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Abstract

One of the main concerns about fairness in machine learning (ML) is
that, in order to achieve it, one may have to trade off some accuracy. To
overcome this issue, Hardt et al.[13] proposed the notion of equality of
opportunity (EO), which is compatible with maximal accuracy when the
target label is deterministic with respect to the input features.

In the probabilistic case, however, the issue is more complicated: It has
been shown that under differential privacy constraints, there are data
sources for which EO can only be achieved at the total detriment of accu-
racy, in the sense that a classifier that satisfies EO cannot be more accu-
rate than a trivial (i.e., constant) classifier. In this paper, we strengthen
this result by removing the privacy constraint. Namely, we show that for
certain data sources, the most accurate classifier that satisfies EO is a
trivial classifier. Furthermore, we study the admissible trade-offs between
accuracy and EO loss (opportunity difference) and characterize the con-
ditions on the data source under which EO and non-trivial accuracy are
compatible.
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1 Introduction

During the last decade, the intersection between machine learning and
social discrimination has gained considerable attention from academia,
industry, and the public in general. A similar trend occurred before be-
tween machine learning and privacy, and even the three fields have been
studied together recently [24, 6, 15, 1].

Fairness has proven to be harder to conceptualize than privacy, for which
differential privacy has become the de-facto definition. Fairness is subjec-
tive and laws vary between countries. Even in academia, depending on the
application, the words fairness and bias have different meanings [5]. The
current general consensus is that fairness cannot be summarized into a
unique universal definition; and for the most popular definitions, several
trade-offs, implementation difficulties, and impossibility theorems have
been found [16, 3]. One such definition of fairness is equal opportunity [13],
which is one of the most common group notions of fairness along with
disparate impact, demographic parity, and equalized odds [21]. Equal op-
portunity is restricted to binary classification tasks with binary sensitive
attributes.

To contrast equal opportunity (EO) with accuracy, we borrow the notion
of trivial accuracy from [6]. A non-trivial classifier is one that has higher
accuracy than any constant classifier. Since constant classifiers are inde-
pendent of the input, trivial accuracy determines a very low-performance
level that any correctly trained classifier should overcome. Yet, as shown
in related works [6, 1], under the simultaneous constraints of differen-
tial privacy and equal opportunity, it is impossible to have non-trivially
accurate classifiers.

In this paper, we strengthen the result of [6, 1] by showing that, even
without the assumption of differential privacy, there are distributions for
which equal opportunity implies trivial accuracy. In particular, this is
possible when the data source is probabilistic, i.e., the correct label for a
given input is not necessarily unique.

Probability plays two different roles in this paper. On the one hand,
we allow classifiers to be probabilistic, i.e. we allow the classification to
be influenced by controlled randomness for some inputs. This is needed
because satisfying equal opportunity typically requires a probabilistic pre-
dictor [13], but also because it has a practical justification. Namely, in
some cases, randomness is the only fair way to distribute an indivisible
limited resource. For instance, a parent with one candy and two children
might throw a coin to decide whom to give it to. This principle is even
applied in decisions that have a significant social impact such as the Di-
versity Visa Program to qualify for a Green Card in the United States
[26], and the Beijing lottery for getting a car license plate [10].

On the other hand, we consider probabilistic data sources. This provides

2



a more general framework for studying the trade-off between fairness and
accuracy, as there are situations in which reality is more accurately rep-
resented by a probabilistic model. For instance, the information carried
by the input may be insufficient to conclude definitely the yes-no deci-
sion, or there may be constraints that force the decision to be different
for identical inputs.

The analysis of this paper is mostly theoretical and is limited to the notion
of equal opportunity, hence to distributions with binary targets and binary
sensitive attributes. On the other hand, the results are very general. For
instance, whenever we state a property about all predictors, it includes
all probabilistic classifiers without exception. Hence our results hold for
classifiers that do not use the sensitive attribute for prediction, as well as
for those that use it to compensate existing biases, or take into account
proxy variables, or use multiple threshold mechanisms, or are based on
causality, or do not use machine learning at all.

The contributions of this paper can be summarized as follows.

1. We prove that for certain probabilistic distributions, no predictor
can achieve EO and non-trivial accuracy simultaneously.

2. We explain how to modify existing results that assume deterministic
data sources to the probabilistic case:

(a) We prove that for certain distributions, the Bayes classifier does
not satisfy EO. As a consequence, in these cases, EO can only
be achieved by trading-off some accuracy.

(b) We give necessary and sufficient conditions for non-trivially ac-
curate predictors to exist.

3. We prove and depict several algebraic and geometric properties about
the feasibility region, i.e. the region containing all predictors in the
plane of opportunity difference versus error.

4. We determine necessary and sufficient conditions under which non-
trivial accuracy and EO are compatible.

5. We develop an algorithm that computes the Pareto-optimal bound-
ary of the accuracy-fairness trade-off, and more generally, the feasi-
bility region.

6. We illustrate how the incompatibility between EO and non-trivial
accuracy may arise in practice.

7. We discuss the distortion effect that arises when we use the above
algorithm on empirical distributions from sampled data.

For reproducibility, we published a repository [23] with Python code for
generating the figures and algorithms mentioned in this paper, including
Algorithms 1 and 2.

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 recalls the preliminary notions that are used in the rest
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of the document. Section 4 introduces the plane of error versus opportu-
nity difference and shows several geometric properties taking place in this
plane. Section 5 presents the impossibility result: for certain probabilistic
distributions, no predictor can achieve EO and non-trivial accuracy simul-
taneously. Section 6 compares deterministic sources against probabilistic
ones, and shows how to modify existing results that hold in the former
case to guarantee them in the latter. Section 7 presents algorithms for
computing the Pareto-optimal frontier and all the vertices of the feasibility
region in the plane of error versus opportunity difference. Section 8 states
the necessary and sufficient conditions under which there exist predictors
achieving EO and non-trivial accuracy simultaneously. Section 9 shows
an example of the impossibility result arising in (a variant of) a real-life
dataset. Section 10 discusses the distortion on the Pareto-optimal frontier
when we compute and evaluate it using empirical distribution from sam-
pled data. Section 11 draws the conclusion. Finally, Section 12 presents
some auxiliary lemmas and their proofs.

A preliminary and partial version of this paper appeared in the proceed-
ings of AAAI 2022 [22]. In this document, we extend the AAAI-2022 ver-
sion by studying the Pareto-optimal boundary (Section 7), the necessary
and sufficient conditions (Theorem 10) that characterize the impossibil-
ity between equal opportunity and non-trivial accuracy, and a practical
example based on the Adult dataset (Figure 9).

2 Related Work

This paper contributes to the technical literature about equal opportunity
(EO) [13], one of the most common group fairness notions [21]. For an
overview of when EO is appropriate and how EO relates to other fairness
notions, the reader is referred to the survey papers [18, 21, 2, 19] and the
moral framework in [14].

Our paper is strongly related to the following two papers that consider
a randomized learning algorithm guaranteeing (exact) EO and also satis-
fying differential privacy: [6] shows that, for certain distributions, these
constraints imply trivial accuracy. [1] proves the same claim for any arbi-
trary distribution and for non-exact EO, i.e. bounded opportunity differ-
ence. It also highlights that, although there appears to be an error in the
proof of [6], the statement is still correct. In contrast, in this paper, we
prove the existence of particular distributions in which trivial accuracy is
implied directly from the (exact) EO constraint, without any differential
privacy assumption.

There are also several works that focus on the incompatibility of fairness
constraints. In [16], it is shown that several different fairness notions
cannot hold simultaneously, except for exceptional cases. Similarly, in
[17], it is shown that the two main legal notions of discrimination are
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in conflict for some scenarios. In particular, when impact parity and
treatment parity are imposed, the learned model seems to decide based
on irrelevant attributes. These works reveal contradictions when different
notions of fairness are imposed together.

In contrast, [4] show issues inherent to anti-classification, classification
parity, and calibration, separately, without inducing them simultaneously
with another fairness notion. Regarding equal opportunity in the COM-
PAS case, they show that forcing equal and low false positive rates obliges
the system to decide almost randomly (trivially) for black defendants. Our
work presents theoretical scenarios in which this problem is even more ex-
treme and the system becomes trivial for both classes. As shown in our
sufficiency and necessary conditions, the extreme scenarios are character-
ized based on six population statistics. In this sense, our paper is also
related to [25], which computes bounds on fairness and accuracy based on
population statistics.

Lastly, in comparison to the seminal paper on equal opportunity [13], this
paper uses a different geometric approach. Graphically, their analysis is
carried out using ROC curves of fixed predictors. In contrast, we plot
directly the error and the difference in opportunity of the two sensitive
groups. In Section 5, Figure 9, we depict side by side the two perspec-
tives. In this sense, we provide a complementary geometric perspective
for analyzing equal opportunity and accuracy together.

3 Preliminaries

The notation described in this section is summarized in Table 1.

We consider the problem of binary classification with a binary protected
feature. Protected features, also called sensitive attributes or sensitive fea-
tures, are input features that represent race, gender, religion, nationality,
age, or any other variable that could potentially be used to discriminate
against a group of people. A feature may be considered a protected feature
in some contexts and not in others, depending on whether the classifica-
tion task should ideally consider that feature or not. For our purposes,
we assume the simple and fundamental case in which there is a single
protected attribute that can only take two values, e.g. man or woman, or,
religious or non-religious.

