possible effect of overrepresented 
authors introducing bias to the overall interpretation of the literature. The computed author 
bias values provide a quantitative measure of author influence on the interpretation of the 
studies. Furthermore, scientometric plots provided valuable insights into the trends and 
distribution of publications over time and geographic locations.

The distribution of author bias values, as shown in histograms and box plots, showed 
marginal differences in the raw values but was conserved between the two datasets when 
using z-score transformed values. This highlighted similar spreads for the distribution with 
low to medium bias for most studies and a smaller number of studies exhibiting higher 
bias levels. As such, author bias values were able to identify, in a quantitative manner, the 
overrepresentation of some authors in both meta-analytic datasets. When combined with 
scientometric plots of author contributions, it became clear that both datasets contain a 
significant number of authors who have contributed a larger number of studies than others. 
This makes the proposed author bias metric useful in addressing the account for such bias 
when doing reviews (Felson, 1992; Knobloch et al., 2011).

The author bias metric is organically related to fractional citation counting (Zhou & 
Leydesdorff, 2010), an emerging ‘golden standard’ when comparing author contribu-
tion levels. This is due to similarities between calculations used in the initial steps that 
count the total number of times an author appears in the list of authors, which is divided 
by the total number of authors in the list (Bouyssou & Marchant, 2016). Considering, 
however, that this is only done within the context of studies included in a meta-analysis 
instead of the full reference list—in this instance the new metric represents a special 
use case of fractional counting. Subsequent steps sum the fractional count for individual 
authors per included study and divides the total by the number of authors per paper to 
derive a paper-level value for author bias. Furthermore, rather than relying on raw val-
ues, ABCal provides the option to convert between raw values and z-scores as well as 
three levels of interpretation: low, medium, and high. This facilitates cross-discipline 
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use of the calibrated author bias metric as several cultural differences may exist between 
fields in terms of publication and citation behaviour (Bornmann & Daniel, 2008; Zhou 
& Leydesdorff, 2010). At present ABCal, and the novel author bias metric, also pro-
vides enhanced utility in comparison to existing options (Bedru et al., 2023; Keirstead, 
2016; Kozlowski, 2019). For example, ABCal uses provided information and does not 
rely on the indexing of papers on a specific database (Kozlowski, 2019) or the existence 
of author profiles on a specific platform (Keirstead, 2016). This is particularly impor-
tant for included studies from publishers that don’t index their articles on all databases 
or when including preprints from e.g., bioRxiv. ABCal is also freely available to the 
community for implementation in other studies while several similar algorithms are not 
(Bedru et al., 2023).

Any new metric is, however, subject to benchmarking through tests of validity and 
reliability (Cohen et  al., 2017; Hammersley, 1987). Validity, as measured by agreement 
between medium to high bias studies and the list of top authors using Cohen’s kappa 
(Cohen, 1960), showed moderate to high agreement levels that are generally well suited 
given the application (Altman, 1990). Reliability, as measured by Cronbach’s alpha, found 
that the author bias metric was able to partition studies into low, medium, and high bias 
with a high degree of consistency between datasets. Furthermore, the functional validity 
was assessed by meta-regression for which the results indicated a significant association 
between author bias and observed effect measures in the meta-analyses. More specifically, 
higher author bias values were associated with higher effect measures, while lower bias 
was evident in studies with lower effect measures. This also makes author bias values utile 
in understanding how author prominence (Cassey et al., 2004), from higher contributions 
to the field, may interact with reported effect sizes to account for part of the heterogeneity 
that exists between studies as well as publication bias (Baker et al., 2009).

The presence of publication bias, as revealed by tests of funnel plot asymmetry 
(Møller & Jennions, 2001), suggests the possibility of selective publication in the litera-
ture (Boutron et al., 2019). This is typically attributed to small study effects such as the 
exclusion of studies with smaller sample sizes, even when sample sizes are sufficient for 
adequate statistical power of a given test (Cohen, 1988; Faul et  al., 2009; Kang, 2021). 
The concentration of studies in certain regions as seen by geographic mapping of study 
locations, however, indicates a potential research trend of fewer or missing studies from 
the global South, as previously suggested (Collyer, 2018), and evidence that research in 
ecology or animal science may not follow a truly global distribution (Martin et al., 2012). 
Considering researchers from lower income countries may conduct research on a smaller 
scale for economic reasons, it is feasible that the existing evidence of publication bias is 
due to the lack of studies from the Southern hemisphere in the literature.

It’s important to acknowledge the limitations of the study. The analysis relies on the 
accuracy and completeness of the input data (Knobloch et al., 2011; O’Dea et al., 2021), 
and certain assumptions might have been made during the calculation of author bias. Addi-
tionally, the analysis is limited to the specific datasets related to biomarkers for age in ani-
mals, and generalization to other research fields might require further investigation. Future 
work can focus on expanding the application of ABCal to different research areas and 
datasets to validate its effectiveness and robustness across various domains. Additionally, 
efforts can be made to address potential limitations and explore enhancements to the tool’s 
functionalities to meet the evolving needs of scientometric analysis in the ecology research 
community, particularly when conducting systematic reviews and meta-analyses.

Overall, ABCal proves to be a useful tool for scientometric analysis, offering valuable 
information to researchers in assessing the impact of authors and potential biases in the 
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literature. The software’s capabilities to analyse authorship contributions and produce sci-
entometric plots can aid researchers in gaining a deeper understanding of the research land-
scape and identifying key contributors and research trends.
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