Data Source

We consider an observable underlying statistical model consisting of three
random variables over a probability space (Ω, E ,P): the protected feature
A : Ω → {0, 1}, the non-protected feature vector X : Ω → Rd for some
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positive integer d, and the target label Y : Ω → {0, 1}. We refer to this
statistical model as the data source.

The distribution of (X,A) is denoted by the measure π that computes for
each ((X,A)-measurable) event E ⊆ Rd × {0, 1}, the probability π(E)

def
=

P[ (X,A)∈E ]. To reduce the verbosity of the discrete case, we denote
the probability mass function as π(x, a)

def
= π({(x, a)}), i.e. π(x, a) =

P[X=x,A=a ].

The expectation of Y conditioned on (X,A) is denoted both as the func-
tion q(x, a)

def
= E[Y | X = x,A = a ] and the random variable Q def

= E[Y | X,A ] =
q(X,A). Importantly, the notation E[Y | X = x,A = a ] for defining q(x, a)
is not an expectation conditioned on the possibly null event (X = x,A =
a). Instead, it is syntactic sugar for the conditional expectation function.
Formally speaking, the function q is not necessarily unique in the way it
is defined. It is defined almost everywhere uniquely, so that for any al-
ternative conditional expectation function q′, we have q(X,A) = q′(X,A)
almost surely. Throughout the paper, we prioritize studying the discrete
case to avoid this extreme level of formalism without losing rigor.

The random variable Q plays the role of a soft target label because, since
q(x, a) = P[Y =1|X=x,A=a ], then Y can be modeled as a Bernoulli
random variable with success probability Q.

The distribution of (X,A, Y ) is completely characterized by the pair (π, q),
hence we refer to this pair as the distribution of the data source. And
we distinguish two cases: the data source is probabilistic in general, but if
Q ∈ {0, 1} (with probability 1), then it is said to be deterministic. This
distinction is crucial, because several statements hold exclusively in one
of the two cases.

(X,A, Y ) Data source
X Non-protected feature vector in Rd

A Protected feature in {0, 1}
Y Target label in {0, 1}
Q, q Soft target label Q def

= E[Y | X,A ]
π Distribution of (X,A)
(π, q) Distribution of (X,A, Y )

Q̂, q̂ Predictor Q̂ = q̂(X,A) = E[ Ŷ | X,A ]

Ŷ Predicted label in {0, 1}
Q Set of all predictors
acc(Q̂) Accuracy of Q̂: P[ Ŷ=Y ]

oppDiff(Q̂) Opportunity difference of Q̂:
E[ Q̂ | Y = 1, A = 1 ]− E[ Q̂ | Y = 1, A = 0 ]

Table 1: The notation used in the paper.
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Classifiers and Predictors

Analogously to the data source, we model the estimation Ŷ as a Bernoulli
random variable with success probability Q̂ = q̂(X,A) for some ((X,A)-
measurable) function q̂. We refer to Ŷ as a (hard) classifier, and to Q̂ or q̂
as a (soft) predictor. Notice that Ŷ is deterministic when Q̂ ∈ {0, 1} (with
probability 1), in which case, Ŷ = Q̂ (w.p. 1). Hence all deterministic
classifiers are also predictors.

The set of all soft predictors is denoted as Q. We highlight the following
predictors in Q:

1. the two constant classifiers, 0̂ and 1̂, given by 0̂(x, a)
def
= 0 and

1̂(x, a)
def
= 1,

2. for each Q̂ ∈ Q, the 1/2-threshold classifier given by Q̂1/2
def
= 1Q̂>1/2,

3. the data source soft target Q, and

4. the Bayes classifier Q1/2 = 1Q>1/2.

It is well known1 that the Bayes classifier Q1/2 has minimal error among
all predictors in Q, regardless of whether the data source is deterministic
or not.

Evaluation Metrics

To refer to equal opportunity [13], we introduce a continuous metric called
the opportunity difference. The opportunity difference of a predictor Q̂ ∈
Q is defined as

oppDiff(Q̂)
def
= (P[ Ŷ=1|A=1, Y =1 ]

− P[ Ŷ=1|A=0, Y =1 ], )

and a predictor Q̂ ∈ Q is said to satisfy equal opportunity whenever
oppDiff(Q̂) = 0.

The error and the accuracy of a predictor Q̂ ∈ Q are defined as

err(Q̂)
def
= P[ Ŷ ̸=Y ],

acc(Q̂)
def
= 1− err(Q̂).

Additionally, we consider a minimal reference level of accuracy that should
be outperformed intuitively by any well-trained predictor. The trivial ac-
curacy [6] is defined as τ

def
= max

{
acc(Q̂) : Q̂ ∈ Triv

}
, where Triv is the

1See for instance Chapter 3 of [9].
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set of (trivial) predictors whose output does not depend on X and A at all,
and as a consequence is in independent of Y as well. In other words, Triv
consists of all constant soft predictors Triv def

= {((x, a) 7→ c) : c ∈ [0, 1]}.
According to the Neyman-Pearson Lemma, the most accurate trivial pre-
dictor is always hard, i.e. must be either 0̂ or 1̂. Thus τ is well-defined
and can be computed as

τ = max {P[Y =0 ], P[Y =1 ]} .

A predictor Q̂ ∈ Q is said to be trivially accurate if acc(Q̂) ≤ τ , and
non-trivially accurate, or non-trivial otherwise. Notice that for a degen-
erated data source in which the decision Y is independent of X and A, all
predictors are forcibly trivially accurate.

4 The Error versus Opportunity-Difference
Region

In this section, we analyze the region M ⊆ [0, 1]× [−1,+1] given by

M
def
= {(err(Q̂), oppDiff(Q̂)) : Q̂ ∈ Q},

which represents the feasible combinations of the evaluation metrics (er-
ror and opportunity difference) that can be obtained for a given source
distribution (π, q). This region determines the tension between error and
opportunity difference. Figure 1 shows an example of the region M .

Figure 1: Region M for an arbitrary source distribution.

The results presented in this section assume that the data source is discrete
and its range is finite. We will use the following vectorial notation to
represent both the distribution (π, q) and any arbitrary predictor Q̂ ∈ Q.

Definition 1. Suppose (X,A) can only take a finite number of outcomes
{(xi, ai)}ni=1 (each with positive probability) for some integer n > 0. In
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order to represent π, q and any Q̂ ∈ Q respectively, let P⃗ , Q⃗, F⃗ ∈ Rn be
the vectors given by

P⃗i
def
= P[X=xi, A=ai ],

Q⃗i
def
= P[Y =1|X=xi, A=ai ],

F⃗i
def
= P[ Ŷ=1, X=xi, A=ai ].

For notation purposes, let also Q⃗(0), Q⃗(1) ∈ Rn be given by Q⃗
(a)
i

def
= Q⃗i ·

1ai=a, and, following the definition of err(Q̂) and oppDiff(Q̂), let

err(F⃗ )
def
= ⟨P⃗ , Q⃗⟩+ ⟨F⃗ , 1−2Q⃗⟩,

oppDiff(F⃗ )
def
=

⟨F⃗ , Q⃗(1)⟩
⟨P⃗ , Q⃗(1)⟩

− ⟨F⃗ , Q⃗(0)⟩
⟨P⃗ , Q⃗(0)⟩

.

where ⟨ · , · ⟩ denotes the inner product:

⟨u, v⟩ def
= u1v1 + · · ·+ unvn.

(End)

Regarding Definition 1, we highlight three important remarks:

1. Q⃗ ∈ [0, 1]n, P⃗ ∈ (0, 1]n, | P⃗ |1= 1 and F⃗ lies in the rectangular
n-dimensional box given by

0 ⪯ F⃗ ⪯ P⃗ ,

where ⪯ denotes the componentwise order in Rn, i.e. 0 ≤ F⃗i ≤ P⃗i

for each i ∈ {1, ..., n}. Moreover, from the definition of P⃗ and F⃗ ,
the vertices of this rectangular box correspond precisely with the
deterministic predictors.

2. The vectorial definitions of error and opportunity difference corre-
spond to those of the non-vectorial case. Moreover, their gradients
are constant.

3. There is a one-to-one correspondence between the predictors q̂ ∈ Q
and the vectors F⃗ that satisfy 0 ⪯ F⃗ ⪯ P⃗ . Indeed, each predictor is
uniquely given by its pointwise values q̂(xi, ai) =

F⃗i

P⃗i
and each vector

by its pointwise coordinates F⃗i = P⃗iq̂(xi, ai). Therefore

M = {(err(F⃗ ), oppDiff(F⃗ )) : 0 ⪯ F⃗ ⪯ P⃗}.

We now make use of results from a different research area in mathematics
(geometry) to conclude the main properties of the region M .

Theorem 1. Assuming a discrete data source with finitely many possible
outcomes, the region M of feasible combinations of error versus opportu-
nity difference satisfies the following claims.
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1. M is a convex polygon.

2. The vertices of the polygon M correspond to some deterministic pre-
dictors.

3. M is symmetric with respect to the point (1/2, 0).

Proof. The proof is based on the fact that affine transformations map
polytopes into polytopes (See Chapter 3 of [12]).

Assume the notation of Definition 1.

Part 1. In geometrical terms, M is the result of applying an affine
transformation, i.e. a linear transformation and a translation, to the n-
dimensional polytope given by 0 ⪯ F⃗ ⪯ P⃗ .

Affine transformations are known to map polytopes into polytopes (See
Chapter 3 of [12]), therefore M must be a 2-dimensional polytope, i.e.
the region M is a convex polygon. In theory, this region may also be a
1-dimensional segment, but this can only occur in the extreme case that
Q = 1/2 (with probability 1).

Part 2. The vertices of a polytope, also called extremal points, are
the points in the polytope that are not in the segment between any two
other points in the polytope. It is known from geometry theory that affine
mappings preserve collinearity, i.e. they map segments into segments, thus
they map non-vertices into non-vertices. As a consequence, the vertices of
the polygon M correspond to some vertices of the polytope 0 ⪯ F⃗ ⪯ P⃗ ,
that is, to some deterministic classifiers.

Part 3. Notice (Lemma 15) that

err(P⃗ − F⃗ ) = 1− err(F⃗ ),

oppDiff(P⃗ − F⃗ ) = −oppDiff(F⃗ ).

This implies that for each point (err(F⃗ ), oppDiff(F⃗ )) ∈ M , there is another
one, namely (err(P⃗ − F⃗ ), oppDiff(P⃗ − F⃗ )) ∈ M that is symmetrical to the
former w.r.t the point (1/2, 0). Geometrically, this means that the polygon
M is symmetric with respect to the point (1/2, 0).

The reader is invited to visualize the properties of M mentioned in The-
orem 1 in Figure 1, which depicts the region M for a particular instance
2 of P⃗ and Q⃗.

2Namely P=[0.267 0.344 0.141 0.248], Q=[0.893 0.896 0.126 0.207] and A=[0 1 0
1].
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5 Strong Impossibility Result

Contrasting with Figure 1 in the previous section, Figure 2 shows a data
source for which the constant classifiers are vertices of the polygon. Fig-
ure 2 was generated using the theory developed in this section and it
illustrates the strong incompatibility that may occur in certain distribu-
tions. Namely, among the predictors satisfying equal opportunity (those
in the X-axis), the minimal error is achieved by a constant classifier.

Figure 2: In this distribution, the con-
stant classifiers are vertices of the poly-
gon, thus the constraints of equal op-
portunity and non-trivial accuracy can
not be satisfied simultaneously.

In other words, there are data sources for which no predictor can achieve
equal opportunity and non-trivial accuracy simultaneously. This is The-
orem 3.

Since Theorem 3 is our strongest result, we also show how to generalize
it to non-finite domains. For this purpose, and focusing on formality, we
state in Definition 2 very precisely, for which kind of domains it applies.

Definition 2. The essential range of a random variable S : Ω → Rk is
the set

{s⃗ ∈ Rk : (∀ϵ > 0) P[ |S−s⃗ |<ϵ ] > 0}.
We call a set D ⊆ Rk an essential domain if it is the essential range of
any random variable.

Definition 2 excludes pathological domains such as non-measurable sets,
the Cantor set, or the irrationals. But it allows for isolated points, convex
and closed sets, finite unions of them, and countable unions of them as
long as the resulting set is closed. This includes typical domains, such as
products of closed intervals

∏n
i=1[li, ri], or the whole space Rn.

Theorem 3. For any essential domain X ⊆ Rd with |X | ≥ 2, there
exists a data source (X,A, Y ) whose essential range is X × {0, 1}2 and
such that the accuracy acc(Q̂) of any predictor Q̂ ∈ Q that satisfies equal
opportunity is at most the trivial accuracy τ ∈ [0, 1).

Proof. The proof is divided into four parts. We will (i) reduce the prob-
lem into an algebraic one; (ii) find the linear constraints that solve the
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algebraic problem when satisfied; (iii) provide an algorithm that gener-
ates vectors that satisfy the linear constraints; and finally, (iv) convert
the vectorial solution back into a distribution (π, q) for the given domain.

Part 1. Reduction to an algebraic problem.

Partition the non-protected input space X into two non-empty sets X1,X2,
and the input space X × {0, 1} into three regions Rj :

R1 = X1 × {0},
R2 = X2 × {0},
R3 = X × {1}.

For any distribution (π, q) for which these 3 regions have positive proba-
bilities, denote P⃗j

def
= P[ (X,A)∈Rj ] > 0 and Q⃗j

def
= P[Y =1|(X,A)∈Rj ]

for j ∈ {1, 2, 3}. We search for constraints over P⃗ and Q⃗ that are feasible
and cause acc(Q̂) ≤ τ for any fair predictor Q̂ ∈ Q satisfying EO. The
first such constraint is

C1. P⃗ , Q⃗ ∈ (0, 1)3.

That is, we require P⃗j to be positive, and Y to have at least some degree
of randomness in each region.

Given a reference predictor Q̂, let F⃗ ∈ [0, 1]3 be the vector given by
F⃗j

def
= P[ Ŷ=1, (X,A)∈Rj ]. Lemma 14 shows that the accuracy and the

opportunity difference of any predictor Q̂ can be computed from P⃗ , Q⃗
and F⃗ as

acc(Q̂) = ⟨F⃗ , 2Q⃗−1⟩+ CQ⃗,

oppDiff(Q̂) =
F⃗3

P⃗3

− F⃗1Q⃗1 + F⃗2Q⃗2

P⃗1Q⃗1 + P⃗2Q⃗2

,

where CQ⃗

def
= 1 − ⟨P⃗ , Q⃗⟩ is a constant and the operator ⟨·, ·⟩ denotes the

inner product explained in Definition 1. Since we are interested in relative
accuracies with respect to the trivial predictors, the constant CQ⃗ is mostly
irrelevant. For this reason, we let L(F⃗ ) ∈ [−1, 1] denote the non-constant
component of the accuracy L(F⃗ )

def
= ⟨F⃗ , 2Q⃗−1⟩.

Both accuracy and opportunity difference are completely determined for
any predictor by the vectors P⃗ , Q⃗ and F⃗ as shown above. Moreover, both
quantities are linear with respect to F⃗ .

Regarding equal opportunity, the constraint oppDiff(Q̂) = 0 forms a plane
in R3, depicted in Figure 3. This plane passes through the origin, is
determined by P⃗ and Q⃗, and contains all vectors F⃗ (restricted to 0 ≤
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F⃗3

F⃗2

F⃗1

F⃗

F⃗ ∗

P⃗

Z⃗

Bayes

0⃗

Figure 3: In vectorial form, the predictors that satisfy equal opportunity form
a plane inside the rectangular box of all predictors.

F⃗j ≤ P⃗j) that satisfy

F⃗3(P⃗1Q⃗1 + P⃗2Q⃗2)− P⃗3(F⃗1Q⃗1 + F⃗2Q⃗2) = 0,

or equivalently, all vectors F that are normal to the vector (−P⃗3Q⃗1,−P⃗3Q⃗2, P⃗1Q⃗1+P⃗2Q⃗2).

Regarding accuracy, the two constant predictors correspond to F⃗ = 0⃗ and
F⃗ = P⃗ , thus τ = CQ + max{L(⃗0), L(P⃗ )}. Importantly, both of them lie
on the equal opportunity plane.

The problem is now reduced to finding vectors P⃗ and Q⃗ such that all
vectors F⃗ in the equal opportunity plane satisfy L(F⃗ ) ≤ max{L(⃗0), L(P⃗ )}.

Part 2. Constraints for the algebraic solution.

To fix an orientation, let us impose these constraints:

C2. Among the constant predictors, the accuracy of F⃗ = P⃗ is higher
than that of F⃗ = 0⃗. This is L(P⃗ ) > 0 = L(⃗0).

C3. The Bayes classifier is located at (0, P⃗2, P⃗3) as in Figure 3. Alge-
braically this means Q⃗1 < 1/2 and Q⃗2, Q⃗3 > 1/2.

In order to derive the constraints that make the scalar field L maximal
at P⃗ over the plane, consider the vector Z⃗ that lies on the plane and has
minimal Z⃗1 and maximal Z⃗2, i.e.

Z⃗
def
= (0, P⃗2, P⃗3

P⃗2Q⃗2

P⃗1Q⃗1 + P⃗2Q⃗2

).

Since the gradient of L is given by 2Q⃗ − 1 and has signs (−,+,+), then
for any vector F⃗ in the plane, there is F⃗ ∗ in the segment between P⃗ and
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Z⃗ such that F⃗1 = F⃗ ∗
1 and L(F⃗ ∗) ≥ L(F⃗ ) (refer to Figure 3). This implies

that the L attains its maximal value on the segment between P⃗ and Z⃗.
Hence, for L to be maximal at P⃗ , it would suffice to have L(P⃗ ) > L(Z⃗).
As shown in Lemma 20, this can be achieved by imposing, in addition,

C4. Q⃗3 + Q⃗1 ≥ 1, and

C5. P⃗1Q⃗1 + P⃗2Q⃗2 < P⃗3Q⃗1.

Part 3. Solution to the constraints.

Algorithm 1 is a randomized algorithm that generates random vectors.
We will prove that the output vectors P⃗ and Q⃗ satisfy the constraints of
the previous parts of this proof, regardless of the seed and the random
sampling function, e.g. uniform. For corroboration and illustration, the
distribution in Figure 2 presented early was generated using this algo-
rithm3.

Algorithm 1 Random generator for Theorem 3.
1: procedure VectorGenerator(seed)
2: Initialize random sampler with the seed
3: Q⃗1 ← random in (0, 1/2)

4: Q⃗2 ← random in (1/2, 1)

5: Q⃗3 ← random in (1− Q⃗1, 1)

6: P⃗3 ← random in (1/2, 1)

7: a← max{(1− P⃗3)Q⃗1, 1/2− P⃗3Q⃗3}
8: b← min{(1− P⃗3)Q⃗2, P⃗3Q⃗1}
9: c← random in (a, b)

10: P⃗2 ← (c−Q⃗1(1−P⃗3))/Q⃗2−Q⃗1

11: P⃗1 ← 1− P⃗3 − P⃗2

12: return P⃗ , Q⃗

Two immediate observations about Algorithm 1 are that the construction
of Q⃗ implies that constraints C3 and C4 are satisfied, and the construction
of P⃗ implies P⃗1 + P⃗2 + P⃗3 = 1. To prove the correctness of the algorithm,
it remains to prove that (i) a < b (otherwise the algorithm would not be
well-defined), that (ii) P⃗2 ∈ (0, 1) for constraint C1, and also that (iii)
constraints C2 and C5 are satisfied. For better readability, the algebraic
proof of these claims is moved to Lemma 21.

Part 4. Construction of the distribution.

Generate a pair of vectors P⃗ and Q⃗ using the algorithm of the previous
part (Part 3). The first goal is to partition X into X1 and X2 to generate
the regions R1, R2 and R3. The second goal is to define π in such a way

3The algorithm’s output was P=[0.131 0.096 0.772] and Q=[0.274 0.858 0.891]. Also,
A=[0 0 1] from the partition {R1, R2, R3}.
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that P[ (X,A)∈Rj ] = P⃗j for each j ∈ {1, 2, 3}. The third and last goal is
to define q so that E[Q | (X,A) ∈ Rj ] = Q⃗j for each j. This can be done
immediately by letting q(x, a)

def
= Q⃗j for all (x, a) ∈ Rj . Thus only the

first two goals remain.

For the first goal, since |X | ≥ 2, we may create a simple Voronoi clustering
diagram by choosing two different arbitrary points s1, s2 ∈ X , and letting
X1

def
= {s∈X :|s−s1 |≤|s−s2 |} and X2

def
= X \ X1.

For the second goal, since X is an essential domain, there exists a ran-
dom variable S whose essential range is X . Notice that P[S∈Xj ] ≥
P[ |S−sj |< |s1−s2|/2 ] > 0 for each j ∈ {1, 2}. For each ((X,A)-measurable)
event E, let Ea

def
= {x : (x, a) ∈ E}, and define π(E) as

P[ (X,A)∈E ]
def
=

∑
a=0,1

P[X∈Ea, A=a ],

P[X∈E0, A=0 ]
def
=

∑
j=1,2

P[S∈E0 |S∈Xj ]P⃗j ,

P[X∈E1, A=1 ]
def
= P[S∈E1 ]P⃗3.

This forces P[ (X,A)∈Rj ] = P⃗j for each j ∈ {1, 2, 3} as desired.

Finally, to conclude this section we present Example 1, which shows that
there are many other scenarios, not necessarily those of Theorem 3, in
which EO and non-trivial accuracy are incompatible.

Example 1. Consider a data source (X,A, Y ) over {0, 1}3 whose distri-
bution is given by

x a π(x, a) q(x, a)
0 0 3/8 9/20
0 1 2/8 15/20
1 0 1/8 15/20
1 1 2/8 16/20

Then, (i) there are predictors satisfying equal opportunity, (ii) there are
predictors with non-trivial accuracy, but (iii) there are no predictors sat-
isfying both. (End)

Indeed, Figure 4 depicts the region M for Example 1. On the one hand,
the set of non-trivially accurate predictors corresponds to the area with an
error strictly smaller than the left constant classifier. On the other hand,
the set of equal opportunity predictors is (for this particular example)
the closed segment between the two constant classifiers. As claimed in
Example 1 (and depicted in Figure 4), these two sets are non-empty and
do not intersect each other.
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Figure 4: Example 1. One of the constant classifiers is Pareto-optimal.

6 Probabilistic versus Deterministic Sources

In this section, we compare the tension between error and opportunity
difference when the data source is deterministic and probabilistic. The
motivation for studying the probabilistic case is presented in the intro-
duction. Particularly, we show that some known properties that apply
for the discrete case may fail to hold for the probabilistic one, and under
what conditions this happens.

6.1 Deterministic Sources

Under the assumption that the data source is deterministic, there are
some important existing results showing the compatibility between equal
opportunity and high accuracy:

Fact 4. Assuming a deterministic data source, the Neyman Pearson
lemma [8] implies that if τ < 1, then there is always a non-trivial predic-
tor, for instance, the Bayes classifier Q1/2. Otherwise (degenerated case
with τ = 1) all predictors are trivially accurate.

Fact 5. Assuming a deterministic data source, the Bayes classifier Q1/2

satisfies equal opportunity necessarily [13].

As a consequence, EO and maximal accuracy (thus also non-trivial accu-
racy) are always compatible provided τ < 1, because the Bayes classifier
satisfies both. This is a celebrated fact and it was part of the motivations
of [13] for defining equal opportunity, because other notions of fairness,
including statistical parity, are incompatible with accuracy.
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6.2 Probabilistic Sources

If we allow the data source to be probabilistic, the results of the deter-
ministic case change. In particular, Fact 4 is generalized by Proposition 6
and Fact 5 is affected by Proposition 7 and Example 1.

Analogous to τ for deterministic sources, we define a second reference
value τ∗ ∈ [0, 1]. We let

τ∗ def
= max {P[Q≥1/2 ], P[Q≤1/2 ]} ,

highlighting that (i) Q = q(X,A) is a random variable varying in [0, 1],
(ii) τ and τ∗ are equal when the data source is deterministic, and (iii) the
condition τ = 1 implies τ∗ = 1, but not necessarily the opposite.

As shown in Proposition 6, the equation τ∗ = 1 characterizes the neces-
sary and sufficient conditions on the data source for non-trivially accurate
predictors to exist.

Particularly, in the deterministic case, we have τ∗ = τ , and Proposition 6
resembles Fact 4.
Proposition 6. (Characterization of the impossibility of non-trivial ac-
curacy)

For any arbitrary source distribution (π, q), non-trivial predictors exist if
and only if τ∗ < 1.

Proof. The proof intuition is that if P[Q≥1/2 ] = 1, then predicting 1 for
any input is optimal, and vice versa.

We will prove that all predictors are trivially accurate if and only if τ∗ = 1.

(⇐) Suppose τ∗ = 1, i.e. P[Q≤1/2 ] = 1 or P[Q≥1/2 ] = 1.

In the former case, the Bayes classifier Q1/2 is the constant predictor
(x, a) 7→ 0, thus acc(Q1/2) ≤ τ necessarily. In the latter case, the al-
ternative Bayes classifier Q∗

1/2 (defined in Lemma 18) is the constant
predictor (x, a) 7→ 1, thus acc(Q∗

1/2) ≤ τ . According to Lemma 18,
acc(Q1/2) = acc(Q∗

1/2), thus we may conclude acc(Q1/2) ≤ τ as well.

It follows that acc(Q̂) ≤ acc(Q1/2) ≤ τ for all Q̂ ∈ Q because Q1/2 has
maximal accuracy in Q.

(⇒) Suppose τ∗ < 1. We will suppose that the Bayes classifier Q1/2 is not
trivially accurate and find a contradiction.

Suppose acc(Q1/2) − τ = 0. According to Lemmas 16 and 19 we may
rewrite this as E[ |Q−1/2|−|E[Y ]−1/2| ] = 0. Using the reverse triangle
inequality, we conclude E[ |Q−E[Y ]| ] = 0, thus Q = E[Y ] is constant.
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If E[Y ] ≤ 1/2, then P[Q≤1/2 ] = 1. If E[Y ] ≥ 1/2, then P[Q≥1/2 ] = 1. In
any case, we have τ∗ = 1 which contradicts the initial supposition.

Finally, in Proposition 7 and its proof, we show a simple family of prob-
abilistic examples for which equal opportunity and optimal accuracy (ob-
tained by the Bayes classifier) are not compatible. This issue does not
merely arise from the fact that the Bayes classifier is hard while the data
distribution is soft. Adding randomness to the classifier does not solve the
issue. To justify this, and also for completeness, we considered the soft
predictor Q and showed that it also fails to satisfy equal opportunity.

Proposition 7. There are data sources for which neither the Bayes clas-
sifier Q1/2 nor the predictor Q satisfies equal opportunity.

Proof. Fix any data source with P[A=a, Y =1 ] > 0 for each a ∈ {0, 1},
pick an arbitrary ((X,A)-measurable) function c : Rd → (0, 1/2) and let

q (x, a)
def
=

{
1/2 − c(x) if a = 0
1/2 + c(x) if a = 1

for each (x, a) ∈ Rd × {0, 1}.

Since we know that Q1/2(x, a) = a, then the term E[Q1/2(X,A) | A = a, Y = 1 ]
can be reduced more simply into E[A | A = a, Y = 1 ] = a. Therefore, the
Bayes classifier satisfies oppDiff(Q1/2) = 1− 0 > 0.

Regarding Q, we have E[Q | A = 1, Y = 1 ] = 1/2+E[ c(X) | A = 1, Y = 1 ]
and E[Q | A = 0, Y = 1 ] = 1/2+E[ c(X) | A = 0, Y = 1 ]. Notice from the
range of c, that E[Q | A = 1, Y = 1 ] ∈ (1/2, 1) and E[Q | A = 0, Y = 1 ] ∈
(0, 1/2). Hence oppDiff(Q) > 0.

Therefore, neither Q1/2 nor Q satisfy equal opportunity.

As a remark, notice that the data sources proposed in the proof of Propo-
sition 7, contrast the extreme case Y = A because they allow some mutual
information between X and Y after A is known, as one would expect in
a real-life distribution. Nevertheless, there is an evident inherent demo-
graphic disparity in these distributions, and this can be the reason why
equal opportunity hinders optimal accuracy for these examples.
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7 Algorithms for the Pareto Frontier

In this section, we provide an algorithm for computing and depicting
the Pareto frontier that optimizes the trade-off between error and the
absolute value of opportunity difference (0 being EO). We consider (and
aim at minimizing) the absolute value because we regard the difference in
opportunity as bias, independently of the sign.

Three algorithms are explained and compared: the brute force, the one we
propose, and the double-threshold method based on [13]. The methods
are restricted to finite alphabets for the non-protected attributes, i.e. X =
{x1, ..., xn}, so the inputs (x, a) can only take a total of |X × {0, 1}| = 2n
values. For the convenience of the reader, we summarized them in Table 2.

Methodology Complexity Principle for finding the convex hull

Brute-force O(n 22n)
All corners correspond to deterministic
classifiers.

Proposed O(n log n)

Algorithm 2. The n partial derivatives
of error and opportunity difference are
constant.

Double-threshold O(n3 log n)
Algorithm 3. All corners correspond to
single-threshold classifiers in V .

Table 2: Comparison of methods for finding the Pareto frontier and the feasi-
bility region.

7.1 Brute-Force Algorithm

We begin by describing the brute-force algorithm for reference. The brute-
force algorithm will compute not only the points that determine the Pareto
frontier but all the vertices of the feasibility region M .

Recall that the set of all predictors forms a 2n-dimensional polytope that
is mapped into the region M when error and opportunity difference are
measured. We know that each vertex of the region M corresponds to a
deterministic classifier, or equivalently, to one of the 22n vertices of the
polytope.

Therefore, it suffices to compute the error and opportunity difference for
the 22n vertices of the polytope (first part), and then compute their convex
hull (second part).

Assuming that each classifier is represented with an array of length 2n,
then the runtime complexity for computing the first part is O(2n 22n).
For the second part, we may use Graham’s scan algorithm [11] to find
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the vertices of the convex hull. Since there are 22n points and Graham’s
scan has complexity O(N logN) where N is the number points, then the
complexity is O(22n log 22n) = O(2n 22n). Hence the complexity for the
whole algorithm (adding up the first and second parts) is O(4n 22n) =
O(n 22n).

7.2 Proposed Method

The proposed method (Algorithm 2) also computes all the vertices of
the feasibility region M , but unlike the brute-force algorithm, it exploits
greedily a property that appears to be local (depending on a chosen pre-
dictor), but in reality, is global (same for all predictors) in M .

For each predictor in the 2n-dimensional polytope, let us consider its
taxicab neighbors, i.e. the set of points that differ with it in at most one
coordinate. Since the measurement function from the polytope into M
is linear, these neighbors form a star in M around the given predictor
(Figure 5).

Figure 5: Feasibility region for a par-
ticular data source showing the Pareto
frontier in red and the taxicab neigh-
bors’ star around an arbitrary predic-
tor.

Figure 6: Same scenario as in Figure 5,
but showing a star around a different
arbitrary central predictor. The seg-
ments of the two stars differ exclusively
in offset, not in slope or length. We ex-
ploit this fact in Algorithm 2.
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Algorithm 2 Fast computation of the feasibility region vertices.
1: Letting αa

def
= P[Y =1, A=a ] > 0 and n

def
= |X |,

2: procedure Convex hull(α0, α1, Q)
3: R← [ ] ▷ Empty list of rays
4: for each (x, a) do ▷ 2n in total
5: sign← −1 + 2 · 1a=1

6: y ← 1 ; θ ← arctan2( 1−2q(x, a), sign·q(x, a)/αa )
7: push tuple (θ, x, a, y) into R
8: y ← 0 ; θ ← ( θ + π mod (−π, π] )
9: push tuple (θ, x, a, y) into R

10: sort(R ) ▷ by angle in (−π, π]
11: V ← [] (empty list of classifiers)
12: Q̂← Bayes classifier Q1/2

13: for each ray (θ, x, a, y) in R do ▷ 4n in total
14: update q̂(x, a)← y

15: push a copy of Q̂ into V

16: return V ▷ classifiers that are vertices of M

The star consists of at most 4n rays (2n segments crossing the middle)
that represent the 2n degrees of freedom in the polytope. It reveals the
possible combinations of error and opportunity difference that we can
obtain from a given predictor by modifying a single component, i.e. the
decision for a particular (x, a). In particular, when the central predictor
is a vertex of the region M , then two of the rays of the star will land on
the two neighboring vertices of the polygon.

The crucial fact exploited by Algorithm 2 is that the inclination and length
of the segments of the star are the same regardless of the chosen central
predictor. The only variation is the offset (compare Figures 5 and 6). As
a consequence, the 2n segments that form the star can be visited in con-
venient order such that, starting from a vertex of the polygon M , all the
visited predictors are vertices (or lie collinearly between two consecutive
vertices) of the polygon.

More precisely, Algorithm 2 sorts the rays by angle, starts at the Bayes
classifier, and then visits each ray, updating the current classifier according
to the ray direction in the polytope. Each angle is computed in Line 6
using the gradients of error and opportunity difference as the x and y
arguments respectively (derived from their definitions and Lemma 13).
Both gradients were divided by a factor of π(x, a) because the arctan2
function is indifferent to linear scales, and this allows the whole Algorithm
to become independent of the distribution π(·, ·), except only for two
population values, α0 and α1, defined as αa

def
= P[Y =1, A=a ].

The runtime complexity of Algorithm 2 is O(n logn) because of the sort
instruction. All other instructions can be computed in linear time. Com-
pared with the complexity of the brute-force algorithm, the proposed
method enables the computation and visualization of the feasibility re-
gion M or the Pareto boundary for data sources with large (but finite)
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n. Indeed, Figure 7 shows an example with n = 1000. Since the method
computes all the vertices exactly, the visualization may be zoomed in at
any level of detail.

Figure 7: Pareto boundary (red) for
a more elaborated example with n =
1000 in which the O(n 22n) brute-force
algorithm is inconceivable. The feasi-
bility region is guaranteed to be convex,
and although its perimeter looks like a
curve, it is a high-resolution piecewise
linear path. Also, unlike Figures 5 and
6, the favored class is a = 0 and be-
cause of this, the Bayes classifier and
the Pareto curve lie in the bottom half.

7.3 Double-Threshold Method

The following fact was shown by [13]. It allows parametrizing all the
Pareto classifiers in a simple manner.

Fact 8. (Six parameters predictors) Any Pareto-optimal predictor Q̂ can
be written in terms of six parameters l0, l1, r0, r1, p0, p1 ∈ [0, 1] (la < ra,
standing for left and right thresholds) as

q̂(x, a)
def
=


0 if q(x, a) ∈ [0, la)

pa if q(x, a) ∈ [la, ra]

1 if q(x, a) ∈ (ra, 1].

This holds both discrete (as we assume) and non-discrete X.

Following Fact 8, a straightforward algorithm to approximate the Pareto-
boundary consists of iterating over a large number of combinations of
parameters, e.g. over a six-dimensional grid. This will produce a list
of predictors of which we can filter only those that are Pareto optimal
(optimal with respect to all other predictors in the list). The filtered
predictors will form an approximation of the Pareto boundary.

As shown in Fact 9, if we concentrate on finding only the vertices of the
Pareto-boundary and not all the points between them, the search space
for the parameters can be reduced dramatically.

Fact 9. (Double threshold classifiers) For any vertex of the piecewise
linear Pareto-boundary, there is a corresponding predictor Q̂ (with that
error and opportunity difference combination) that can be written in terms
of two parameters t0, t1 ∈ [0, 1] as either q̂(x, a) def

= 1q(x,a)>ta , or q̂(x, a) def
=
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1q(x,a)≥ta , or a combination of the two, e.g.

q̂(x, a)
def
=

{
1Q(x,0)>t0 if a = 0

1Q(x,1)≥t1 if a = 1.

Proof. Let l0, l1, r0, r1, p0, p1 be the six parameters that define Q̂ according
to Fact 8. Since Q̂ is a vertex on the Pareto-boundary it is also a vertex
of the region M , and we know from Theorem 1 that the vertices of M
correspond to deterministic predictors. Therefore, Q̂ can only take values
0, 1, which implies p0, p1 ∈ {0, 1}. This restriction makes one of the
two thresholds la or ra irrelevant for each a ∈ {0, 1} and the predictor
can be rewritten for each a ∈ {0, 1} as either q̂(x, a) = 1q(x,a)≥la or
q̂(x, a) = 1q(x,a)>ra .

For our particular case of interest in which the variable for non-protected
attributes X is discrete, q(x, a) can only take a finite number of values
r1, ..., rm ∈ [0, 1] with ri < ri+1. This makes the classifiers 1q(x,a)>ri and
1q(x,a)≥ri+1

equivalent. Therefore, we may unify all the possible cases of
Fact 9 without loss of generality using only strict inequalities:

q̂(x, a)
def
= 1q(x,a)>ta ,

for two thresholds t0, t1 ∈ {q(x, a) | x ∈ X , a ∈ {0, 1}}∪{−1}. The special
value −1 is added to contain the particular case 1q(x,a)≥0 for which no
strict threshold rule would exist. This is implemented in the ‘candidates’
procedure in Algorithm 3.

Algorithm 3 Computation of the feasibility region vertices
1: Letting αa

def
= P[Y =1, A=a ] > 0 and n

def
= |X |,

2: procedure Pareto vertices(α0, α1, Q, P )
3: V ← candidates(Q)

4: W ← [ (err(Q̂), oppDiff(Q̂)) | Q̂ ∈ V ] ▷ needs Q,P
5: I ← indices of convex hull of W , sorted clockwise
6: i← index in I with minimal x-coordinate ▷ Vi is Bayes
7: j ← first (or last) index in I with opposite y-sign to i
8: ▷ (first or last depends on the y-sign of Wi)
9: IPareto ← indices in I between i and j

10: return [ Vi | i ∈ IPareto ] ▷ Pareto vertices
11: procedure Candidates(Q)
12: T0 ← {Q(x, 0) | for each x} ∪ {−1} ▷ |T0| ≤ n+ 1
13: T1 ← {Q(x, 1) | for each x} ∪ {−1} ▷ |T1| ≤ n+ 1
14: V ← [ ] ▷ Empty list of threshold classifiers
15: for each t0 ∈ T0 do
16: for each t1 ∈ T1 do
17: push 1q(x,a)>ta into V

18: return V ▷ |V | ≤ (n+ 1)2

Algorithm 3, i.e. the ‘Pareto vertices’ procedure, computes the error and
opportunity difference for each threshold classifiers of interest (each classi-
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fier in V ) and computes the convex hull to then filter the Pareto boundary.
Since |V | ≤ (n+1)2, Algorithm 3 is polynomial. The exact complexity de-
pends on the implementation of the computation (err(Q̂), oppDiff(Q̂)) for
a fixed Q̂ ∈ V . Normally, this would take O(n) by literally implementing
their definition formulas for |X | = n, hence the complexity of Algorithm 3
is O(n3 logn).

8 Necessary and Sufficient Conditions

In this section, we provide a necessary and sufficient condition (Theo-
rem 10), as well as a simple sufficient (but not necessary) condition (Corol-
lary 11) that guarantees that equal opportunity and non-triviality are
compatible. Finally, we discuss when and how a dataset may present this
pathological incompatibility.

Theorem 10 (Necessary and sufficient condition for compatibility). Let
(X,A, Y ) be an arbitrary data source. Let Qa

def
= E[Q | A = a ] = E[Y | A = a ]

be the output average for each group. Let Qsup
a

def
= sup{q ∈ [0, 1] | ∃S E[Q | X ∈ S ∧A = a ] ≥

q} and analogously Qinf
a

def
= inf{q ∈ [0, 1] | ∃S E[Q | X ∈ S ∧A = a ] ≤ q}.

Then equal opportunity and non-triviality are compatible if and only if

0 ≤ Q1Q
sup
0 (1− 2Qsup

1 ) ≤ Q0Q
sup
1 (2Qsup

0 − 1) , or
0 ≤ Q0Q

sup
1 (1− 2Qsup

0 ) ≤ Q1Q
sup
0 (2Qsup

1 − 1) , or

0 ≤ Q1Q
inf
0 (2Qinf

1 − 1) ≤ Q0Q
inf
1 (1− 2Qinf

0 ) , or

0 ≤ Q0Q
inf
1 (2Qinf

0 − 1) ≤ Q1Q
inf
0 (1− 2Qinf

1 ).

Proof. Recall the star of rays around each classifier explained in Sec-
tion 7.2, and consider the rays around the constant classifier 0̂ in the
plane of error vs. opportunity difference. For each (x, a) in the do-
main, consider the predictor that maps everything to zero except (x, a)
to one. The change in opportunity difference with respect to 0̂ is ∆y =
π(x, a) q(x,a)

Qa
(2a−1), and the change in error is ∆x = π(x, a)(1−2q(x, a)).

Hence the angle of this ray is given by arctan2(∆y,∆x) = arctan2(q(x, a)(2a−
1), Qa(1 − 2q(x, a))). In order to have an impossibility between EO and
non-trivial accuracy, the constant classifier 0̂ must have either minimal
error among the classifiers satisfying EO, or maximal error, in which case
1̂ is minimal. Geometrically, this means that 0̂ must be part of the convex
hull, which holds if and only if all the angles of the rays departing from 0̂
lie in an interval of length at most π = 180°.
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Q = 0

Q = 1/2, A = 1

Q = 1/2, A = 0

Q=1,
A=1

Q=1,
A=0

0̂

Qsup
1

Qsup
0

0̂

≤ 180°

All the rays for a = 1 satisfy ∆y ≥ 0 and their angles lie between those
of Qinf

1 counter-clockwise to Qsup
1 . Similarly, all the rays for a = 0 satisfy

∆y ≤ 0 and their angles lie between those of Qinf
0 clockwise to Qsup

0 .
Therefore, checking that all rays lie in an interval of at most π is equivalent
to checking that the counter-clockwise angle from Qsup

0 to Qsup
1 is at most

π, or the clockwise angle from Qinf
0 to Qinf

1 is at most π. By replacing the
values of ∆y and ∆x, and considering separately the cases Qsup

0 ≤ 1/2,
Qsup

1 ≤ 1/2, Qinf
0 ≥ 1/2, and Qinf

1 ≥ 1/2, the four inequalities of the theorem
statement are obtained.

From Theorem 10 we can derive a simpler condition for EO and non-trivial
accuracy to be compatible. It is only sufficient (i.e., not necessary), but it
is easier to check and can be used to verify that a data source (X,A, Y )
of a particular application is not pathological for equal opportunity. It
is valid for discrete, continuous, and mixed data sources. Therefore, it
may be used as a minimal assumption for any research work on equal
opportunity dealing with probabilistic data sources.

Figure 8 summarizes the sufficiency condition in simple manner. The proof
consists of showing that when the 4 events highlighted in Figure 8 have
positive probabilities, then it is possible to use one of them to improve the
performance of the best constant classifier and another one to compensate
for equal opportunity.

Q < 1/2
A = 0

Q < 1/2
A = 1

Q = 1/2
A = 0

Q = 1/2
A = 1

Q > 1/2
A = 0

Q > 1/2
A = 1

Figure 8: Sufficiency condition: If the 4 blue events have positive probability,
then equal opportunity and non-triviality are compatible.

Corollary 11 (Sufficient condition). For any given data source (X,A, Y ),
not-necessarily discrete, if for each a ∈ {0, 1},

P[Q>1/2, A=a ],P[Q<1/2, A=a ] > 0,
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then equal opportunity and non-triviality are compatible. See Figure 8

Proof. According to Theorem 10, equal opportunity and non-triviality are
compatible if and only if none of its four inequalities hold. If P[Q>1/2, A=a ],P[Q<1/2, A=a ] >
0 for each a ∈ {0, 1}, then Qsup

1 > 1/2, Qsup
0 > 1/2, Qinf

1 < 1/2 and
Qinf

1 < 1/2, which respectively violate the four inequalities of Theorem 10.
Therefore compatibility is guaranteed.

An alternative proof of Corollary 11 that does not use Theorem 10 can
be found in the preliminary version of this paper [22] that was published
in the proceedings of AAAI 2022.

Corollary 11 reveals an important property of the pathological distribu-
tions in which EO and non-triviality are incompatible, namely, that they
must be already very biased in favor of either A = 0 or A = 1 and they
are highly probabilistic, meaning that the decision Y depends largely on
external information, e.g. noise. For instance, if P[Q>1/2, A=0 ] = 0,
then for all individuals in the class A = 0 the decision that minimizes
error is Ŷ = 0, regardless of their value of X; and the only explanation for
individuals with A = 0 and Y = 1 is external information not contained
in X.

9 An example based on a real-life dataset

In this section, we show how the incompatibility may occur in practice
with a variant of a real-life dataset. A consequence of Corollary 11 is that
real world datasets should not incur an incompatibility between EO and
non-trivial accuracy if sufficient information about the output is captured
in the input features. However, the pathology may still arise when this
property is violated. To illustrate this phenomenon, we consider a variant
of the Adult dataset [7], where we eliminate some features (thus making
it more probabilistic) and artificially reduce the rate of acceptance of the
whole population to put the disadvantaged class in a more critical position.

Figure 9 shows the Adult dataset after applying the following process:
(1) restricting the dataset to the 6 most relevant columns, (2) binarizing
the columns using the mean as a threshold, and (3) randomly decreasing
the probability of acceptance by 30% for both genders. The purpose of
these operations was to illustrate the incompatibility, nevertheless, they
are not so arbitrary. Indeed, the first two operations correspond to a
simplification of the data, e.g. to perform a simple manual analysis, and
the third was applied without direct use of the sensitive attribute (sex),
meaning that no additional gender-specific bias was needed to derive the
pathology. In other words, had the acceptance rate been lower for both
classes, a simplification of the dataset into 6 binary columns would have
sufficed to trigger the incompatibility.
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More precisely, Figure 9 shows the feasibility region in the plane of error
vs opportunity difference (the geometric perspective introduced in this
paper) as well as the associated ROC curve for a classifier (the geometric
perspective used in [13]). The left plot shows the constant classifier at the
extreme left, on the convex hull of the feasibility region. The plot at the
right is the ROC of a standard scikit-learn[20] random forest classifier of
100 decision trees, using a train-test split of 70%-30%. The parallel lines
correspond to constant levels of accuracy and based on the slope and the
direction of the gradient, it corroborates that accuracy is maximal at the
left-bottom extreme point, which corresponds to 0̂ with 0 false positives
and 0 true positives. The code for processing the dataset and generating
the plots is available at [23].

Figure 9: Adult dataset after simplification and reduction in acceptance rate.
EO and non-trivial accuracy become incompatible.

10 Distortion effect of empirical distribu-
tions

In many situations, we do not have at our disposal a perfect description
of the true data distribution, but only a dataset sampled from the dis-
tribution. This is the case, for instance, in machine learning, where the
training and the testing are done on the basis of sets of samples. In this
section, we discuss how using an empirical distribution from samples may
distort the estimation and the evaluation of opportunity difference and
accuracy. This distortion with respect to the true values is a consequence
of the fact that an empirical distribution is only an approximation of the
true one.

Figure 10 shows this mismatch from two points of view on an artificial
dataset with N = 100 categories for X and n = 1000 samples. The dataset
was generated by taking samples from a distribution consisting of a fixed
categorical distribution for the 2N joint categories of X,A, and a binomial
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distribution for Y |X,A whose parameter depends on the conditioning pair
X,A.

Figure 10 shows that when the empirical distribution of the dataset is
used instead of the true distribution of the data source, the resulting
(empirical) Pareto-optimal boundary obtained may mismatch the actual
Pareto-optimal boundary, meaning that some classifiers that are empiri-
cally deemed as optimal are not optimal, and vice versa.

More precisely, in the left plot of Figure 10 the axes represent the mea-
surements of the true error and opportunity difference, and the blue re-
gion shows the true convex hull. The orange line represents the empirical
Pareto-optimal boundary, computed by applying the algorithms of Sec-
tion 7 on the empirical distribution. As we can see, this boundary does
not delimit a convex hull anymore, and it is at some distance from the true
Pareto-optimal boundary. In particular, the empirical Fair (max accuracy
subject to EO) and empirical Bayes predictors are not at the boundary
of the true feasibility region, thus they are sub-optimal. Interestingly, the
empirical Bayes classifier has less accuracy than the empirical Fair.

Conversely, the right plot of Figure 10 depicts the empirical apparent
truth that a practitioner would observe in practice. Here, the axes are
empirical (apparent) measurements of error and opportunity difference,
and the orange area represents the empirical feasible region. The blue line
represents the empirical evaluation of the true Pareto-optimal boundary.
As we can see, in the empirical view the actual Bayes classifier and the
fairest predictor appear to be sub-optimal.

Note that the classifiers that form the vertices of the orange convex hull
in the right plot are exactly the orange points in the left plot and, vice
versa, the classifiers that form the vertices of the blue convex hull in the
left plot are exactly the blue points in the left plot.

Figure 10: True distribution vs empirical dataset. Left: the empirical Pareto
boundary mismatches the actual optimal boundary of error and opportunity
difference. Right: using the dataset for measuring (apparent) error and oppor-
tunity difference makes the optimal predictors in the Pareto boundary to appear
sub-optimal.
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The unavailability of the true distribution, which causes a mismatch be-
tween the estimated error and opportunity difference and their true values,
can have other unexpected consequences. For instance, the left plot in Fig-
ure 11 shows an example in which the best empirical fair classifier has less
error and more opportunity difference than the empirical Bayes classifier.
That is, for that particular data source and sampled dataset, training
a model towards maximal accuracy results in more fairness than train-
ing taking fairness into account; conversely, training under the fairness
constraint results in higher accuracy than training in an unconstrained
manner towards maximal accuracy.

This distorting effect has a random nature from the sampling process
and is reduced as the number of samples increases, making the empirical
measurements closer to their real counterparts. The right plot in Fig-
ure 11 shows the result of computing the Pareto-optimal boundary on
100 different datasets sampled independently from the same data source
distribution of N = 100 categories for X and n = 2500 samples. The
plot shows that, on average, the positions of the empirical Bayes classifier
and the empirical Fair classifier match the expected idea of the former
having less error and more opportunity difference and vice versa. The
empirical Fair classifier has indeed on average an opportunity difference
close to zero, suggesting that even though there is no formal guarantee of
achieving (true) equal opportunity using the Algorithms in this paper on
(empirical) datasets, one does expect that, with an adequate number of
samples, the empirical optimal classifiers will be close to the true optimal
ones.

Figure 11: Left: a scenario in which the best empirical fair classifier has less
error and more opportunity difference than the empirical Bayes classifier. Right:
empirical Pareto boundaries for 100 randomly sampled datasets.

11 Conclusion

This work extends existing results about equal opportunity and accuracy
from a deterministic data source to a probabilistic one. The main result,
Theorem 3, states that for certain probabilistic data sources, no predictor
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can achieve equal opportunity and non-trivial accuracy simultaneously.
We also characterized in Theorem 10 the conditions on the data source
under which EO and non-trivial accuracy are compatible and provided a
simple sufficient condition that ensures compatibility (Corollary 11).

The methods used in this paper rely mostly on geometric properties of
the feasibility region in the plane of error vs opportunity difference, thus
they are tuned for the fairness notion of equal opportunity, which seeks
equal true positive rates TPR. A symmetric analysis can be carried out for
equal false positive rates using the same ideas. Since the notion of equal
odds seeks both equal true positive rates and equal false positive rates, our
methodology and results can be extended to equal odds. In particular, the
impossibility theorem holds also for equal odds. However, the geometric
methodology that we used was tuned for opportunity difference, they are
therefore not directly useful for analyzing statistical parity or individual
fairness notions.

12 Lemmas

Lemma 12. For every Q̂ ∈ Q,

err(Q̂) = E[ |Q̂−Y | ].

Proof. Notice that P[ Ŷ ̸=Y |Y =1 ] = E[ 1− Q̂ | Y = 1 ] and P[ Ŷ ̸=Y |Y =0 ] =
E[ Q̂ | Y = 0 ]. In both cases, we may write P[ Ŷ ̸=Y |Y =y ] = E[ |Y − Q̂| | Y = y ].

Hence, marginalizing over Y we conclude P[ Ŷ ̸=Y ] = E[ |Y −Q̂| ].

Lemma 13. Assume P[Y =1, A=a ] > 0 for each a ∈ {0, 1}. For any
predictor Q̂, we have

P[ Ŷ =1|Y =1, A=a ] =
E[ Q̂Q | A = a ]

E[Q | A = a ]
,

hence also

oppDiff(Q̂) =
E[ Q̂Q | A = 1 ]

E[Q | A = 1 ]
− E[ Q̂Q | A = 0 ]

E[Q | A = 0 ]
.

As an additional consequence, by considering the symmetric predictor 1−
Q̂, it is also true that

P[ Ŷ =0|Y =1, A=a ] =
E[ (1− Q̂)Q | A = a ]

E[Q | A = a ]
.
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Proof. Indeed, by applying repetitively the Bayes rule, we get

P[ Ŷ=1|Y =1, A=a ] =
P[ Ŷ=1, Y =1, A=a ]

P[Y =1, A=a ]

=
P[A=a ]E[ Q̂Q | A = a ]

P[Y =1, A=a ]

=
E[ Q̂Q | A = a ]

P[Y =1|A=a ]

=
E[ Q̂Q | A = a ]

E[Q | A = a ]
.

The second equality holds because (Y, Ŷ) ⊥ A | (Q, Q̂) and Y ⊥ Ŷ |
(Q, Q̂).

Lemma 14. (Vectorial metrics) Using the notation of Definition 1, we
have

err(Q̂) = err(F⃗ ),

oppDiff(Q̂) = oppDiff(F⃗ ).

Proof. For the error, we marginalize over (X,A). Notice

P[Y ̸=Ŷ |X=xi, A=ai ] = + (1− q(xi, ai))q̂(xi, ai)

+ q(xi, ai)(1− q̂(xi, ai))

=(1− Q⃗i)
F⃗i

P⃗i

+ Q⃗i
P⃗i − F⃗i

P⃗i

=
Q⃗iP⃗i + F⃗i(1− 2Q⃗i)

P⃗i

.

Thus P[Y ̸=Ŷ,X=xi, A=ai ] = F⃗iP⃗i + F⃗i(1− 2Q⃗i), and

err(f) = P[ Ŷ ̸=Y ]

=

n∑
i=1

P[ Ŷ ̸=Y,X=xi, A=ai ]

= ⟨P⃗ , Q⃗⟩+ ⟨F⃗ , 1−2Q⟩

= err(F⃗ ).

For opportunity difference, we also marginalize over (X,A). Notice that

P[ Ŷ=1, Y =1, X=xi, A=ai ] =P⃗i E[ Q̂Q | X = xi, A = ai ]

=P⃗i
F⃗i

P⃗i

Q⃗i = F⃗iQ⃗i,

hence P[ Ŷ=1, Y =1, X=xi, A=a ] = F⃗iQ⃗
(a)
i . In addition, P[Y =1, X=xi, A=a ] =
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P⃗iQ⃗
(a)
i and

P[ Ŷ=1|Y =1, A=a ] =

∑n
i=1 P[ Ŷ=1, Y =1, X=xi, A=a ]∑n

i=1 P[Y =1, X=xi, A=a ]

=
⟨F⃗ , Q⃗(a)⟩
⟨P⃗ , Q⃗(a)⟩

.

Therefore
oppDiff(Q̂) = + P[ Ŷ=1|Y =1, A=1 ]

− P[ Ŷ=1|Y =1, A=0 ]

=
⟨F⃗ , Q⃗(1)⟩
⟨P⃗ , Q⃗(1)⟩

− ⟨F⃗ , Q⃗(0)⟩
⟨P⃗ , Q⃗(0)⟩

=oppDiff(F⃗ ).

Lemma 15. (Metrics symmetry) Using the notation of Definition 1, we
have

err(P⃗ − F⃗ ) = 1− err(F⃗ ),

oppDiff(P⃗ − F⃗ ) = −oppDiff(F⃗ ).

Proof. According to Lemma 14, opportunity difference is a linear trans-
formation. Since linear transformations preserve scalar multiplication
and vector addition, it follows that oppDiff(P⃗ − F⃗ ) = oppDiff(P⃗ ) −
oppDiff(F⃗ ). Moreover, since oppDiff(P⃗ ) = 1 − 1 = 0, then oppDiff(P⃗ −
F⃗ ) = −oppDiff(F⃗ ).

According to the same lemma, the error is an affine transformation with
offset ⟨P⃗ , Q⃗⟩. Hence

err(P⃗ − F⃗ ) = err(P⃗ )− err(F⃗ ) + ⟨P⃗ , Q⃗⟩

= 2⟨P⃗ , Q⃗⟩ − ⟨P⃗ , 1−2Q⃗⟩ − err(F⃗ )

= ⟨P⃗ , 1⟩ − err(F⃗ )

= 1− err(F⃗ ).

because
∑n

i=1 P⃗i = 1.

Lemma 16. (Bayes accuracy)

acc(Q1/2) = 1/2 + E[ |Q−1/2| ].

Proof. Out of Lemma 12, we know err(Q1/2) = 1−E[ ϵ ] where ϵ
def
= |Q1/2−

Y |. Let us condition on Q < 1/2 and Q ≥ 1/2 separately (whenever these
events have possible probabilities).

For Q < 1/2, we have E[ ϵ | Q < 1/2 ] = E[Y | Q < 1/2 ] = E[Q | Q < 1/2 ]
and Q = 1/2−(1/2−Q). For Q ≥ 1/2, we have E[ ϵ | Q ≥ 1/2 ] = E[ 1− Y | Q ≥ 1/2 ] =
E[ 1−Q | Q ≥ 1/2 ] and 1−Q = 1/2 − (Q− 1/2).
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These cases partition Ω and in both cases we have E[ ϵ ] = 1/2−E[ 1/2−Q ].
It follows that err(Q1/2) = 1/2 − E[ |Q−1/2| ].

Lemma 17. (Uniform case) Let Q̂ ∈ Q and ϵ
def
= |Q̂− Y | be the random

variable of the error of Q̂ (according to Lemma 12). If P[Q=1/2 ] > 0,
then

E[ ϵ | Q = 1/2 ] = 1/2.

Proof. Define r def
= E[ Q̂ ]. Let us condition on Y = 0 and Y = 1 separately.

For Y = 0, we have E[ ϵ | Q = 1/2, Y = 0 ] = r, and for Y = 1, we have
E[ ϵ | Q = 1/2, Y = 1 ] = 1− r.

Since P[Y =y |Q=1/2 ] = 1/2, we can compute the marginal as

E[ ϵ | Q = 1/2 ] = (1/2)(r+1−r) = 1/2

Lemma 18. (Alternative Bayes) The alternative Bayes classifier Q1/2

given by 1q(x,a)≥1/2 (≥ instead of >) has also maximal accuracy.

Proof. We will prove that err(Q1/2) = err(Q∗
1/2). Following Lemma 12, let

ϵ
def
= |Q1/2 − Y | and ϵ∗

def
= |Q∗

1/2 − Y |.

Conditioned to Q ̸= 1/2 we have Q1/2 = Q∗
1/2 from their definitions,

and thus also E[ ϵ− ϵ∗ | Q ̸= 1/2 ] = 0. It suffices to check the comple-
ment event Q = 1/2. Suppose P[Q=1/2 ] > 0. Conditioned to Q = 1/2,
Lemma 17 implies that E[ ϵ− ϵ∗ | Q = 1/2 ] = 1/2 − 1/2 = 0.

Hence E[ ϵ ] = E[ ϵ∗ ], i.e. err(q1/2) = err(q∗1/2).

Lemma 19. (Trivial error as an expectation)

τ = 1/2 + |E[Y ]− 1/2|.

Proof. The constant 0 predictor (0̂) has error E[Y ], while the constant
1 predictor (1̂) has error 1 − E[Y ]. We can rewrite these quantities re-
spectively as 1/2 − (1/2 − E[Y ]) and 1/2 + (1/2 − E[Y ]), whose maximum
is τ = 1/2 + |1/2 − E[Y ]|.

Lemma 20. Let P⃗ , Q⃗ ∈ (0, 1)3, with Q⃗1 < 1/2 and Q⃗2 − Q⃗1 > 0 (as in
Theorem 3).
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If P⃗ and Q⃗ satisfy also Q⃗3 + Q⃗1 ≥ 1 and P⃗1Q⃗1 + P⃗2Q⃗2 < P⃗3Q⃗1, then
⟨P⃗ , 2Q⃗−1⟩ > ⟨Z⃗, 2Q⃗−1⟩.

Proof. We have the following equivalences and at the end an implication.

⟨2Q⃗−1, P⃗ ⟩ − ⟨2Q⃗−1, Z⃗⟩ > 0

≡⟨2Q⃗−1, P⃗−Z⃗⟩ > 0

≡(2Q⃗1−1)P⃗1+(2Q⃗3−1)P⃗3
P⃗1Q⃗1

P⃗1Q⃗1+P⃗2Q⃗2

>0

≡(2Q⃗1−1)(P⃗1Q⃗1+P⃗2Q⃗2)+(2Q⃗3−1)P⃗3Q⃗1>0

≡(1−2Q⃗1)(P⃗1Q⃗1+P⃗2Q⃗2)<(2Q⃗3−1)P⃗3Q⃗1

⇐(1−2Q⃗1≤2Q⃗3−1)∧(P⃗1Q⃗1+P⃗2Q⃗2<P⃗3Q⃗1)

It is given that Q⃗3 + Q⃗1 ≥ 1 and P⃗1Q⃗1 + P⃗2Q⃗2 < P⃗3Q⃗1, which are
equivalent to the last two inequalities. Thus, they imply that ⟨2Q⃗−1, P⃗ ⟩−
⟨2Q⃗−1, Z⃗⟩ > 0.

Lemma 21. (Complementary part of Theorem 3) Algorithm 1 is correct.

Proof. We will prove a < b, P⃗2 ∈ (0, 1) and the fulfillment of constraints
C2 and C5.

Part 1. Proof that a < b.

Recall a = max{(1− P⃗3)Q⃗1, 1/2− P⃗3Q⃗3} and b = min{(1− P⃗3)Q⃗2, P⃗3Q⃗1}.

1. Since Q⃗1 < 1/2 < Q⃗2 and P⃗3 ∈ (0, 1), then (1− P⃗3)Q⃗1 < (1− P⃗3)Q⃗2.

2. Since P⃗3 ∈ (1/2, 1), then (1− P⃗3)Q⃗1 < P⃗3Q⃗1.

3. Since P⃗3 ∈ (0, 1) and Q⃗3 ∈ (1/2, 1), then P⃗3(Q⃗2− Q⃗3) < 1 · (Q⃗2−1/2),
or equivalently, 1/2 − P⃗3Q⃗3 < (1− P⃗3)Q⃗2.

4. Since P⃗3 > 1

2(Q⃗1+Q⃗3)
then 1/2 − P⃗3Q⃗3 < P⃗3Q⃗1.

Since the inequalities hold for all available choices for a and b, then, in
general, a < b holds.

Part 2. Proof that P⃗2 ∈ (0, 1).
We know c > Q⃗1(1 − P⃗3) and c < Q⃗2(1 − P⃗3). These inequalities imply
that c− Q⃗1(1− P⃗3) ∈ (0, Q⃗2 − Q⃗1), hence also that P⃗2 ∈ (0, 1).

Part 3. Constraint C2 is satisfied.
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Since P⃗1 + P⃗2 = 1 − P⃗3 and Q⃗2 > Q⃗1, then the term P⃗1Q⃗1 + P⃗2Q⃗2 is
minimal when P⃗1 = 1− P⃗3 and P⃗2 = 0. Thus,

P⃗1Q⃗1 + P⃗2Q⃗2 + P⃗3Q⃗3 ≥ (1− P⃗3)Q⃗1 + P⃗3Q⃗3

= Q⃗1 + P⃗3(Q⃗3 − Q⃗1)

> Q⃗1 +
Q⃗3 − Q⃗1

2

=
Q⃗3 + Q⃗1

2
≥ 1/2.

Part 4. Constraint C5 is satisfied.
Since b ≤ P⃗3Q⃗1, then P⃗2(Q⃗2 − Q⃗1) < P⃗3Q⃗1 − Q⃗1(1 − P⃗3). From this
inequality, we may derive constraint C5 as follows.

P⃗2(Q⃗2 − Q⃗1) < P⃗3Q⃗1 − Q⃗1(1− P⃗3)

P⃗2Q⃗2 < (2P⃗3 − 1 + P⃗2)Q⃗1

P⃗2Q⃗2 < P⃗3Q⃗1 − P⃗1Q⃗1

P⃗1Q⃗1 + P⃗2Q⃗2 < P⃗3Q⃗1.
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